Home | History | Annotate | Download | only in base
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <stdio.h>
     18 
     19 #include "timing_logger.h"
     20 
     21 #include <android-base/logging.h>
     22 
     23 #include "base/histogram-inl.h"
     24 #include "base/mutex.h"
     25 #include "base/stl_util.h"
     26 #include "base/systrace.h"
     27 #include "base/time_utils.h"
     28 #include "gc/heap.h"
     29 #include "runtime.h"
     30 #include "thread-current-inl.h"
     31 
     32 #include <cmath>
     33 #include <iomanip>
     34 
     35 namespace art {
     36 
     37 constexpr size_t CumulativeLogger::kLowMemoryBucketCount;
     38 constexpr size_t CumulativeLogger::kDefaultBucketCount;
     39 constexpr size_t TimingLogger::kIndexNotFound;
     40 
     41 CumulativeLogger::CumulativeLogger(const std::string& name)
     42     : name_(name),
     43       lock_name_("CumulativeLoggerLock" + name),
     44       lock_(new Mutex(lock_name_.c_str(), kDefaultMutexLevel, true)) {
     45   Reset();
     46 }
     47 
     48 CumulativeLogger::~CumulativeLogger() {
     49   STLDeleteElements(&histograms_);
     50 }
     51 
     52 void CumulativeLogger::SetName(const std::string& name) {
     53   MutexLock mu(Thread::Current(), *GetLock());
     54   name_.assign(name);
     55 }
     56 
     57 void CumulativeLogger::Start() {
     58 }
     59 
     60 void CumulativeLogger::End() {
     61   MutexLock mu(Thread::Current(), *GetLock());
     62   ++iterations_;
     63 }
     64 
     65 void CumulativeLogger::Reset() {
     66   MutexLock mu(Thread::Current(), *GetLock());
     67   iterations_ = 0;
     68   total_time_ = 0;
     69   STLDeleteElements(&histograms_);
     70 }
     71 
     72 void CumulativeLogger::AddLogger(const TimingLogger &logger) {
     73   MutexLock mu(Thread::Current(), *GetLock());
     74   TimingLogger::TimingData timing_data(logger.CalculateTimingData());
     75   const std::vector<TimingLogger::Timing>& timings = logger.GetTimings();
     76   for (size_t i = 0; i < timings.size(); ++i) {
     77     if (timings[i].IsStartTiming()) {
     78       AddPair(timings[i].GetName(), timing_data.GetExclusiveTime(i));
     79     }
     80   }
     81   ++iterations_;
     82 }
     83 
     84 size_t CumulativeLogger::GetIterations() const {
     85   MutexLock mu(Thread::Current(), *GetLock());
     86   return iterations_;
     87 }
     88 
     89 void CumulativeLogger::Dump(std::ostream &os) const {
     90   MutexLock mu(Thread::Current(), *GetLock());
     91   DumpHistogram(os);
     92 }
     93 
     94 void CumulativeLogger::AddPair(const std::string& label, uint64_t delta_time) {
     95   // Convert delta time to microseconds so that we don't overflow our counters.
     96   delta_time /= kAdjust;
     97   total_time_ += delta_time;
     98   Histogram<uint64_t>* histogram;
     99   Histogram<uint64_t> dummy(label.c_str());
    100   auto it = histograms_.find(&dummy);
    101   if (it == histograms_.end()) {
    102     const size_t max_buckets = Runtime::Current()->GetHeap()->IsLowMemoryMode() ?
    103         kLowMemoryBucketCount : kDefaultBucketCount;
    104     histogram = new Histogram<uint64_t>(label.c_str(), kInitialBucketSize, max_buckets);
    105     histograms_.insert(histogram);
    106   } else {
    107     histogram = *it;
    108   }
    109   histogram->AddValue(delta_time);
    110 }
    111 
    112 class CompareHistorgramByTimeSpentDeclining {
    113  public:
    114   bool operator()(const Histogram<uint64_t>* a, const Histogram<uint64_t>* b) const {
    115     return a->Sum() > b->Sum();
    116   }
    117 };
    118 
    119 void CumulativeLogger::DumpHistogram(std::ostream &os) const {
    120   os << "Start Dumping histograms for " << iterations_ << " iterations"
    121      << " for " << name_ << "\n";
    122   std::set<Histogram<uint64_t>*, CompareHistorgramByTimeSpentDeclining>
    123       sorted_histograms(histograms_.begin(), histograms_.end());
    124   for (Histogram<uint64_t>* histogram : sorted_histograms) {
    125     Histogram<uint64_t>::CumulativeData cumulative_data;
    126     // We don't expect DumpHistogram to be called often, so it is not performance critical.
    127     histogram->CreateHistogram(&cumulative_data);
    128     histogram->PrintConfidenceIntervals(os, 0.99, cumulative_data);
    129   }
    130   os << "Done Dumping histograms\n";
    131 }
    132 
    133 TimingLogger::TimingLogger(const char* name,
    134                            bool precise,
    135                            bool verbose,
    136                            TimingLogger::TimingKind kind)
    137     : name_(name), precise_(precise), verbose_(verbose), kind_(kind) {
    138 }
    139 
    140 void TimingLogger::Reset() {
    141   timings_.clear();
    142 }
    143 
    144 void TimingLogger::StartTiming(const char* label) {
    145   DCHECK(label != nullptr);
    146   timings_.push_back(Timing(kind_, label));
    147   ATraceBegin(label);
    148 }
    149 
    150 void TimingLogger::EndTiming() {
    151   timings_.push_back(Timing(kind_, nullptr));
    152   ATraceEnd();
    153 }
    154 
    155 uint64_t TimingLogger::GetTotalNs() const {
    156   if (timings_.size() < 2) {
    157     return 0;
    158   }
    159   return timings_.back().GetTime() - timings_.front().GetTime();
    160 }
    161 
    162 size_t TimingLogger::FindTimingIndex(const char* name, size_t start_idx) const {
    163   DCHECK_LT(start_idx, timings_.size());
    164   for (size_t i = start_idx; i < timings_.size(); ++i) {
    165     if (timings_[i].IsStartTiming() && strcmp(timings_[i].GetName(), name) == 0) {
    166       return i;
    167     }
    168   }
    169   return kIndexNotFound;
    170 }
    171 
    172 TimingLogger::TimingData TimingLogger::CalculateTimingData() const {
    173   TimingLogger::TimingData ret;
    174   ret.data_.resize(timings_.size());
    175   std::vector<size_t> open_stack;
    176   for (size_t i = 0; i < timings_.size(); ++i) {
    177     if (timings_[i].IsEndTiming()) {
    178       CHECK(!open_stack.empty()) << "No starting split for ending split at index " << i;
    179       size_t open_idx = open_stack.back();
    180       uint64_t time = timings_[i].GetTime() - timings_[open_idx].GetTime();
    181       ret.data_[open_idx].exclusive_time += time;
    182       DCHECK_EQ(ret.data_[open_idx].total_time, 0U);
    183       ret.data_[open_idx].total_time += time;
    184       // Each open split has exactly one end.
    185       open_stack.pop_back();
    186       // If there is a parent node, subtract from the exclusive time.
    187       if (!open_stack.empty()) {
    188         // Note this may go negative, but will work due to 2s complement when we add the value
    189         // total time value later.
    190         ret.data_[open_stack.back()].exclusive_time -= time;
    191       }
    192     } else {
    193       open_stack.push_back(i);
    194     }
    195   }
    196   CHECK(open_stack.empty()) << "Missing ending for timing "
    197       << timings_[open_stack.back()].GetName() << " at index " << open_stack.back();
    198   return ret;  // No need to fear, C++11 move semantics are here.
    199 }
    200 
    201 void TimingLogger::Dump(std::ostream &os, const char* indent_string) const {
    202   static constexpr size_t kFractionalDigits = 3;
    203   TimingLogger::TimingData timing_data(CalculateTimingData());
    204   uint64_t longest_split = 0;
    205   for (size_t i = 0; i < timings_.size(); ++i) {
    206     longest_split = std::max(longest_split, timing_data.GetTotalTime(i));
    207   }
    208   // Compute which type of unit we will use for printing the timings.
    209   TimeUnit tu = GetAppropriateTimeUnit(longest_split);
    210   uint64_t divisor = GetNsToTimeUnitDivisor(tu);
    211   uint64_t mod_fraction = divisor >= 1000 ? divisor / 1000 : 1;
    212   // Print formatted splits.
    213   size_t tab_count = 1;
    214   os << name_ << " [Exclusive time] [Total time]\n";
    215   for (size_t i = 0; i < timings_.size(); ++i) {
    216     if (timings_[i].IsStartTiming()) {
    217       uint64_t exclusive_time = timing_data.GetExclusiveTime(i);
    218       uint64_t total_time = timing_data.GetTotalTime(i);
    219       if (!precise_) {
    220         // Make the fractional part 0.
    221         exclusive_time -= exclusive_time % mod_fraction;
    222         total_time -= total_time % mod_fraction;
    223       }
    224       for (size_t j = 0; j < tab_count; ++j) {
    225         os << indent_string;
    226       }
    227       os << FormatDuration(exclusive_time, tu, kFractionalDigits);
    228       // If they are the same, just print one value to prevent spam.
    229       if (exclusive_time != total_time) {
    230         os << "/" << FormatDuration(total_time, tu, kFractionalDigits);
    231       }
    232       os << " " << timings_[i].GetName() << "\n";
    233       ++tab_count;
    234     } else {
    235       --tab_count;
    236     }
    237   }
    238   os << name_ << ": end, " << PrettyDuration(GetTotalNs()) << "\n";
    239 }
    240 
    241 void TimingLogger::Verify() {
    242   size_t counts[2] = { 0 };
    243   for (size_t i = 0; i < timings_.size(); ++i) {
    244     if (i > 0) {
    245       CHECK_LE(timings_[i - 1].GetTime(), timings_[i].GetTime());
    246     }
    247     ++counts[timings_[i].IsStartTiming() ? 0 : 1];
    248   }
    249   CHECK_EQ(counts[0], counts[1]) << "Number of StartTiming and EndTiming doesn't match";
    250 }
    251 
    252 TimingLogger::~TimingLogger() {
    253   if (kIsDebugBuild) {
    254     Verify();
    255   }
    256 }
    257 
    258 }  // namespace art
    259