Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SystemZTargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "SystemZISelLowering.h"
     15 #include "SystemZCallingConv.h"
     16 #include "SystemZConstantPoolValue.h"
     17 #include "SystemZMachineFunctionInfo.h"
     18 #include "SystemZTargetMachine.h"
     19 #include "llvm/CodeGen/CallingConvLower.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     23 #include "llvm/IR/Intrinsics.h"
     24 #include "llvm/IR/IntrinsicInst.h"
     25 #include "llvm/Support/CommandLine.h"
     26 #include "llvm/Support/KnownBits.h"
     27 #include <cctype>
     28 
     29 using namespace llvm;
     30 
     31 #define DEBUG_TYPE "systemz-lower"
     32 
     33 namespace {
     34 // Represents information about a comparison.
     35 struct Comparison {
     36   Comparison(SDValue Op0In, SDValue Op1In)
     37     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
     38 
     39   // The operands to the comparison.
     40   SDValue Op0, Op1;
     41 
     42   // The opcode that should be used to compare Op0 and Op1.
     43   unsigned Opcode;
     44 
     45   // A SystemZICMP value.  Only used for integer comparisons.
     46   unsigned ICmpType;
     47 
     48   // The mask of CC values that Opcode can produce.
     49   unsigned CCValid;
     50 
     51   // The mask of CC values for which the original condition is true.
     52   unsigned CCMask;
     53 };
     54 } // end anonymous namespace
     55 
     56 // Classify VT as either 32 or 64 bit.
     57 static bool is32Bit(EVT VT) {
     58   switch (VT.getSimpleVT().SimpleTy) {
     59   case MVT::i32:
     60     return true;
     61   case MVT::i64:
     62     return false;
     63   default:
     64     llvm_unreachable("Unsupported type");
     65   }
     66 }
     67 
     68 // Return a version of MachineOperand that can be safely used before the
     69 // final use.
     70 static MachineOperand earlyUseOperand(MachineOperand Op) {
     71   if (Op.isReg())
     72     Op.setIsKill(false);
     73   return Op;
     74 }
     75 
     76 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
     77                                              const SystemZSubtarget &STI)
     78     : TargetLowering(TM), Subtarget(STI) {
     79   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
     80 
     81   // Set up the register classes.
     82   if (Subtarget.hasHighWord())
     83     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
     84   else
     85     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
     86   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
     87   if (Subtarget.hasVector()) {
     88     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
     89     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
     90   } else {
     91     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
     92     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
     93   }
     94   if (Subtarget.hasVectorEnhancements1())
     95     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
     96   else
     97     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
     98 
     99   if (Subtarget.hasVector()) {
    100     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
    101     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
    102     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
    103     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
    104     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
    105     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
    106   }
    107 
    108   // Compute derived properties from the register classes
    109   computeRegisterProperties(Subtarget.getRegisterInfo());
    110 
    111   // Set up special registers.
    112   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
    113 
    114   // TODO: It may be better to default to latency-oriented scheduling, however
    115   // LLVM's current latency-oriented scheduler can't handle physreg definitions
    116   // such as SystemZ has with CC, so set this to the register-pressure
    117   // scheduler, because it can.
    118   setSchedulingPreference(Sched::RegPressure);
    119 
    120   setBooleanContents(ZeroOrOneBooleanContent);
    121   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    122 
    123   // Instructions are strings of 2-byte aligned 2-byte values.
    124   setMinFunctionAlignment(2);
    125   // For performance reasons we prefer 16-byte alignment.
    126   setPrefFunctionAlignment(4);
    127 
    128   // Handle operations that are handled in a similar way for all types.
    129   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
    130        I <= MVT::LAST_FP_VALUETYPE;
    131        ++I) {
    132     MVT VT = MVT::SimpleValueType(I);
    133     if (isTypeLegal(VT)) {
    134       // Lower SET_CC into an IPM-based sequence.
    135       setOperationAction(ISD::SETCC, VT, Custom);
    136 
    137       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
    138       setOperationAction(ISD::SELECT, VT, Expand);
    139 
    140       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
    141       setOperationAction(ISD::SELECT_CC, VT, Custom);
    142       setOperationAction(ISD::BR_CC,     VT, Custom);
    143     }
    144   }
    145 
    146   // Expand jump table branches as address arithmetic followed by an
    147   // indirect jump.
    148   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
    149 
    150   // Expand BRCOND into a BR_CC (see above).
    151   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    152 
    153   // Handle integer types.
    154   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
    155        I <= MVT::LAST_INTEGER_VALUETYPE;
    156        ++I) {
    157     MVT VT = MVT::SimpleValueType(I);
    158     if (isTypeLegal(VT)) {
    159       // Expand individual DIV and REMs into DIVREMs.
    160       setOperationAction(ISD::SDIV, VT, Expand);
    161       setOperationAction(ISD::UDIV, VT, Expand);
    162       setOperationAction(ISD::SREM, VT, Expand);
    163       setOperationAction(ISD::UREM, VT, Expand);
    164       setOperationAction(ISD::SDIVREM, VT, Custom);
    165       setOperationAction(ISD::UDIVREM, VT, Custom);
    166 
    167       // Support addition/subtraction with overflow.
    168       setOperationAction(ISD::SADDO, VT, Custom);
    169       setOperationAction(ISD::SSUBO, VT, Custom);
    170 
    171       // Support addition/subtraction with carry.
    172       setOperationAction(ISD::UADDO, VT, Custom);
    173       setOperationAction(ISD::USUBO, VT, Custom);
    174 
    175       // Support carry in as value rather than glue.
    176       setOperationAction(ISD::ADDCARRY, VT, Custom);
    177       setOperationAction(ISD::SUBCARRY, VT, Custom);
    178 
    179       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
    180       // stores, putting a serialization instruction after the stores.
    181       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
    182       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
    183 
    184       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
    185       // available, or if the operand is constant.
    186       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
    187 
    188       // Use POPCNT on z196 and above.
    189       if (Subtarget.hasPopulationCount())
    190         setOperationAction(ISD::CTPOP, VT, Custom);
    191       else
    192         setOperationAction(ISD::CTPOP, VT, Expand);
    193 
    194       // No special instructions for these.
    195       setOperationAction(ISD::CTTZ,            VT, Expand);
    196       setOperationAction(ISD::ROTR,            VT, Expand);
    197 
    198       // Use *MUL_LOHI where possible instead of MULH*.
    199       setOperationAction(ISD::MULHS, VT, Expand);
    200       setOperationAction(ISD::MULHU, VT, Expand);
    201       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
    202       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
    203 
    204       // Only z196 and above have native support for conversions to unsigned.
    205       // On z10, promoting to i64 doesn't generate an inexact condition for
    206       // values that are outside the i32 range but in the i64 range, so use
    207       // the default expansion.
    208       if (!Subtarget.hasFPExtension())
    209         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    210     }
    211   }
    212 
    213   // Type legalization will convert 8- and 16-bit atomic operations into
    214   // forms that operate on i32s (but still keeping the original memory VT).
    215   // Lower them into full i32 operations.
    216   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
    217   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
    218   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
    219   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
    220   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
    221   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
    222   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
    223   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
    224   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
    225   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
    226   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
    227 
    228   // Even though i128 is not a legal type, we still need to custom lower
    229   // the atomic operations in order to exploit SystemZ instructions.
    230   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
    231   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
    232 
    233   // We can use the CC result of compare-and-swap to implement
    234   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
    235   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
    236   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
    237   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
    238 
    239   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
    240 
    241   // Traps are legal, as we will convert them to "j .+2".
    242   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    243 
    244   // z10 has instructions for signed but not unsigned FP conversion.
    245   // Handle unsigned 32-bit types as signed 64-bit types.
    246   if (!Subtarget.hasFPExtension()) {
    247     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
    248     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    249   }
    250 
    251   // We have native support for a 64-bit CTLZ, via FLOGR.
    252   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
    253   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
    254 
    255   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
    256   setOperationAction(ISD::OR, MVT::i64, Custom);
    257 
    258   // FIXME: Can we support these natively?
    259   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
    260   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
    261   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
    262 
    263   // We have native instructions for i8, i16 and i32 extensions, but not i1.
    264   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    265   for (MVT VT : MVT::integer_valuetypes()) {
    266     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    267     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    268     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
    269   }
    270 
    271   // Handle the various types of symbolic address.
    272   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
    273   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
    274   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
    275   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
    276   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
    277 
    278   // We need to handle dynamic allocations specially because of the
    279   // 160-byte area at the bottom of the stack.
    280   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
    281   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
    282 
    283   // Use custom expanders so that we can force the function to use
    284   // a frame pointer.
    285   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
    286   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
    287 
    288   // Handle prefetches with PFD or PFDRL.
    289   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
    290 
    291   for (MVT VT : MVT::vector_valuetypes()) {
    292     // Assume by default that all vector operations need to be expanded.
    293     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
    294       if (getOperationAction(Opcode, VT) == Legal)
    295         setOperationAction(Opcode, VT, Expand);
    296 
    297     // Likewise all truncating stores and extending loads.
    298     for (MVT InnerVT : MVT::vector_valuetypes()) {
    299       setTruncStoreAction(VT, InnerVT, Expand);
    300       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    301       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    302       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    303     }
    304 
    305     if (isTypeLegal(VT)) {
    306       // These operations are legal for anything that can be stored in a
    307       // vector register, even if there is no native support for the format
    308       // as such.  In particular, we can do these for v4f32 even though there
    309       // are no specific instructions for that format.
    310       setOperationAction(ISD::LOAD, VT, Legal);
    311       setOperationAction(ISD::STORE, VT, Legal);
    312       setOperationAction(ISD::VSELECT, VT, Legal);
    313       setOperationAction(ISD::BITCAST, VT, Legal);
    314       setOperationAction(ISD::UNDEF, VT, Legal);
    315 
    316       // Likewise, except that we need to replace the nodes with something
    317       // more specific.
    318       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
    319       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
    320     }
    321   }
    322 
    323   // Handle integer vector types.
    324   for (MVT VT : MVT::integer_vector_valuetypes()) {
    325     if (isTypeLegal(VT)) {
    326       // These operations have direct equivalents.
    327       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
    328       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
    329       setOperationAction(ISD::ADD, VT, Legal);
    330       setOperationAction(ISD::SUB, VT, Legal);
    331       if (VT != MVT::v2i64)
    332         setOperationAction(ISD::MUL, VT, Legal);
    333       setOperationAction(ISD::AND, VT, Legal);
    334       setOperationAction(ISD::OR, VT, Legal);
    335       setOperationAction(ISD::XOR, VT, Legal);
    336       if (Subtarget.hasVectorEnhancements1())
    337         setOperationAction(ISD::CTPOP, VT, Legal);
    338       else
    339         setOperationAction(ISD::CTPOP, VT, Custom);
    340       setOperationAction(ISD::CTTZ, VT, Legal);
    341       setOperationAction(ISD::CTLZ, VT, Legal);
    342 
    343       // Convert a GPR scalar to a vector by inserting it into element 0.
    344       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
    345 
    346       // Use a series of unpacks for extensions.
    347       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
    348       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
    349 
    350       // Detect shifts by a scalar amount and convert them into
    351       // V*_BY_SCALAR.
    352       setOperationAction(ISD::SHL, VT, Custom);
    353       setOperationAction(ISD::SRA, VT, Custom);
    354       setOperationAction(ISD::SRL, VT, Custom);
    355 
    356       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
    357       // converted into ROTL.
    358       setOperationAction(ISD::ROTL, VT, Expand);
    359       setOperationAction(ISD::ROTR, VT, Expand);
    360 
    361       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
    362       // and inverting the result as necessary.
    363       setOperationAction(ISD::SETCC, VT, Custom);
    364     }
    365   }
    366 
    367   if (Subtarget.hasVector()) {
    368     // There should be no need to check for float types other than v2f64
    369     // since <2 x f32> isn't a legal type.
    370     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
    371     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
    372     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
    373     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
    374     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
    375     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
    376     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
    377     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
    378   }
    379 
    380   // Handle floating-point types.
    381   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
    382        I <= MVT::LAST_FP_VALUETYPE;
    383        ++I) {
    384     MVT VT = MVT::SimpleValueType(I);
    385     if (isTypeLegal(VT)) {
    386       // We can use FI for FRINT.
    387       setOperationAction(ISD::FRINT, VT, Legal);
    388 
    389       // We can use the extended form of FI for other rounding operations.
    390       if (Subtarget.hasFPExtension()) {
    391         setOperationAction(ISD::FNEARBYINT, VT, Legal);
    392         setOperationAction(ISD::FFLOOR, VT, Legal);
    393         setOperationAction(ISD::FCEIL, VT, Legal);
    394         setOperationAction(ISD::FTRUNC, VT, Legal);
    395         setOperationAction(ISD::FROUND, VT, Legal);
    396       }
    397 
    398       // No special instructions for these.
    399       setOperationAction(ISD::FSIN, VT, Expand);
    400       setOperationAction(ISD::FCOS, VT, Expand);
    401       setOperationAction(ISD::FSINCOS, VT, Expand);
    402       setOperationAction(ISD::FREM, VT, Expand);
    403       setOperationAction(ISD::FPOW, VT, Expand);
    404     }
    405   }
    406 
    407   // Handle floating-point vector types.
    408   if (Subtarget.hasVector()) {
    409     // Scalar-to-vector conversion is just a subreg.
    410     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    411     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
    412 
    413     // Some insertions and extractions can be done directly but others
    414     // need to go via integers.
    415     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
    416     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
    417     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    418     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
    419 
    420     // These operations have direct equivalents.
    421     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
    422     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
    423     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
    424     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
    425     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
    426     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
    427     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
    428     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
    429     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
    430     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
    431     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
    432     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
    433     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
    434     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
    435   }
    436 
    437   // The vector enhancements facility 1 has instructions for these.
    438   if (Subtarget.hasVectorEnhancements1()) {
    439     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
    440     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
    441     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
    442     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
    443     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
    444     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
    445     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
    446     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    447     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
    448     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
    449     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    450     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
    451     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    452     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
    453 
    454     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
    455     setOperationAction(ISD::FMAXNAN, MVT::f64, Legal);
    456     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
    457     setOperationAction(ISD::FMINNAN, MVT::f64, Legal);
    458 
    459     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
    460     setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal);
    461     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
    462     setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal);
    463 
    464     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
    465     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
    466     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
    467     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
    468 
    469     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
    470     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
    471     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
    472     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
    473 
    474     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
    475     setOperationAction(ISD::FMAXNAN, MVT::f128, Legal);
    476     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
    477     setOperationAction(ISD::FMINNAN, MVT::f128, Legal);
    478   }
    479 
    480   // We have fused multiply-addition for f32 and f64 but not f128.
    481   setOperationAction(ISD::FMA, MVT::f32,  Legal);
    482   setOperationAction(ISD::FMA, MVT::f64,  Legal);
    483   if (Subtarget.hasVectorEnhancements1())
    484     setOperationAction(ISD::FMA, MVT::f128, Legal);
    485   else
    486     setOperationAction(ISD::FMA, MVT::f128, Expand);
    487 
    488   // We don't have a copysign instruction on vector registers.
    489   if (Subtarget.hasVectorEnhancements1())
    490     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
    491 
    492   // Needed so that we don't try to implement f128 constant loads using
    493   // a load-and-extend of a f80 constant (in cases where the constant
    494   // would fit in an f80).
    495   for (MVT VT : MVT::fp_valuetypes())
    496     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
    497 
    498   // We don't have extending load instruction on vector registers.
    499   if (Subtarget.hasVectorEnhancements1()) {
    500     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
    501     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
    502   }
    503 
    504   // Floating-point truncation and stores need to be done separately.
    505   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
    506   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
    507   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
    508 
    509   // We have 64-bit FPR<->GPR moves, but need special handling for
    510   // 32-bit forms.
    511   if (!Subtarget.hasVector()) {
    512     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
    513     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
    514   }
    515 
    516   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
    517   // structure, but VAEND is a no-op.
    518   setOperationAction(ISD::VASTART, MVT::Other, Custom);
    519   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
    520   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
    521 
    522   // Codes for which we want to perform some z-specific combinations.
    523   setTargetDAGCombine(ISD::ZERO_EXTEND);
    524   setTargetDAGCombine(ISD::SIGN_EXTEND);
    525   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
    526   setTargetDAGCombine(ISD::STORE);
    527   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
    528   setTargetDAGCombine(ISD::FP_ROUND);
    529   setTargetDAGCombine(ISD::BSWAP);
    530 
    531   // Handle intrinsics.
    532   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
    533   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    534 
    535   // We want to use MVC in preference to even a single load/store pair.
    536   MaxStoresPerMemcpy = 0;
    537   MaxStoresPerMemcpyOptSize = 0;
    538 
    539   // The main memset sequence is a byte store followed by an MVC.
    540   // Two STC or MV..I stores win over that, but the kind of fused stores
    541   // generated by target-independent code don't when the byte value is
    542   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
    543   // than "STC;MVC".  Handle the choice in target-specific code instead.
    544   MaxStoresPerMemset = 0;
    545   MaxStoresPerMemsetOptSize = 0;
    546 }
    547 
    548 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
    549                                               LLVMContext &, EVT VT) const {
    550   if (!VT.isVector())
    551     return MVT::i32;
    552   return VT.changeVectorElementTypeToInteger();
    553 }
    554 
    555 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
    556   VT = VT.getScalarType();
    557 
    558   if (!VT.isSimple())
    559     return false;
    560 
    561   switch (VT.getSimpleVT().SimpleTy) {
    562   case MVT::f32:
    563   case MVT::f64:
    564     return true;
    565   case MVT::f128:
    566     return Subtarget.hasVectorEnhancements1();
    567   default:
    568     break;
    569   }
    570 
    571   return false;
    572 }
    573 
    574 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
    575   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
    576   return Imm.isZero() || Imm.isNegZero();
    577 }
    578 
    579 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
    580   // We can use CGFI or CLGFI.
    581   return isInt<32>(Imm) || isUInt<32>(Imm);
    582 }
    583 
    584 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
    585   // We can use ALGFI or SLGFI.
    586   return isUInt<32>(Imm) || isUInt<32>(-Imm);
    587 }
    588 
    589 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
    590                                                            unsigned,
    591                                                            unsigned,
    592                                                            bool *Fast) const {
    593   // Unaligned accesses should never be slower than the expanded version.
    594   // We check specifically for aligned accesses in the few cases where
    595   // they are required.
    596   if (Fast)
    597     *Fast = true;
    598   return true;
    599 }
    600 
    601 // Information about the addressing mode for a memory access.
    602 struct AddressingMode {
    603   // True if a long displacement is supported.
    604   bool LongDisplacement;
    605 
    606   // True if use of index register is supported.
    607   bool IndexReg;
    608 
    609   AddressingMode(bool LongDispl, bool IdxReg) :
    610     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
    611 };
    612 
    613 // Return the desired addressing mode for a Load which has only one use (in
    614 // the same block) which is a Store.
    615 static AddressingMode getLoadStoreAddrMode(bool HasVector,
    616                                           Type *Ty) {
    617   // With vector support a Load->Store combination may be combined to either
    618   // an MVC or vector operations and it seems to work best to allow the
    619   // vector addressing mode.
    620   if (HasVector)
    621     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
    622 
    623   // Otherwise only the MVC case is special.
    624   bool MVC = Ty->isIntegerTy(8);
    625   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
    626 }
    627 
    628 // Return the addressing mode which seems most desirable given an LLVM
    629 // Instruction pointer.
    630 static AddressingMode
    631 supportedAddressingMode(Instruction *I, bool HasVector) {
    632   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    633     switch (II->getIntrinsicID()) {
    634     default: break;
    635     case Intrinsic::memset:
    636     case Intrinsic::memmove:
    637     case Intrinsic::memcpy:
    638       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
    639     }
    640   }
    641 
    642   if (isa<LoadInst>(I) && I->hasOneUse()) {
    643     auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
    644     if (SingleUser->getParent() == I->getParent()) {
    645       if (isa<ICmpInst>(SingleUser)) {
    646         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
    647           if (C->getBitWidth() <= 64 &&
    648               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
    649             // Comparison of memory with 16 bit signed / unsigned immediate
    650             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
    651       } else if (isa<StoreInst>(SingleUser))
    652         // Load->Store
    653         return getLoadStoreAddrMode(HasVector, I->getType());
    654     }
    655   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
    656     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
    657       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
    658         // Load->Store
    659         return getLoadStoreAddrMode(HasVector, LoadI->getType());
    660   }
    661 
    662   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
    663 
    664     // * Use LDE instead of LE/LEY for z13 to avoid partial register
    665     //   dependencies (LDE only supports small offsets).
    666     // * Utilize the vector registers to hold floating point
    667     //   values (vector load / store instructions only support small
    668     //   offsets).
    669 
    670     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
    671                          I->getOperand(0)->getType());
    672     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
    673     bool IsVectorAccess = MemAccessTy->isVectorTy();
    674 
    675     // A store of an extracted vector element will be combined into a VSTE type
    676     // instruction.
    677     if (!IsVectorAccess && isa<StoreInst>(I)) {
    678       Value *DataOp = I->getOperand(0);
    679       if (isa<ExtractElementInst>(DataOp))
    680         IsVectorAccess = true;
    681     }
    682 
    683     // A load which gets inserted into a vector element will be combined into a
    684     // VLE type instruction.
    685     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
    686       User *LoadUser = *I->user_begin();
    687       if (isa<InsertElementInst>(LoadUser))
    688         IsVectorAccess = true;
    689     }
    690 
    691     if (IsFPAccess || IsVectorAccess)
    692       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
    693   }
    694 
    695   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
    696 }
    697 
    698 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
    699        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
    700   // Punt on globals for now, although they can be used in limited
    701   // RELATIVE LONG cases.
    702   if (AM.BaseGV)
    703     return false;
    704 
    705   // Require a 20-bit signed offset.
    706   if (!isInt<20>(AM.BaseOffs))
    707     return false;
    708 
    709   AddressingMode SupportedAM(true, true);
    710   if (I != nullptr)
    711     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
    712 
    713   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
    714     return false;
    715 
    716   if (!SupportedAM.IndexReg)
    717     // No indexing allowed.
    718     return AM.Scale == 0;
    719   else
    720     // Indexing is OK but no scale factor can be applied.
    721     return AM.Scale == 0 || AM.Scale == 1;
    722 }
    723 
    724 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
    725   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
    726     return false;
    727   unsigned FromBits = FromType->getPrimitiveSizeInBits();
    728   unsigned ToBits = ToType->getPrimitiveSizeInBits();
    729   return FromBits > ToBits;
    730 }
    731 
    732 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
    733   if (!FromVT.isInteger() || !ToVT.isInteger())
    734     return false;
    735   unsigned FromBits = FromVT.getSizeInBits();
    736   unsigned ToBits = ToVT.getSizeInBits();
    737   return FromBits > ToBits;
    738 }
    739 
    740 //===----------------------------------------------------------------------===//
    741 // Inline asm support
    742 //===----------------------------------------------------------------------===//
    743 
    744 TargetLowering::ConstraintType
    745 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
    746   if (Constraint.size() == 1) {
    747     switch (Constraint[0]) {
    748     case 'a': // Address register
    749     case 'd': // Data register (equivalent to 'r')
    750     case 'f': // Floating-point register
    751     case 'h': // High-part register
    752     case 'r': // General-purpose register
    753     case 'v': // Vector register
    754       return C_RegisterClass;
    755 
    756     case 'Q': // Memory with base and unsigned 12-bit displacement
    757     case 'R': // Likewise, plus an index
    758     case 'S': // Memory with base and signed 20-bit displacement
    759     case 'T': // Likewise, plus an index
    760     case 'm': // Equivalent to 'T'.
    761       return C_Memory;
    762 
    763     case 'I': // Unsigned 8-bit constant
    764     case 'J': // Unsigned 12-bit constant
    765     case 'K': // Signed 16-bit constant
    766     case 'L': // Signed 20-bit displacement (on all targets we support)
    767     case 'M': // 0x7fffffff
    768       return C_Other;
    769 
    770     default:
    771       break;
    772     }
    773   }
    774   return TargetLowering::getConstraintType(Constraint);
    775 }
    776 
    777 TargetLowering::ConstraintWeight SystemZTargetLowering::
    778 getSingleConstraintMatchWeight(AsmOperandInfo &info,
    779                                const char *constraint) const {
    780   ConstraintWeight weight = CW_Invalid;
    781   Value *CallOperandVal = info.CallOperandVal;
    782   // If we don't have a value, we can't do a match,
    783   // but allow it at the lowest weight.
    784   if (!CallOperandVal)
    785     return CW_Default;
    786   Type *type = CallOperandVal->getType();
    787   // Look at the constraint type.
    788   switch (*constraint) {
    789   default:
    790     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    791     break;
    792 
    793   case 'a': // Address register
    794   case 'd': // Data register (equivalent to 'r')
    795   case 'h': // High-part register
    796   case 'r': // General-purpose register
    797     if (CallOperandVal->getType()->isIntegerTy())
    798       weight = CW_Register;
    799     break;
    800 
    801   case 'f': // Floating-point register
    802     if (type->isFloatingPointTy())
    803       weight = CW_Register;
    804     break;
    805 
    806   case 'v': // Vector register
    807     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
    808         Subtarget.hasVector())
    809       weight = CW_Register;
    810     break;
    811 
    812   case 'I': // Unsigned 8-bit constant
    813     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    814       if (isUInt<8>(C->getZExtValue()))
    815         weight = CW_Constant;
    816     break;
    817 
    818   case 'J': // Unsigned 12-bit constant
    819     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    820       if (isUInt<12>(C->getZExtValue()))
    821         weight = CW_Constant;
    822     break;
    823 
    824   case 'K': // Signed 16-bit constant
    825     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    826       if (isInt<16>(C->getSExtValue()))
    827         weight = CW_Constant;
    828     break;
    829 
    830   case 'L': // Signed 20-bit displacement (on all targets we support)
    831     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    832       if (isInt<20>(C->getSExtValue()))
    833         weight = CW_Constant;
    834     break;
    835 
    836   case 'M': // 0x7fffffff
    837     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    838       if (C->getZExtValue() == 0x7fffffff)
    839         weight = CW_Constant;
    840     break;
    841   }
    842   return weight;
    843 }
    844 
    845 // Parse a "{tNNN}" register constraint for which the register type "t"
    846 // has already been verified.  MC is the class associated with "t" and
    847 // Map maps 0-based register numbers to LLVM register numbers.
    848 static std::pair<unsigned, const TargetRegisterClass *>
    849 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
    850                     const unsigned *Map, unsigned Size) {
    851   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
    852   if (isdigit(Constraint[2])) {
    853     unsigned Index;
    854     bool Failed =
    855         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
    856     if (!Failed && Index < Size && Map[Index])
    857       return std::make_pair(Map[Index], RC);
    858   }
    859   return std::make_pair(0U, nullptr);
    860 }
    861 
    862 std::pair<unsigned, const TargetRegisterClass *>
    863 SystemZTargetLowering::getRegForInlineAsmConstraint(
    864     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
    865   if (Constraint.size() == 1) {
    866     // GCC Constraint Letters
    867     switch (Constraint[0]) {
    868     default: break;
    869     case 'd': // Data register (equivalent to 'r')
    870     case 'r': // General-purpose register
    871       if (VT == MVT::i64)
    872         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
    873       else if (VT == MVT::i128)
    874         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
    875       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
    876 
    877     case 'a': // Address register
    878       if (VT == MVT::i64)
    879         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
    880       else if (VT == MVT::i128)
    881         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
    882       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
    883 
    884     case 'h': // High-part register (an LLVM extension)
    885       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
    886 
    887     case 'f': // Floating-point register
    888       if (VT == MVT::f64)
    889         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
    890       else if (VT == MVT::f128)
    891         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
    892       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
    893 
    894     case 'v': // Vector register
    895       if (Subtarget.hasVector()) {
    896         if (VT == MVT::f32)
    897           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
    898         if (VT == MVT::f64)
    899           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
    900         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
    901       }
    902       break;
    903     }
    904   }
    905   if (Constraint.size() > 0 && Constraint[0] == '{') {
    906     // We need to override the default register parsing for GPRs and FPRs
    907     // because the interpretation depends on VT.  The internal names of
    908     // the registers are also different from the external names
    909     // (F0D and F0S instead of F0, etc.).
    910     if (Constraint[1] == 'r') {
    911       if (VT == MVT::i32)
    912         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
    913                                    SystemZMC::GR32Regs, 16);
    914       if (VT == MVT::i128)
    915         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
    916                                    SystemZMC::GR128Regs, 16);
    917       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
    918                                  SystemZMC::GR64Regs, 16);
    919     }
    920     if (Constraint[1] == 'f') {
    921       if (VT == MVT::f32)
    922         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
    923                                    SystemZMC::FP32Regs, 16);
    924       if (VT == MVT::f128)
    925         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
    926                                    SystemZMC::FP128Regs, 16);
    927       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
    928                                  SystemZMC::FP64Regs, 16);
    929     }
    930     if (Constraint[1] == 'v') {
    931       if (VT == MVT::f32)
    932         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
    933                                    SystemZMC::VR32Regs, 32);
    934       if (VT == MVT::f64)
    935         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
    936                                    SystemZMC::VR64Regs, 32);
    937       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
    938                                  SystemZMC::VR128Regs, 32);
    939     }
    940   }
    941   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
    942 }
    943 
    944 void SystemZTargetLowering::
    945 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
    946                              std::vector<SDValue> &Ops,
    947                              SelectionDAG &DAG) const {
    948   // Only support length 1 constraints for now.
    949   if (Constraint.length() == 1) {
    950     switch (Constraint[0]) {
    951     case 'I': // Unsigned 8-bit constant
    952       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    953         if (isUInt<8>(C->getZExtValue()))
    954           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
    955                                               Op.getValueType()));
    956       return;
    957 
    958     case 'J': // Unsigned 12-bit constant
    959       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    960         if (isUInt<12>(C->getZExtValue()))
    961           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
    962                                               Op.getValueType()));
    963       return;
    964 
    965     case 'K': // Signed 16-bit constant
    966       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    967         if (isInt<16>(C->getSExtValue()))
    968           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
    969                                               Op.getValueType()));
    970       return;
    971 
    972     case 'L': // Signed 20-bit displacement (on all targets we support)
    973       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    974         if (isInt<20>(C->getSExtValue()))
    975           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
    976                                               Op.getValueType()));
    977       return;
    978 
    979     case 'M': // 0x7fffffff
    980       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    981         if (C->getZExtValue() == 0x7fffffff)
    982           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
    983                                               Op.getValueType()));
    984       return;
    985     }
    986   }
    987   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
    988 }
    989 
    990 //===----------------------------------------------------------------------===//
    991 // Calling conventions
    992 //===----------------------------------------------------------------------===//
    993 
    994 #include "SystemZGenCallingConv.inc"
    995 
    996 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
    997   CallingConv::ID) const {
    998   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
    999                                            SystemZ::R14D, 0 };
   1000   return ScratchRegs;
   1001 }
   1002 
   1003 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
   1004                                                      Type *ToType) const {
   1005   return isTruncateFree(FromType, ToType);
   1006 }
   1007 
   1008 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
   1009   return CI->isTailCall();
   1010 }
   1011 
   1012 // We do not yet support 128-bit single-element vector types.  If the user
   1013 // attempts to use such types as function argument or return type, prefer
   1014 // to error out instead of emitting code violating the ABI.
   1015 static void VerifyVectorType(MVT VT, EVT ArgVT) {
   1016   if (ArgVT.isVector() && !VT.isVector())
   1017     report_fatal_error("Unsupported vector argument or return type");
   1018 }
   1019 
   1020 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
   1021   for (unsigned i = 0; i < Ins.size(); ++i)
   1022     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
   1023 }
   1024 
   1025 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
   1026   for (unsigned i = 0; i < Outs.size(); ++i)
   1027     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
   1028 }
   1029 
   1030 // Value is a value that has been passed to us in the location described by VA
   1031 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
   1032 // any loads onto Chain.
   1033 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
   1034                                    CCValAssign &VA, SDValue Chain,
   1035                                    SDValue Value) {
   1036   // If the argument has been promoted from a smaller type, insert an
   1037   // assertion to capture this.
   1038   if (VA.getLocInfo() == CCValAssign::SExt)
   1039     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
   1040                         DAG.getValueType(VA.getValVT()));
   1041   else if (VA.getLocInfo() == CCValAssign::ZExt)
   1042     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
   1043                         DAG.getValueType(VA.getValVT()));
   1044 
   1045   if (VA.isExtInLoc())
   1046     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
   1047   else if (VA.getLocInfo() == CCValAssign::BCvt) {
   1048     // If this is a short vector argument loaded from the stack,
   1049     // extend from i64 to full vector size and then bitcast.
   1050     assert(VA.getLocVT() == MVT::i64);
   1051     assert(VA.getValVT().isVector());
   1052     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
   1053     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
   1054   } else
   1055     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
   1056   return Value;
   1057 }
   1058 
   1059 // Value is a value of type VA.getValVT() that we need to copy into
   1060 // the location described by VA.  Return a copy of Value converted to
   1061 // VA.getValVT().  The caller is responsible for handling indirect values.
   1062 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
   1063                                    CCValAssign &VA, SDValue Value) {
   1064   switch (VA.getLocInfo()) {
   1065   case CCValAssign::SExt:
   1066     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
   1067   case CCValAssign::ZExt:
   1068     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
   1069   case CCValAssign::AExt:
   1070     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
   1071   case CCValAssign::BCvt:
   1072     // If this is a short vector argument to be stored to the stack,
   1073     // bitcast to v2i64 and then extract first element.
   1074     assert(VA.getLocVT() == MVT::i64);
   1075     assert(VA.getValVT().isVector());
   1076     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
   1077     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
   1078                        DAG.getConstant(0, DL, MVT::i32));
   1079   case CCValAssign::Full:
   1080     return Value;
   1081   default:
   1082     llvm_unreachable("Unhandled getLocInfo()");
   1083   }
   1084 }
   1085 
   1086 SDValue SystemZTargetLowering::LowerFormalArguments(
   1087     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
   1088     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
   1089     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   1090   MachineFunction &MF = DAG.getMachineFunction();
   1091   MachineFrameInfo &MFI = MF.getFrameInfo();
   1092   MachineRegisterInfo &MRI = MF.getRegInfo();
   1093   SystemZMachineFunctionInfo *FuncInfo =
   1094       MF.getInfo<SystemZMachineFunctionInfo>();
   1095   auto *TFL =
   1096       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
   1097   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   1098 
   1099   // Detect unsupported vector argument types.
   1100   if (Subtarget.hasVector())
   1101     VerifyVectorTypes(Ins);
   1102 
   1103   // Assign locations to all of the incoming arguments.
   1104   SmallVector<CCValAssign, 16> ArgLocs;
   1105   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
   1106   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
   1107 
   1108   unsigned NumFixedGPRs = 0;
   1109   unsigned NumFixedFPRs = 0;
   1110   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
   1111     SDValue ArgValue;
   1112     CCValAssign &VA = ArgLocs[I];
   1113     EVT LocVT = VA.getLocVT();
   1114     if (VA.isRegLoc()) {
   1115       // Arguments passed in registers
   1116       const TargetRegisterClass *RC;
   1117       switch (LocVT.getSimpleVT().SimpleTy) {
   1118       default:
   1119         // Integers smaller than i64 should be promoted to i64.
   1120         llvm_unreachable("Unexpected argument type");
   1121       case MVT::i32:
   1122         NumFixedGPRs += 1;
   1123         RC = &SystemZ::GR32BitRegClass;
   1124         break;
   1125       case MVT::i64:
   1126         NumFixedGPRs += 1;
   1127         RC = &SystemZ::GR64BitRegClass;
   1128         break;
   1129       case MVT::f32:
   1130         NumFixedFPRs += 1;
   1131         RC = &SystemZ::FP32BitRegClass;
   1132         break;
   1133       case MVT::f64:
   1134         NumFixedFPRs += 1;
   1135         RC = &SystemZ::FP64BitRegClass;
   1136         break;
   1137       case MVT::v16i8:
   1138       case MVT::v8i16:
   1139       case MVT::v4i32:
   1140       case MVT::v2i64:
   1141       case MVT::v4f32:
   1142       case MVT::v2f64:
   1143         RC = &SystemZ::VR128BitRegClass;
   1144         break;
   1145       }
   1146 
   1147       unsigned VReg = MRI.createVirtualRegister(RC);
   1148       MRI.addLiveIn(VA.getLocReg(), VReg);
   1149       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
   1150     } else {
   1151       assert(VA.isMemLoc() && "Argument not register or memory");
   1152 
   1153       // Create the frame index object for this incoming parameter.
   1154       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
   1155                                      VA.getLocMemOffset(), true);
   1156 
   1157       // Create the SelectionDAG nodes corresponding to a load
   1158       // from this parameter.  Unpromoted ints and floats are
   1159       // passed as right-justified 8-byte values.
   1160       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   1161       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
   1162         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
   1163                           DAG.getIntPtrConstant(4, DL));
   1164       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
   1165                              MachinePointerInfo::getFixedStack(MF, FI));
   1166     }
   1167 
   1168     // Convert the value of the argument register into the value that's
   1169     // being passed.
   1170     if (VA.getLocInfo() == CCValAssign::Indirect) {
   1171       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
   1172                                    MachinePointerInfo()));
   1173       // If the original argument was split (e.g. i128), we need
   1174       // to load all parts of it here (using the same address).
   1175       unsigned ArgIndex = Ins[I].OrigArgIndex;
   1176       assert (Ins[I].PartOffset == 0);
   1177       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
   1178         CCValAssign &PartVA = ArgLocs[I + 1];
   1179         unsigned PartOffset = Ins[I + 1].PartOffset;
   1180         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
   1181                                       DAG.getIntPtrConstant(PartOffset, DL));
   1182         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
   1183                                      MachinePointerInfo()));
   1184         ++I;
   1185       }
   1186     } else
   1187       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
   1188   }
   1189 
   1190   if (IsVarArg) {
   1191     // Save the number of non-varargs registers for later use by va_start, etc.
   1192     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
   1193     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
   1194 
   1195     // Likewise the address (in the form of a frame index) of where the
   1196     // first stack vararg would be.  The 1-byte size here is arbitrary.
   1197     int64_t StackSize = CCInfo.getNextStackOffset();
   1198     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
   1199 
   1200     // ...and a similar frame index for the caller-allocated save area
   1201     // that will be used to store the incoming registers.
   1202     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
   1203     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
   1204     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
   1205 
   1206     // Store the FPR varargs in the reserved frame slots.  (We store the
   1207     // GPRs as part of the prologue.)
   1208     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
   1209       SDValue MemOps[SystemZ::NumArgFPRs];
   1210       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
   1211         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
   1212         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
   1213         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
   1214         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
   1215                                      &SystemZ::FP64BitRegClass);
   1216         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
   1217         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
   1218                                  MachinePointerInfo::getFixedStack(MF, FI));
   1219       }
   1220       // Join the stores, which are independent of one another.
   1221       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
   1222                           makeArrayRef(&MemOps[NumFixedFPRs],
   1223                                        SystemZ::NumArgFPRs-NumFixedFPRs));
   1224     }
   1225   }
   1226 
   1227   return Chain;
   1228 }
   1229 
   1230 static bool canUseSiblingCall(const CCState &ArgCCInfo,
   1231                               SmallVectorImpl<CCValAssign> &ArgLocs,
   1232                               SmallVectorImpl<ISD::OutputArg> &Outs) {
   1233   // Punt if there are any indirect or stack arguments, or if the call
   1234   // needs the callee-saved argument register R6, or if the call uses
   1235   // the callee-saved register arguments SwiftSelf and SwiftError.
   1236   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
   1237     CCValAssign &VA = ArgLocs[I];
   1238     if (VA.getLocInfo() == CCValAssign::Indirect)
   1239       return false;
   1240     if (!VA.isRegLoc())
   1241       return false;
   1242     unsigned Reg = VA.getLocReg();
   1243     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
   1244       return false;
   1245     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
   1246       return false;
   1247   }
   1248   return true;
   1249 }
   1250 
   1251 SDValue
   1252 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
   1253                                  SmallVectorImpl<SDValue> &InVals) const {
   1254   SelectionDAG &DAG = CLI.DAG;
   1255   SDLoc &DL = CLI.DL;
   1256   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1257   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
   1258   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
   1259   SDValue Chain = CLI.Chain;
   1260   SDValue Callee = CLI.Callee;
   1261   bool &IsTailCall = CLI.IsTailCall;
   1262   CallingConv::ID CallConv = CLI.CallConv;
   1263   bool IsVarArg = CLI.IsVarArg;
   1264   MachineFunction &MF = DAG.getMachineFunction();
   1265   EVT PtrVT = getPointerTy(MF.getDataLayout());
   1266 
   1267   // Detect unsupported vector argument and return types.
   1268   if (Subtarget.hasVector()) {
   1269     VerifyVectorTypes(Outs);
   1270     VerifyVectorTypes(Ins);
   1271   }
   1272 
   1273   // Analyze the operands of the call, assigning locations to each operand.
   1274   SmallVector<CCValAssign, 16> ArgLocs;
   1275   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
   1276   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
   1277 
   1278   // We don't support GuaranteedTailCallOpt, only automatically-detected
   1279   // sibling calls.
   1280   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
   1281     IsTailCall = false;
   1282 
   1283   // Get a count of how many bytes are to be pushed on the stack.
   1284   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
   1285 
   1286   // Mark the start of the call.
   1287   if (!IsTailCall)
   1288     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
   1289 
   1290   // Copy argument values to their designated locations.
   1291   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
   1292   SmallVector<SDValue, 8> MemOpChains;
   1293   SDValue StackPtr;
   1294   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
   1295     CCValAssign &VA = ArgLocs[I];
   1296     SDValue ArgValue = OutVals[I];
   1297 
   1298     if (VA.getLocInfo() == CCValAssign::Indirect) {
   1299       // Store the argument in a stack slot and pass its address.
   1300       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
   1301       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
   1302       MemOpChains.push_back(
   1303           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
   1304                        MachinePointerInfo::getFixedStack(MF, FI)));
   1305       // If the original argument was split (e.g. i128), we need
   1306       // to store all parts of it here (and pass just one address).
   1307       unsigned ArgIndex = Outs[I].OrigArgIndex;
   1308       assert (Outs[I].PartOffset == 0);
   1309       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
   1310         SDValue PartValue = OutVals[I + 1];
   1311         unsigned PartOffset = Outs[I + 1].PartOffset;
   1312         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
   1313                                       DAG.getIntPtrConstant(PartOffset, DL));
   1314         MemOpChains.push_back(
   1315             DAG.getStore(Chain, DL, PartValue, Address,
   1316                          MachinePointerInfo::getFixedStack(MF, FI)));
   1317         ++I;
   1318       }
   1319       ArgValue = SpillSlot;
   1320     } else
   1321       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
   1322 
   1323     if (VA.isRegLoc())
   1324       // Queue up the argument copies and emit them at the end.
   1325       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
   1326     else {
   1327       assert(VA.isMemLoc() && "Argument not register or memory");
   1328 
   1329       // Work out the address of the stack slot.  Unpromoted ints and
   1330       // floats are passed as right-justified 8-byte values.
   1331       if (!StackPtr.getNode())
   1332         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
   1333       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
   1334       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
   1335         Offset += 4;
   1336       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
   1337                                     DAG.getIntPtrConstant(Offset, DL));
   1338 
   1339       // Emit the store.
   1340       MemOpChains.push_back(
   1341           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
   1342     }
   1343   }
   1344 
   1345   // Join the stores, which are independent of one another.
   1346   if (!MemOpChains.empty())
   1347     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
   1348 
   1349   // Accept direct calls by converting symbolic call addresses to the
   1350   // associated Target* opcodes.  Force %r1 to be used for indirect
   1351   // tail calls.
   1352   SDValue Glue;
   1353   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1354     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
   1355     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
   1356   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1357     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
   1358     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
   1359   } else if (IsTailCall) {
   1360     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
   1361     Glue = Chain.getValue(1);
   1362     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
   1363   }
   1364 
   1365   // Build a sequence of copy-to-reg nodes, chained and glued together.
   1366   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
   1367     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
   1368                              RegsToPass[I].second, Glue);
   1369     Glue = Chain.getValue(1);
   1370   }
   1371 
   1372   // The first call operand is the chain and the second is the target address.
   1373   SmallVector<SDValue, 8> Ops;
   1374   Ops.push_back(Chain);
   1375   Ops.push_back(Callee);
   1376 
   1377   // Add argument registers to the end of the list so that they are
   1378   // known live into the call.
   1379   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
   1380     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
   1381                                   RegsToPass[I].second.getValueType()));
   1382 
   1383   // Add a register mask operand representing the call-preserved registers.
   1384   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   1385   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
   1386   assert(Mask && "Missing call preserved mask for calling convention");
   1387   Ops.push_back(DAG.getRegisterMask(Mask));
   1388 
   1389   // Glue the call to the argument copies, if any.
   1390   if (Glue.getNode())
   1391     Ops.push_back(Glue);
   1392 
   1393   // Emit the call.
   1394   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1395   if (IsTailCall)
   1396     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
   1397   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
   1398   Glue = Chain.getValue(1);
   1399 
   1400   // Mark the end of the call, which is glued to the call itself.
   1401   Chain = DAG.getCALLSEQ_END(Chain,
   1402                              DAG.getConstant(NumBytes, DL, PtrVT, true),
   1403                              DAG.getConstant(0, DL, PtrVT, true),
   1404                              Glue, DL);
   1405   Glue = Chain.getValue(1);
   1406 
   1407   // Assign locations to each value returned by this call.
   1408   SmallVector<CCValAssign, 16> RetLocs;
   1409   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
   1410   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
   1411 
   1412   // Copy all of the result registers out of their specified physreg.
   1413   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
   1414     CCValAssign &VA = RetLocs[I];
   1415 
   1416     // Copy the value out, gluing the copy to the end of the call sequence.
   1417     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
   1418                                           VA.getLocVT(), Glue);
   1419     Chain = RetValue.getValue(1);
   1420     Glue = RetValue.getValue(2);
   1421 
   1422     // Convert the value of the return register into the value that's
   1423     // being returned.
   1424     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
   1425   }
   1426 
   1427   return Chain;
   1428 }
   1429 
   1430 bool SystemZTargetLowering::
   1431 CanLowerReturn(CallingConv::ID CallConv,
   1432                MachineFunction &MF, bool isVarArg,
   1433                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1434                LLVMContext &Context) const {
   1435   // Detect unsupported vector return types.
   1436   if (Subtarget.hasVector())
   1437     VerifyVectorTypes(Outs);
   1438 
   1439   // Special case that we cannot easily detect in RetCC_SystemZ since
   1440   // i128 is not a legal type.
   1441   for (auto &Out : Outs)
   1442     if (Out.ArgVT == MVT::i128)
   1443       return false;
   1444 
   1445   SmallVector<CCValAssign, 16> RetLocs;
   1446   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
   1447   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
   1448 }
   1449 
   1450 SDValue
   1451 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
   1452                                    bool IsVarArg,
   1453                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
   1454                                    const SmallVectorImpl<SDValue> &OutVals,
   1455                                    const SDLoc &DL, SelectionDAG &DAG) const {
   1456   MachineFunction &MF = DAG.getMachineFunction();
   1457 
   1458   // Detect unsupported vector return types.
   1459   if (Subtarget.hasVector())
   1460     VerifyVectorTypes(Outs);
   1461 
   1462   // Assign locations to each returned value.
   1463   SmallVector<CCValAssign, 16> RetLocs;
   1464   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
   1465   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
   1466 
   1467   // Quick exit for void returns
   1468   if (RetLocs.empty())
   1469     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
   1470 
   1471   // Copy the result values into the output registers.
   1472   SDValue Glue;
   1473   SmallVector<SDValue, 4> RetOps;
   1474   RetOps.push_back(Chain);
   1475   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
   1476     CCValAssign &VA = RetLocs[I];
   1477     SDValue RetValue = OutVals[I];
   1478 
   1479     // Make the return register live on exit.
   1480     assert(VA.isRegLoc() && "Can only return in registers!");
   1481 
   1482     // Promote the value as required.
   1483     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
   1484 
   1485     // Chain and glue the copies together.
   1486     unsigned Reg = VA.getLocReg();
   1487     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
   1488     Glue = Chain.getValue(1);
   1489     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
   1490   }
   1491 
   1492   // Update chain and glue.
   1493   RetOps[0] = Chain;
   1494   if (Glue.getNode())
   1495     RetOps.push_back(Glue);
   1496 
   1497   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
   1498 }
   1499 
   1500 // Return true if Op is an intrinsic node with chain that returns the CC value
   1501 // as its only (other) argument.  Provide the associated SystemZISD opcode and
   1502 // the mask of valid CC values if so.
   1503 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
   1504                                       unsigned &CCValid) {
   1505   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   1506   switch (Id) {
   1507   case Intrinsic::s390_tbegin:
   1508     Opcode = SystemZISD::TBEGIN;
   1509     CCValid = SystemZ::CCMASK_TBEGIN;
   1510     return true;
   1511 
   1512   case Intrinsic::s390_tbegin_nofloat:
   1513     Opcode = SystemZISD::TBEGIN_NOFLOAT;
   1514     CCValid = SystemZ::CCMASK_TBEGIN;
   1515     return true;
   1516 
   1517   case Intrinsic::s390_tend:
   1518     Opcode = SystemZISD::TEND;
   1519     CCValid = SystemZ::CCMASK_TEND;
   1520     return true;
   1521 
   1522   default:
   1523     return false;
   1524   }
   1525 }
   1526 
   1527 // Return true if Op is an intrinsic node without chain that returns the
   1528 // CC value as its final argument.  Provide the associated SystemZISD
   1529 // opcode and the mask of valid CC values if so.
   1530 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
   1531   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   1532   switch (Id) {
   1533   case Intrinsic::s390_vpkshs:
   1534   case Intrinsic::s390_vpksfs:
   1535   case Intrinsic::s390_vpksgs:
   1536     Opcode = SystemZISD::PACKS_CC;
   1537     CCValid = SystemZ::CCMASK_VCMP;
   1538     return true;
   1539 
   1540   case Intrinsic::s390_vpklshs:
   1541   case Intrinsic::s390_vpklsfs:
   1542   case Intrinsic::s390_vpklsgs:
   1543     Opcode = SystemZISD::PACKLS_CC;
   1544     CCValid = SystemZ::CCMASK_VCMP;
   1545     return true;
   1546 
   1547   case Intrinsic::s390_vceqbs:
   1548   case Intrinsic::s390_vceqhs:
   1549   case Intrinsic::s390_vceqfs:
   1550   case Intrinsic::s390_vceqgs:
   1551     Opcode = SystemZISD::VICMPES;
   1552     CCValid = SystemZ::CCMASK_VCMP;
   1553     return true;
   1554 
   1555   case Intrinsic::s390_vchbs:
   1556   case Intrinsic::s390_vchhs:
   1557   case Intrinsic::s390_vchfs:
   1558   case Intrinsic::s390_vchgs:
   1559     Opcode = SystemZISD::VICMPHS;
   1560     CCValid = SystemZ::CCMASK_VCMP;
   1561     return true;
   1562 
   1563   case Intrinsic::s390_vchlbs:
   1564   case Intrinsic::s390_vchlhs:
   1565   case Intrinsic::s390_vchlfs:
   1566   case Intrinsic::s390_vchlgs:
   1567     Opcode = SystemZISD::VICMPHLS;
   1568     CCValid = SystemZ::CCMASK_VCMP;
   1569     return true;
   1570 
   1571   case Intrinsic::s390_vtm:
   1572     Opcode = SystemZISD::VTM;
   1573     CCValid = SystemZ::CCMASK_VCMP;
   1574     return true;
   1575 
   1576   case Intrinsic::s390_vfaebs:
   1577   case Intrinsic::s390_vfaehs:
   1578   case Intrinsic::s390_vfaefs:
   1579     Opcode = SystemZISD::VFAE_CC;
   1580     CCValid = SystemZ::CCMASK_ANY;
   1581     return true;
   1582 
   1583   case Intrinsic::s390_vfaezbs:
   1584   case Intrinsic::s390_vfaezhs:
   1585   case Intrinsic::s390_vfaezfs:
   1586     Opcode = SystemZISD::VFAEZ_CC;
   1587     CCValid = SystemZ::CCMASK_ANY;
   1588     return true;
   1589 
   1590   case Intrinsic::s390_vfeebs:
   1591   case Intrinsic::s390_vfeehs:
   1592   case Intrinsic::s390_vfeefs:
   1593     Opcode = SystemZISD::VFEE_CC;
   1594     CCValid = SystemZ::CCMASK_ANY;
   1595     return true;
   1596 
   1597   case Intrinsic::s390_vfeezbs:
   1598   case Intrinsic::s390_vfeezhs:
   1599   case Intrinsic::s390_vfeezfs:
   1600     Opcode = SystemZISD::VFEEZ_CC;
   1601     CCValid = SystemZ::CCMASK_ANY;
   1602     return true;
   1603 
   1604   case Intrinsic::s390_vfenebs:
   1605   case Intrinsic::s390_vfenehs:
   1606   case Intrinsic::s390_vfenefs:
   1607     Opcode = SystemZISD::VFENE_CC;
   1608     CCValid = SystemZ::CCMASK_ANY;
   1609     return true;
   1610 
   1611   case Intrinsic::s390_vfenezbs:
   1612   case Intrinsic::s390_vfenezhs:
   1613   case Intrinsic::s390_vfenezfs:
   1614     Opcode = SystemZISD::VFENEZ_CC;
   1615     CCValid = SystemZ::CCMASK_ANY;
   1616     return true;
   1617 
   1618   case Intrinsic::s390_vistrbs:
   1619   case Intrinsic::s390_vistrhs:
   1620   case Intrinsic::s390_vistrfs:
   1621     Opcode = SystemZISD::VISTR_CC;
   1622     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
   1623     return true;
   1624 
   1625   case Intrinsic::s390_vstrcbs:
   1626   case Intrinsic::s390_vstrchs:
   1627   case Intrinsic::s390_vstrcfs:
   1628     Opcode = SystemZISD::VSTRC_CC;
   1629     CCValid = SystemZ::CCMASK_ANY;
   1630     return true;
   1631 
   1632   case Intrinsic::s390_vstrczbs:
   1633   case Intrinsic::s390_vstrczhs:
   1634   case Intrinsic::s390_vstrczfs:
   1635     Opcode = SystemZISD::VSTRCZ_CC;
   1636     CCValid = SystemZ::CCMASK_ANY;
   1637     return true;
   1638 
   1639   case Intrinsic::s390_vfcedbs:
   1640   case Intrinsic::s390_vfcesbs:
   1641     Opcode = SystemZISD::VFCMPES;
   1642     CCValid = SystemZ::CCMASK_VCMP;
   1643     return true;
   1644 
   1645   case Intrinsic::s390_vfchdbs:
   1646   case Intrinsic::s390_vfchsbs:
   1647     Opcode = SystemZISD::VFCMPHS;
   1648     CCValid = SystemZ::CCMASK_VCMP;
   1649     return true;
   1650 
   1651   case Intrinsic::s390_vfchedbs:
   1652   case Intrinsic::s390_vfchesbs:
   1653     Opcode = SystemZISD::VFCMPHES;
   1654     CCValid = SystemZ::CCMASK_VCMP;
   1655     return true;
   1656 
   1657   case Intrinsic::s390_vftcidb:
   1658   case Intrinsic::s390_vftcisb:
   1659     Opcode = SystemZISD::VFTCI;
   1660     CCValid = SystemZ::CCMASK_VCMP;
   1661     return true;
   1662 
   1663   case Intrinsic::s390_tdc:
   1664     Opcode = SystemZISD::TDC;
   1665     CCValid = SystemZ::CCMASK_TDC;
   1666     return true;
   1667 
   1668   default:
   1669     return false;
   1670   }
   1671 }
   1672 
   1673 // Emit an intrinsic with chain and an explicit CC register result.
   1674 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
   1675                                            unsigned Opcode) {
   1676   // Copy all operands except the intrinsic ID.
   1677   unsigned NumOps = Op.getNumOperands();
   1678   SmallVector<SDValue, 6> Ops;
   1679   Ops.reserve(NumOps - 1);
   1680   Ops.push_back(Op.getOperand(0));
   1681   for (unsigned I = 2; I < NumOps; ++I)
   1682     Ops.push_back(Op.getOperand(I));
   1683 
   1684   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
   1685   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
   1686   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
   1687   SDValue OldChain = SDValue(Op.getNode(), 1);
   1688   SDValue NewChain = SDValue(Intr.getNode(), 1);
   1689   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
   1690   return Intr.getNode();
   1691 }
   1692 
   1693 // Emit an intrinsic with an explicit CC register result.
   1694 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
   1695                                    unsigned Opcode) {
   1696   // Copy all operands except the intrinsic ID.
   1697   unsigned NumOps = Op.getNumOperands();
   1698   SmallVector<SDValue, 6> Ops;
   1699   Ops.reserve(NumOps - 1);
   1700   for (unsigned I = 1; I < NumOps; ++I)
   1701     Ops.push_back(Op.getOperand(I));
   1702 
   1703   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
   1704   return Intr.getNode();
   1705 }
   1706 
   1707 // CC is a comparison that will be implemented using an integer or
   1708 // floating-point comparison.  Return the condition code mask for
   1709 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
   1710 // unsigned comparisons and clear for signed ones.  In the floating-point
   1711 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
   1712 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
   1713 #define CONV(X) \
   1714   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
   1715   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
   1716   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
   1717 
   1718   switch (CC) {
   1719   default:
   1720     llvm_unreachable("Invalid integer condition!");
   1721 
   1722   CONV(EQ);
   1723   CONV(NE);
   1724   CONV(GT);
   1725   CONV(GE);
   1726   CONV(LT);
   1727   CONV(LE);
   1728 
   1729   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
   1730   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
   1731   }
   1732 #undef CONV
   1733 }
   1734 
   1735 // If C can be converted to a comparison against zero, adjust the operands
   1736 // as necessary.
   1737 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
   1738   if (C.ICmpType == SystemZICMP::UnsignedOnly)
   1739     return;
   1740 
   1741   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
   1742   if (!ConstOp1)
   1743     return;
   1744 
   1745   int64_t Value = ConstOp1->getSExtValue();
   1746   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
   1747       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
   1748       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
   1749       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
   1750     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
   1751     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
   1752   }
   1753 }
   1754 
   1755 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
   1756 // adjust the operands as necessary.
   1757 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
   1758                              Comparison &C) {
   1759   // For us to make any changes, it must a comparison between a single-use
   1760   // load and a constant.
   1761   if (!C.Op0.hasOneUse() ||
   1762       C.Op0.getOpcode() != ISD::LOAD ||
   1763       C.Op1.getOpcode() != ISD::Constant)
   1764     return;
   1765 
   1766   // We must have an 8- or 16-bit load.
   1767   auto *Load = cast<LoadSDNode>(C.Op0);
   1768   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
   1769   if (NumBits != 8 && NumBits != 16)
   1770     return;
   1771 
   1772   // The load must be an extending one and the constant must be within the
   1773   // range of the unextended value.
   1774   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
   1775   uint64_t Value = ConstOp1->getZExtValue();
   1776   uint64_t Mask = (1 << NumBits) - 1;
   1777   if (Load->getExtensionType() == ISD::SEXTLOAD) {
   1778     // Make sure that ConstOp1 is in range of C.Op0.
   1779     int64_t SignedValue = ConstOp1->getSExtValue();
   1780     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
   1781       return;
   1782     if (C.ICmpType != SystemZICMP::SignedOnly) {
   1783       // Unsigned comparison between two sign-extended values is equivalent
   1784       // to unsigned comparison between two zero-extended values.
   1785       Value &= Mask;
   1786     } else if (NumBits == 8) {
   1787       // Try to treat the comparison as unsigned, so that we can use CLI.
   1788       // Adjust CCMask and Value as necessary.
   1789       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
   1790         // Test whether the high bit of the byte is set.
   1791         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
   1792       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
   1793         // Test whether the high bit of the byte is clear.
   1794         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
   1795       else
   1796         // No instruction exists for this combination.
   1797         return;
   1798       C.ICmpType = SystemZICMP::UnsignedOnly;
   1799     }
   1800   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
   1801     if (Value > Mask)
   1802       return;
   1803     // If the constant is in range, we can use any comparison.
   1804     C.ICmpType = SystemZICMP::Any;
   1805   } else
   1806     return;
   1807 
   1808   // Make sure that the first operand is an i32 of the right extension type.
   1809   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
   1810                               ISD::SEXTLOAD :
   1811                               ISD::ZEXTLOAD);
   1812   if (C.Op0.getValueType() != MVT::i32 ||
   1813       Load->getExtensionType() != ExtType) {
   1814     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
   1815                            Load->getBasePtr(), Load->getPointerInfo(),
   1816                            Load->getMemoryVT(), Load->getAlignment(),
   1817                            Load->getMemOperand()->getFlags());
   1818     // Update the chain uses.
   1819     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
   1820   }
   1821 
   1822   // Make sure that the second operand is an i32 with the right value.
   1823   if (C.Op1.getValueType() != MVT::i32 ||
   1824       Value != ConstOp1->getZExtValue())
   1825     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
   1826 }
   1827 
   1828 // Return true if Op is either an unextended load, or a load suitable
   1829 // for integer register-memory comparisons of type ICmpType.
   1830 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
   1831   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
   1832   if (Load) {
   1833     // There are no instructions to compare a register with a memory byte.
   1834     if (Load->getMemoryVT() == MVT::i8)
   1835       return false;
   1836     // Otherwise decide on extension type.
   1837     switch (Load->getExtensionType()) {
   1838     case ISD::NON_EXTLOAD:
   1839       return true;
   1840     case ISD::SEXTLOAD:
   1841       return ICmpType != SystemZICMP::UnsignedOnly;
   1842     case ISD::ZEXTLOAD:
   1843       return ICmpType != SystemZICMP::SignedOnly;
   1844     default:
   1845       break;
   1846     }
   1847   }
   1848   return false;
   1849 }
   1850 
   1851 // Return true if it is better to swap the operands of C.
   1852 static bool shouldSwapCmpOperands(const Comparison &C) {
   1853   // Leave f128 comparisons alone, since they have no memory forms.
   1854   if (C.Op0.getValueType() == MVT::f128)
   1855     return false;
   1856 
   1857   // Always keep a floating-point constant second, since comparisons with
   1858   // zero can use LOAD TEST and comparisons with other constants make a
   1859   // natural memory operand.
   1860   if (isa<ConstantFPSDNode>(C.Op1))
   1861     return false;
   1862 
   1863   // Never swap comparisons with zero since there are many ways to optimize
   1864   // those later.
   1865   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
   1866   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
   1867     return false;
   1868 
   1869   // Also keep natural memory operands second if the loaded value is
   1870   // only used here.  Several comparisons have memory forms.
   1871   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
   1872     return false;
   1873 
   1874   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
   1875   // In that case we generally prefer the memory to be second.
   1876   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
   1877     // The only exceptions are when the second operand is a constant and
   1878     // we can use things like CHHSI.
   1879     if (!ConstOp1)
   1880       return true;
   1881     // The unsigned memory-immediate instructions can handle 16-bit
   1882     // unsigned integers.
   1883     if (C.ICmpType != SystemZICMP::SignedOnly &&
   1884         isUInt<16>(ConstOp1->getZExtValue()))
   1885       return false;
   1886     // The signed memory-immediate instructions can handle 16-bit
   1887     // signed integers.
   1888     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
   1889         isInt<16>(ConstOp1->getSExtValue()))
   1890       return false;
   1891     return true;
   1892   }
   1893 
   1894   // Try to promote the use of CGFR and CLGFR.
   1895   unsigned Opcode0 = C.Op0.getOpcode();
   1896   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
   1897     return true;
   1898   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
   1899     return true;
   1900   if (C.ICmpType != SystemZICMP::SignedOnly &&
   1901       Opcode0 == ISD::AND &&
   1902       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
   1903       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
   1904     return true;
   1905 
   1906   return false;
   1907 }
   1908 
   1909 // Return a version of comparison CC mask CCMask in which the LT and GT
   1910 // actions are swapped.
   1911 static unsigned reverseCCMask(unsigned CCMask) {
   1912   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
   1913           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
   1914           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
   1915           (CCMask & SystemZ::CCMASK_CMP_UO));
   1916 }
   1917 
   1918 // Check whether C tests for equality between X and Y and whether X - Y
   1919 // or Y - X is also computed.  In that case it's better to compare the
   1920 // result of the subtraction against zero.
   1921 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
   1922                                  Comparison &C) {
   1923   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
   1924       C.CCMask == SystemZ::CCMASK_CMP_NE) {
   1925     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
   1926       SDNode *N = *I;
   1927       if (N->getOpcode() == ISD::SUB &&
   1928           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
   1929            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
   1930         C.Op0 = SDValue(N, 0);
   1931         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
   1932         return;
   1933       }
   1934     }
   1935   }
   1936 }
   1937 
   1938 // Check whether C compares a floating-point value with zero and if that
   1939 // floating-point value is also negated.  In this case we can use the
   1940 // negation to set CC, so avoiding separate LOAD AND TEST and
   1941 // LOAD (NEGATIVE/COMPLEMENT) instructions.
   1942 static void adjustForFNeg(Comparison &C) {
   1943   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
   1944   if (C1 && C1->isZero()) {
   1945     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
   1946       SDNode *N = *I;
   1947       if (N->getOpcode() == ISD::FNEG) {
   1948         C.Op0 = SDValue(N, 0);
   1949         C.CCMask = reverseCCMask(C.CCMask);
   1950         return;
   1951       }
   1952     }
   1953   }
   1954 }
   1955 
   1956 // Check whether C compares (shl X, 32) with 0 and whether X is
   1957 // also sign-extended.  In that case it is better to test the result
   1958 // of the sign extension using LTGFR.
   1959 //
   1960 // This case is important because InstCombine transforms a comparison
   1961 // with (sext (trunc X)) into a comparison with (shl X, 32).
   1962 static void adjustForLTGFR(Comparison &C) {
   1963   // Check for a comparison between (shl X, 32) and 0.
   1964   if (C.Op0.getOpcode() == ISD::SHL &&
   1965       C.Op0.getValueType() == MVT::i64 &&
   1966       C.Op1.getOpcode() == ISD::Constant &&
   1967       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
   1968     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
   1969     if (C1 && C1->getZExtValue() == 32) {
   1970       SDValue ShlOp0 = C.Op0.getOperand(0);
   1971       // See whether X has any SIGN_EXTEND_INREG uses.
   1972       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
   1973         SDNode *N = *I;
   1974         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
   1975             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
   1976           C.Op0 = SDValue(N, 0);
   1977           return;
   1978         }
   1979       }
   1980     }
   1981   }
   1982 }
   1983 
   1984 // If C compares the truncation of an extending load, try to compare
   1985 // the untruncated value instead.  This exposes more opportunities to
   1986 // reuse CC.
   1987 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
   1988                                Comparison &C) {
   1989   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
   1990       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
   1991       C.Op1.getOpcode() == ISD::Constant &&
   1992       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
   1993     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
   1994     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
   1995       unsigned Type = L->getExtensionType();
   1996       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
   1997           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
   1998         C.Op0 = C.Op0.getOperand(0);
   1999         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
   2000       }
   2001     }
   2002   }
   2003 }
   2004 
   2005 // Return true if shift operation N has an in-range constant shift value.
   2006 // Store it in ShiftVal if so.
   2007 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
   2008   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
   2009   if (!Shift)
   2010     return false;
   2011 
   2012   uint64_t Amount = Shift->getZExtValue();
   2013   if (Amount >= N.getValueSizeInBits())
   2014     return false;
   2015 
   2016   ShiftVal = Amount;
   2017   return true;
   2018 }
   2019 
   2020 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
   2021 // instruction and whether the CC value is descriptive enough to handle
   2022 // a comparison of type Opcode between the AND result and CmpVal.
   2023 // CCMask says which comparison result is being tested and BitSize is
   2024 // the number of bits in the operands.  If TEST UNDER MASK can be used,
   2025 // return the corresponding CC mask, otherwise return 0.
   2026 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
   2027                                      uint64_t Mask, uint64_t CmpVal,
   2028                                      unsigned ICmpType) {
   2029   assert(Mask != 0 && "ANDs with zero should have been removed by now");
   2030 
   2031   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
   2032   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
   2033       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
   2034     return 0;
   2035 
   2036   // Work out the masks for the lowest and highest bits.
   2037   unsigned HighShift = 63 - countLeadingZeros(Mask);
   2038   uint64_t High = uint64_t(1) << HighShift;
   2039   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
   2040 
   2041   // Signed ordered comparisons are effectively unsigned if the sign
   2042   // bit is dropped.
   2043   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
   2044 
   2045   // Check for equality comparisons with 0, or the equivalent.
   2046   if (CmpVal == 0) {
   2047     if (CCMask == SystemZ::CCMASK_CMP_EQ)
   2048       return SystemZ::CCMASK_TM_ALL_0;
   2049     if (CCMask == SystemZ::CCMASK_CMP_NE)
   2050       return SystemZ::CCMASK_TM_SOME_1;
   2051   }
   2052   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
   2053     if (CCMask == SystemZ::CCMASK_CMP_LT)
   2054       return SystemZ::CCMASK_TM_ALL_0;
   2055     if (CCMask == SystemZ::CCMASK_CMP_GE)
   2056       return SystemZ::CCMASK_TM_SOME_1;
   2057   }
   2058   if (EffectivelyUnsigned && CmpVal < Low) {
   2059     if (CCMask == SystemZ::CCMASK_CMP_LE)
   2060       return SystemZ::CCMASK_TM_ALL_0;
   2061     if (CCMask == SystemZ::CCMASK_CMP_GT)
   2062       return SystemZ::CCMASK_TM_SOME_1;
   2063   }
   2064 
   2065   // Check for equality comparisons with the mask, or the equivalent.
   2066   if (CmpVal == Mask) {
   2067     if (CCMask == SystemZ::CCMASK_CMP_EQ)
   2068       return SystemZ::CCMASK_TM_ALL_1;
   2069     if (CCMask == SystemZ::CCMASK_CMP_NE)
   2070       return SystemZ::CCMASK_TM_SOME_0;
   2071   }
   2072   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
   2073     if (CCMask == SystemZ::CCMASK_CMP_GT)
   2074       return SystemZ::CCMASK_TM_ALL_1;
   2075     if (CCMask == SystemZ::CCMASK_CMP_LE)
   2076       return SystemZ::CCMASK_TM_SOME_0;
   2077   }
   2078   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
   2079     if (CCMask == SystemZ::CCMASK_CMP_GE)
   2080       return SystemZ::CCMASK_TM_ALL_1;
   2081     if (CCMask == SystemZ::CCMASK_CMP_LT)
   2082       return SystemZ::CCMASK_TM_SOME_0;
   2083   }
   2084 
   2085   // Check for ordered comparisons with the top bit.
   2086   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
   2087     if (CCMask == SystemZ::CCMASK_CMP_LE)
   2088       return SystemZ::CCMASK_TM_MSB_0;
   2089     if (CCMask == SystemZ::CCMASK_CMP_GT)
   2090       return SystemZ::CCMASK_TM_MSB_1;
   2091   }
   2092   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
   2093     if (CCMask == SystemZ::CCMASK_CMP_LT)
   2094       return SystemZ::CCMASK_TM_MSB_0;
   2095     if (CCMask == SystemZ::CCMASK_CMP_GE)
   2096       return SystemZ::CCMASK_TM_MSB_1;
   2097   }
   2098 
   2099   // If there are just two bits, we can do equality checks for Low and High
   2100   // as well.
   2101   if (Mask == Low + High) {
   2102     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
   2103       return SystemZ::CCMASK_TM_MIXED_MSB_0;
   2104     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
   2105       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
   2106     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
   2107       return SystemZ::CCMASK_TM_MIXED_MSB_1;
   2108     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
   2109       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
   2110   }
   2111 
   2112   // Looks like we've exhausted our options.
   2113   return 0;
   2114 }
   2115 
   2116 // See whether C can be implemented as a TEST UNDER MASK instruction.
   2117 // Update the arguments with the TM version if so.
   2118 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
   2119                                    Comparison &C) {
   2120   // Check that we have a comparison with a constant.
   2121   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
   2122   if (!ConstOp1)
   2123     return;
   2124   uint64_t CmpVal = ConstOp1->getZExtValue();
   2125 
   2126   // Check whether the nonconstant input is an AND with a constant mask.
   2127   Comparison NewC(C);
   2128   uint64_t MaskVal;
   2129   ConstantSDNode *Mask = nullptr;
   2130   if (C.Op0.getOpcode() == ISD::AND) {
   2131     NewC.Op0 = C.Op0.getOperand(0);
   2132     NewC.Op1 = C.Op0.getOperand(1);
   2133     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
   2134     if (!Mask)
   2135       return;
   2136     MaskVal = Mask->getZExtValue();
   2137   } else {
   2138     // There is no instruction to compare with a 64-bit immediate
   2139     // so use TMHH instead if possible.  We need an unsigned ordered
   2140     // comparison with an i64 immediate.
   2141     if (NewC.Op0.getValueType() != MVT::i64 ||
   2142         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
   2143         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
   2144         NewC.ICmpType == SystemZICMP::SignedOnly)
   2145       return;
   2146     // Convert LE and GT comparisons into LT and GE.
   2147     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
   2148         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
   2149       if (CmpVal == uint64_t(-1))
   2150         return;
   2151       CmpVal += 1;
   2152       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
   2153     }
   2154     // If the low N bits of Op1 are zero than the low N bits of Op0 can
   2155     // be masked off without changing the result.
   2156     MaskVal = -(CmpVal & -CmpVal);
   2157     NewC.ICmpType = SystemZICMP::UnsignedOnly;
   2158   }
   2159   if (!MaskVal)
   2160     return;
   2161 
   2162   // Check whether the combination of mask, comparison value and comparison
   2163   // type are suitable.
   2164   unsigned BitSize = NewC.Op0.getValueSizeInBits();
   2165   unsigned NewCCMask, ShiftVal;
   2166   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
   2167       NewC.Op0.getOpcode() == ISD::SHL &&
   2168       isSimpleShift(NewC.Op0, ShiftVal) &&
   2169       (MaskVal >> ShiftVal != 0) &&
   2170       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
   2171       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
   2172                                         MaskVal >> ShiftVal,
   2173                                         CmpVal >> ShiftVal,
   2174                                         SystemZICMP::Any))) {
   2175     NewC.Op0 = NewC.Op0.getOperand(0);
   2176     MaskVal >>= ShiftVal;
   2177   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
   2178              NewC.Op0.getOpcode() == ISD::SRL &&
   2179              isSimpleShift(NewC.Op0, ShiftVal) &&
   2180              (MaskVal << ShiftVal != 0) &&
   2181              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
   2182              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
   2183                                                MaskVal << ShiftVal,
   2184                                                CmpVal << ShiftVal,
   2185                                                SystemZICMP::UnsignedOnly))) {
   2186     NewC.Op0 = NewC.Op0.getOperand(0);
   2187     MaskVal <<= ShiftVal;
   2188   } else {
   2189     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
   2190                                      NewC.ICmpType);
   2191     if (!NewCCMask)
   2192       return;
   2193   }
   2194 
   2195   // Go ahead and make the change.
   2196   C.Opcode = SystemZISD::TM;
   2197   C.Op0 = NewC.Op0;
   2198   if (Mask && Mask->getZExtValue() == MaskVal)
   2199     C.Op1 = SDValue(Mask, 0);
   2200   else
   2201     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
   2202   C.CCValid = SystemZ::CCMASK_TM;
   2203   C.CCMask = NewCCMask;
   2204 }
   2205 
   2206 // See whether the comparison argument contains a redundant AND
   2207 // and remove it if so.  This sometimes happens due to the generic
   2208 // BRCOND expansion.
   2209 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
   2210                                   Comparison &C) {
   2211   if (C.Op0.getOpcode() != ISD::AND)
   2212     return;
   2213   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
   2214   if (!Mask)
   2215     return;
   2216   KnownBits Known;
   2217   DAG.computeKnownBits(C.Op0.getOperand(0), Known);
   2218   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
   2219     return;
   2220 
   2221   C.Op0 = C.Op0.getOperand(0);
   2222 }
   2223 
   2224 // Return a Comparison that tests the condition-code result of intrinsic
   2225 // node Call against constant integer CC using comparison code Cond.
   2226 // Opcode is the opcode of the SystemZISD operation for the intrinsic
   2227 // and CCValid is the set of possible condition-code results.
   2228 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
   2229                                   SDValue Call, unsigned CCValid, uint64_t CC,
   2230                                   ISD::CondCode Cond) {
   2231   Comparison C(Call, SDValue());
   2232   C.Opcode = Opcode;
   2233   C.CCValid = CCValid;
   2234   if (Cond == ISD::SETEQ)
   2235     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
   2236     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
   2237   else if (Cond == ISD::SETNE)
   2238     // ...and the inverse of that.
   2239     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
   2240   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
   2241     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
   2242     // always true for CC>3.
   2243     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
   2244   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
   2245     // ...and the inverse of that.
   2246     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
   2247   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
   2248     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
   2249     // always true for CC>3.
   2250     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
   2251   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
   2252     // ...and the inverse of that.
   2253     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
   2254   else
   2255     llvm_unreachable("Unexpected integer comparison type");
   2256   C.CCMask &= CCValid;
   2257   return C;
   2258 }
   2259 
   2260 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
   2261 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
   2262                          ISD::CondCode Cond, const SDLoc &DL) {
   2263   if (CmpOp1.getOpcode() == ISD::Constant) {
   2264     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
   2265     unsigned Opcode, CCValid;
   2266     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   2267         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
   2268         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
   2269       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
   2270     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   2271         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
   2272         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
   2273       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
   2274   }
   2275   Comparison C(CmpOp0, CmpOp1);
   2276   C.CCMask = CCMaskForCondCode(Cond);
   2277   if (C.Op0.getValueType().isFloatingPoint()) {
   2278     C.CCValid = SystemZ::CCMASK_FCMP;
   2279     C.Opcode = SystemZISD::FCMP;
   2280     adjustForFNeg(C);
   2281   } else {
   2282     C.CCValid = SystemZ::CCMASK_ICMP;
   2283     C.Opcode = SystemZISD::ICMP;
   2284     // Choose the type of comparison.  Equality and inequality tests can
   2285     // use either signed or unsigned comparisons.  The choice also doesn't
   2286     // matter if both sign bits are known to be clear.  In those cases we
   2287     // want to give the main isel code the freedom to choose whichever
   2288     // form fits best.
   2289     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
   2290         C.CCMask == SystemZ::CCMASK_CMP_NE ||
   2291         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
   2292       C.ICmpType = SystemZICMP::Any;
   2293     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
   2294       C.ICmpType = SystemZICMP::UnsignedOnly;
   2295     else
   2296       C.ICmpType = SystemZICMP::SignedOnly;
   2297     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
   2298     adjustForRedundantAnd(DAG, DL, C);
   2299     adjustZeroCmp(DAG, DL, C);
   2300     adjustSubwordCmp(DAG, DL, C);
   2301     adjustForSubtraction(DAG, DL, C);
   2302     adjustForLTGFR(C);
   2303     adjustICmpTruncate(DAG, DL, C);
   2304   }
   2305 
   2306   if (shouldSwapCmpOperands(C)) {
   2307     std::swap(C.Op0, C.Op1);
   2308     C.CCMask = reverseCCMask(C.CCMask);
   2309   }
   2310 
   2311   adjustForTestUnderMask(DAG, DL, C);
   2312   return C;
   2313 }
   2314 
   2315 // Emit the comparison instruction described by C.
   2316 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
   2317   if (!C.Op1.getNode()) {
   2318     SDNode *Node;
   2319     switch (C.Op0.getOpcode()) {
   2320     case ISD::INTRINSIC_W_CHAIN:
   2321       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
   2322       return SDValue(Node, 0);
   2323     case ISD::INTRINSIC_WO_CHAIN:
   2324       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
   2325       return SDValue(Node, Node->getNumValues() - 1);
   2326     default:
   2327       llvm_unreachable("Invalid comparison operands");
   2328     }
   2329   }
   2330   if (C.Opcode == SystemZISD::ICMP)
   2331     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
   2332                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
   2333   if (C.Opcode == SystemZISD::TM) {
   2334     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
   2335                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
   2336     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
   2337                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
   2338   }
   2339   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
   2340 }
   2341 
   2342 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
   2343 // 64 bits.  Extend is the extension type to use.  Store the high part
   2344 // in Hi and the low part in Lo.
   2345 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
   2346                             SDValue Op0, SDValue Op1, SDValue &Hi,
   2347                             SDValue &Lo) {
   2348   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
   2349   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
   2350   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
   2351   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
   2352                    DAG.getConstant(32, DL, MVT::i64));
   2353   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
   2354   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
   2355 }
   2356 
   2357 // Lower a binary operation that produces two VT results, one in each
   2358 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
   2359 // and Opcode performs the GR128 operation.  Store the even register result
   2360 // in Even and the odd register result in Odd.
   2361 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
   2362                              unsigned Opcode, SDValue Op0, SDValue Op1,
   2363                              SDValue &Even, SDValue &Odd) {
   2364   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
   2365   bool Is32Bit = is32Bit(VT);
   2366   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
   2367   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
   2368 }
   2369 
   2370 // Return an i32 value that is 1 if the CC value produced by CCReg is
   2371 // in the mask CCMask and 0 otherwise.  CC is known to have a value
   2372 // in CCValid, so other values can be ignored.
   2373 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
   2374                          unsigned CCValid, unsigned CCMask) {
   2375   SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
   2376                     DAG.getConstant(0, DL, MVT::i32),
   2377                     DAG.getConstant(CCValid, DL, MVT::i32),
   2378                     DAG.getConstant(CCMask, DL, MVT::i32), CCReg };
   2379   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
   2380 }
   2381 
   2382 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
   2383 // be done directly.  IsFP is true if CC is for a floating-point rather than
   2384 // integer comparison.
   2385 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
   2386   switch (CC) {
   2387   case ISD::SETOEQ:
   2388   case ISD::SETEQ:
   2389     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
   2390 
   2391   case ISD::SETOGE:
   2392   case ISD::SETGE:
   2393     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
   2394 
   2395   case ISD::SETOGT:
   2396   case ISD::SETGT:
   2397     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
   2398 
   2399   case ISD::SETUGT:
   2400     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
   2401 
   2402   default:
   2403     return 0;
   2404   }
   2405 }
   2406 
   2407 // Return the SystemZISD vector comparison operation for CC or its inverse,
   2408 // or 0 if neither can be done directly.  Indicate in Invert whether the
   2409 // result is for the inverse of CC.  IsFP is true if CC is for a
   2410 // floating-point rather than integer comparison.
   2411 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
   2412                                             bool &Invert) {
   2413   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
   2414     Invert = false;
   2415     return Opcode;
   2416   }
   2417 
   2418   CC = ISD::getSetCCInverse(CC, !IsFP);
   2419   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
   2420     Invert = true;
   2421     return Opcode;
   2422   }
   2423 
   2424   return 0;
   2425 }
   2426 
   2427 // Return a v2f64 that contains the extended form of elements Start and Start+1
   2428 // of v4f32 value Op.
   2429 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
   2430                                   SDValue Op) {
   2431   int Mask[] = { Start, -1, Start + 1, -1 };
   2432   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
   2433   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
   2434 }
   2435 
   2436 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
   2437 // producing a result of type VT.
   2438 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
   2439                                             const SDLoc &DL, EVT VT,
   2440                                             SDValue CmpOp0,
   2441                                             SDValue CmpOp1) const {
   2442   // There is no hardware support for v4f32 (unless we have the vector
   2443   // enhancements facility 1), so extend the vector into two v2f64s
   2444   // and compare those.
   2445   if (CmpOp0.getValueType() == MVT::v4f32 &&
   2446       !Subtarget.hasVectorEnhancements1()) {
   2447     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
   2448     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
   2449     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
   2450     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
   2451     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
   2452     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
   2453     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
   2454   }
   2455   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
   2456 }
   2457 
   2458 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
   2459 // an integer mask of type VT.
   2460 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
   2461                                                 const SDLoc &DL, EVT VT,
   2462                                                 ISD::CondCode CC,
   2463                                                 SDValue CmpOp0,
   2464                                                 SDValue CmpOp1) const {
   2465   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
   2466   bool Invert = false;
   2467   SDValue Cmp;
   2468   switch (CC) {
   2469     // Handle tests for order using (or (ogt y x) (oge x y)).
   2470   case ISD::SETUO:
   2471     Invert = true;
   2472     LLVM_FALLTHROUGH;
   2473   case ISD::SETO: {
   2474     assert(IsFP && "Unexpected integer comparison");
   2475     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
   2476     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
   2477     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
   2478     break;
   2479   }
   2480 
   2481     // Handle <> tests using (or (ogt y x) (ogt x y)).
   2482   case ISD::SETUEQ:
   2483     Invert = true;
   2484     LLVM_FALLTHROUGH;
   2485   case ISD::SETONE: {
   2486     assert(IsFP && "Unexpected integer comparison");
   2487     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
   2488     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
   2489     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
   2490     break;
   2491   }
   2492 
   2493     // Otherwise a single comparison is enough.  It doesn't really
   2494     // matter whether we try the inversion or the swap first, since
   2495     // there are no cases where both work.
   2496   default:
   2497     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
   2498       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
   2499     else {
   2500       CC = ISD::getSetCCSwappedOperands(CC);
   2501       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
   2502         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
   2503       else
   2504         llvm_unreachable("Unhandled comparison");
   2505     }
   2506     break;
   2507   }
   2508   if (Invert) {
   2509     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
   2510                                DAG.getConstant(65535, DL, MVT::i32));
   2511     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
   2512     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
   2513   }
   2514   return Cmp;
   2515 }
   2516 
   2517 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
   2518                                           SelectionDAG &DAG) const {
   2519   SDValue CmpOp0   = Op.getOperand(0);
   2520   SDValue CmpOp1   = Op.getOperand(1);
   2521   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   2522   SDLoc DL(Op);
   2523   EVT VT = Op.getValueType();
   2524   if (VT.isVector())
   2525     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
   2526 
   2527   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
   2528   SDValue CCReg = emitCmp(DAG, DL, C);
   2529   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
   2530 }
   2531 
   2532 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   2533   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   2534   SDValue CmpOp0   = Op.getOperand(2);
   2535   SDValue CmpOp1   = Op.getOperand(3);
   2536   SDValue Dest     = Op.getOperand(4);
   2537   SDLoc DL(Op);
   2538 
   2539   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
   2540   SDValue CCReg = emitCmp(DAG, DL, C);
   2541   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
   2542                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
   2543                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
   2544 }
   2545 
   2546 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
   2547 // allowing Pos and Neg to be wider than CmpOp.
   2548 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
   2549   return (Neg.getOpcode() == ISD::SUB &&
   2550           Neg.getOperand(0).getOpcode() == ISD::Constant &&
   2551           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
   2552           Neg.getOperand(1) == Pos &&
   2553           (Pos == CmpOp ||
   2554            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
   2555             Pos.getOperand(0) == CmpOp)));
   2556 }
   2557 
   2558 // Return the absolute or negative absolute of Op; IsNegative decides which.
   2559 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
   2560                            bool IsNegative) {
   2561   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
   2562   if (IsNegative)
   2563     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
   2564                      DAG.getConstant(0, DL, Op.getValueType()), Op);
   2565   return Op;
   2566 }
   2567 
   2568 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
   2569                                               SelectionDAG &DAG) const {
   2570   SDValue CmpOp0   = Op.getOperand(0);
   2571   SDValue CmpOp1   = Op.getOperand(1);
   2572   SDValue TrueOp   = Op.getOperand(2);
   2573   SDValue FalseOp  = Op.getOperand(3);
   2574   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   2575   SDLoc DL(Op);
   2576 
   2577   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
   2578 
   2579   // Check for absolute and negative-absolute selections, including those
   2580   // where the comparison value is sign-extended (for LPGFR and LNGFR).
   2581   // This check supplements the one in DAGCombiner.
   2582   if (C.Opcode == SystemZISD::ICMP &&
   2583       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
   2584       C.CCMask != SystemZ::CCMASK_CMP_NE &&
   2585       C.Op1.getOpcode() == ISD::Constant &&
   2586       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
   2587     if (isAbsolute(C.Op0, TrueOp, FalseOp))
   2588       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
   2589     if (isAbsolute(C.Op0, FalseOp, TrueOp))
   2590       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
   2591   }
   2592 
   2593   SDValue CCReg = emitCmp(DAG, DL, C);
   2594   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
   2595                    DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg};
   2596 
   2597   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
   2598 }
   2599 
   2600 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
   2601                                                   SelectionDAG &DAG) const {
   2602   SDLoc DL(Node);
   2603   const GlobalValue *GV = Node->getGlobal();
   2604   int64_t Offset = Node->getOffset();
   2605   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2606   CodeModel::Model CM = DAG.getTarget().getCodeModel();
   2607 
   2608   SDValue Result;
   2609   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
   2610     // Assign anchors at 1<<12 byte boundaries.
   2611     uint64_t Anchor = Offset & ~uint64_t(0xfff);
   2612     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
   2613     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2614 
   2615     // The offset can be folded into the address if it is aligned to a halfword.
   2616     Offset -= Anchor;
   2617     if (Offset != 0 && (Offset & 1) == 0) {
   2618       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
   2619       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
   2620       Offset = 0;
   2621     }
   2622   } else {
   2623     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
   2624     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2625     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
   2626                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
   2627   }
   2628 
   2629   // If there was a non-zero offset that we didn't fold, create an explicit
   2630   // addition for it.
   2631   if (Offset != 0)
   2632     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
   2633                          DAG.getConstant(Offset, DL, PtrVT));
   2634 
   2635   return Result;
   2636 }
   2637 
   2638 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
   2639                                                  SelectionDAG &DAG,
   2640                                                  unsigned Opcode,
   2641                                                  SDValue GOTOffset) const {
   2642   SDLoc DL(Node);
   2643   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2644   SDValue Chain = DAG.getEntryNode();
   2645   SDValue Glue;
   2646 
   2647   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
   2648   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
   2649   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
   2650   Glue = Chain.getValue(1);
   2651   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
   2652   Glue = Chain.getValue(1);
   2653 
   2654   // The first call operand is the chain and the second is the TLS symbol.
   2655   SmallVector<SDValue, 8> Ops;
   2656   Ops.push_back(Chain);
   2657   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
   2658                                            Node->getValueType(0),
   2659                                            0, 0));
   2660 
   2661   // Add argument registers to the end of the list so that they are
   2662   // known live into the call.
   2663   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
   2664   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
   2665 
   2666   // Add a register mask operand representing the call-preserved registers.
   2667   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   2668   const uint32_t *Mask =
   2669       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
   2670   assert(Mask && "Missing call preserved mask for calling convention");
   2671   Ops.push_back(DAG.getRegisterMask(Mask));
   2672 
   2673   // Glue the call to the argument copies.
   2674   Ops.push_back(Glue);
   2675 
   2676   // Emit the call.
   2677   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2678   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
   2679   Glue = Chain.getValue(1);
   2680 
   2681   // Copy the return value from %r2.
   2682   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
   2683 }
   2684 
   2685 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
   2686                                                   SelectionDAG &DAG) const {
   2687   SDValue Chain = DAG.getEntryNode();
   2688   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2689 
   2690   // The high part of the thread pointer is in access register 0.
   2691   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
   2692   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
   2693 
   2694   // The low part of the thread pointer is in access register 1.
   2695   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
   2696   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
   2697 
   2698   // Merge them into a single 64-bit address.
   2699   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
   2700                                     DAG.getConstant(32, DL, PtrVT));
   2701   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
   2702 }
   2703 
   2704 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
   2705                                                      SelectionDAG &DAG) const {
   2706   if (DAG.getTarget().useEmulatedTLS())
   2707     return LowerToTLSEmulatedModel(Node, DAG);
   2708   SDLoc DL(Node);
   2709   const GlobalValue *GV = Node->getGlobal();
   2710   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2711   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
   2712 
   2713   SDValue TP = lowerThreadPointer(DL, DAG);
   2714 
   2715   // Get the offset of GA from the thread pointer, based on the TLS model.
   2716   SDValue Offset;
   2717   switch (model) {
   2718     case TLSModel::GeneralDynamic: {
   2719       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
   2720       SystemZConstantPoolValue *CPV =
   2721         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
   2722 
   2723       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
   2724       Offset = DAG.getLoad(
   2725           PtrVT, DL, DAG.getEntryNode(), Offset,
   2726           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   2727 
   2728       // Call __tls_get_offset to retrieve the offset.
   2729       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
   2730       break;
   2731     }
   2732 
   2733     case TLSModel::LocalDynamic: {
   2734       // Load the GOT offset of the module ID.
   2735       SystemZConstantPoolValue *CPV =
   2736         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
   2737 
   2738       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
   2739       Offset = DAG.getLoad(
   2740           PtrVT, DL, DAG.getEntryNode(), Offset,
   2741           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   2742 
   2743       // Call __tls_get_offset to retrieve the module base offset.
   2744       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
   2745 
   2746       // Note: The SystemZLDCleanupPass will remove redundant computations
   2747       // of the module base offset.  Count total number of local-dynamic
   2748       // accesses to trigger execution of that pass.
   2749       SystemZMachineFunctionInfo* MFI =
   2750         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
   2751       MFI->incNumLocalDynamicTLSAccesses();
   2752 
   2753       // Add the per-symbol offset.
   2754       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
   2755 
   2756       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
   2757       DTPOffset = DAG.getLoad(
   2758           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
   2759           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   2760 
   2761       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
   2762       break;
   2763     }
   2764 
   2765     case TLSModel::InitialExec: {
   2766       // Load the offset from the GOT.
   2767       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   2768                                           SystemZII::MO_INDNTPOFF);
   2769       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
   2770       Offset =
   2771           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
   2772                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
   2773       break;
   2774     }
   2775 
   2776     case TLSModel::LocalExec: {
   2777       // Force the offset into the constant pool and load it from there.
   2778       SystemZConstantPoolValue *CPV =
   2779         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
   2780 
   2781       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
   2782       Offset = DAG.getLoad(
   2783           PtrVT, DL, DAG.getEntryNode(), Offset,
   2784           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   2785       break;
   2786     }
   2787   }
   2788 
   2789   // Add the base and offset together.
   2790   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
   2791 }
   2792 
   2793 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
   2794                                                  SelectionDAG &DAG) const {
   2795   SDLoc DL(Node);
   2796   const BlockAddress *BA = Node->getBlockAddress();
   2797   int64_t Offset = Node->getOffset();
   2798   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2799 
   2800   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
   2801   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2802   return Result;
   2803 }
   2804 
   2805 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
   2806                                               SelectionDAG &DAG) const {
   2807   SDLoc DL(JT);
   2808   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2809   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   2810 
   2811   // Use LARL to load the address of the table.
   2812   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2813 }
   2814 
   2815 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
   2816                                                  SelectionDAG &DAG) const {
   2817   SDLoc DL(CP);
   2818   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2819 
   2820   SDValue Result;
   2821   if (CP->isMachineConstantPoolEntry())
   2822     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   2823                                        CP->getAlignment());
   2824   else
   2825     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   2826                                        CP->getAlignment(), CP->getOffset());
   2827 
   2828   // Use LARL to load the address of the constant pool entry.
   2829   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2830 }
   2831 
   2832 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
   2833                                               SelectionDAG &DAG) const {
   2834   MachineFunction &MF = DAG.getMachineFunction();
   2835   MachineFrameInfo &MFI = MF.getFrameInfo();
   2836   MFI.setFrameAddressIsTaken(true);
   2837 
   2838   SDLoc DL(Op);
   2839   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   2840   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2841 
   2842   // If the back chain frame index has not been allocated yet, do so.
   2843   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
   2844   int BackChainIdx = FI->getFramePointerSaveIndex();
   2845   if (!BackChainIdx) {
   2846     // By definition, the frame address is the address of the back chain.
   2847     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
   2848     FI->setFramePointerSaveIndex(BackChainIdx);
   2849   }
   2850   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
   2851 
   2852   // FIXME The frontend should detect this case.
   2853   if (Depth > 0) {
   2854     report_fatal_error("Unsupported stack frame traversal count");
   2855   }
   2856 
   2857   return BackChain;
   2858 }
   2859 
   2860 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
   2861                                                SelectionDAG &DAG) const {
   2862   MachineFunction &MF = DAG.getMachineFunction();
   2863   MachineFrameInfo &MFI = MF.getFrameInfo();
   2864   MFI.setReturnAddressIsTaken(true);
   2865 
   2866   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   2867     return SDValue();
   2868 
   2869   SDLoc DL(Op);
   2870   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   2871   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2872 
   2873   // FIXME The frontend should detect this case.
   2874   if (Depth > 0) {
   2875     report_fatal_error("Unsupported stack frame traversal count");
   2876   }
   2877 
   2878   // Return R14D, which has the return address. Mark it an implicit live-in.
   2879   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
   2880   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
   2881 }
   2882 
   2883 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
   2884                                             SelectionDAG &DAG) const {
   2885   SDLoc DL(Op);
   2886   SDValue In = Op.getOperand(0);
   2887   EVT InVT = In.getValueType();
   2888   EVT ResVT = Op.getValueType();
   2889 
   2890   // Convert loads directly.  This is normally done by DAGCombiner,
   2891   // but we need this case for bitcasts that are created during lowering
   2892   // and which are then lowered themselves.
   2893   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
   2894     if (ISD::isNormalLoad(LoadN)) {
   2895       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
   2896                                     LoadN->getBasePtr(), LoadN->getMemOperand());
   2897       // Update the chain uses.
   2898       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
   2899       return NewLoad;
   2900     }
   2901 
   2902   if (InVT == MVT::i32 && ResVT == MVT::f32) {
   2903     SDValue In64;
   2904     if (Subtarget.hasHighWord()) {
   2905       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
   2906                                        MVT::i64);
   2907       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
   2908                                        MVT::i64, SDValue(U64, 0), In);
   2909     } else {
   2910       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
   2911       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
   2912                          DAG.getConstant(32, DL, MVT::i64));
   2913     }
   2914     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
   2915     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
   2916                                       DL, MVT::f32, Out64);
   2917   }
   2918   if (InVT == MVT::f32 && ResVT == MVT::i32) {
   2919     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
   2920     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
   2921                                              MVT::f64, SDValue(U64, 0), In);
   2922     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
   2923     if (Subtarget.hasHighWord())
   2924       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
   2925                                         MVT::i32, Out64);
   2926     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
   2927                                 DAG.getConstant(32, DL, MVT::i64));
   2928     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
   2929   }
   2930   llvm_unreachable("Unexpected bitcast combination");
   2931 }
   2932 
   2933 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
   2934                                             SelectionDAG &DAG) const {
   2935   MachineFunction &MF = DAG.getMachineFunction();
   2936   SystemZMachineFunctionInfo *FuncInfo =
   2937     MF.getInfo<SystemZMachineFunctionInfo>();
   2938   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2939 
   2940   SDValue Chain   = Op.getOperand(0);
   2941   SDValue Addr    = Op.getOperand(1);
   2942   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2943   SDLoc DL(Op);
   2944 
   2945   // The initial values of each field.
   2946   const unsigned NumFields = 4;
   2947   SDValue Fields[NumFields] = {
   2948     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
   2949     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
   2950     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
   2951     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
   2952   };
   2953 
   2954   // Store each field into its respective slot.
   2955   SDValue MemOps[NumFields];
   2956   unsigned Offset = 0;
   2957   for (unsigned I = 0; I < NumFields; ++I) {
   2958     SDValue FieldAddr = Addr;
   2959     if (Offset != 0)
   2960       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
   2961                               DAG.getIntPtrConstant(Offset, DL));
   2962     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
   2963                              MachinePointerInfo(SV, Offset));
   2964     Offset += 8;
   2965   }
   2966   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
   2967 }
   2968 
   2969 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
   2970                                            SelectionDAG &DAG) const {
   2971   SDValue Chain      = Op.getOperand(0);
   2972   SDValue DstPtr     = Op.getOperand(1);
   2973   SDValue SrcPtr     = Op.getOperand(2);
   2974   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
   2975   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   2976   SDLoc DL(Op);
   2977 
   2978   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
   2979                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
   2980                        /*isTailCall*/false,
   2981                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
   2982 }
   2983 
   2984 SDValue SystemZTargetLowering::
   2985 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
   2986   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
   2987   MachineFunction &MF = DAG.getMachineFunction();
   2988   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
   2989   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
   2990 
   2991   SDValue Chain = Op.getOperand(0);
   2992   SDValue Size  = Op.getOperand(1);
   2993   SDValue Align = Op.getOperand(2);
   2994   SDLoc DL(Op);
   2995 
   2996   // If user has set the no alignment function attribute, ignore
   2997   // alloca alignments.
   2998   uint64_t AlignVal = (RealignOpt ?
   2999                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
   3000 
   3001   uint64_t StackAlign = TFI->getStackAlignment();
   3002   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
   3003   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
   3004 
   3005   unsigned SPReg = getStackPointerRegisterToSaveRestore();
   3006   SDValue NeededSpace = Size;
   3007 
   3008   // Get a reference to the stack pointer.
   3009   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
   3010 
   3011   // If we need a backchain, save it now.
   3012   SDValue Backchain;
   3013   if (StoreBackchain)
   3014     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
   3015 
   3016   // Add extra space for alignment if needed.
   3017   if (ExtraAlignSpace)
   3018     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
   3019                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
   3020 
   3021   // Get the new stack pointer value.
   3022   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
   3023 
   3024   // Copy the new stack pointer back.
   3025   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
   3026 
   3027   // The allocated data lives above the 160 bytes allocated for the standard
   3028   // frame, plus any outgoing stack arguments.  We don't know how much that
   3029   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
   3030   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
   3031   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
   3032 
   3033   // Dynamically realign if needed.
   3034   if (RequiredAlign > StackAlign) {
   3035     Result =
   3036       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
   3037                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
   3038     Result =
   3039       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
   3040                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
   3041   }
   3042 
   3043   if (StoreBackchain)
   3044     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
   3045 
   3046   SDValue Ops[2] = { Result, Chain };
   3047   return DAG.getMergeValues(Ops, DL);
   3048 }
   3049 
   3050 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
   3051     SDValue Op, SelectionDAG &DAG) const {
   3052   SDLoc DL(Op);
   3053 
   3054   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
   3055 }
   3056 
   3057 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
   3058                                               SelectionDAG &DAG) const {
   3059   EVT VT = Op.getValueType();
   3060   SDLoc DL(Op);
   3061   SDValue Ops[2];
   3062   if (is32Bit(VT))
   3063     // Just do a normal 64-bit multiplication and extract the results.