Home | History | Annotate | Download | only in x86
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "calling_convention_x86.h"
     18 
     19 #include <android-base/logging.h>
     20 
     21 #include "arch/instruction_set.h"
     22 #include "handle_scope-inl.h"
     23 #include "utils/x86/managed_register_x86.h"
     24 
     25 namespace art {
     26 namespace x86 {
     27 
     28 static_assert(kX86PointerSize == PointerSize::k32, "Unexpected x86 pointer size");
     29 static_assert(kStackAlignment >= 16u, "IA-32 cdecl requires at least 16 byte stack alignment");
     30 
     31 static constexpr ManagedRegister kCalleeSaveRegisters[] = {
     32     // Core registers.
     33     X86ManagedRegister::FromCpuRegister(EBP),
     34     X86ManagedRegister::FromCpuRegister(ESI),
     35     X86ManagedRegister::FromCpuRegister(EDI),
     36     // No hard float callee saves.
     37 };
     38 
     39 static constexpr uint32_t CalculateCoreCalleeSpillMask() {
     40   // The spilled PC gets a special marker.
     41   uint32_t result = 1 << kNumberOfCpuRegisters;
     42   for (auto&& r : kCalleeSaveRegisters) {
     43     if (r.AsX86().IsCpuRegister()) {
     44       result |= (1 << r.AsX86().AsCpuRegister());
     45     }
     46   }
     47   return result;
     48 }
     49 
     50 static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask();
     51 static constexpr uint32_t kFpCalleeSpillMask = 0u;
     52 
     53 // Calling convention
     54 
     55 ManagedRegister X86ManagedRuntimeCallingConvention::InterproceduralScratchRegister() {
     56   return X86ManagedRegister::FromCpuRegister(ECX);
     57 }
     58 
     59 ManagedRegister X86JniCallingConvention::InterproceduralScratchRegister() {
     60   return X86ManagedRegister::FromCpuRegister(ECX);
     61 }
     62 
     63 ManagedRegister X86JniCallingConvention::ReturnScratchRegister() const {
     64   return ManagedRegister::NoRegister();  // No free regs, so assembler uses push/pop
     65 }
     66 
     67 static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni) {
     68   if (shorty[0] == 'F' || shorty[0] == 'D') {
     69     if (jni) {
     70       return X86ManagedRegister::FromX87Register(ST0);
     71     } else {
     72       return X86ManagedRegister::FromXmmRegister(XMM0);
     73     }
     74   } else if (shorty[0] == 'J') {
     75     return X86ManagedRegister::FromRegisterPair(EAX_EDX);
     76   } else if (shorty[0] == 'V') {
     77     return ManagedRegister::NoRegister();
     78   } else {
     79     return X86ManagedRegister::FromCpuRegister(EAX);
     80   }
     81 }
     82 
     83 ManagedRegister X86ManagedRuntimeCallingConvention::ReturnRegister() {
     84   return ReturnRegisterForShorty(GetShorty(), false);
     85 }
     86 
     87 ManagedRegister X86JniCallingConvention::ReturnRegister() {
     88   return ReturnRegisterForShorty(GetShorty(), true);
     89 }
     90 
     91 ManagedRegister X86JniCallingConvention::IntReturnRegister() {
     92   return X86ManagedRegister::FromCpuRegister(EAX);
     93 }
     94 
     95 // Managed runtime calling convention
     96 
     97 ManagedRegister X86ManagedRuntimeCallingConvention::MethodRegister() {
     98   return X86ManagedRegister::FromCpuRegister(EAX);
     99 }
    100 
    101 bool X86ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
    102   return false;  // Everything is passed by stack
    103 }
    104 
    105 bool X86ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
    106   // We assume all parameters are on stack, args coming via registers are spilled as entry_spills.
    107   return true;
    108 }
    109 
    110 ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamRegister() {
    111   ManagedRegister res = ManagedRegister::NoRegister();
    112   if (!IsCurrentParamAFloatOrDouble()) {
    113     switch (gpr_arg_count_) {
    114       case 0:
    115         res = X86ManagedRegister::FromCpuRegister(ECX);
    116         break;
    117       case 1:
    118         res = X86ManagedRegister::FromCpuRegister(EDX);
    119         break;
    120       case 2:
    121         // Don't split a long between the last register and the stack.
    122         if (IsCurrentParamALong()) {
    123           return ManagedRegister::NoRegister();
    124         }
    125         res = X86ManagedRegister::FromCpuRegister(EBX);
    126         break;
    127     }
    128   } else if (itr_float_and_doubles_ < 4) {
    129     // First four float parameters are passed via XMM0..XMM3
    130     res = X86ManagedRegister::FromXmmRegister(
    131                                  static_cast<XmmRegister>(XMM0 + itr_float_and_doubles_));
    132   }
    133   return res;
    134 }
    135 
    136 ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamHighLongRegister() {
    137   ManagedRegister res = ManagedRegister::NoRegister();
    138   DCHECK(IsCurrentParamALong());
    139   switch (gpr_arg_count_) {
    140     case 0: res = X86ManagedRegister::FromCpuRegister(EDX); break;
    141     case 1: res = X86ManagedRegister::FromCpuRegister(EBX); break;
    142   }
    143   return res;
    144 }
    145 
    146 FrameOffset X86ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
    147   return FrameOffset(displacement_.Int32Value() +   // displacement
    148                      kFramePointerSize +                 // Method*
    149                      (itr_slots_ * kFramePointerSize));  // offset into in args
    150 }
    151 
    152 const ManagedRegisterEntrySpills& X86ManagedRuntimeCallingConvention::EntrySpills() {
    153   // We spill the argument registers on X86 to free them up for scratch use, we then assume
    154   // all arguments are on the stack.
    155   if (entry_spills_.size() == 0) {
    156     ResetIterator(FrameOffset(0));
    157     while (HasNext()) {
    158       ManagedRegister in_reg = CurrentParamRegister();
    159       bool is_long = IsCurrentParamALong();
    160       if (!in_reg.IsNoRegister()) {
    161         int32_t size = IsParamADouble(itr_args_) ? 8 : 4;
    162         int32_t spill_offset = CurrentParamStackOffset().Uint32Value();
    163         ManagedRegisterSpill spill(in_reg, size, spill_offset);
    164         entry_spills_.push_back(spill);
    165         if (is_long) {
    166           // special case, as we need a second register here.
    167           in_reg = CurrentParamHighLongRegister();
    168           DCHECK(!in_reg.IsNoRegister());
    169           // We have to spill the second half of the long.
    170           ManagedRegisterSpill spill2(in_reg, size, spill_offset + 4);
    171           entry_spills_.push_back(spill2);
    172         }
    173 
    174         // Keep track of the number of GPRs allocated.
    175         if (!IsCurrentParamAFloatOrDouble()) {
    176           if (is_long) {
    177             // Long was allocated in 2 registers.
    178             gpr_arg_count_ += 2;
    179           } else {
    180             gpr_arg_count_++;
    181           }
    182         }
    183       } else if (is_long) {
    184         // We need to skip the unused last register, which is empty.
    185         // If we are already out of registers, this is harmless.
    186         gpr_arg_count_ += 2;
    187       }
    188       Next();
    189     }
    190   }
    191   return entry_spills_;
    192 }
    193 
    194 // JNI calling convention
    195 
    196 X86JniCallingConvention::X86JniCallingConvention(bool is_static,
    197                                                  bool is_synchronized,
    198                                                  bool is_critical_native,
    199                                                  const char* shorty)
    200     : JniCallingConvention(is_static,
    201                            is_synchronized,
    202                            is_critical_native,
    203                            shorty,
    204                            kX86PointerSize) {
    205 }
    206 
    207 uint32_t X86JniCallingConvention::CoreSpillMask() const {
    208   return kCoreCalleeSpillMask;
    209 }
    210 
    211 uint32_t X86JniCallingConvention::FpSpillMask() const {
    212   return kFpCalleeSpillMask;
    213 }
    214 
    215 size_t X86JniCallingConvention::FrameSize() {
    216   // Method*, PC return address and callee save area size, local reference segment state
    217   const size_t method_ptr_size = static_cast<size_t>(kX86PointerSize);
    218   const size_t pc_return_addr_size = kFramePointerSize;
    219   const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
    220   size_t frame_data_size = method_ptr_size + pc_return_addr_size + callee_save_area_size;
    221 
    222   if (LIKELY(HasLocalReferenceSegmentState())) {                     // local ref. segment state
    223     // Local reference segment state is sometimes excluded.
    224     frame_data_size += kFramePointerSize;
    225   }
    226 
    227   // References plus link_ (pointer) and number_of_references_ (uint32_t) for HandleScope header
    228   const size_t handle_scope_size = HandleScope::SizeOf(kX86PointerSize, ReferenceCount());
    229 
    230   size_t total_size = frame_data_size;
    231   if (LIKELY(HasHandleScope())) {
    232     // HandleScope is sometimes excluded.
    233     total_size += handle_scope_size;                                 // handle scope size
    234   }
    235 
    236   // Plus return value spill area size
    237   total_size += SizeOfReturnValue();
    238 
    239   return RoundUp(total_size, kStackAlignment);
    240   // TODO: Same thing as x64 except using different pointer size. Refactor?
    241 }
    242 
    243 size_t X86JniCallingConvention::OutArgSize() {
    244   return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize, kStackAlignment);
    245 }
    246 
    247 ArrayRef<const ManagedRegister> X86JniCallingConvention::CalleeSaveRegisters() const {
    248   return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
    249 }
    250 
    251 bool X86JniCallingConvention::IsCurrentParamInRegister() {
    252   return false;  // Everything is passed by stack.
    253 }
    254 
    255 bool X86JniCallingConvention::IsCurrentParamOnStack() {
    256   return true;  // Everything is passed by stack.
    257 }
    258 
    259 ManagedRegister X86JniCallingConvention::CurrentParamRegister() {
    260   LOG(FATAL) << "Should not reach here";
    261   UNREACHABLE();
    262 }
    263 
    264 FrameOffset X86JniCallingConvention::CurrentParamStackOffset() {
    265   return FrameOffset(displacement_.Int32Value() - OutArgSize() + (itr_slots_ * kFramePointerSize));
    266 }
    267 
    268 size_t X86JniCallingConvention::NumberOfOutgoingStackArgs() {
    269   size_t static_args = HasSelfClass() ? 1 : 0;  // count jclass
    270   // regular argument parameters and this
    271   size_t param_args = NumArgs() + NumLongOrDoubleArgs();
    272   // count JNIEnv* and return pc (pushed after Method*)
    273   size_t internal_args = 1 /* return pc */ + (HasJniEnv() ? 1 : 0 /* jni env */);
    274   // No register args.
    275   size_t total_args = static_args + param_args + internal_args;
    276   return total_args;
    277 }
    278 
    279 }  // namespace x86
    280 }  // namespace art
    281