1 /* 2 * Copyright 2012 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * on the rights to use, copy, modify, merge, publish, distribute, sub 8 * license, and/or sell copies of the Software, and to permit persons to whom 9 * the Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, 19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 21 * USE OR OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include "si_pipe.h" 25 #include "radeon/r600_cs.h" 26 #include "sid.h" 27 #include "gfx9d.h" 28 29 #include "util/u_index_modify.h" 30 #include "util/u_log.h" 31 #include "util/u_upload_mgr.h" 32 #include "util/u_prim.h" 33 34 #include "ac_debug.h" 35 36 /* special primitive types */ 37 #define SI_PRIM_RECTANGLE_LIST PIPE_PRIM_MAX 38 39 static unsigned si_conv_pipe_prim(unsigned mode) 40 { 41 static const unsigned prim_conv[] = { 42 [PIPE_PRIM_POINTS] = V_008958_DI_PT_POINTLIST, 43 [PIPE_PRIM_LINES] = V_008958_DI_PT_LINELIST, 44 [PIPE_PRIM_LINE_LOOP] = V_008958_DI_PT_LINELOOP, 45 [PIPE_PRIM_LINE_STRIP] = V_008958_DI_PT_LINESTRIP, 46 [PIPE_PRIM_TRIANGLES] = V_008958_DI_PT_TRILIST, 47 [PIPE_PRIM_TRIANGLE_STRIP] = V_008958_DI_PT_TRISTRIP, 48 [PIPE_PRIM_TRIANGLE_FAN] = V_008958_DI_PT_TRIFAN, 49 [PIPE_PRIM_QUADS] = V_008958_DI_PT_QUADLIST, 50 [PIPE_PRIM_QUAD_STRIP] = V_008958_DI_PT_QUADSTRIP, 51 [PIPE_PRIM_POLYGON] = V_008958_DI_PT_POLYGON, 52 [PIPE_PRIM_LINES_ADJACENCY] = V_008958_DI_PT_LINELIST_ADJ, 53 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_008958_DI_PT_LINESTRIP_ADJ, 54 [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_008958_DI_PT_TRILIST_ADJ, 55 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_008958_DI_PT_TRISTRIP_ADJ, 56 [PIPE_PRIM_PATCHES] = V_008958_DI_PT_PATCH, 57 [SI_PRIM_RECTANGLE_LIST] = V_008958_DI_PT_RECTLIST 58 }; 59 assert(mode < ARRAY_SIZE(prim_conv)); 60 return prim_conv[mode]; 61 } 62 63 static unsigned si_conv_prim_to_gs_out(unsigned mode) 64 { 65 static const int prim_conv[] = { 66 [PIPE_PRIM_POINTS] = V_028A6C_OUTPRIM_TYPE_POINTLIST, 67 [PIPE_PRIM_LINES] = V_028A6C_OUTPRIM_TYPE_LINESTRIP, 68 [PIPE_PRIM_LINE_LOOP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP, 69 [PIPE_PRIM_LINE_STRIP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP, 70 [PIPE_PRIM_TRIANGLES] = V_028A6C_OUTPRIM_TYPE_TRISTRIP, 71 [PIPE_PRIM_TRIANGLE_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP, 72 [PIPE_PRIM_TRIANGLE_FAN] = V_028A6C_OUTPRIM_TYPE_TRISTRIP, 73 [PIPE_PRIM_QUADS] = V_028A6C_OUTPRIM_TYPE_TRISTRIP, 74 [PIPE_PRIM_QUAD_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP, 75 [PIPE_PRIM_POLYGON] = V_028A6C_OUTPRIM_TYPE_TRISTRIP, 76 [PIPE_PRIM_LINES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP, 77 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP, 78 [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP, 79 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP, 80 [PIPE_PRIM_PATCHES] = V_028A6C_OUTPRIM_TYPE_POINTLIST, 81 [SI_PRIM_RECTANGLE_LIST] = V_028A6C_OUTPRIM_TYPE_TRISTRIP 82 }; 83 assert(mode < ARRAY_SIZE(prim_conv)); 84 85 return prim_conv[mode]; 86 } 87 88 /** 89 * This calculates the LDS size for tessellation shaders (VS, TCS, TES). 90 * LS.LDS_SIZE is shared by all 3 shader stages. 91 * 92 * The information about LDS and other non-compile-time parameters is then 93 * written to userdata SGPRs. 94 */ 95 static void si_emit_derived_tess_state(struct si_context *sctx, 96 const struct pipe_draw_info *info, 97 unsigned *num_patches) 98 { 99 struct radeon_winsys_cs *cs = sctx->b.gfx.cs; 100 struct si_shader *ls_current; 101 struct si_shader_selector *ls; 102 /* The TES pointer will only be used for sctx->last_tcs. 103 * It would be wrong to think that TCS = TES. */ 104 struct si_shader_selector *tcs = 105 sctx->tcs_shader.cso ? sctx->tcs_shader.cso : sctx->tes_shader.cso; 106 unsigned tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id; 107 bool has_primid_instancing_bug = sctx->b.chip_class == SI && 108 sctx->b.screen->info.max_se == 1; 109 unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL]; 110 unsigned num_tcs_input_cp = info->vertices_per_patch; 111 unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs; 112 unsigned num_tcs_patch_outputs; 113 unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size; 114 unsigned input_patch_size, output_patch_size, output_patch0_offset; 115 unsigned perpatch_output_offset, lds_size; 116 unsigned tcs_in_layout, tcs_out_layout, tcs_out_offsets; 117 unsigned offchip_layout, hardware_lds_size, ls_hs_config; 118 119 /* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */ 120 if (sctx->b.chip_class >= GFX9) { 121 if (sctx->tcs_shader.cso) 122 ls_current = sctx->tcs_shader.current; 123 else 124 ls_current = sctx->fixed_func_tcs_shader.current; 125 126 ls = ls_current->key.part.tcs.ls; 127 } else { 128 ls_current = sctx->vs_shader.current; 129 ls = sctx->vs_shader.cso; 130 } 131 132 if (sctx->last_ls == ls_current && 133 sctx->last_tcs == tcs && 134 sctx->last_tes_sh_base == tes_sh_base && 135 sctx->last_num_tcs_input_cp == num_tcs_input_cp && 136 (!has_primid_instancing_bug || 137 (sctx->last_tess_uses_primid == tess_uses_primid))) { 138 *num_patches = sctx->last_num_patches; 139 return; 140 } 141 142 sctx->last_ls = ls_current; 143 sctx->last_tcs = tcs; 144 sctx->last_tes_sh_base = tes_sh_base; 145 sctx->last_num_tcs_input_cp = num_tcs_input_cp; 146 sctx->last_tess_uses_primid = tess_uses_primid; 147 148 /* This calculates how shader inputs and outputs among VS, TCS, and TES 149 * are laid out in LDS. */ 150 num_tcs_inputs = util_last_bit64(ls->outputs_written); 151 152 if (sctx->tcs_shader.cso) { 153 num_tcs_outputs = util_last_bit64(tcs->outputs_written); 154 num_tcs_output_cp = tcs->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT]; 155 num_tcs_patch_outputs = util_last_bit64(tcs->patch_outputs_written); 156 } else { 157 /* No TCS. Route varyings from LS to TES. */ 158 num_tcs_outputs = num_tcs_inputs; 159 num_tcs_output_cp = num_tcs_input_cp; 160 num_tcs_patch_outputs = 2; /* TESSINNER + TESSOUTER */ 161 } 162 163 input_vertex_size = num_tcs_inputs * 16; 164 output_vertex_size = num_tcs_outputs * 16; 165 166 input_patch_size = num_tcs_input_cp * input_vertex_size; 167 168 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size; 169 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16; 170 171 /* Ensure that we only need one wave per SIMD so we don't need to check 172 * resource usage. Also ensures that the number of tcs in and out 173 * vertices per threadgroup are at most 256. 174 */ 175 *num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4; 176 177 /* Make sure that the data fits in LDS. This assumes the shaders only 178 * use LDS for the inputs and outputs. 179 * 180 * While CIK can use 64K per threadgroup, there is a hang on Stoney 181 * with 2 CUs if we use more than 32K. The closed Vulkan driver also 182 * uses 32K at most on all GCN chips. 183 */ 184 hardware_lds_size = 32768; 185 *num_patches = MIN2(*num_patches, hardware_lds_size / (input_patch_size + 186 output_patch_size)); 187 188 /* Make sure the output data fits in the offchip buffer */ 189 *num_patches = MIN2(*num_patches, 190 (sctx->screen->tess_offchip_block_dw_size * 4) / 191 output_patch_size); 192 193 /* Not necessary for correctness, but improves performance. The 194 * specific value is taken from the proprietary driver. 195 */ 196 *num_patches = MIN2(*num_patches, 40); 197 198 if (sctx->b.chip_class == SI) { 199 /* SI bug workaround, related to power management. Limit LS-HS 200 * threadgroups to only one wave. 201 */ 202 unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp); 203 *num_patches = MIN2(*num_patches, one_wave); 204 } 205 206 /* The VGT HS block increments the patch ID unconditionally 207 * within a single threadgroup. This results in incorrect 208 * patch IDs when instanced draws are used. 209 * 210 * The intended solution is to restrict threadgroups to 211 * a single instance by setting SWITCH_ON_EOI, which 212 * should cause IA to split instances up. However, this 213 * doesn't work correctly on SI when there is no other 214 * SE to switch to. 215 */ 216 if (has_primid_instancing_bug && tess_uses_primid) 217 *num_patches = 1; 218 219 sctx->last_num_patches = *num_patches; 220 221 output_patch0_offset = input_patch_size * *num_patches; 222 perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size; 223 224 /* Compute userdata SGPRs. */ 225 assert(((input_vertex_size / 4) & ~0xff) == 0); 226 assert(((output_vertex_size / 4) & ~0xff) == 0); 227 assert(((input_patch_size / 4) & ~0x1fff) == 0); 228 assert(((output_patch_size / 4) & ~0x1fff) == 0); 229 assert(((output_patch0_offset / 16) & ~0xffff) == 0); 230 assert(((perpatch_output_offset / 16) & ~0xffff) == 0); 231 assert(num_tcs_input_cp <= 32); 232 assert(num_tcs_output_cp <= 32); 233 234 tcs_in_layout = S_VS_STATE_LS_OUT_PATCH_SIZE(input_patch_size / 4) | 235 S_VS_STATE_LS_OUT_VERTEX_SIZE(input_vertex_size / 4); 236 tcs_out_layout = output_patch_size / 4; 237 tcs_out_offsets = (output_patch0_offset / 16) | 238 ((perpatch_output_offset / 16) << 16); 239 offchip_layout = *num_patches | 240 (num_tcs_output_cp << 6) | 241 (pervertex_output_patch_size * *num_patches << 12); 242 243 /* Compute the LDS size. */ 244 lds_size = output_patch0_offset + output_patch_size * *num_patches; 245 246 if (sctx->b.chip_class >= CIK) { 247 assert(lds_size <= 65536); 248 lds_size = align(lds_size, 512) / 512; 249 } else { 250 assert(lds_size <= 32768); 251 lds_size = align(lds_size, 256) / 256; 252 } 253 254 /* Set SI_SGPR_VS_STATE_BITS. */ 255 sctx->current_vs_state &= C_VS_STATE_LS_OUT_PATCH_SIZE & 256 C_VS_STATE_LS_OUT_VERTEX_SIZE; 257 sctx->current_vs_state |= tcs_in_layout; 258 259 if (sctx->b.chip_class >= GFX9) { 260 unsigned hs_rsrc2 = ls_current->config.rsrc2 | 261 S_00B42C_LDS_SIZE(lds_size); 262 263 radeon_set_sh_reg(cs, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, hs_rsrc2); 264 265 /* Set userdata SGPRs for merged LS-HS. */ 266 radeon_set_sh_reg_seq(cs, 267 R_00B430_SPI_SHADER_USER_DATA_LS_0 + 268 GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4, 3); 269 radeon_emit(cs, offchip_layout); 270 radeon_emit(cs, tcs_out_offsets); 271 radeon_emit(cs, tcs_out_layout | (num_tcs_input_cp << 26)); 272 } else { 273 unsigned ls_rsrc2 = ls_current->config.rsrc2; 274 275 si_multiwave_lds_size_workaround(sctx->screen, &lds_size); 276 ls_rsrc2 |= S_00B52C_LDS_SIZE(lds_size); 277 278 /* Due to a hw bug, RSRC2_LS must be written twice with another 279 * LS register written in between. */ 280 if (sctx->b.chip_class == CIK && sctx->b.family != CHIP_HAWAII) 281 radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, ls_rsrc2); 282 radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2); 283 radeon_emit(cs, ls_current->config.rsrc1); 284 radeon_emit(cs, ls_rsrc2); 285 286 /* Set userdata SGPRs for TCS. */ 287 radeon_set_sh_reg_seq(cs, 288 R_00B430_SPI_SHADER_USER_DATA_HS_0 + GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4, 4); 289 radeon_emit(cs, offchip_layout); 290 radeon_emit(cs, tcs_out_offsets); 291 radeon_emit(cs, tcs_out_layout | (num_tcs_input_cp << 26)); 292 radeon_emit(cs, tcs_in_layout); 293 } 294 295 /* Set userdata SGPRs for TES. */ 296 radeon_set_sh_reg_seq(cs, tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4, 2); 297 radeon_emit(cs, offchip_layout); 298 radeon_emit(cs, r600_resource(sctx->tess_offchip_ring)->gpu_address >> 16); 299 300 ls_hs_config = S_028B58_NUM_PATCHES(*num_patches) | 301 S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) | 302 S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp); 303 304 if (sctx->b.chip_class >= CIK) 305 radeon_set_context_reg_idx(cs, R_028B58_VGT_LS_HS_CONFIG, 2, 306 ls_hs_config); 307 else 308 radeon_set_context_reg(cs, R_028B58_VGT_LS_HS_CONFIG, 309 ls_hs_config); 310 } 311 312 static unsigned si_num_prims_for_vertices(const struct pipe_draw_info *info) 313 { 314 switch (info->mode) { 315 case PIPE_PRIM_PATCHES: 316 return info->count / info->vertices_per_patch; 317 case SI_PRIM_RECTANGLE_LIST: 318 return info->count / 3; 319 default: 320 return u_prims_for_vertices(info->mode, info->count); 321 } 322 } 323 324 static unsigned 325 si_get_init_multi_vgt_param(struct si_screen *sscreen, 326 union si_vgt_param_key *key) 327 { 328 STATIC_ASSERT(sizeof(union si_vgt_param_key) == 4); 329 unsigned max_primgroup_in_wave = 2; 330 331 /* SWITCH_ON_EOP(0) is always preferable. */ 332 bool wd_switch_on_eop = false; 333 bool ia_switch_on_eop = false; 334 bool ia_switch_on_eoi = false; 335 bool partial_vs_wave = false; 336 bool partial_es_wave = false; 337 338 if (key->u.uses_tess) { 339 /* SWITCH_ON_EOI must be set if PrimID is used. */ 340 if (key->u.tess_uses_prim_id) 341 ia_switch_on_eoi = true; 342 343 /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */ 344 if ((sscreen->info.family == CHIP_TAHITI || 345 sscreen->info.family == CHIP_PITCAIRN || 346 sscreen->info.family == CHIP_BONAIRE) && 347 key->u.uses_gs) 348 partial_vs_wave = true; 349 350 /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */ 351 if (sscreen->has_distributed_tess) { 352 if (key->u.uses_gs) { 353 if (sscreen->info.chip_class <= VI) 354 partial_es_wave = true; 355 356 /* GPU hang workaround. */ 357 if (sscreen->info.family == CHIP_TONGA || 358 sscreen->info.family == CHIP_FIJI || 359 sscreen->info.family == CHIP_POLARIS10 || 360 sscreen->info.family == CHIP_POLARIS11 || 361 sscreen->info.family == CHIP_POLARIS12) 362 partial_vs_wave = true; 363 } else { 364 partial_vs_wave = true; 365 } 366 } 367 } 368 369 /* This is a hardware requirement. */ 370 if (key->u.line_stipple_enabled || 371 (sscreen->debug_flags & DBG(SWITCH_ON_EOP))) { 372 ia_switch_on_eop = true; 373 wd_switch_on_eop = true; 374 } 375 376 if (sscreen->info.chip_class >= CIK) { 377 /* WD_SWITCH_ON_EOP has no effect on GPUs with less than 378 * 4 shader engines. Set 1 to pass the assertion below. 379 * The other cases are hardware requirements. 380 * 381 * Polaris supports primitive restart with WD_SWITCH_ON_EOP=0 382 * for points, line strips, and tri strips. 383 */ 384 if (sscreen->info.max_se < 4 || 385 key->u.prim == PIPE_PRIM_POLYGON || 386 key->u.prim == PIPE_PRIM_LINE_LOOP || 387 key->u.prim == PIPE_PRIM_TRIANGLE_FAN || 388 key->u.prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY || 389 (key->u.primitive_restart && 390 (sscreen->info.family < CHIP_POLARIS10 || 391 (key->u.prim != PIPE_PRIM_POINTS && 392 key->u.prim != PIPE_PRIM_LINE_STRIP && 393 key->u.prim != PIPE_PRIM_TRIANGLE_STRIP))) || 394 key->u.count_from_stream_output) 395 wd_switch_on_eop = true; 396 397 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0. 398 * We don't know that for indirect drawing, so treat it as 399 * always problematic. */ 400 if (sscreen->info.family == CHIP_HAWAII && 401 key->u.uses_instancing) 402 wd_switch_on_eop = true; 403 404 /* Performance recommendation for 4 SE Gfx7-8 parts if 405 * instances are smaller than a primgroup. 406 * Assume indirect draws always use small instances. 407 * This is needed for good VS wave utilization. 408 */ 409 if (sscreen->info.chip_class <= VI && 410 sscreen->info.max_se == 4 && 411 key->u.multi_instances_smaller_than_primgroup) 412 wd_switch_on_eop = true; 413 414 /* Required on CIK and later. */ 415 if (sscreen->info.max_se > 2 && !wd_switch_on_eop) 416 ia_switch_on_eoi = true; 417 418 /* Required by Hawaii and, for some special cases, by VI. */ 419 if (ia_switch_on_eoi && 420 (sscreen->info.family == CHIP_HAWAII || 421 (sscreen->info.chip_class == VI && 422 (key->u.uses_gs || max_primgroup_in_wave != 2)))) 423 partial_vs_wave = true; 424 425 /* Instancing bug on Bonaire. */ 426 if (sscreen->info.family == CHIP_BONAIRE && ia_switch_on_eoi && 427 key->u.uses_instancing) 428 partial_vs_wave = true; 429 430 /* If the WD switch is false, the IA switch must be false too. */ 431 assert(wd_switch_on_eop || !ia_switch_on_eop); 432 } 433 434 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */ 435 if (sscreen->info.chip_class <= VI && ia_switch_on_eoi) 436 partial_es_wave = true; 437 438 return S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) | 439 S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) | 440 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) | 441 S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) | 442 S_028AA8_WD_SWITCH_ON_EOP(sscreen->info.chip_class >= CIK ? wd_switch_on_eop : 0) | 443 /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */ 444 S_028AA8_MAX_PRIMGRP_IN_WAVE(sscreen->info.chip_class == VI ? 445 max_primgroup_in_wave : 0) | 446 S_030960_EN_INST_OPT_BASIC(sscreen->info.chip_class >= GFX9) | 447 S_030960_EN_INST_OPT_ADV(sscreen->info.chip_class >= GFX9); 448 } 449 450 void si_init_ia_multi_vgt_param_table(struct si_context *sctx) 451 { 452 for (int prim = 0; prim <= SI_PRIM_RECTANGLE_LIST; prim++) 453 for (int uses_instancing = 0; uses_instancing < 2; uses_instancing++) 454 for (int multi_instances = 0; multi_instances < 2; multi_instances++) 455 for (int primitive_restart = 0; primitive_restart < 2; primitive_restart++) 456 for (int count_from_so = 0; count_from_so < 2; count_from_so++) 457 for (int line_stipple = 0; line_stipple < 2; line_stipple++) 458 for (int uses_tess = 0; uses_tess < 2; uses_tess++) 459 for (int tess_uses_primid = 0; tess_uses_primid < 2; tess_uses_primid++) 460 for (int uses_gs = 0; uses_gs < 2; uses_gs++) { 461 union si_vgt_param_key key; 462 463 key.index = 0; 464 key.u.prim = prim; 465 key.u.uses_instancing = uses_instancing; 466 key.u.multi_instances_smaller_than_primgroup = multi_instances; 467 key.u.primitive_restart = primitive_restart; 468 key.u.count_from_stream_output = count_from_so; 469 key.u.line_stipple_enabled = line_stipple; 470 key.u.uses_tess = uses_tess; 471 key.u.tess_uses_prim_id = tess_uses_primid; 472 key.u.uses_gs = uses_gs; 473 474 sctx->ia_multi_vgt_param[key.index] = 475 si_get_init_multi_vgt_param(sctx->screen, &key); 476 } 477 } 478 479 static unsigned si_get_ia_multi_vgt_param(struct si_context *sctx, 480 const struct pipe_draw_info *info, 481 unsigned num_patches) 482 { 483 union si_vgt_param_key key = sctx->ia_multi_vgt_param_key; 484 unsigned primgroup_size; 485 unsigned ia_multi_vgt_param; 486 487 if (sctx->tes_shader.cso) { 488 primgroup_size = num_patches; /* must be a multiple of NUM_PATCHES */ 489 } else if (sctx->gs_shader.cso) { 490 primgroup_size = 64; /* recommended with a GS */ 491 } else { 492 primgroup_size = 128; /* recommended without a GS and tess */ 493 } 494 495 key.u.prim = info->mode; 496 key.u.uses_instancing = info->indirect || info->instance_count > 1; 497 key.u.multi_instances_smaller_than_primgroup = 498 info->indirect || 499 (info->instance_count > 1 && 500 (info->count_from_stream_output || 501 si_num_prims_for_vertices(info) < primgroup_size)); 502 key.u.primitive_restart = info->primitive_restart; 503 key.u.count_from_stream_output = info->count_from_stream_output != NULL; 504 505 ia_multi_vgt_param = sctx->ia_multi_vgt_param[key.index] | 506 S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1); 507 508 if (sctx->gs_shader.cso) { 509 /* GS requirement. */ 510 if (sctx->b.chip_class <= VI && 511 SI_GS_PER_ES / primgroup_size >= sctx->screen->gs_table_depth - 3) 512 ia_multi_vgt_param |= S_028AA8_PARTIAL_ES_WAVE_ON(1); 513 514 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI. 515 * The hw doc says all multi-SE chips are affected, but Vulkan 516 * only applies it to Hawaii. Do what Vulkan does. 517 */ 518 if (sctx->b.family == CHIP_HAWAII && 519 G_028AA8_SWITCH_ON_EOI(ia_multi_vgt_param) && 520 (info->indirect || 521 (info->instance_count > 1 && 522 (info->count_from_stream_output || 523 si_num_prims_for_vertices(info) <= 1)))) 524 sctx->b.flags |= SI_CONTEXT_VGT_FLUSH; 525 } 526 527 return ia_multi_vgt_param; 528 } 529 530 /* rast_prim is the primitive type after GS. */ 531 static void si_emit_rasterizer_prim_state(struct si_context *sctx) 532 { 533 struct radeon_winsys_cs *cs = sctx->b.gfx.cs; 534 enum pipe_prim_type rast_prim = sctx->current_rast_prim; 535 struct si_state_rasterizer *rs = sctx->emitted.named.rasterizer; 536 537 /* Skip this if not rendering lines. */ 538 if (rast_prim != PIPE_PRIM_LINES && 539 rast_prim != PIPE_PRIM_LINE_LOOP && 540 rast_prim != PIPE_PRIM_LINE_STRIP && 541 rast_prim != PIPE_PRIM_LINES_ADJACENCY && 542 rast_prim != PIPE_PRIM_LINE_STRIP_ADJACENCY) 543 return; 544 545 if (rast_prim == sctx->last_rast_prim && 546 rs->pa_sc_line_stipple == sctx->last_sc_line_stipple) 547 return; 548 549 /* For lines, reset the stipple pattern at each primitive. Otherwise, 550 * reset the stipple pattern at each packet (line strips, line loops). 551 */ 552 radeon_set_context_reg(cs, R_028A0C_PA_SC_LINE_STIPPLE, 553 rs->pa_sc_line_stipple | 554 S_028A0C_AUTO_RESET_CNTL(rast_prim == PIPE_PRIM_LINES ? 1 : 2)); 555 556 sctx->last_rast_prim = rast_prim; 557 sctx->last_sc_line_stipple = rs->pa_sc_line_stipple; 558 } 559 560 static void si_emit_vs_state(struct si_context *sctx, 561 const struct pipe_draw_info *info) 562 { 563 sctx->current_vs_state &= C_VS_STATE_INDEXED; 564 sctx->current_vs_state |= S_VS_STATE_INDEXED(!!info->index_size); 565 566 if (sctx->num_vs_blit_sgprs) { 567 /* Re-emit the state after we leave u_blitter. */ 568 sctx->last_vs_state = ~0; 569 return; 570 } 571 572 if (sctx->current_vs_state != sctx->last_vs_state) { 573 struct radeon_winsys_cs *cs = sctx->b.gfx.cs; 574 575 radeon_set_sh_reg(cs, 576 sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX] + 577 SI_SGPR_VS_STATE_BITS * 4, 578 sctx->current_vs_state); 579 580 sctx->last_vs_state = sctx->current_vs_state; 581 } 582 } 583 584 static void si_emit_draw_registers(struct si_context *sctx, 585 const struct pipe_draw_info *info, 586 unsigned num_patches) 587 { 588 struct radeon_winsys_cs *cs = sctx->b.gfx.cs; 589 unsigned prim = si_conv_pipe_prim(info->mode); 590 unsigned gs_out_prim = si_conv_prim_to_gs_out(sctx->current_rast_prim); 591 unsigned ia_multi_vgt_param; 592 593 ia_multi_vgt_param = si_get_ia_multi_vgt_param(sctx, info, num_patches); 594 595 /* Draw state. */ 596 if (ia_multi_vgt_param != sctx->last_multi_vgt_param) { 597 if (sctx->b.chip_class >= GFX9) 598 radeon_set_uconfig_reg_idx(cs, R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param); 599 else if (sctx->b.chip_class >= CIK) 600 radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param); 601 else 602 radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param); 603 604 sctx->last_multi_vgt_param = ia_multi_vgt_param; 605 } 606 if (prim != sctx->last_prim) { 607 if (sctx->b.chip_class >= CIK) 608 radeon_set_uconfig_reg_idx(cs, R_030908_VGT_PRIMITIVE_TYPE, 1, prim); 609 else 610 radeon_set_config_reg(cs, R_008958_VGT_PRIMITIVE_TYPE, prim); 611 612 sctx->last_prim = prim; 613 } 614 615 if (gs_out_prim != sctx->last_gs_out_prim) { 616 radeon_set_context_reg(cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out_prim); 617 sctx->last_gs_out_prim = gs_out_prim; 618 } 619 620 /* Primitive restart. */ 621 if (info->primitive_restart != sctx->last_primitive_restart_en) { 622 if (sctx->b.chip_class >= GFX9) 623 radeon_set_uconfig_reg(cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN, 624 info->primitive_restart); 625 else 626 radeon_set_context_reg(cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN, 627 info->primitive_restart); 628 629 sctx->last_primitive_restart_en = info->primitive_restart; 630 631 } 632 if (info->primitive_restart && 633 (info->restart_index != sctx->last_restart_index || 634 sctx->last_restart_index == SI_RESTART_INDEX_UNKNOWN)) { 635 radeon_set_context_reg(cs, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX, 636 info->restart_index); 637 sctx->last_restart_index = info->restart_index; 638 } 639 } 640 641 static void si_emit_draw_packets(struct si_context *sctx, 642 const struct pipe_draw_info *info, 643 struct pipe_resource *indexbuf, 644 unsigned index_size, 645 unsigned index_offset) 646 { 647 struct pipe_draw_indirect_info *indirect = info->indirect; 648 struct radeon_winsys_cs *cs = sctx->b.gfx.cs; 649 unsigned sh_base_reg = sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX]; 650 bool render_cond_bit = sctx->b.render_cond && !sctx->b.render_cond_force_off; 651 uint32_t index_max_size = 0; 652 uint64_t index_va = 0; 653 654 if (info->count_from_stream_output) { 655 struct si_streamout_target *t = 656 (struct si_streamout_target*)info->count_from_stream_output; 657 uint64_t va = t->buf_filled_size->gpu_address + 658 t->buf_filled_size_offset; 659 660 radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE, 661 t->stride_in_dw); 662 663 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); 664 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_MEM) | 665 COPY_DATA_DST_SEL(COPY_DATA_REG) | 666 COPY_DATA_WR_CONFIRM); 667 radeon_emit(cs, va); /* src address lo */ 668 radeon_emit(cs, va >> 32); /* src address hi */ 669 radeon_emit(cs, R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2); 670 radeon_emit(cs, 0); /* unused */ 671 672 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, 673 t->buf_filled_size, RADEON_USAGE_READ, 674 RADEON_PRIO_SO_FILLED_SIZE); 675 } 676 677 /* draw packet */ 678 if (index_size) { 679 if (index_size != sctx->last_index_size) { 680 unsigned index_type; 681 682 /* index type */ 683 switch (index_size) { 684 case 1: 685 index_type = V_028A7C_VGT_INDEX_8; 686 break; 687 case 2: 688 index_type = V_028A7C_VGT_INDEX_16 | 689 (SI_BIG_ENDIAN && sctx->b.chip_class <= CIK ? 690 V_028A7C_VGT_DMA_SWAP_16_BIT : 0); 691 break; 692 case 4: 693 index_type = V_028A7C_VGT_INDEX_32 | 694 (SI_BIG_ENDIAN && sctx->b.chip_class <= CIK ? 695 V_028A7C_VGT_DMA_SWAP_32_BIT : 0); 696 break; 697 default: 698 assert(!"unreachable"); 699 return; 700 } 701 702 if (sctx->b.chip_class >= GFX9) { 703 radeon_set_uconfig_reg_idx(cs, R_03090C_VGT_INDEX_TYPE, 704 2, index_type); 705 } else { 706 radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0)); 707 radeon_emit(cs, index_type); 708 } 709 710 sctx->last_index_size = index_size; 711 } 712 713 index_max_size = (indexbuf->width0 - index_offset) / 714 index_size; 715 index_va = r600_resource(indexbuf)->gpu_address + index_offset; 716 717 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, 718 (struct r600_resource *)indexbuf, 719 RADEON_USAGE_READ, RADEON_PRIO_INDEX_BUFFER); 720 } else { 721 /* On CI and later, non-indexed draws overwrite VGT_INDEX_TYPE, 722 * so the state must be re-emitted before the next indexed draw. 723 */ 724 if (sctx->b.chip_class >= CIK) 725 sctx->last_index_size = -1; 726 } 727 728 if (indirect) { 729 uint64_t indirect_va = r600_resource(indirect->buffer)->gpu_address; 730 731 assert(indirect_va % 8 == 0); 732 733 si_invalidate_draw_sh_constants(sctx); 734 735 radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0)); 736 radeon_emit(cs, 1); 737 radeon_emit(cs, indirect_va); 738 radeon_emit(cs, indirect_va >> 32); 739 740 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, 741 (struct r600_resource *)indirect->buffer, 742 RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT); 743 744 unsigned di_src_sel = index_size ? V_0287F0_DI_SRC_SEL_DMA 745 : V_0287F0_DI_SRC_SEL_AUTO_INDEX; 746 747 assert(indirect->offset % 4 == 0); 748 749 if (index_size) { 750 radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0)); 751 radeon_emit(cs, index_va); 752 radeon_emit(cs, index_va >> 32); 753 754 radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0)); 755 radeon_emit(cs, index_max_size); 756 } 757 758 if (!sctx->screen->has_draw_indirect_multi) { 759 radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT 760 : PKT3_DRAW_INDIRECT, 761 3, render_cond_bit)); 762 radeon_emit(cs, indirect->offset); 763 radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2); 764 radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2); 765 radeon_emit(cs, di_src_sel); 766 } else { 767 uint64_t count_va = 0; 768 769 if (indirect->indirect_draw_count) { 770 struct r600_resource *params_buf = 771 (struct r600_resource *)indirect->indirect_draw_count; 772 773 radeon_add_to_buffer_list( 774 &sctx->b, &sctx->b.gfx, params_buf, 775 RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT); 776 777 count_va = params_buf->gpu_address + indirect->indirect_draw_count_offset; 778 } 779 780 radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT_MULTI : 781 PKT3_DRAW_INDIRECT_MULTI, 782 8, render_cond_bit)); 783 radeon_emit(cs, indirect->offset); 784 radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2); 785 radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2); 786 radeon_emit(cs, ((sh_base_reg + SI_SGPR_DRAWID * 4 - SI_SH_REG_OFFSET) >> 2) | 787 S_2C3_DRAW_INDEX_ENABLE(1) | 788 S_2C3_COUNT_INDIRECT_ENABLE(!!indirect->indirect_draw_count)); 789 radeon_emit(cs, indirect->draw_count); 790 radeon_emit(cs, count_va); 791 radeon_emit(cs, count_va >> 32); 792 radeon_emit(cs, indirect->stride); 793 radeon_emit(cs, di_src_sel); 794 } 795 } else { 796 int base_vertex; 797 798 radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, 0)); 799 radeon_emit(cs, info->instance_count); 800 801 /* Base vertex and start instance. */ 802 base_vertex = index_size ? info->index_bias : info->start; 803 804 if (sctx->num_vs_blit_sgprs) { 805 /* Re-emit draw constants after we leave u_blitter. */ 806 si_invalidate_draw_sh_constants(sctx); 807 808 /* Blit VS doesn't use BASE_VERTEX, START_INSTANCE, and DRAWID. */ 809 radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_VS_BLIT_DATA * 4, 810 sctx->num_vs_blit_sgprs); 811 radeon_emit_array(cs, sctx->vs_blit_sh_data, 812 sctx->num_vs_blit_sgprs); 813 } else if (base_vertex != sctx->last_base_vertex || 814 sctx->last_base_vertex == SI_BASE_VERTEX_UNKNOWN || 815 info->start_instance != sctx->last_start_instance || 816 info->drawid != sctx->last_drawid || 817 sh_base_reg != sctx->last_sh_base_reg) { 818 radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 3); 819 radeon_emit(cs, base_vertex); 820 radeon_emit(cs, info->start_instance); 821 radeon_emit(cs, info->drawid); 822 823 sctx->last_base_vertex = base_vertex; 824 sctx->last_start_instance = info->start_instance; 825 sctx->last_drawid = info->drawid; 826 sctx->last_sh_base_reg = sh_base_reg; 827 } 828 829 if (index_size) { 830 index_va += info->start * index_size; 831 832 radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit)); 833 radeon_emit(cs, index_max_size); 834 radeon_emit(cs, index_va); 835 radeon_emit(cs, index_va >> 32); 836 radeon_emit(cs, info->count); 837 radeon_emit(cs, V_0287F0_DI_SRC_SEL_DMA); 838 } else { 839 radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, render_cond_bit)); 840 radeon_emit(cs, info->count); 841 radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX | 842 S_0287F0_USE_OPAQUE(!!info->count_from_stream_output)); 843 } 844 } 845 } 846 847 static void si_emit_surface_sync(struct r600_common_context *rctx, 848 unsigned cp_coher_cntl) 849 { 850 struct radeon_winsys_cs *cs = rctx->gfx.cs; 851 852 if (rctx->chip_class >= GFX9) { 853 /* Flush caches and wait for the caches to assert idle. */ 854 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, 0)); 855 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */ 856 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */ 857 radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */ 858 radeon_emit(cs, 0); /* CP_COHER_BASE */ 859 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */ 860 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */ 861 } else { 862 /* ACQUIRE_MEM is only required on a compute ring. */ 863 radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, 0)); 864 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */ 865 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */ 866 radeon_emit(cs, 0); /* CP_COHER_BASE */ 867 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */ 868 } 869 } 870 871 void si_emit_cache_flush(struct si_context *sctx) 872 { 873 struct r600_common_context *rctx = &sctx->b; 874 struct radeon_winsys_cs *cs = rctx->gfx.cs; 875 uint32_t cp_coher_cntl = 0; 876 uint32_t flush_cb_db = rctx->flags & (SI_CONTEXT_FLUSH_AND_INV_CB | 877 SI_CONTEXT_FLUSH_AND_INV_DB); 878 879 if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_CB) 880 sctx->b.num_cb_cache_flushes++; 881 if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_DB) 882 sctx->b.num_db_cache_flushes++; 883 884 /* SI has a bug that it always flushes ICACHE and KCACHE if either 885 * bit is set. An alternative way is to write SQC_CACHES, but that 886 * doesn't seem to work reliably. Since the bug doesn't affect 887 * correctness (it only does more work than necessary) and 888 * the performance impact is likely negligible, there is no plan 889 * to add a workaround for it. 890 */ 891 892 if (rctx->flags & SI_CONTEXT_INV_ICACHE) 893 cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1); 894 if (rctx->flags & SI_CONTEXT_INV_SMEM_L1) 895 cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1); 896 897 if (rctx->chip_class <= VI) { 898 if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_CB) { 899 cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) | 900 S_0085F0_CB0_DEST_BASE_ENA(1) | 901 S_0085F0_CB1_DEST_BASE_ENA(1) | 902 S_0085F0_CB2_DEST_BASE_ENA(1) | 903 S_0085F0_CB3_DEST_BASE_ENA(1) | 904 S_0085F0_CB4_DEST_BASE_ENA(1) | 905 S_0085F0_CB5_DEST_BASE_ENA(1) | 906 S_0085F0_CB6_DEST_BASE_ENA(1) | 907 S_0085F0_CB7_DEST_BASE_ENA(1); 908 909 /* Necessary for DCC */ 910 if (rctx->chip_class == VI) 911 si_gfx_write_event_eop(rctx, V_028A90_FLUSH_AND_INV_CB_DATA_TS, 912 0, EOP_DATA_SEL_DISCARD, NULL, 913 0, 0, SI_NOT_QUERY); 914 } 915 if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_DB) 916 cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) | 917 S_0085F0_DB_DEST_BASE_ENA(1); 918 } 919 920 if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_CB) { 921 /* Flush CMASK/FMASK/DCC. SURFACE_SYNC will wait for idle. */ 922 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); 923 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0)); 924 } 925 if (rctx->flags & (SI_CONTEXT_FLUSH_AND_INV_DB | 926 SI_CONTEXT_FLUSH_AND_INV_DB_META)) { 927 /* Flush HTILE. SURFACE_SYNC will wait for idle. */ 928 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); 929 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0)); 930 } 931 932 /* Wait for shader engines to go idle. 933 * VS and PS waits are unnecessary if SURFACE_SYNC is going to wait 934 * for everything including CB/DB cache flushes. 935 */ 936 if (!flush_cb_db) { 937 if (rctx->flags & SI_CONTEXT_PS_PARTIAL_FLUSH) { 938 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); 939 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4)); 940 /* Only count explicit shader flushes, not implicit ones 941 * done by SURFACE_SYNC. 942 */ 943 rctx->num_vs_flushes++; 944 rctx->num_ps_flushes++; 945 } else if (rctx->flags & SI_CONTEXT_VS_PARTIAL_FLUSH) { 946 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); 947 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4)); 948 rctx->num_vs_flushes++; 949 } 950 } 951 952 if (rctx->flags & SI_CONTEXT_CS_PARTIAL_FLUSH && 953 sctx->compute_is_busy) { 954 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); 955 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4))); 956 rctx->num_cs_flushes++; 957 sctx->compute_is_busy = false; 958 } 959 960 /* VGT state synchronization. */ 961 if (rctx->flags & SI_CONTEXT_VGT_FLUSH) { 962 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); 963 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0)); 964 } 965 if (rctx->flags & SI_CONTEXT_VGT_STREAMOUT_SYNC) { 966 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); 967 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0)); 968 } 969 970 /* GFX9: Wait for idle if we're flushing CB or DB. ACQUIRE_MEM doesn't 971 * wait for idle on GFX9. We have to use a TS event. 972 */ 973 if (sctx->b.chip_class >= GFX9 && flush_cb_db) { 974 uint64_t va; 975 unsigned tc_flags, cb_db_event; 976 977 /* Set the CB/DB flush event. */ 978 switch (flush_cb_db) { 979 case SI_CONTEXT_FLUSH_AND_INV_CB: 980 cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS; 981 break; 982 case SI_CONTEXT_FLUSH_AND_INV_DB: 983 cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS; 984 break; 985 default: 986 /* both CB & DB */ 987 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT; 988 } 989 990 /* These are the only allowed combinations. If you need to 991 * do multiple operations at once, do them separately. 992 * All operations that invalidate L2 also seem to invalidate 993 * metadata. Volatile (VOL) and WC flushes are not listed here. 994 * 995 * TC | TC_WB = writeback & invalidate L2 & L1 996 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC 997 * TC_WB | TC_NC = writeback L2 for MTYPE == NC 998 * TC | TC_NC = invalidate L2 for MTYPE == NC 999 * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.) 1000 * TCL1 = invalidate L1 1001 */ 1002 tc_flags = 0; 1003 1004 if (rctx->flags & SI_CONTEXT_INV_L2_METADATA) { 1005 tc_flags = EVENT_TC_ACTION_ENA | 1006 EVENT_TC_MD_ACTION_ENA; 1007 } 1008 1009 /* Ideally flush TC together with CB/DB. */ 1010 if (rctx->flags & SI_CONTEXT_INV_GLOBAL_L2) { 1011 /* Writeback and invalidate everything in L2 & L1. */ 1012 tc_flags = EVENT_TC_ACTION_ENA | 1013 EVENT_TC_WB_ACTION_ENA; 1014 1015 /* Clear the flags. */ 1016 rctx->flags &= ~(SI_CONTEXT_INV_GLOBAL_L2 | 1017 SI_CONTEXT_WRITEBACK_GLOBAL_L2 | 1018 SI_CONTEXT_INV_VMEM_L1); 1019 sctx->b.num_L2_invalidates++; 1020 } 1021 1022 /* Do the flush (enqueue the event and wait for it). */ 1023 va = sctx->wait_mem_scratch->gpu_address; 1024 sctx->wait_mem_number++; 1025 1026 si_gfx_write_event_eop(rctx, cb_db_event, tc_flags, 1027 EOP_DATA_SEL_VALUE_32BIT, 1028 sctx->wait_mem_scratch, va, 1029 sctx->wait_mem_number, SI_NOT_QUERY); 1030 si_gfx_wait_fence(rctx, va, sctx->wait_mem_number, 0xffffffff); 1031 } 1032 1033 /* Make sure ME is idle (it executes most packets) before continuing. 1034 * This prevents read-after-write hazards between PFP and ME. 1035 */ 1036 if (cp_coher_cntl || 1037 (rctx->flags & (SI_CONTEXT_CS_PARTIAL_FLUSH | 1038 SI_CONTEXT_INV_VMEM_L1 | 1039 SI_CONTEXT_INV_GLOBAL_L2 | 1040 SI_CONTEXT_WRITEBACK_GLOBAL_L2))) { 1041 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); 1042 radeon_emit(cs, 0); 1043 } 1044 1045 /* SI-CI-VI only: 1046 * When one of the CP_COHER_CNTL.DEST_BASE flags is set, SURFACE_SYNC 1047 * waits for idle, so it should be last. SURFACE_SYNC is done in PFP. 1048 * 1049 * cp_coher_cntl should contain all necessary flags except TC flags 1050 * at this point. 1051 * 1052 * SI-CIK don't support L2 write-back. 1053 */ 1054 if (rctx->flags & SI_CONTEXT_INV_GLOBAL_L2 || 1055 (rctx->chip_class <= CIK && 1056 (rctx->flags & SI_CONTEXT_WRITEBACK_GLOBAL_L2))) { 1057 /* Invalidate L1 & L2. (L1 is always invalidated on SI) 1058 * WB must be set on VI+ when TC_ACTION is set. 1059 */ 1060 si_emit_surface_sync(rctx, cp_coher_cntl | 1061 S_0085F0_TC_ACTION_ENA(1) | 1062 S_0085F0_TCL1_ACTION_ENA(1) | 1063 S_0301F0_TC_WB_ACTION_ENA(rctx->chip_class >= VI)); 1064 cp_coher_cntl = 0; 1065 sctx->b.num_L2_invalidates++; 1066 } else { 1067 /* L1 invalidation and L2 writeback must be done separately, 1068 * because both operations can't be done together. 1069 */ 1070 if (rctx->flags & SI_CONTEXT_WRITEBACK_GLOBAL_L2) { 1071 /* WB = write-back 1072 * NC = apply to non-coherent MTYPEs 1073 * (i.e. MTYPE <= 1, which is what we use everywhere) 1074 * 1075 * WB doesn't work without NC. 1076 */ 1077 si_emit_surface_sync(rctx, cp_coher_cntl | 1078 S_0301F0_TC_WB_ACTION_ENA(1) | 1079 S_0301F0_TC_NC_ACTION_ENA(1)); 1080 cp_coher_cntl = 0; 1081 sctx->b.num_L2_writebacks++; 1082 } 1083 if (rctx->flags & SI_CONTEXT_INV_VMEM_L1) { 1084 /* Invalidate per-CU VMEM L1. */ 1085 si_emit_surface_sync(rctx, cp_coher_cntl | 1086 S_0085F0_TCL1_ACTION_ENA(1)); 1087 cp_coher_cntl = 0; 1088 } 1089 } 1090 1091 /* If TC flushes haven't cleared this... */ 1092 if (cp_coher_cntl) 1093 si_emit_surface_sync(rctx, cp_coher_cntl); 1094 1095 if (rctx->flags & SI_CONTEXT_START_PIPELINE_STATS) { 1096 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); 1097 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) | 1098 EVENT_INDEX(0)); 1099 } else if (rctx->flags & SI_CONTEXT_STOP_PIPELINE_STATS) { 1100 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); 1101 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) | 1102 EVENT_INDEX(0)); 1103 } 1104 1105 rctx->flags = 0; 1106 } 1107 1108 static void si_get_draw_start_count(struct si_context *sctx, 1109 const struct pipe_draw_info *info, 1110 unsigned *start, unsigned *count) 1111 { 1112 struct pipe_draw_indirect_info *indirect = info->indirect; 1113 1114 if (indirect) { 1115 unsigned indirect_count; 1116 struct pipe_transfer *transfer; 1117 unsigned begin, end; 1118 unsigned map_size; 1119 unsigned *data; 1120 1121 if (indirect->indirect_draw_count) { 1122 data = pipe_buffer_map_range(&sctx->b.b, 1123 indirect->indirect_draw_count, 1124 indirect->indirect_draw_count_offset, 1125 sizeof(unsigned), 1126 PIPE_TRANSFER_READ, &transfer); 1127 1128 indirect_count = *data; 1129 1130 pipe_buffer_unmap(&sctx->b.b, transfer); 1131 } else { 1132 indirect_count = indirect->draw_count; 1133 } 1134 1135 if (!indirect_count) { 1136 *start = *count = 0; 1137 return; 1138 } 1139 1140 map_size = (indirect_count - 1) * indirect->stride + 3 * sizeof(unsigned); 1141 data = pipe_buffer_map_range(&sctx->b.b, indirect->buffer, 1142 indirect->offset, map_size, 1143 PIPE_TRANSFER_READ, &transfer); 1144 1145 begin = UINT_MAX; 1146 end = 0; 1147 1148 for (unsigned i = 0; i < indirect_count; ++i) { 1149 unsigned count = data[0]; 1150 unsigned start = data[2]; 1151 1152 if (count > 0) { 1153 begin = MIN2(begin, start); 1154 end = MAX2(end, start + count); 1155 } 1156 1157 data += indirect->stride / sizeof(unsigned); 1158 } 1159 1160 pipe_buffer_unmap(&sctx->b.b, transfer); 1161 1162 if (begin < end) { 1163 *start = begin; 1164 *count = end - begin; 1165 } else { 1166 *start = *count = 0; 1167 } 1168 } else { 1169 *start = info->start; 1170 *count = info->count; 1171 } 1172 } 1173 1174 static void si_emit_all_states(struct si_context *sctx, const struct pipe_draw_info *info, 1175 unsigned skip_atom_mask) 1176 { 1177 /* Emit state atoms. */ 1178 unsigned mask = sctx->dirty_atoms & ~skip_atom_mask; 1179 while (mask) { 1180 struct r600_atom *atom = sctx->atoms.array[u_bit_scan(&mask)]; 1181 1182 atom->emit(&sctx->b, atom); 1183 } 1184 sctx->dirty_atoms &= skip_atom_mask; 1185 1186 /* Emit states. */ 1187 mask = sctx->dirty_states; 1188 while (mask) { 1189 unsigned i = u_bit_scan(&mask); 1190 struct si_pm4_state *state = sctx->queued.array[i]; 1191 1192 if (!state || sctx->emitted.array[i] == state) 1193 continue; 1194 1195 si_pm4_emit(sctx, state); 1196 sctx->emitted.array[i] = state; 1197 } 1198 sctx->dirty_states = 0; 1199 1200 /* Emit draw states. */ 1201 unsigned num_patches = 0; 1202 1203 si_emit_rasterizer_prim_state(sctx); 1204 if (sctx->tes_shader.cso) 1205 si_emit_derived_tess_state(sctx, info, &num_patches); 1206 si_emit_vs_state(sctx, info); 1207 si_emit_draw_registers(sctx, info, num_patches); 1208 } 1209 1210 void si_draw_vbo(struct pipe_context *ctx, const struct pipe_draw_info *info) 1211 { 1212 struct si_context *sctx = (struct si_context *)ctx; 1213 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; 1214 struct pipe_resource *indexbuf = info->index.resource; 1215 unsigned dirty_tex_counter; 1216 enum pipe_prim_type rast_prim; 1217 unsigned index_size = info->index_size; 1218 unsigned index_offset = info->indirect ? info->start * index_size : 0; 1219 1220 if (likely(!info->indirect)) { 1221 /* SI-CI treat instance_count==0 as instance_count==1. There is 1222 * no workaround for indirect draws, but we can at least skip 1223 * direct draws. 1224 */ 1225 if (unlikely(!info->instance_count)) 1226 return; 1227 1228 /* Handle count == 0. */ 1229 if (unlikely(!info->count && 1230 (index_size || !info->count_from_stream_output))) 1231 return; 1232 } 1233 1234 if (unlikely(!sctx->vs_shader.cso)) { 1235 assert(0); 1236 return; 1237 } 1238 if (unlikely(!sctx->ps_shader.cso && (!rs || !rs->rasterizer_discard))) { 1239 assert(0); 1240 return; 1241 } 1242 if (unlikely(!!sctx->tes_shader.cso != (info->mode == PIPE_PRIM_PATCHES))) { 1243 assert(0); 1244 return; 1245 } 1246 1247 /* Recompute and re-emit the texture resource states if needed. */ 1248 dirty_tex_counter = p_atomic_read(&sctx->b.screen->dirty_tex_counter); 1249 if (unlikely(dirty_tex_counter != sctx->b.last_dirty_tex_counter)) { 1250 sctx->b.last_dirty_tex_counter = dirty_tex_counter; 1251 sctx->framebuffer.dirty_cbufs |= 1252 ((1 << sctx->framebuffer.state.nr_cbufs) - 1); 1253 sctx->framebuffer.dirty_zsbuf = true; 1254 si_mark_atom_dirty(sctx, &sctx->framebuffer.atom); 1255 si_update_all_texture_descriptors(sctx); 1256 } 1257 1258 si_decompress_textures(sctx, u_bit_consecutive(0, SI_NUM_GRAPHICS_SHADERS)); 1259 1260 /* Set the rasterization primitive type. 1261 * 1262 * This must be done after si_decompress_textures, which can call 1263 * draw_vbo recursively, and before si_update_shaders, which uses 1264 * current_rast_prim for this draw_vbo call. */ 1265 if (sctx->gs_shader.cso) 1266 rast_prim = sctx->gs_shader.cso->gs_output_prim; 1267 else if (sctx->tes_shader.cso) { 1268 if (sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_POINT_MODE]) 1269 rast_prim = PIPE_PRIM_POINTS; 1270 else 1271 rast_prim = sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE]; 1272 } else 1273 rast_prim = info->mode; 1274 1275 if (rast_prim != sctx->current_rast_prim) { 1276 bool old_is_poly = sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES; 1277 bool new_is_poly = rast_prim >= PIPE_PRIM_TRIANGLES; 1278 if (old_is_poly != new_is_poly) { 1279 sctx->scissors.dirty_mask = (1 << SI_MAX_VIEWPORTS) - 1; 1280 si_mark_atom_dirty(sctx, &sctx->scissors.atom); 1281 } 1282 1283 sctx->current_rast_prim = rast_prim; 1284 sctx->do_update_shaders = true; 1285 } 1286 1287 if (sctx->tes_shader.cso && 1288 sctx->screen->has_ls_vgpr_init_bug) { 1289 /* Determine whether the LS VGPR fix should be applied. 1290 * 1291 * It is only required when num input CPs > num output CPs, 1292 * which cannot happen with the fixed function TCS. We should 1293 * also update this bit when switching from TCS to fixed 1294 * function TCS. 1295 */ 1296 struct si_shader_selector *tcs = sctx->tcs_shader.cso; 1297 bool ls_vgpr_fix = 1298 tcs && 1299 info->vertices_per_patch > 1300 tcs->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT]; 1301 1302 if (ls_vgpr_fix != sctx->ls_vgpr_fix) { 1303 sctx->ls_vgpr_fix = ls_vgpr_fix; 1304 sctx->do_update_shaders = true; 1305 } 1306 } 1307 1308 if (sctx->gs_shader.cso) { 1309 /* Determine whether the GS triangle strip adjacency fix should 1310 * be applied. Rotate every other triangle if 1311 * - triangle strips with adjacency are fed to the GS and 1312 * - primitive restart is disabled (the rotation doesn't help 1313 * when the restart occurs after an odd number of triangles). 1314 */ 1315 bool gs_tri_strip_adj_fix = 1316 !sctx->tes_shader.cso && 1317 info->mode == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY && 1318 !info->primitive_restart; 1319 1320 if (gs_tri_strip_adj_fix != sctx->gs_tri_strip_adj_fix) { 1321 sctx->gs_tri_strip_adj_fix = gs_tri_strip_adj_fix; 1322 sctx->do_update_shaders = true; 1323 } 1324 } 1325 1326 if (sctx->do_update_shaders && !si_update_shaders(sctx)) 1327 return; 1328 1329 if (index_size) { 1330 /* Translate or upload, if needed. */ 1331 /* 8-bit indices are supported on VI. */ 1332 if (sctx->b.chip_class <= CIK && index_size == 1) { 1333 unsigned start, count, start_offset, size, offset; 1334 void *ptr; 1335 1336 si_get_draw_start_count(sctx, info, &start, &count); 1337 start_offset = start * 2; 1338 size = count * 2; 1339 1340 indexbuf = NULL; 1341 u_upload_alloc(ctx->stream_uploader, start_offset, 1342 size, 1343 si_optimal_tcc_alignment(sctx, size), 1344 &offset, &indexbuf, &ptr); 1345 if (!indexbuf) 1346 return; 1347 1348 util_shorten_ubyte_elts_to_userptr(&sctx->b.b, info, 0, 0, 1349 index_offset + start, 1350 count, ptr); 1351 1352 /* info->start will be added by the drawing code */ 1353 index_offset = offset - start_offset; 1354 index_size = 2; 1355 } else if (info->has_user_indices) { 1356 unsigned start_offset; 1357 1358 assert(!info->indirect); 1359 start_offset = info->start * index_size; 1360 1361 indexbuf = NULL; 1362 u_upload_data(ctx->stream_uploader, start_offset, 1363 info->count * index_size, 1364 sctx->screen->info.tcc_cache_line_size, 1365 (char*)info->index.user + start_offset, 1366 &index_offset, &indexbuf); 1367 if (!indexbuf) 1368 return; 1369 1370 /* info->start will be added by the drawing code */ 1371 index_offset -= start_offset; 1372 } else if (sctx->b.chip_class <= CIK && 1373 r600_resource(indexbuf)->TC_L2_dirty) { 1374 /* VI reads index buffers through TC L2, so it doesn't 1375 * need this. */ 1376 sctx->b.flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2; 1377 r600_resource(indexbuf)->TC_L2_dirty = false; 1378 } 1379 } 1380 1381 if (info->indirect) { 1382 struct pipe_draw_indirect_info *indirect = info->indirect; 1383 1384 /* Add the buffer size for memory checking in need_cs_space. */ 1385 si_context_add_resource_size(ctx, indirect->buffer); 1386 1387 /* Indirect buffers use TC L2 on GFX9, but not older hw. */ 1388 if (sctx->b.chip_class <= VI) { 1389 if (r600_resource(indirect->buffer)->TC_L2_dirty) { 1390 sctx->b.flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2; 1391 r600_resource(indirect->buffer)->TC_L2_dirty = false; 1392 } 1393 1394 if (indirect->indirect_draw_count && 1395 r600_resource(indirect->indirect_draw_count)->TC_L2_dirty) { 1396 sctx->b.flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2; 1397 r600_resource(indirect->indirect_draw_count)->TC_L2_dirty = false; 1398 } 1399 } 1400 } 1401 1402 si_need_cs_space(sctx); 1403 1404 /* Since we've called r600_context_add_resource_size for vertex buffers, 1405 * this must be called after si_need_cs_space, because we must let 1406 * need_cs_space flush before we add buffers to the buffer list. 1407 */ 1408 if (!si_upload_vertex_buffer_descriptors(sctx)) 1409 return; 1410 1411 /* Vega10/Raven scissor bug workaround. This must be done before VPORT 1412 * scissor registers are changed. There is also a more efficient but 1413 * more involved alternative workaround. 1414 */ 1415 if ((sctx->b.family == CHIP_VEGA10 || sctx->b.family == CHIP_RAVEN) && 1416 si_is_atom_dirty(sctx, &sctx->scissors.atom)) { 1417 sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH; 1418 si_emit_cache_flush(sctx); 1419 } 1420 1421 /* Use optimal packet order based on whether we need to sync the pipeline. */ 1422 if (unlikely(sctx->b.flags & (SI_CONTEXT_FLUSH_AND_INV_CB | 1423 SI_CONTEXT_FLUSH_AND_INV_DB | 1424 SI_CONTEXT_PS_PARTIAL_FLUSH | 1425 SI_CONTEXT_CS_PARTIAL_FLUSH))) { 1426 /* If we have to wait for idle, set all states first, so that all 1427 * SET packets are processed in parallel with previous draw calls. 1428 * Then upload descriptors, set shader pointers, and draw, and 1429 * prefetch at the end. This ensures that the time the CUs 1430 * are idle is very short. (there are only SET_SH packets between 1431 * the wait and the draw) 1432 */ 1433 struct r600_atom *shader_pointers = &sctx->shader_pointers.atom; 1434 unsigned masked_atoms = 1u << shader_pointers->id; 1435 1436 if (unlikely(sctx->b.flags & SI_CONTEXT_FLUSH_FOR_RENDER_COND)) 1437 masked_atoms |= 1u << sctx->b.render_cond_atom.id; 1438 1439 /* Emit all states except shader pointers and render condition. */ 1440 si_emit_all_states(sctx, info, masked_atoms); 1441 si_emit_cache_flush(sctx); 1442 1443 /* <-- CUs are idle here. */ 1444 if (!si_upload_graphics_shader_descriptors(sctx)) 1445 return; 1446 1447 /* Set shader pointers after descriptors are uploaded. */ 1448 if (si_is_atom_dirty(sctx, shader_pointers)) 1449 shader_pointers->emit(&sctx->b, NULL); 1450 if (si_is_atom_dirty(sctx, &sctx->b.render_cond_atom)) 1451 sctx->b.render_cond_atom.emit(&sctx->b, NULL); 1452 sctx->dirty_atoms = 0; 1453 1454 si_emit_draw_packets(sctx, info, indexbuf, index_size, index_offset); 1455 /* <-- CUs are busy here. */ 1456 1457 /* Start prefetches after the draw has been started. Both will run 1458 * in parallel, but starting the draw first is more important. 1459 */ 1460 if (sctx->b.chip_class >= CIK && sctx->prefetch_L2_mask) 1461 cik_emit_prefetch_L2(sctx); 1462 } else { 1463 /* If we don't wait for idle, start prefetches first, then set 1464 * states, and draw at the end. 1465 */ 1466 if (sctx->b.flags) 1467 si_emit_cache_flush(sctx); 1468 1469 if (sctx->b.chip_class >= CIK && sctx->prefetch_L2_mask) 1470 cik_emit_prefetch_L2(sctx); 1471 1472 if (!si_upload_graphics_shader_descriptors(sctx)) 1473 return; 1474 1475 si_emit_all_states(sctx, info, 0); 1476 si_emit_draw_packets(sctx, info, indexbuf, index_size, index_offset); 1477 } 1478 1479 if (unlikely(sctx->current_saved_cs)) { 1480 si_trace_emit(sctx); 1481 si_log_draw_state(sctx, sctx->b.log); 1482 } 1483 1484 /* Workaround for a VGT hang when streamout is enabled. 1485 * It must be done after drawing. */ 1486 if ((sctx->b.family == CHIP_HAWAII || 1487 sctx->b.family == CHIP_TONGA || 1488 sctx->b.family == CHIP_FIJI) && 1489 si_get_strmout_en(sctx)) { 1490 sctx->b.flags |= SI_CONTEXT_VGT_STREAMOUT_SYNC; 1491 } 1492 1493 if (unlikely(sctx->decompression_enabled)) { 1494 sctx->b.num_decompress_calls++; 1495 } else { 1496 sctx->b.num_draw_calls++; 1497 if (sctx->framebuffer.state.nr_cbufs > 1) 1498 sctx->b.num_mrt_draw_calls++; 1499 if (info->primitive_restart) 1500 sctx->b.num_prim_restart_calls++; 1501 if (G_0286E8_WAVESIZE(sctx->spi_tmpring_size)) 1502 sctx->b.num_spill_draw_calls++; 1503 } 1504 if (index_size && indexbuf != info->index.resource) 1505 pipe_resource_reference(&indexbuf, NULL); 1506 } 1507 1508 void si_draw_rectangle(struct blitter_context *blitter, 1509 void *vertex_elements_cso, 1510 blitter_get_vs_func get_vs, 1511 int x1, int y1, int x2, int y2, 1512 float depth, unsigned num_instances, 1513 enum blitter_attrib_type type, 1514 const union blitter_attrib *attrib) 1515 { 1516 struct pipe_context *pipe = util_blitter_get_pipe(blitter); 1517 struct si_context *sctx = (struct si_context*)pipe; 1518 1519 /* Pack position coordinates as signed int16. */ 1520 sctx->vs_blit_sh_data[0] = (uint32_t)(x1 & 0xffff) | 1521 ((uint32_t)(y1 & 0xffff) << 16); 1522 sctx->vs_blit_sh_data[1] = (uint32_t)(x2 & 0xffff) | 1523 ((uint32_t)(y2 & 0xffff) << 16); 1524 sctx->vs_blit_sh_data[2] = fui(depth); 1525 1526 switch (type) { 1527 case UTIL_BLITTER_ATTRIB_COLOR: 1528 memcpy(&sctx->vs_blit_sh_data[3], attrib->color, 1529 sizeof(float)*4); 1530 break; 1531 case UTIL_BLITTER_ATTRIB_TEXCOORD_XY: 1532 case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW: 1533 memcpy(&sctx->vs_blit_sh_data[3], &attrib->texcoord, 1534 sizeof(attrib->texcoord)); 1535 break; 1536 case UTIL_BLITTER_ATTRIB_NONE:; 1537 } 1538 1539 pipe->bind_vs_state(pipe, si_get_blit_vs(sctx, type, num_instances)); 1540 1541 struct pipe_draw_info info = {}; 1542 info.mode = SI_PRIM_RECTANGLE_LIST; 1543 info.count = 3; 1544 info.instance_count = num_instances; 1545 1546 /* Don't set per-stage shader pointers for VS. */ 1547 sctx->shader_pointers_dirty &= ~SI_DESCS_SHADER_MASK(VERTEX); 1548 sctx->vertex_buffer_pointer_dirty = false; 1549 1550 si_draw_vbo(pipe, &info); 1551 } 1552 1553 void si_trace_emit(struct si_context *sctx) 1554 { 1555 struct radeon_winsys_cs *cs = sctx->b.gfx.cs; 1556 uint64_t va = sctx->current_saved_cs->trace_buf->gpu_address; 1557 uint32_t trace_id = ++sctx->current_saved_cs->trace_id; 1558 1559 radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0)); 1560 radeon_emit(cs, S_370_DST_SEL(V_370_MEMORY_SYNC) | 1561 S_370_WR_CONFIRM(1) | 1562 S_370_ENGINE_SEL(V_370_ME)); 1563 radeon_emit(cs, va); 1564 radeon_emit(cs, va >> 32); 1565 radeon_emit(cs, trace_id); 1566 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); 1567 radeon_emit(cs, AC_ENCODE_TRACE_POINT(trace_id)); 1568 1569 if (sctx->b.log) 1570 u_log_flush(sctx->b.log); 1571 } 1572