Home | History | Annotate | Download | only in fiat
      1 // The MIT License (MIT)
      2 //
      3 // Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file).
      4 //
      5 // Permission is hereby granted, free of charge, to any person obtaining a copy
      6 // of this software and associated documentation files (the "Software"), to deal
      7 // in the Software without restriction, including without limitation the rights
      8 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
      9 // copies of the Software, and to permit persons to whom the Software is
     10 // furnished to do so, subject to the following conditions:
     11 //
     12 // The above copyright notice and this permission notice shall be included in all
     13 // copies or substantial portions of the Software.
     14 //
     15 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     18 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     20 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     21 // SOFTWARE.
     22 
     23 // The field arithmetic code is generated by Fiat
     24 // (https://github.com/mit-plv/fiat-crypto), which is MIT licensed.
     25 //
     26 // An implementation of the NIST P-256 elliptic curve point multiplication.
     27 // 256-bit Montgomery form, generated using fiat-crypto, for 64 and 32-bit.
     28 // Field operations with inputs in [0,p) return outputs in [0,p).
     29 
     30 #include <openssl/base.h>
     31 
     32 #include <openssl/bn.h>
     33 #include <openssl/ec.h>
     34 #include <openssl/err.h>
     35 #include <openssl/mem.h>
     36 #include <openssl/type_check.h>
     37 
     38 #include <assert.h>
     39 #include <string.h>
     40 
     41 #include "../../crypto/fipsmodule/delocate.h"
     42 #include "../../crypto/fipsmodule/ec/internal.h"
     43 #include "../../crypto/internal.h"
     44 
     45 
     46 // MSVC does not implement uint128_t, and crashes with intrinsics
     47 #if defined(BORINGSSL_HAS_UINT128)
     48 #define BORINGSSL_NISTP256_64BIT 1
     49 #include "p256_64.h"
     50 #else
     51 #include "p256_32.h"
     52 #endif
     53 
     54 
     55 // utility functions, handwritten
     56 
     57 #define NBYTES 32
     58 
     59 #if defined(BORINGSSL_NISTP256_64BIT)
     60 
     61 #define NLIMBS 4
     62 typedef uint64_t limb_t;
     63 typedef uint64_t fe[NLIMBS];
     64 #else // 64BIT; else 32BIT
     65 
     66 #define NLIMBS 8
     67 typedef uint32_t limb_t;
     68 typedef uint32_t fe[NLIMBS];
     69 
     70 #endif // 64BIT
     71 
     72 #define fe_add fiat_p256_add
     73 #define fe_sub fiat_p256_sub
     74 #define fe_opp fiat_p256_opp
     75 
     76 #define fe_mul fiat_p256_mul
     77 #define fe_sqr fiat_p256_square
     78 
     79 #define fe_tobytes fiat_p256_to_bytes
     80 #define fe_frombytes fiat_p256_from_bytes
     81 
     82 static limb_t fe_nz(const limb_t in1[NLIMBS]) {
     83   limb_t ret;
     84   fiat_p256_nonzero(&ret, in1);
     85   return ret;
     86 }
     87 
     88 static void fe_copy(limb_t out[NLIMBS], const limb_t in1[NLIMBS]) {
     89   for (int i = 0; i < NLIMBS; i++) {
     90     out[i] = in1[i];
     91   }
     92 }
     93 
     94 static void fe_cmovznz(limb_t out[NLIMBS], limb_t t, const limb_t z[NLIMBS],
     95                        const limb_t nz[NLIMBS]) {
     96   fiat_p256_selectznz(out, !!t, z, nz);
     97 }
     98 
     99 static void fe_from_montgomery(fe x) {
    100   fiat_p256_from_montgomery(x, x);
    101 }
    102 
    103 static void fe_from_generic(fe out, const EC_FELEM *in) {
    104   fe_frombytes(out, in->bytes);
    105 }
    106 
    107 static void fe_to_generic(EC_FELEM *out, const fe in) {
    108   // This works because 256 is a multiple of 64, so there are no excess bytes to
    109   // zero when rounding up to |BN_ULONG|s.
    110   OPENSSL_STATIC_ASSERT(
    111       256 / 8 == sizeof(BN_ULONG) * ((256 + BN_BITS2 - 1) / BN_BITS2),
    112       "fe_tobytes leaves bytes uninitialized");
    113   fe_tobytes(out->bytes, in);
    114 }
    115 
    116 // fe_inv calculates |out| = |in|^{-1}
    117 //
    118 // Based on Fermat's Little Theorem:
    119 //   a^p = a (mod p)
    120 //   a^{p-1} = 1 (mod p)
    121 //   a^{p-2} = a^{-1} (mod p)
    122 static void fe_inv(fe out, const fe in) {
    123   fe ftmp, ftmp2;
    124   // each e_I will hold |in|^{2^I - 1}
    125   fe e2, e4, e8, e16, e32, e64;
    126 
    127   fe_sqr(ftmp, in);  // 2^1
    128   fe_mul(ftmp, in, ftmp);  // 2^2 - 2^0
    129   fe_copy(e2, ftmp);
    130   fe_sqr(ftmp, ftmp);  // 2^3 - 2^1
    131   fe_sqr(ftmp, ftmp);  // 2^4 - 2^2
    132   fe_mul(ftmp, ftmp, e2);  // 2^4 - 2^0
    133   fe_copy(e4, ftmp);
    134   fe_sqr(ftmp, ftmp);  // 2^5 - 2^1
    135   fe_sqr(ftmp, ftmp);  // 2^6 - 2^2
    136   fe_sqr(ftmp, ftmp);  // 2^7 - 2^3
    137   fe_sqr(ftmp, ftmp);  // 2^8 - 2^4
    138   fe_mul(ftmp, ftmp, e4);  // 2^8 - 2^0
    139   fe_copy(e8, ftmp);
    140   for (size_t i = 0; i < 8; i++) {
    141     fe_sqr(ftmp, ftmp);
    142   }  // 2^16 - 2^8
    143   fe_mul(ftmp, ftmp, e8);  // 2^16 - 2^0
    144   fe_copy(e16, ftmp);
    145   for (size_t i = 0; i < 16; i++) {
    146     fe_sqr(ftmp, ftmp);
    147   }  // 2^32 - 2^16
    148   fe_mul(ftmp, ftmp, e16);  // 2^32 - 2^0
    149   fe_copy(e32, ftmp);
    150   for (size_t i = 0; i < 32; i++) {
    151     fe_sqr(ftmp, ftmp);
    152   }  // 2^64 - 2^32
    153   fe_copy(e64, ftmp);
    154   fe_mul(ftmp, ftmp, in);  // 2^64 - 2^32 + 2^0
    155   for (size_t i = 0; i < 192; i++) {
    156     fe_sqr(ftmp, ftmp);
    157   }  // 2^256 - 2^224 + 2^192
    158 
    159   fe_mul(ftmp2, e64, e32);  // 2^64 - 2^0
    160   for (size_t i = 0; i < 16; i++) {
    161     fe_sqr(ftmp2, ftmp2);
    162   }  // 2^80 - 2^16
    163   fe_mul(ftmp2, ftmp2, e16);  // 2^80 - 2^0
    164   for (size_t i = 0; i < 8; i++) {
    165     fe_sqr(ftmp2, ftmp2);
    166   }  // 2^88 - 2^8
    167   fe_mul(ftmp2, ftmp2, e8);  // 2^88 - 2^0
    168   for (size_t i = 0; i < 4; i++) {
    169     fe_sqr(ftmp2, ftmp2);
    170   }  // 2^92 - 2^4
    171   fe_mul(ftmp2, ftmp2, e4);  // 2^92 - 2^0
    172   fe_sqr(ftmp2, ftmp2);  // 2^93 - 2^1
    173   fe_sqr(ftmp2, ftmp2);  // 2^94 - 2^2
    174   fe_mul(ftmp2, ftmp2, e2);  // 2^94 - 2^0
    175   fe_sqr(ftmp2, ftmp2);  // 2^95 - 2^1
    176   fe_sqr(ftmp2, ftmp2);  // 2^96 - 2^2
    177   fe_mul(ftmp2, ftmp2, in);  // 2^96 - 3
    178 
    179   fe_mul(out, ftmp2, ftmp);  // 2^256 - 2^224 + 2^192 + 2^96 - 3
    180 }
    181 
    182 // Group operations
    183 // ----------------
    184 //
    185 // Building on top of the field operations we have the operations on the
    186 // elliptic curve group itself. Points on the curve are represented in Jacobian
    187 // coordinates.
    188 //
    189 // Both operations were transcribed to Coq and proven to correspond to naive
    190 // implementations using Affine coordinates, for all suitable fields.  In the
    191 // Coq proofs, issues of constant-time execution and memory layout (aliasing)
    192 // conventions were not considered. Specification of affine coordinates:
    193 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28>
    194 // As a sanity check, a proof that these points form a commutative group:
    195 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33>
    196 
    197 // point_double calculates 2*(x_in, y_in, z_in)
    198 //
    199 // The method is taken from:
    200 //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
    201 //
    202 // Coq transcription and correctness proof:
    203 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
    204 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
    205 //
    206 // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
    207 // while x_out == y_in is not (maybe this works, but it's not tested).
    208 static void point_double(fe x_out, fe y_out, fe z_out,
    209                          const fe x_in, const fe y_in, const fe z_in) {
    210   fe delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
    211   // delta = z^2
    212   fe_sqr(delta, z_in);
    213   // gamma = y^2
    214   fe_sqr(gamma, y_in);
    215   // beta = x*gamma
    216   fe_mul(beta, x_in, gamma);
    217 
    218   // alpha = 3*(x-delta)*(x+delta)
    219   fe_sub(ftmp, x_in, delta);
    220   fe_add(ftmp2, x_in, delta);
    221 
    222   fe_add(tmptmp, ftmp2, ftmp2);
    223   fe_add(ftmp2, ftmp2, tmptmp);
    224   fe_mul(alpha, ftmp, ftmp2);
    225 
    226   // x' = alpha^2 - 8*beta
    227   fe_sqr(x_out, alpha);
    228   fe_add(fourbeta, beta, beta);
    229   fe_add(fourbeta, fourbeta, fourbeta);
    230   fe_add(tmptmp, fourbeta, fourbeta);
    231   fe_sub(x_out, x_out, tmptmp);
    232 
    233   // z' = (y + z)^2 - gamma - delta
    234   fe_add(delta, gamma, delta);
    235   fe_add(ftmp, y_in, z_in);
    236   fe_sqr(z_out, ftmp);
    237   fe_sub(z_out, z_out, delta);
    238 
    239   // y' = alpha*(4*beta - x') - 8*gamma^2
    240   fe_sub(y_out, fourbeta, x_out);
    241   fe_add(gamma, gamma, gamma);
    242   fe_sqr(gamma, gamma);
    243   fe_mul(y_out, alpha, y_out);
    244   fe_add(gamma, gamma, gamma);
    245   fe_sub(y_out, y_out, gamma);
    246 }
    247 
    248 // point_add calcuates (x1, y1, z1) + (x2, y2, z2)
    249 //
    250 // The method is taken from:
    251 //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
    252 // adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
    253 //
    254 // Coq transcription and correctness proof:
    255 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135>
    256 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205>
    257 //
    258 // This function includes a branch for checking whether the two input points
    259 // are equal, (while not equal to the point at infinity). This case never
    260 // happens during single point multiplication, so there is no timing leak for
    261 // ECDH or ECDSA signing.
    262 static void point_add(fe x3, fe y3, fe z3, const fe x1,
    263                       const fe y1, const fe z1, const int mixed,
    264                       const fe x2, const fe y2, const fe z2) {
    265   fe x_out, y_out, z_out;
    266   limb_t z1nz = fe_nz(z1);
    267   limb_t z2nz = fe_nz(z2);
    268 
    269   // z1z1 = z1z1 = z1**2
    270   fe z1z1; fe_sqr(z1z1, z1);
    271 
    272   fe u1, s1, two_z1z2;
    273   if (!mixed) {
    274     // z2z2 = z2**2
    275     fe z2z2; fe_sqr(z2z2, z2);
    276 
    277     // u1 = x1*z2z2
    278     fe_mul(u1, x1, z2z2);
    279 
    280     // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
    281     fe_add(two_z1z2, z1, z2);
    282     fe_sqr(two_z1z2, two_z1z2);
    283     fe_sub(two_z1z2, two_z1z2, z1z1);
    284     fe_sub(two_z1z2, two_z1z2, z2z2);
    285 
    286     // s1 = y1 * z2**3
    287     fe_mul(s1, z2, z2z2);
    288     fe_mul(s1, s1, y1);
    289   } else {
    290     // We'll assume z2 = 1 (special case z2 = 0 is handled later).
    291 
    292     // u1 = x1*z2z2
    293     fe_copy(u1, x1);
    294     // two_z1z2 = 2z1z2
    295     fe_add(two_z1z2, z1, z1);
    296     // s1 = y1 * z2**3
    297     fe_copy(s1, y1);
    298   }
    299 
    300   // u2 = x2*z1z1
    301   fe u2; fe_mul(u2, x2, z1z1);
    302 
    303   // h = u2 - u1
    304   fe h; fe_sub(h, u2, u1);
    305 
    306   limb_t xneq = fe_nz(h);
    307 
    308   // z_out = two_z1z2 * h
    309   fe_mul(z_out, h, two_z1z2);
    310 
    311   // z1z1z1 = z1 * z1z1
    312   fe z1z1z1; fe_mul(z1z1z1, z1, z1z1);
    313 
    314   // s2 = y2 * z1**3
    315   fe s2; fe_mul(s2, y2, z1z1z1);
    316 
    317   // r = (s2 - s1)*2
    318   fe r;
    319   fe_sub(r, s2, s1);
    320   fe_add(r, r, r);
    321 
    322   limb_t yneq = fe_nz(r);
    323 
    324   if (!xneq && !yneq && z1nz && z2nz) {
    325     point_double(x3, y3, z3, x1, y1, z1);
    326     return;
    327   }
    328 
    329   // I = (2h)**2
    330   fe i;
    331   fe_add(i, h, h);
    332   fe_sqr(i, i);
    333 
    334   // J = h * I
    335   fe j; fe_mul(j, h, i);
    336 
    337   // V = U1 * I
    338   fe v; fe_mul(v, u1, i);
    339 
    340   // x_out = r**2 - J - 2V
    341   fe_sqr(x_out, r);
    342   fe_sub(x_out, x_out, j);
    343   fe_sub(x_out, x_out, v);
    344   fe_sub(x_out, x_out, v);
    345 
    346   // y_out = r(V-x_out) - 2 * s1 * J
    347   fe_sub(y_out, v, x_out);
    348   fe_mul(y_out, y_out, r);
    349   fe s1j;
    350   fe_mul(s1j, s1, j);
    351   fe_sub(y_out, y_out, s1j);
    352   fe_sub(y_out, y_out, s1j);
    353 
    354   fe_cmovznz(x_out, z1nz, x2, x_out);
    355   fe_cmovznz(x3, z2nz, x1, x_out);
    356   fe_cmovznz(y_out, z1nz, y2, y_out);
    357   fe_cmovznz(y3, z2nz, y1, y_out);
    358   fe_cmovznz(z_out, z1nz, z2, z_out);
    359   fe_cmovznz(z3, z2nz, z1, z_out);
    360 }
    361 
    362 // Base point pre computation
    363 // --------------------------
    364 //
    365 // Two different sorts of precomputed tables are used in the following code.
    366 // Each contain various points on the curve, where each point is three field
    367 // elements (x, y, z).
    368 //
    369 // For the base point table, z is usually 1 (0 for the point at infinity).
    370 // This table has 2 * 16 elements, starting with the following:
    371 // index | bits    | point
    372 // ------+---------+------------------------------
    373 //     0 | 0 0 0 0 | 0G
    374 //     1 | 0 0 0 1 | 1G
    375 //     2 | 0 0 1 0 | 2^64G
    376 //     3 | 0 0 1 1 | (2^64 + 1)G
    377 //     4 | 0 1 0 0 | 2^128G
    378 //     5 | 0 1 0 1 | (2^128 + 1)G
    379 //     6 | 0 1 1 0 | (2^128 + 2^64)G
    380 //     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
    381 //     8 | 1 0 0 0 | 2^192G
    382 //     9 | 1 0 0 1 | (2^192 + 1)G
    383 //    10 | 1 0 1 0 | (2^192 + 2^64)G
    384 //    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
    385 //    12 | 1 1 0 0 | (2^192 + 2^128)G
    386 //    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
    387 //    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
    388 //    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
    389 // followed by a copy of this with each element multiplied by 2^32.
    390 //
    391 // The reason for this is so that we can clock bits into four different
    392 // locations when doing simple scalar multiplies against the base point,
    393 // and then another four locations using the second 16 elements.
    394 //
    395 // Tables for other points have table[i] = iG for i in 0 .. 16.
    396 
    397 // g_pre_comp is the table of precomputed base points
    398 #if defined(BORINGSSL_NISTP256_64BIT)
    399 static const fe g_pre_comp[2][16][3] = {
    400     {{{0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}},
    401      {{0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510,
    402        0x18905f76a53755c6},
    403       {0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, 0xd2e88688dd21f325,
    404        0x8571ff1825885d85},
    405       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    406      {{0x4f922fc516a0d2bb, 0xd5cc16c1a623499, 0x9241cf3a57c62c8b,
    407        0x2f5e6961fd1b667f},
    408       {0x5c15c70bf5a01797, 0x3d20b44d60956192, 0x4911b37071fdb52,
    409        0xf648f9168d6f0f7b},
    410       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    411      {{0x9e566847e137bbbc, 0xe434469e8a6a0bec, 0xb1c4276179d73463,
    412        0x5abe0285133d0015},
    413       {0x92aa837cc04c7dab, 0x573d9f4c43260c07, 0xc93156278e6cc37,
    414        0x94bb725b6b6f7383},
    415       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    416      {{0x62a8c244bfe20925, 0x91c19ac38fdce867, 0x5a96a5d5dd387063,
    417        0x61d587d421d324f6},
    418       {0xe87673a2a37173ea, 0x2384800853778b65, 0x10f8441e05bab43e,
    419        0xfa11fe124621efbe},
    420       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    421      {{0x1c891f2b2cb19ffd, 0x1ba8d5bb1923c23, 0xb6d03d678ac5ca8e,
    422        0x586eb04c1f13bedc},
    423       {0xc35c6e527e8ed09, 0x1e81a33c1819ede2, 0x278fd6c056c652fa,
    424        0x19d5ac0870864f11},
    425       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    426      {{0x62577734d2b533d5, 0x673b8af6a1bdddc0, 0x577e7c9aa79ec293,
    427        0xbb6de651c3b266b1},
    428       {0xe7e9303ab65259b3, 0xd6a0afd3d03a7480, 0xc5ac83d19b3cfc27,
    429        0x60b4619a5d18b99b},
    430       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    431      {{0xbd6a38e11ae5aa1c, 0xb8b7652b49e73658, 0xb130014ee5f87ed,
    432        0x9d0f27b2aeebffcd},
    433       {0xca9246317a730a55, 0x9c955b2fddbbc83a, 0x7c1dfe0ac019a71,
    434        0x244a566d356ec48d},
    435       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    436      {{0x56f8410ef4f8b16a, 0x97241afec47b266a, 0xa406b8e6d9c87c1,
    437        0x803f3e02cd42ab1b},
    438       {0x7f0309a804dbec69, 0xa83b85f73bbad05f, 0xc6097273ad8e197f,
    439        0xc097440e5067adc1},
    440       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    441      {{0x846a56f2c379ab34, 0xa8ee068b841df8d1, 0x20314459176c68ef,
    442        0xf1af32d5915f1f30},
    443       {0x99c375315d75bd50, 0x837cffbaf72f67bc, 0x613a41848d7723f,
    444        0x23d0f130e2d41c8b},
    445       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    446      {{0xed93e225d5be5a2b, 0x6fe799835934f3c6, 0x4314092622626ffc,
    447        0x50bbb4d97990216a},
    448       {0x378191c6e57ec63e, 0x65422c40181dcdb2, 0x41a8099b0236e0f6,
    449        0x2b10011801fe49c3},
    450       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    451      {{0xfc68b5c59b391593, 0xc385f5a2598270fc, 0x7144f3aad19adcbb,
    452        0xdd55899983fbae0c},
    453       {0x93b88b8e74b82ff4, 0xd2e03c4071e734c9, 0x9a7a9eaf43c0322a,
    454        0xe6e4c551149d6041},
    455       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    456      {{0x5fe14bfe80ec21fe, 0xf6ce116ac255be82, 0x98bc5a072f4a5d67,
    457        0xfad27148db7e63af},
    458       {0x90c0b6ac29ab05b3, 0x37a9a83c4e251ae6, 0xa7dc875c2aade7d,
    459        0x77387de39f0e1a84},
    460       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    461      {{0x1e9ecc49a56c0dd7, 0xa5cffcd846086c74, 0x8f7a1408f505aece,
    462        0xb37b85c0bef0c47e},
    463       {0x3596b6e4cc0e6a8f, 0xfd6d4bbf6b388f23, 0xaba453fac39cef4e,
    464        0x9c135ac8f9f628d5},
    465       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    466      {{0xa1c729495c8f8be, 0x2961c4803bf362bf, 0x9e418403df63d4ac,
    467        0xc109f9cb91ece900},
    468       {0xc2d095d058945705, 0xb9083d96ddeb85c0, 0x84692b8d7a40449b,
    469        0x9bc3344f2eee1ee1},
    470       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    471      {{0xd5ae35642913074, 0x55491b2748a542b1, 0x469ca665b310732a,
    472        0x29591d525f1a4cc1},
    473       {0xe76f5b6bb84f983f, 0xbe7eef419f5f84e1, 0x1200d49680baa189,
    474        0x6376551f18ef332c},
    475       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}}},
    476     {{{0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}},
    477      {{0x202886024147519a, 0xd0981eac26b372f0, 0xa9d4a7caa785ebc8,
    478        0xd953c50ddbdf58e9},
    479       {0x9d6361ccfd590f8f, 0x72e9626b44e6c917, 0x7fd9611022eb64cf,
    480        0x863ebb7e9eb288f3},
    481       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    482      {{0x4fe7ee31b0e63d34, 0xf4600572a9e54fab, 0xc0493334d5e7b5a4,
    483        0x8589fb9206d54831},
    484       {0xaa70f5cc6583553a, 0x879094ae25649e5, 0xcc90450710044652,
    485        0xebb0696d02541c4f},
    486       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    487      {{0xabbaa0c03b89da99, 0xa6f2d79eb8284022, 0x27847862b81c05e8,
    488        0x337a4b5905e54d63},
    489       {0x3c67500d21f7794a, 0x207005b77d6d7f61, 0xa5a378104cfd6e8,
    490        0xd65e0d5f4c2fbd6},
    491       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    492      {{0xd433e50f6d3549cf, 0x6f33696ffacd665e, 0x695bfdacce11fcb4,
    493        0x810ee252af7c9860},
    494       {0x65450fe17159bb2c, 0xf7dfbebe758b357b, 0x2b057e74d69fea72,
    495        0xd485717a92731745},
    496       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    497      {{0xce1f69bbe83f7669, 0x9f8ae8272877d6b, 0x9548ae543244278d,
    498        0x207755dee3c2c19c},
    499       {0x87bd61d96fef1945, 0x18813cefb12d28c3, 0x9fbcd1d672df64aa,
    500        0x48dc5ee57154b00d},
    501       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    502      {{0xef0f469ef49a3154, 0x3e85a5956e2b2e9a, 0x45aaec1eaa924a9c,
    503        0xaa12dfc8a09e4719},
    504       {0x26f272274df69f1d, 0xe0e4c82ca2ff5e73, 0xb9d8ce73b7a9dd44,
    505        0x6c036e73e48ca901},
    506       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    507      {{0xe1e421e1a47153f0, 0xb86c3b79920418c9, 0x93bdce87705d7672,
    508        0xf25ae793cab79a77},
    509       {0x1f3194a36d869d0c, 0x9d55c8824986c264, 0x49fb5ea3096e945e,
    510        0x39b8e65313db0a3e},
    511       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    512      {{0xe3417bc035d0b34a, 0x440b386b8327c0a7, 0x8fb7262dac0362d1,
    513        0x2c41114ce0cdf943},
    514       {0x2ba5cef1ad95a0b1, 0xc09b37a867d54362, 0x26d6cdd201e486c9,
    515        0x20477abf42ff9297},
    516       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    517      {{0xf121b41bc0a67d2, 0x62d4760a444d248a, 0xe044f1d659b4737,
    518        0x8fde365250bb4a8},
    519       {0xaceec3da848bf287, 0xc2a62182d3369d6e, 0x3582dfdc92449482,
    520        0x2f7e2fd2565d6cd7},
    521       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    522      {{0xa0122b5178a876b, 0x51ff96ff085104b4, 0x50b31ab14f29f76,
    523        0x84abb28b5f87d4e6},
    524       {0xd5ed439f8270790a, 0x2d6cb59d85e3f46b, 0x75f55c1b6c1e2212,
    525        0xe5436f6717655640},
    526       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    527      {{0xc2965ecc9aeb596d, 0x1ea03e7023c92b4, 0x4704b4b62e013961,
    528        0xca8fd3f905ea367},
    529       {0x92523a42551b2b61, 0x1eb7a89c390fcd06, 0xe7f1d2be0392a63e,
    530        0x96dca2644ddb0c33},
    531       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    532      {{0x231c210e15339848, 0xe87a28e870778c8d, 0x9d1de6616956e170,
    533        0x4ac3c9382bb09c0b},
    534       {0x19be05516998987d, 0x8b2376c4ae09f4d6, 0x1de0b7651a3f933d,
    535        0x380d94c7e39705f4},
    536       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    537      {{0x3685954b8c31c31d, 0x68533d005bf21a0c, 0xbd7626e75c79ec9,
    538        0xca17754742c69d54},
    539       {0xcc6edafff6d2dbb2, 0xfd0d8cbd174a9d18, 0x875e8793aa4578e8,
    540        0xa976a7139cab2ce6},
    541       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    542      {{0xce37ab11b43ea1db, 0xa7ff1a95259d292, 0x851b02218f84f186,
    543        0xa7222beadefaad13},
    544       {0xa2ac78ec2b0a9144, 0x5a024051f2fa59c5, 0x91d1eca56147ce38,
    545        0xbe94d523bc2ac690},
    546       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
    547      {{0x2d8daefd79ec1a0f, 0x3bbcd6fdceb39c97, 0xf5575ffc58f61a95,
    548        0xdbd986c4adf7b420},
    549       {0x81aa881415f39eb7, 0x6ee2fcf5b98d976c, 0x5465475dcf2f717d,
    550        0x8e24d3c46860bbd0},
    551       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}}}};
    552 #else
    553 static const fe g_pre_comp[2][16][3] = {
    554     {{{0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
    555       {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
    556       {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0}},
    557      {{0x18a9143c,0x79e730d4, 0x5fedb601,0x75ba95fc, 0x77622510,0x79fb732b,
    558        0xa53755c6,0x18905f76},
    559       {0xce95560a,0xddf25357, 0xba19e45c,0x8b4ab8e4, 0xdd21f325,0xd2e88688,
    560        0x25885d85,0x8571ff18},
    561       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    562      {{0x16a0d2bb,0x4f922fc5, 0x1a623499,0xd5cc16c, 0x57c62c8b,0x9241cf3a,
    563        0xfd1b667f,0x2f5e6961},
    564       {0xf5a01797,0x5c15c70b, 0x60956192,0x3d20b44d, 0x71fdb52,0x4911b37,
    565        0x8d6f0f7b,0xf648f916},
    566       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    567      {{0xe137bbbc,0x9e566847, 0x8a6a0bec,0xe434469e, 0x79d73463,0xb1c42761,
    568        0x133d0015,0x5abe0285},
    569       {0xc04c7dab,0x92aa837c, 0x43260c07,0x573d9f4c, 0x78e6cc37,0xc931562,
    570        0x6b6f7383,0x94bb725b},
    571       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    572      {{0xbfe20925,0x62a8c244, 0x8fdce867,0x91c19ac3, 0xdd387063,0x5a96a5d5,
    573        0x21d324f6,0x61d587d4},
    574       {0xa37173ea,0xe87673a2, 0x53778b65,0x23848008, 0x5bab43e,0x10f8441e,
    575        0x4621efbe,0xfa11fe12},
    576       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    577      {{0x2cb19ffd,0x1c891f2b, 0xb1923c23,0x1ba8d5b, 0x8ac5ca8e,0xb6d03d67,
    578        0x1f13bedc,0x586eb04c},
    579       {0x27e8ed09,0xc35c6e5, 0x1819ede2,0x1e81a33c, 0x56c652fa,0x278fd6c0,
    580        0x70864f11,0x19d5ac08},
    581       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    582      {{0xd2b533d5,0x62577734, 0xa1bdddc0,0x673b8af6, 0xa79ec293,0x577e7c9a,
    583        0xc3b266b1,0xbb6de651},
    584       {0xb65259b3,0xe7e9303a, 0xd03a7480,0xd6a0afd3, 0x9b3cfc27,0xc5ac83d1,
    585        0x5d18b99b,0x60b4619a},
    586       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    587      {{0x1ae5aa1c,0xbd6a38e1, 0x49e73658,0xb8b7652b, 0xee5f87ed,0xb130014,
    588        0xaeebffcd,0x9d0f27b2},
    589       {0x7a730a55,0xca924631, 0xddbbc83a,0x9c955b2f, 0xac019a71,0x7c1dfe0,
    590        0x356ec48d,0x244a566d},
    591       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    592      {{0xf4f8b16a,0x56f8410e, 0xc47b266a,0x97241afe, 0x6d9c87c1,0xa406b8e,
    593        0xcd42ab1b,0x803f3e02},
    594       {0x4dbec69,0x7f0309a8, 0x3bbad05f,0xa83b85f7, 0xad8e197f,0xc6097273,
    595        0x5067adc1,0xc097440e},
    596       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    597      {{0xc379ab34,0x846a56f2, 0x841df8d1,0xa8ee068b, 0x176c68ef,0x20314459,
    598        0x915f1f30,0xf1af32d5},
    599       {0x5d75bd50,0x99c37531, 0xf72f67bc,0x837cffba, 0x48d7723f,0x613a418,
    600        0xe2d41c8b,0x23d0f130},
    601       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    602      {{0xd5be5a2b,0xed93e225, 0x5934f3c6,0x6fe79983, 0x22626ffc,0x43140926,
    603        0x7990216a,0x50bbb4d9},
    604       {0xe57ec63e,0x378191c6, 0x181dcdb2,0x65422c40, 0x236e0f6,0x41a8099b,
    605        0x1fe49c3,0x2b100118},
    606       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    607      {{0x9b391593,0xfc68b5c5, 0x598270fc,0xc385f5a2, 0xd19adcbb,0x7144f3aa,
    608        0x83fbae0c,0xdd558999},
    609       {0x74b82ff4,0x93b88b8e, 0x71e734c9,0xd2e03c40, 0x43c0322a,0x9a7a9eaf,
    610        0x149d6041,0xe6e4c551},
    611       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    612      {{0x80ec21fe,0x5fe14bfe, 0xc255be82,0xf6ce116a, 0x2f4a5d67,0x98bc5a07,
    613        0xdb7e63af,0xfad27148},
    614       {0x29ab05b3,0x90c0b6ac, 0x4e251ae6,0x37a9a83c, 0xc2aade7d,0xa7dc875,
    615        0x9f0e1a84,0x77387de3},
    616       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    617      {{0xa56c0dd7,0x1e9ecc49, 0x46086c74,0xa5cffcd8, 0xf505aece,0x8f7a1408,
    618        0xbef0c47e,0xb37b85c0},
    619       {0xcc0e6a8f,0x3596b6e4, 0x6b388f23,0xfd6d4bbf, 0xc39cef4e,0xaba453fa,
    620        0xf9f628d5,0x9c135ac8},
    621       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    622      {{0x95c8f8be,0xa1c7294, 0x3bf362bf,0x2961c480, 0xdf63d4ac,0x9e418403,
    623        0x91ece900,0xc109f9cb},
    624       {0x58945705,0xc2d095d0, 0xddeb85c0,0xb9083d96, 0x7a40449b,0x84692b8d,
    625        0x2eee1ee1,0x9bc3344f},
    626       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    627      {{0x42913074,0xd5ae356, 0x48a542b1,0x55491b27, 0xb310732a,0x469ca665,
    628        0x5f1a4cc1,0x29591d52},
    629       {0xb84f983f,0xe76f5b6b, 0x9f5f84e1,0xbe7eef41, 0x80baa189,0x1200d496,
    630        0x18ef332c,0x6376551f},
    631       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}}},
    632     {{{0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
    633       {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
    634       {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0}},
    635      {{0x4147519a,0x20288602, 0x26b372f0,0xd0981eac, 0xa785ebc8,0xa9d4a7ca,
    636        0xdbdf58e9,0xd953c50d},
    637       {0xfd590f8f,0x9d6361cc, 0x44e6c917,0x72e9626b, 0x22eb64cf,0x7fd96110,
    638        0x9eb288f3,0x863ebb7e},
    639       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    640      {{0xb0e63d34,0x4fe7ee31, 0xa9e54fab,0xf4600572, 0xd5e7b5a4,0xc0493334,
    641        0x6d54831,0x8589fb92},
    642       {0x6583553a,0xaa70f5cc, 0xe25649e5,0x879094a, 0x10044652,0xcc904507,
    643        0x2541c4f,0xebb0696d},
    644       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    645      {{0x3b89da99,0xabbaa0c0, 0xb8284022,0xa6f2d79e, 0xb81c05e8,0x27847862,
    646        0x5e54d63,0x337a4b59},
    647       {0x21f7794a,0x3c67500d, 0x7d6d7f61,0x207005b7, 0x4cfd6e8,0xa5a3781,
    648        0xf4c2fbd6,0xd65e0d5},
    649       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    650      {{0x6d3549cf,0xd433e50f, 0xfacd665e,0x6f33696f, 0xce11fcb4,0x695bfdac,
    651        0xaf7c9860,0x810ee252},
    652       {0x7159bb2c,0x65450fe1, 0x758b357b,0xf7dfbebe, 0xd69fea72,0x2b057e74,
    653        0x92731745,0xd485717a},
    654       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    655      {{0xe83f7669,0xce1f69bb, 0x72877d6b,0x9f8ae82, 0x3244278d,0x9548ae54,
    656        0xe3c2c19c,0x207755de},
    657       {0x6fef1945,0x87bd61d9, 0xb12d28c3,0x18813cef, 0x72df64aa,0x9fbcd1d6,
    658        0x7154b00d,0x48dc5ee5},
    659       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    660      {{0xf49a3154,0xef0f469e, 0x6e2b2e9a,0x3e85a595, 0xaa924a9c,0x45aaec1e,
    661        0xa09e4719,0xaa12dfc8},
    662       {0x4df69f1d,0x26f27227, 0xa2ff5e73,0xe0e4c82c, 0xb7a9dd44,0xb9d8ce73,
    663        0xe48ca901,0x6c036e73},
    664       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    665      {{0xa47153f0,0xe1e421e1, 0x920418c9,0xb86c3b79, 0x705d7672,0x93bdce87,
    666        0xcab79a77,0xf25ae793},
    667       {0x6d869d0c,0x1f3194a3, 0x4986c264,0x9d55c882, 0x96e945e,0x49fb5ea3,
    668        0x13db0a3e,0x39b8e653},
    669       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    670      {{0x35d0b34a,0xe3417bc0, 0x8327c0a7,0x440b386b, 0xac0362d1,0x8fb7262d,
    671        0xe0cdf943,0x2c41114c},
    672       {0xad95a0b1,0x2ba5cef1, 0x67d54362,0xc09b37a8, 0x1e486c9,0x26d6cdd2,
    673        0x42ff9297,0x20477abf},
    674       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    675      {{0xbc0a67d2,0xf121b41, 0x444d248a,0x62d4760a, 0x659b4737,0xe044f1d,
    676        0x250bb4a8,0x8fde365},
    677       {0x848bf287,0xaceec3da, 0xd3369d6e,0xc2a62182, 0x92449482,0x3582dfdc,
    678        0x565d6cd7,0x2f7e2fd2},
    679       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    680      {{0x178a876b,0xa0122b5, 0x85104b4,0x51ff96ff, 0x14f29f76,0x50b31ab,
    681        0x5f87d4e6,0x84abb28b},
    682       {0x8270790a,0xd5ed439f, 0x85e3f46b,0x2d6cb59d, 0x6c1e2212,0x75f55c1b,
    683        0x17655640,0xe5436f67},
    684       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    685      {{0x9aeb596d,0xc2965ecc, 0x23c92b4,0x1ea03e7, 0x2e013961,0x4704b4b6,
    686        0x905ea367,0xca8fd3f},
    687       {0x551b2b61,0x92523a42, 0x390fcd06,0x1eb7a89c, 0x392a63e,0xe7f1d2be,
    688        0x4ddb0c33,0x96dca264},
    689       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    690      {{0x15339848,0x231c210e, 0x70778c8d,0xe87a28e8, 0x6956e170,0x9d1de661,
    691        0x2bb09c0b,0x4ac3c938},
    692       {0x6998987d,0x19be0551, 0xae09f4d6,0x8b2376c4, 0x1a3f933d,0x1de0b765,
    693        0xe39705f4,0x380d94c7},
    694       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    695      {{0x8c31c31d,0x3685954b, 0x5bf21a0c,0x68533d00, 0x75c79ec9,0xbd7626e,
    696        0x42c69d54,0xca177547},
    697       {0xf6d2dbb2,0xcc6edaff, 0x174a9d18,0xfd0d8cbd, 0xaa4578e8,0x875e8793,
    698        0x9cab2ce6,0xa976a713},
    699       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    700      {{0xb43ea1db,0xce37ab11, 0x5259d292,0xa7ff1a9, 0x8f84f186,0x851b0221,
    701        0xdefaad13,0xa7222bea},
    702       {0x2b0a9144,0xa2ac78ec, 0xf2fa59c5,0x5a024051, 0x6147ce38,0x91d1eca5,
    703        0xbc2ac690,0xbe94d523},
    704       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
    705      {{0x79ec1a0f,0x2d8daefd, 0xceb39c97,0x3bbcd6fd, 0x58f61a95,0xf5575ffc,
    706        0xadf7b420,0xdbd986c4},
    707       {0x15f39eb7,0x81aa8814, 0xb98d976c,0x6ee2fcf5, 0xcf2f717d,0x5465475d,
    708        0x6860bbd0,0x8e24d3c4},
    709       {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}}}};
    710 #endif
    711 
    712 // select_point selects the |idx|th point from a precomputation table and
    713 // copies it to out.
    714 static void select_point(const limb_t idx, size_t size,
    715                          const fe pre_comp[/*size*/][3],
    716                          fe out[3]) {
    717   OPENSSL_memset(out, 0, sizeof(fe) * 3);
    718   for (size_t i = 0; i < size; i++) {
    719     limb_t mismatch = i ^ idx;
    720     fe_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
    721     fe_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
    722     fe_cmovznz(out[2], mismatch, pre_comp[i][2], out[2]);
    723   }
    724 }
    725 
    726 // get_bit returns the |i|th bit in |in|
    727 static char get_bit(const uint8_t *in, int i) {
    728   if (i < 0 || i >= 256) {
    729     return 0;
    730   }
    731   return (in[i >> 3] >> (i & 7)) & 1;
    732 }
    733 
    734 // Interleaved point multiplication using precomputed point multiples: The
    735 // small point multiples 0*P, 1*P, ..., 17*P are in p_pre_comp, the scalar
    736 // in p_scalar, if non-NULL. If g_scalar is non-NULL, we also add this multiple
    737 // of the generator, using certain (large) precomputed multiples in g_pre_comp.
    738 // Output point (X, Y, Z) is stored in x_out, y_out, z_out.
    739 static void batch_mul(fe x_out, fe y_out, fe z_out,
    740                       const uint8_t *p_scalar, const uint8_t *g_scalar,
    741                       const fe p_pre_comp[17][3]) {
    742   // set nq to the point at infinity
    743   fe nq[3] = {{0},{0},{0}}, ftmp, tmp[3];
    744   uint64_t bits;
    745   uint8_t sign, digit;
    746 
    747   // Loop over both scalars msb-to-lsb, interleaving additions of multiples
    748   // of the generator (two in each of the last 32 rounds) and additions of p
    749   // (every 5th round).
    750 
    751   int skip = 1;  // save two point operations in the first round
    752   size_t i = p_scalar != NULL ? 255 : 31;
    753   for (;;) {
    754     // double
    755     if (!skip) {
    756       point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
    757     }
    758 
    759     // add multiples of the generator
    760     if (g_scalar != NULL && i <= 31) {
    761       // first, look 32 bits upwards
    762       bits = get_bit(g_scalar, i + 224) << 3;
    763       bits |= get_bit(g_scalar, i + 160) << 2;
    764       bits |= get_bit(g_scalar, i + 96) << 1;
    765       bits |= get_bit(g_scalar, i + 32);
    766       // select the point to add, in constant time
    767       select_point(bits, 16, g_pre_comp[1], tmp);
    768 
    769       if (!skip) {
    770         point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
    771                   tmp[0], tmp[1], tmp[2]);
    772       } else {
    773         fe_copy(nq[0], tmp[0]);
    774         fe_copy(nq[1], tmp[1]);
    775         fe_copy(nq[2], tmp[2]);
    776         skip = 0;
    777       }
    778 
    779       // second, look at the current position
    780       bits = get_bit(g_scalar, i + 192) << 3;
    781       bits |= get_bit(g_scalar, i + 128) << 2;
    782       bits |= get_bit(g_scalar, i + 64) << 1;
    783       bits |= get_bit(g_scalar, i);
    784       // select the point to add, in constant time
    785       select_point(bits, 16, g_pre_comp[0], tmp);
    786       point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0],
    787                 tmp[1], tmp[2]);
    788     }
    789 
    790     // do other additions every 5 doublings
    791     if (p_scalar != NULL && i % 5 == 0) {
    792       bits = get_bit(p_scalar, i + 4) << 5;
    793       bits |= get_bit(p_scalar, i + 3) << 4;
    794       bits |= get_bit(p_scalar, i + 2) << 3;
    795       bits |= get_bit(p_scalar, i + 1) << 2;
    796       bits |= get_bit(p_scalar, i) << 1;
    797       bits |= get_bit(p_scalar, i - 1);
    798       ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
    799 
    800       // select the point to add or subtract, in constant time.
    801       select_point(digit, 17, p_pre_comp, tmp);
    802       fe_opp(ftmp, tmp[1]);  // (X, -Y, Z) is the negative point.
    803       fe_cmovznz(tmp[1], sign, tmp[1], ftmp);
    804 
    805       if (!skip) {
    806         point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
    807                   tmp[0], tmp[1], tmp[2]);
    808       } else {
    809         fe_copy(nq[0], tmp[0]);
    810         fe_copy(nq[1], tmp[1]);
    811         fe_copy(nq[2], tmp[2]);
    812         skip = 0;
    813       }
    814     }
    815 
    816     if (i == 0) {
    817       break;
    818     }
    819     --i;
    820   }
    821   fe_copy(x_out, nq[0]);
    822   fe_copy(y_out, nq[1]);
    823   fe_copy(z_out, nq[2]);
    824 }
    825 
    826 // OPENSSL EC_METHOD FUNCTIONS
    827 
    828 // Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
    829 // (X/Z^2, Y/Z^3).
    830 static int ec_GFp_nistp256_point_get_affine_coordinates(
    831     const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x_out,
    832     EC_FELEM *y_out) {
    833   if (ec_GFp_simple_is_at_infinity(group, point)) {
    834     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
    835     return 0;
    836   }
    837 
    838   fe z1, z2;
    839   fe_from_generic(z1, &point->Z);
    840   fe_inv(z2, z1);
    841   fe_sqr(z1, z2);
    842 
    843   // Instead of using |fe_from_montgomery| to convert the |x| coordinate and
    844   // then calling |fe_from_montgomery| again to convert the |y| coordinate
    845   // below, convert the common factor |z1| once now, saving one reduction.
    846   fe_from_montgomery(z1);
    847 
    848   if (x_out != NULL) {
    849     fe x;
    850     fe_from_generic(x, &point->X);
    851     fe_mul(x, x, z1);
    852     fe_to_generic(x_out, x);
    853   }
    854 
    855   if (y_out != NULL) {
    856     fe y;
    857     fe_from_generic(y, &point->Y);
    858     fe_mul(z1, z1, z2);
    859     fe_mul(y, y, z1);
    860     fe_to_generic(y_out, y);
    861   }
    862 
    863   return 1;
    864 }
    865 
    866 static void ec_GFp_nistp256_add(const EC_GROUP *group, EC_RAW_POINT *r,
    867                                 const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
    868   fe x1, y1, z1, x2, y2, z2;
    869   fe_from_generic(x1, &a->X);
    870   fe_from_generic(y1, &a->Y);
    871   fe_from_generic(z1, &a->Z);
    872   fe_from_generic(x2, &b->X);
    873   fe_from_generic(y2, &b->Y);
    874   fe_from_generic(z2, &b->Z);
    875   point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2);
    876   fe_to_generic(&r->X, x1);
    877   fe_to_generic(&r->Y, y1);
    878   fe_to_generic(&r->Z, z1);
    879 }
    880 
    881 static void ec_GFp_nistp256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
    882                                 const EC_RAW_POINT *a) {
    883   fe x, y, z;
    884   fe_from_generic(x, &a->X);
    885   fe_from_generic(y, &a->Y);
    886   fe_from_generic(z, &a->Z);
    887   point_double(x, y, z, x, y, z);
    888   fe_to_generic(&r->X, x);
    889   fe_to_generic(&r->Y, y);
    890   fe_to_generic(&r->Z, z);
    891 }
    892 
    893 static void ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_RAW_POINT *r,
    894                                        const EC_SCALAR *g_scalar,
    895                                        const EC_RAW_POINT *p,
    896                                        const EC_SCALAR *p_scalar) {
    897   fe p_pre_comp[17][3];
    898   fe x_out, y_out, z_out;
    899 
    900   if (p != NULL && p_scalar != NULL) {
    901     // We treat NULL scalars as 0, and NULL points as points at infinity, i.e.,
    902     // they contribute nothing to the linear combination.
    903     OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
    904     // Precompute multiples.
    905     fe_from_generic(p_pre_comp[1][0], &p->X);
    906     fe_from_generic(p_pre_comp[1][1], &p->Y);
    907     fe_from_generic(p_pre_comp[1][2], &p->Z);
    908     for (size_t j = 2; j <= 16; ++j) {
    909       if (j & 1) {
    910         point_add(p_pre_comp[j][0], p_pre_comp[j][1],
    911                   p_pre_comp[j][2], p_pre_comp[1][0],
    912                   p_pre_comp[1][1], p_pre_comp[1][2],
    913                   0,
    914                   p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
    915                   p_pre_comp[j - 1][2]);
    916       } else {
    917         point_double(p_pre_comp[j][0], p_pre_comp[j][1],
    918                      p_pre_comp[j][2], p_pre_comp[j / 2][0],
    919                      p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
    920       }
    921     }
    922   }
    923 
    924   batch_mul(x_out, y_out, z_out,
    925             (p != NULL && p_scalar != NULL) ? p_scalar->bytes : NULL,
    926             g_scalar != NULL ? g_scalar->bytes : NULL,
    927             (const fe (*) [3])p_pre_comp);
    928 
    929   fe_to_generic(&r->X, x_out);
    930   fe_to_generic(&r->Y, y_out);
    931   fe_to_generic(&r->Z, z_out);
    932 }
    933 
    934 static void ec_GFp_nistp256_point_mul_public(const EC_GROUP *group,
    935                                              EC_RAW_POINT *r,
    936                                              const EC_SCALAR *g_scalar,
    937                                              const EC_RAW_POINT *p,
    938                                              const EC_SCALAR *p_scalar) {
    939 #define P256_WSIZE_PUBLIC 4
    940   // Precompute multiples of |p|. p_pre_comp[i] is (2*i+1) * |p|.
    941   fe p_pre_comp[1 << (P256_WSIZE_PUBLIC-1)][3];
    942   fe_from_generic(p_pre_comp[0][0], &p->X);
    943   fe_from_generic(p_pre_comp[0][1], &p->Y);
    944   fe_from_generic(p_pre_comp[0][2], &p->Z);
    945   fe p2[3];
    946   point_double(p2[0], p2[1], p2[2], p_pre_comp[0][0], p_pre_comp[0][1],
    947                p_pre_comp[0][2]);
    948   for (size_t i = 1; i < OPENSSL_ARRAY_SIZE(p_pre_comp); i++) {
    949     point_add(p_pre_comp[i][0], p_pre_comp[i][1], p_pre_comp[i][2],
    950               p_pre_comp[i - 1][0], p_pre_comp[i - 1][1], p_pre_comp[i - 1][2],
    951               0 /* not mixed */, p2[0], p2[1], p2[2]);
    952   }
    953 
    954   // Set up the coefficients for |p_scalar|.
    955   int8_t p_wNAF[257];
    956   ec_compute_wNAF(group, p_wNAF, p_scalar, 256, P256_WSIZE_PUBLIC);
    957 
    958   // Set |ret| to the point at infinity.
    959   int skip = 1;  // Save some point operations.
    960   fe ret[3] = {{0},{0},{0}};
    961   for (int i = 256; i >= 0; i--) {
    962     if (!skip) {
    963       point_double(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2]);
    964     }
    965 
    966     // For the |g_scalar|, we use the precomputed table without the
    967     // constant-time lookup.
    968     if (i <= 31) {
    969       // First, look 32 bits upwards.
    970       uint64_t bits = get_bit(g_scalar->bytes, i + 224) << 3;
    971       bits |= get_bit(g_scalar->bytes, i + 160) << 2;
    972       bits |= get_bit(g_scalar->bytes, i + 96) << 1;
    973       bits |= get_bit(g_scalar->bytes, i + 32);
    974       point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2], 1 /* mixed */,
    975                 g_pre_comp[1][bits][0], g_pre_comp[1][bits][1],
    976                 g_pre_comp[1][bits][2]);
    977       skip = 0;
    978 
    979       // Second, look at the current position.
    980       bits = get_bit(g_scalar->bytes, i + 192) << 3;
    981       bits |= get_bit(g_scalar->bytes, i + 128) << 2;
    982       bits |= get_bit(g_scalar->bytes, i + 64) << 1;
    983       bits |= get_bit(g_scalar->bytes, i);
    984       point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2], 1 /* mixed */,
    985                 g_pre_comp[0][bits][0], g_pre_comp[0][bits][1],
    986                 g_pre_comp[0][bits][2]);
    987     }
    988 
    989     int digit = p_wNAF[i];
    990     if (digit != 0) {
    991       assert(digit & 1);
    992       int idx = digit < 0 ? (-digit) >> 1 : digit >> 1;
    993       fe *y = &p_pre_comp[idx][1], tmp;
    994       if (digit < 0) {
    995         fe_opp(tmp, p_pre_comp[idx][1]);
    996         y = &tmp;
    997       }
    998       if (!skip) {
    999         point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
   1000                   0 /* not mixed */, p_pre_comp[idx][0], *y, p_pre_comp[idx][2]);
   1001       } else {
   1002         fe_copy(ret[0], p_pre_comp[idx][0]);
   1003         fe_copy(ret[1], *y);
   1004         fe_copy(ret[2], p_pre_comp[idx][2]);
   1005         skip = 0;
   1006       }
   1007     }
   1008   }
   1009 
   1010   fe_to_generic(&r->X, ret[0]);
   1011   fe_to_generic(&r->Y, ret[1]);
   1012   fe_to_generic(&r->Z, ret[2]);
   1013 }
   1014 
   1015 static int ec_GFp_nistp256_cmp_x_coordinate(const EC_GROUP *group,
   1016                                             const EC_RAW_POINT *p,
   1017                                             const EC_SCALAR *r) {
   1018   if (ec_GFp_simple_is_at_infinity(group, p)) {
   1019     return 0;
   1020   }
   1021 
   1022   // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
   1023   // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
   1024   // not.
   1025   fe Z2_mont;
   1026   fe_from_generic(Z2_mont, &p->Z);
   1027   fe_mul(Z2_mont, Z2_mont, Z2_mont);
   1028 
   1029   fe r_Z2;
   1030   fe_frombytes(r_Z2, r->bytes);  // r < order < p, so this is valid.
   1031   fe_mul(r_Z2, r_Z2, Z2_mont);
   1032 
   1033   fe X;
   1034   fe_from_generic(X, &p->X);
   1035   fe_from_montgomery(X);
   1036 
   1037   if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
   1038     return 1;
   1039   }
   1040 
   1041   // During signing the x coefficient is reduced modulo the group order.
   1042   // Therefore there is a small possibility, less than 1/2^128, that group_order
   1043   // < p.x < P. in that case we need not only to compare against |r| but also to
   1044   // compare against r+group_order.
   1045   assert(group->field.width == group->order.width);
   1046   if (bn_less_than_words(r->words, group->field_minus_order.words,
   1047                          group->field.width)) {
   1048     // We can ignore the carry because: r + group_order < p < 2^256.
   1049     EC_FELEM tmp;
   1050     bn_add_words(tmp.words, r->words, group->order.d, group->order.width);
   1051     fe_from_generic(r_Z2, &tmp);
   1052     fe_mul(r_Z2, r_Z2, Z2_mont);
   1053     if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
   1054       return 1;
   1055     }
   1056   }
   1057 
   1058   return 0;
   1059 }
   1060 
   1061 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method) {
   1062   out->group_init = ec_GFp_mont_group_init;
   1063   out->group_finish = ec_GFp_mont_group_finish;
   1064   out->group_set_curve = ec_GFp_mont_group_set_curve;
   1065   out->point_get_affine_coordinates =
   1066     ec_GFp_nistp256_point_get_affine_coordinates;
   1067   out->add = ec_GFp_nistp256_add;
   1068   out->dbl = ec_GFp_nistp256_dbl;
   1069   out->mul = ec_GFp_nistp256_points_mul;
   1070   out->mul_public = ec_GFp_nistp256_point_mul_public;
   1071   out->felem_mul = ec_GFp_mont_felem_mul;
   1072   out->felem_sqr = ec_GFp_mont_felem_sqr;
   1073   out->bignum_to_felem = ec_GFp_mont_bignum_to_felem;
   1074   out->felem_to_bignum = ec_GFp_mont_felem_to_bignum;
   1075   out->scalar_inv_montgomery = ec_simple_scalar_inv_montgomery;
   1076   out->scalar_inv_montgomery_vartime = ec_GFp_simple_mont_inv_mod_ord_vartime;
   1077   out->cmp_x_coordinate = ec_GFp_nistp256_cmp_x_coordinate;
   1078 }
   1079 
   1080 #undef BORINGSSL_NISTP256_64BIT
   1081