Home | History | Annotate | Download | only in math
      1 /*
      2  * Header for sinf, cosf and sincosf.
      3  *
      4  * Copyright (c) 2018, Arm Limited.
      5  * SPDX-License-Identifier: MIT
      6  */
      7 
      8 #include <stdint.h>
      9 #include <math.h>
     10 #include "math_config.h"
     11 
     12 /* 2PI * 2^-64.  */
     13 static const double pi63 = 0x1.921FB54442D18p-62;
     14 /* PI / 4.  */
     15 static const double pio4 = 0x1.921FB54442D18p-1;
     16 
     17 /* The constants and polynomials for sine and cosine.  */
     18 typedef struct
     19 {
     20   double sign[4];		/* Sign of sine in quadrants 0..3.  */
     21   double hpi_inv;		/* 2 / PI ( * 2^24 if !TOINT_INTRINSICS).  */
     22   double hpi;			/* PI / 2.  */
     23   double c0, c1, c2, c3, c4;	/* Cosine polynomial.  */
     24   double s1, s2, s3;		/* Sine polynomial.  */
     25 } sincos_t;
     26 
     27 /* Polynomial data (the cosine polynomial is negated in the 2nd entry).  */
     28 extern const sincos_t __sincosf_table[2] HIDDEN;
     29 
     30 /* Table with 4/PI to 192 bit precision.  */
     31 extern const uint32_t __inv_pio4[] HIDDEN;
     32 
     33 /* Top 12 bits of the float representation with the sign bit cleared.  */
     34 static inline uint32_t
     35 abstop12 (float x)
     36 {
     37   return (asuint (x) >> 20) & 0x7ff;
     38 }
     39 
     40 /* Compute the sine and cosine of inputs X and X2 (X squared), using the
     41    polynomial P and store the results in SINP and COSP.  N is the quadrant,
     42    if odd the cosine and sine polynomials are swapped.  */
     43 static inline void
     44 sincosf_poly (double x, double x2, const sincos_t *p, int n, float *sinp,
     45 	      float *cosp)
     46 {
     47   double x3, x4, x5, x6, s, c, c1, c2, s1;
     48 
     49   x4 = x2 * x2;
     50   x3 = x2 * x;
     51   c2 = p->c3 + x2 * p->c4;
     52   s1 = p->s2 + x2 * p->s3;
     53 
     54   /* Swap sin/cos result based on quadrant.  */
     55   float *tmp = (n & 1 ? cosp : sinp);
     56   cosp = (n & 1 ? sinp : cosp);
     57   sinp = tmp;
     58 
     59   c1 = p->c0 + x2 * p->c1;
     60   x5 = x3 * x2;
     61   x6 = x4 * x2;
     62 
     63   s = x + x3 * p->s1;
     64   c = c1 + x4 * p->c2;
     65 
     66   *sinp = s + x5 * s1;
     67   *cosp = c + x6 * c2;
     68 }
     69 
     70 /* Return the sine of inputs X and X2 (X squared) using the polynomial P.
     71    N is the quadrant, and if odd the cosine polynomial is used.  */
     72 static inline float
     73 sinf_poly (double x, double x2, const sincos_t *p, int n)
     74 {
     75   double x3, x4, x6, x7, s, c, c1, c2, s1;
     76 
     77   if ((n & 1) == 0)
     78     {
     79       x3 = x * x2;
     80       s1 = p->s2 + x2 * p->s3;
     81 
     82       x7 = x3 * x2;
     83       s = x + x3 * p->s1;
     84 
     85       return s + x7 * s1;
     86     }
     87   else
     88     {
     89       x4 = x2 * x2;
     90       c2 = p->c3 + x2 * p->c4;
     91       c1 = p->c0 + x2 * p->c1;
     92 
     93       x6 = x4 * x2;
     94       c = c1 + x4 * p->c2;
     95 
     96       return c + x6 * c2;
     97     }
     98 }
     99 
    100 /* Fast range reduction using single multiply-subtract.  Return the modulo of
    101    X as a value between -PI/4 and PI/4 and store the quadrant in NP.
    102    The values for PI/2 and 2/PI are accessed via P.  Since PI/2 as a double
    103    is accurate to 55 bits and the worst-case cancellation happens at 6 * PI/4,
    104    the result is accurate for |X| <= 120.0.  */
    105 static inline double
    106 reduce_fast (double x, const sincos_t *p, int *np)
    107 {
    108   double r;
    109 #if TOINT_INTRINSICS
    110   /* Use fast round and lround instructions when available.  */
    111   r = x * p->hpi_inv;
    112   *np = converttoint (r);
    113   return x - roundtoint (r) * p->hpi;
    114 #else
    115   /* Use scaled float to int conversion with explicit rounding.
    116      hpi_inv is prescaled by 2^24 so the quadrant ends up in bits 24..31.
    117      This avoids inaccuracies introduced by truncating negative values.  */
    118   r = x * p->hpi_inv;
    119   int n = ((int32_t)r + 0x800000) >> 24;
    120   *np = n;
    121   return x - n * p->hpi;
    122 #endif
    123 }
    124 
    125 /* Reduce the range of XI to a multiple of PI/2 using fast integer arithmetic.
    126    XI is a reinterpreted float and must be >= 2.0f (the sign bit is ignored).
    127    Return the modulo between -PI/4 and PI/4 and store the quadrant in NP.
    128    Reduction uses a table of 4/PI with 192 bits of precision.  A 32x96->128 bit
    129    multiply computes the exact 2.62-bit fixed-point modulo.  Since the result
    130    can have at most 29 leading zeros after the binary point, the double
    131    precision result is accurate to 33 bits.  */
    132 static inline double
    133 reduce_large (uint32_t xi, int *np)
    134 {
    135   const uint32_t *arr = &__inv_pio4[(xi >> 26) & 15];
    136   int shift = (xi >> 23) & 7;
    137   uint64_t n, res0, res1, res2;
    138 
    139   xi = (xi & 0xffffff) | 0x800000;
    140   xi <<= shift;
    141 
    142   res0 = xi * arr[0];
    143   res1 = (uint64_t)xi * arr[4];
    144   res2 = (uint64_t)xi * arr[8];
    145   res0 = (res2 >> 32) | (res0 << 32);
    146   res0 += res1;
    147 
    148   n = (res0 + (1ULL << 61)) >> 62;
    149   res0 -= n << 62;
    150   double x = (int64_t)res0;
    151   *np = n;
    152   return x * pi63;
    153 }
    154