Home | History | Annotate | Download | only in texture
      1 /*------------------------------------------------------------------------
      2  * Vulkan Conformance Tests
      3  * ------------------------
      4  *
      5  * Copyright (c) 2016 The Khronos Group Inc.
      6  * Copyright (c) 2016 Samsung Electronics Co., Ltd.
      7  * Copyright (c) 2014 The Android Open Source Project
      8  *
      9  * Licensed under the Apache License, Version 2.0 (the "License");
     10  * you may not use this file except in compliance with the License.
     11  * You may obtain a copy of the License at
     12  *
     13  *      http://www.apache.org/licenses/LICENSE-2.0
     14  *
     15  * Unless required by applicable law or agreed to in writing, software
     16  * distributed under the License is distributed on an "AS IS" BASIS,
     17  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     18  * See the License for the specific language governing permissions and
     19  * limitations under the License.
     20  *
     21  *//*!
     22  * \file
     23  * \brief Texture test utilities.
     24  *//*--------------------------------------------------------------------*/
     25 
     26 #include "vktTextureTestUtil.hpp"
     27 
     28 #include "deFilePath.hpp"
     29 #include "deMath.h"
     30 #include "tcuCompressedTexture.hpp"
     31 #include "tcuImageIO.hpp"
     32 #include "tcuStringTemplate.hpp"
     33 #include "tcuTestLog.hpp"
     34 #include "vkBuilderUtil.hpp"
     35 #include "vkImageUtil.hpp"
     36 #include "vkPrograms.hpp"
     37 #include "vkQueryUtil.hpp"
     38 #include "vkRefUtil.hpp"
     39 #include "vkTypeUtil.hpp"
     40 #include "vkCmdUtil.hpp"
     41 #include "vkObjUtil.hpp"
     42 #include <map>
     43 #include <string>
     44 #include <vector>
     45 
     46 using tcu::TestLog;
     47 
     48 using namespace vk;
     49 using namespace glu::TextureTestUtil;
     50 
     51 namespace vkt
     52 {
     53 namespace texture
     54 {
     55 namespace util
     56 {
     57 
     58 deUint32 findQueueFamilyIndexWithCaps (const InstanceInterface& vkInstance, VkPhysicalDevice physicalDevice, VkQueueFlags requiredCaps)
     59 {
     60 	const std::vector<VkQueueFamilyProperties>	queueProps	= getPhysicalDeviceQueueFamilyProperties(vkInstance, physicalDevice);
     61 
     62 	for (size_t queueNdx = 0; queueNdx < queueProps.size(); queueNdx++)
     63 	{
     64 		if ((queueProps[queueNdx].queueFlags & requiredCaps) == requiredCaps)
     65 			return (deUint32)queueNdx;
     66 	}
     67 
     68 	TCU_THROW(NotSupportedError, "No matching queue found");
     69 }
     70 
     71 struct ShaderParameters {
     72 	float		bias;				//!< User-supplied bias.
     73 	float		ref;				//!< Reference value for shadow lookups.
     74 	tcu::Vec2	padding;			//!< Shader uniform padding.
     75 	tcu::Vec4	colorScale;			//!< Scale for texture color values.
     76 	tcu::Vec4	colorBias;			//!< Bias for texture color values.
     77 };
     78 
     79 const char* getProgramName(Program program)
     80 {
     81 	switch (program)
     82 	{
     83 		case PROGRAM_2D_FLOAT:			return "2D_FLOAT";
     84 		case PROGRAM_2D_INT:			return "2D_INT";
     85 		case PROGRAM_2D_UINT:			return "2D_UINT";
     86 		case PROGRAM_2D_SHADOW:			return "2D_SHADOW";
     87 		case PROGRAM_2D_FLOAT_BIAS:		return "2D_FLOAT_BIAS";
     88 		case PROGRAM_2D_INT_BIAS:		return "2D_INT_BIAS";
     89 		case PROGRAM_2D_UINT_BIAS:		return "2D_UINT_BIAS";
     90 		case PROGRAM_2D_SHADOW_BIAS:	return "2D_SHADOW_BIAS";
     91 		case PROGRAM_1D_FLOAT:			return "1D_FLOAT";
     92 		case PROGRAM_1D_INT:			return "1D_INT";
     93 		case PROGRAM_1D_UINT:			return "1D_UINT";
     94 		case PROGRAM_1D_SHADOW:			return "1D_SHADOW";
     95 		case PROGRAM_1D_FLOAT_BIAS:		return "1D_FLOAT_BIAS";
     96 		case PROGRAM_1D_INT_BIAS:		return "1D_INT_BIAS";
     97 		case PROGRAM_1D_UINT_BIAS:		return "1D_UINT_BIAS";
     98 		case PROGRAM_1D_SHADOW_BIAS:	return "1D_SHADOW_BIAS";
     99 		case PROGRAM_CUBE_FLOAT:		return "CUBE_FLOAT";
    100 		case PROGRAM_CUBE_INT:			return "CUBE_INT";
    101 		case PROGRAM_CUBE_UINT:			return "CUBE_UINT";
    102 		case PROGRAM_CUBE_SHADOW:		return "CUBE_SHADOW";
    103 		case PROGRAM_CUBE_FLOAT_BIAS:	return "CUBE_FLOAT_BIAS";
    104 		case PROGRAM_CUBE_INT_BIAS:		return "CUBE_INT_BIAS";
    105 		case PROGRAM_CUBE_UINT_BIAS:	return "CUBE_UINT_BIAS";
    106 		case PROGRAM_CUBE_SHADOW_BIAS:	return "CUBE_SHADOW_BIAS";
    107 		case PROGRAM_2D_ARRAY_FLOAT:	return "2D_ARRAY_FLOAT";
    108 		case PROGRAM_2D_ARRAY_INT:		return "2D_ARRAY_INT";
    109 		case PROGRAM_2D_ARRAY_UINT:		return "2D_ARRAY_UINT";
    110 		case PROGRAM_2D_ARRAY_SHADOW:	return "2D_ARRAY_SHADOW";
    111 		case PROGRAM_3D_FLOAT:			return "3D_FLOAT";
    112 		case PROGRAM_3D_INT:			return "3D_INT";
    113 		case PROGRAM_3D_UINT:			return "3D_UINT";
    114 		case PROGRAM_3D_FLOAT_BIAS:		return "3D_FLOAT_BIAS";
    115 		case PROGRAM_3D_INT_BIAS:		return "3D_INT_BIAS";
    116 		case PROGRAM_3D_UINT_BIAS:		return "3D_UINT_BIAS";
    117 		case PROGRAM_CUBE_ARRAY_FLOAT:	return "CUBE_ARRAY_FLOAT";
    118 		case PROGRAM_CUBE_ARRAY_INT:	return "CUBE_ARRAY_INT";
    119 		case PROGRAM_CUBE_ARRAY_UINT:	return "CUBE_ARRAY_UINT";
    120 		case PROGRAM_CUBE_ARRAY_SHADOW:	return "CUBE_ARRAY_SHADOW";
    121 		case PROGRAM_1D_ARRAY_FLOAT:	return "1D_ARRAY_FLOAT";
    122 		case PROGRAM_1D_ARRAY_INT:		return "1D_ARRAY_INT";
    123 		case PROGRAM_1D_ARRAY_UINT:		return "1D_ARRAY_UINT";
    124 		case PROGRAM_1D_ARRAY_SHADOW:	return "1D_ARRAY_SHADOW";
    125 		case PROGRAM_BUFFER_FLOAT:		return "BUFFER_FLOAT";
    126 		case PROGRAM_BUFFER_INT:		return "BUFFER_INT";
    127 		case PROGRAM_BUFFER_UINT:		return "BUFFER_UINT";
    128 		default:
    129 			DE_ASSERT(false);
    130 	}
    131 	return NULL;
    132 }
    133 
    134 VkImageViewType textureTypeToImageViewType (TextureBinding::Type type)
    135 {
    136 	switch (type)
    137 	{
    138 		case TextureBinding::TYPE_2D:			return VK_IMAGE_VIEW_TYPE_2D;
    139 		case TextureBinding::TYPE_2D_ARRAY:		return VK_IMAGE_VIEW_TYPE_2D_ARRAY;
    140 		case TextureBinding::TYPE_CUBE_MAP:		return VK_IMAGE_VIEW_TYPE_CUBE;
    141 		case TextureBinding::TYPE_3D:			return VK_IMAGE_VIEW_TYPE_3D;
    142 		default:
    143 			DE_ASSERT(false);
    144 	}
    145 
    146 	return VK_IMAGE_VIEW_TYPE_2D;
    147 }
    148 
    149 VkImageType imageViewTypeToImageType (VkImageViewType type)
    150 {
    151 	switch (type)
    152 	{
    153 		case VK_IMAGE_VIEW_TYPE_2D:
    154 		case VK_IMAGE_VIEW_TYPE_2D_ARRAY:
    155 		case VK_IMAGE_VIEW_TYPE_CUBE:			return VK_IMAGE_TYPE_2D;
    156 		case VK_IMAGE_VIEW_TYPE_3D:				return VK_IMAGE_TYPE_3D;
    157 		default:
    158 			DE_ASSERT(false);
    159 	}
    160 
    161 	return VK_IMAGE_TYPE_2D;
    162 }
    163 
    164 void initializePrograms(vk::SourceCollections& programCollection, glu::Precision texCoordPrecision, const std::vector<Program>& programs)
    165 {
    166 	static const char* vertShaderTemplate =
    167 		"${VTX_HEADER}"
    168 		"layout(location = 0) ${VTX_IN} highp vec4 a_position;\n"
    169 		"layout(location = 1) ${VTX_IN} ${PRECISION} ${TEXCOORD_TYPE} a_texCoord;\n"
    170 		"layout(location = 0) ${VTX_OUT} ${PRECISION} ${TEXCOORD_TYPE} v_texCoord;\n"
    171 		"${VTX_OUT} gl_PerVertex { vec4 gl_Position; };\n"
    172 		"\n"
    173 		"void main (void)\n"
    174 		"{\n"
    175 		"	gl_Position = a_position;\n"
    176 		"	v_texCoord = a_texCoord;\n"
    177 		"}\n";
    178 
    179 	static const char* fragShaderTemplate =
    180 		"${FRAG_HEADER}"
    181 		"layout(location = 0) ${FRAG_IN} ${PRECISION} ${TEXCOORD_TYPE} v_texCoord;\n"
    182 		"layout(location = 0) out mediump vec4 ${FRAG_COLOR};\n"
    183 		"layout (set=0, binding=0, std140) uniform Block \n"
    184 		"{\n"
    185 		"  ${PRECISION} float u_bias;\n"
    186 		"  ${PRECISION} float u_ref;\n"
    187 		"  ${PRECISION} vec4 u_colorScale;\n"
    188 		"  ${PRECISION} vec4 u_colorBias;\n"
    189 		"};\n\n"
    190 		"layout (set=1, binding=0) uniform ${PRECISION} ${SAMPLER_TYPE} u_sampler;\n"
    191 		"void main (void)\n"
    192 		"{\n"
    193 		"	${FRAG_COLOR} = ${LOOKUP} * u_colorScale + u_colorBias;\n"
    194 		"}\n";
    195 
    196 	tcu::StringTemplate					vertexSource	(vertShaderTemplate);
    197 	tcu::StringTemplate					fragmentSource	(fragShaderTemplate);
    198 
    199 	for (std::vector<Program>::const_iterator programIt = programs.begin(); programIt != programs.end(); ++programIt)
    200 	{
    201 		Program								program	= *programIt;
    202 		std::map<std::string, std::string>	params;
    203 
    204 		bool	isCube		= de::inRange<int>(program, PROGRAM_CUBE_FLOAT, PROGRAM_CUBE_SHADOW_BIAS);
    205 		bool	isArray		= de::inRange<int>(program, PROGRAM_2D_ARRAY_FLOAT, PROGRAM_2D_ARRAY_SHADOW)
    206 								|| de::inRange<int>(program, PROGRAM_1D_ARRAY_FLOAT, PROGRAM_1D_ARRAY_SHADOW);
    207 
    208 		bool	is1D		= de::inRange<int>(program, PROGRAM_1D_FLOAT, PROGRAM_1D_SHADOW_BIAS)
    209 								|| de::inRange<int>(program, PROGRAM_1D_ARRAY_FLOAT, PROGRAM_1D_ARRAY_SHADOW)
    210 								|| de::inRange<int>(program, PROGRAM_BUFFER_FLOAT, PROGRAM_BUFFER_UINT);
    211 
    212 		bool	is2D		= de::inRange<int>(program, PROGRAM_2D_FLOAT, PROGRAM_2D_SHADOW_BIAS)
    213 								|| de::inRange<int>(program, PROGRAM_2D_ARRAY_FLOAT, PROGRAM_2D_ARRAY_SHADOW);
    214 
    215 		bool	is3D		= de::inRange<int>(program, PROGRAM_3D_FLOAT, PROGRAM_3D_UINT_BIAS);
    216 		bool	isCubeArray	= de::inRange<int>(program, PROGRAM_CUBE_ARRAY_FLOAT, PROGRAM_CUBE_ARRAY_SHADOW);
    217 
    218 		const std::string	version	= glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_450);
    219 
    220 		params["FRAG_HEADER"]	= version + "\n";
    221 		params["VTX_HEADER"]	= version + "\n";
    222 		params["VTX_IN"]		= "in";
    223 		params["VTX_OUT"]		= "out";
    224 		params["FRAG_IN"]		= "in";
    225 		params["FRAG_COLOR"]	= "dEQP_FragColor";
    226 
    227 		params["PRECISION"]		= glu::getPrecisionName(texCoordPrecision);
    228 
    229 		if (isCubeArray)
    230 			params["TEXCOORD_TYPE"]	= "vec4";
    231 		else if (isCube || (is2D && isArray) || is3D)
    232 			params["TEXCOORD_TYPE"]	= "vec3";
    233 		else if ((is1D && isArray) || is2D)
    234 			params["TEXCOORD_TYPE"]	= "vec2";
    235 		else if (is1D)
    236 			params["TEXCOORD_TYPE"]	= "float";
    237 		else
    238 			DE_ASSERT(DE_FALSE);
    239 
    240 		const char*	sampler	= DE_NULL;
    241 		const char*	lookup	= DE_NULL;
    242 
    243 		switch (program)
    244 		{
    245 			case PROGRAM_2D_FLOAT:			sampler = "sampler2D";				lookup = "texture(u_sampler, v_texCoord)";												break;
    246 			case PROGRAM_2D_INT:			sampler = "isampler2D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    247 			case PROGRAM_2D_UINT:			sampler = "usampler2D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    248 			case PROGRAM_2D_SHADOW:			sampler = "sampler2DShadow";		lookup = "vec4(texture(u_sampler, vec3(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
    249 			case PROGRAM_2D_FLOAT_BIAS:		sampler = "sampler2D";				lookup = "texture(u_sampler, v_texCoord, u_bias)";										break;
    250 			case PROGRAM_2D_INT_BIAS:		sampler = "isampler2D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
    251 			case PROGRAM_2D_UINT_BIAS:		sampler = "usampler2D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
    252 			case PROGRAM_2D_SHADOW_BIAS:	sampler = "sampler2DShadow";		lookup = "vec4(texture(u_sampler, vec3(v_texCoord, u_ref), u_bias), 0.0, 0.0, 1.0)";	break;
    253 			case PROGRAM_1D_FLOAT:			sampler = "sampler1D";				lookup = "texture(u_sampler, v_texCoord)";												break;
    254 			case PROGRAM_1D_INT:			sampler = "isampler1D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    255 			case PROGRAM_1D_UINT:			sampler = "usampler1D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    256 			case PROGRAM_1D_SHADOW:			sampler = "sampler1DShadow";		lookup = "vec4(texture(u_sampler, vec3(v_texCoord, 0.0, u_ref)), 0.0, 0.0, 1.0)";		break;
    257 			case PROGRAM_1D_FLOAT_BIAS:		sampler = "sampler1D";				lookup = "texture(u_sampler, v_texCoord, u_bias)";										break;
    258 			case PROGRAM_1D_INT_BIAS:		sampler = "isampler1D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
    259 			case PROGRAM_1D_UINT_BIAS:		sampler = "usampler1D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
    260 			case PROGRAM_1D_SHADOW_BIAS:	sampler = "sampler1DShadow";		lookup = "vec4(texture(u_sampler, vec3(v_texCoord, 0.0, u_ref), u_bias), 0.0, 0.0, 1.0)";	break;
    261 			case PROGRAM_CUBE_FLOAT:		sampler = "samplerCube";			lookup = "texture(u_sampler, v_texCoord)";												break;
    262 			case PROGRAM_CUBE_INT:			sampler = "isamplerCube";			lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    263 			case PROGRAM_CUBE_UINT:			sampler = "usamplerCube";			lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    264 			case PROGRAM_CUBE_SHADOW:		sampler = "samplerCubeShadow";		lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
    265 			case PROGRAM_CUBE_FLOAT_BIAS:	sampler = "samplerCube";			lookup = "texture(u_sampler, v_texCoord, u_bias)";										break;
    266 			case PROGRAM_CUBE_INT_BIAS:		sampler = "isamplerCube";			lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
    267 			case PROGRAM_CUBE_UINT_BIAS:	sampler = "usamplerCube";			lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
    268 			case PROGRAM_CUBE_SHADOW_BIAS:	sampler = "samplerCubeShadow";		lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref), u_bias), 0.0, 0.0, 1.0)";	break;
    269 			case PROGRAM_2D_ARRAY_FLOAT:	sampler = "sampler2DArray";			lookup = "texture(u_sampler, v_texCoord)";												break;
    270 			case PROGRAM_2D_ARRAY_INT:		sampler = "isampler2DArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    271 			case PROGRAM_2D_ARRAY_UINT:		sampler = "usampler2DArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    272 			case PROGRAM_2D_ARRAY_SHADOW:	sampler = "sampler2DArrayShadow";	lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
    273 			case PROGRAM_3D_FLOAT:			sampler = "sampler3D";				lookup = "texture(u_sampler, v_texCoord)";												break;
    274 			case PROGRAM_3D_INT:			sampler = "isampler3D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    275 			case PROGRAM_3D_UINT:			sampler = "usampler3D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    276 			case PROGRAM_3D_FLOAT_BIAS:		sampler = "sampler3D";				lookup = "texture(u_sampler, v_texCoord, u_bias)";										break;
    277 			case PROGRAM_3D_INT_BIAS:		sampler = "isampler3D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
    278 			case PROGRAM_3D_UINT_BIAS:		sampler = "usampler3D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
    279 			case PROGRAM_CUBE_ARRAY_FLOAT:	sampler = "samplerCubeArray";		lookup = "texture(u_sampler, v_texCoord)";												break;
    280 			case PROGRAM_CUBE_ARRAY_INT:	sampler = "isamplerCubeArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    281 			case PROGRAM_CUBE_ARRAY_UINT:	sampler = "usamplerCubeArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    282 			case PROGRAM_CUBE_ARRAY_SHADOW:	sampler = "samplerCubeArrayShadow";	lookup = "vec4(texture(u_sampler, v_texCoord, u_ref), 0.0, 0.0, 1.0)";			break;
    283 			case PROGRAM_1D_ARRAY_FLOAT:	sampler = "sampler1DArray";			lookup = "texture(u_sampler, v_texCoord)";												break;
    284 			case PROGRAM_1D_ARRAY_INT:		sampler = "isampler1DArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    285 			case PROGRAM_1D_ARRAY_UINT:		sampler = "usampler1DArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
    286 			case PROGRAM_1D_ARRAY_SHADOW:	sampler = "sampler1DArrayShadow";	lookup = "vec4(texture(u_sampler, vec3(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
    287 			case PROGRAM_BUFFER_FLOAT:		sampler = "samplerBuffer";			lookup = "texelFetch(u_sampler, int(v_texCoord))";										break;
    288 			case PROGRAM_BUFFER_INT:		sampler = "isamplerBuffer";			lookup = "vec4(texelFetch(u_sampler, int(v_texCoord)))";								break;
    289 			case PROGRAM_BUFFER_UINT:		sampler = "usamplerBuffer";			lookup = "vec4(texelFetch(u_sampler, int(v_texCoord)))";								break;
    290 			default:
    291 				DE_ASSERT(false);
    292 		}
    293 
    294 		params["SAMPLER_TYPE"]	= sampler;
    295 		params["LOOKUP"]		= lookup;
    296 
    297 		programCollection.glslSources.add("vertext_" + std::string(getProgramName(program))) << glu::VertexSource(vertexSource.specialize(params));
    298 		programCollection.glslSources.add("fragment_" + std::string(getProgramName(program))) << glu::FragmentSource(fragmentSource.specialize(params));
    299 	}
    300 }
    301 
    302 TextureBinding::TextureBinding (Context& context)
    303 	: m_context				(context)
    304 {
    305 }
    306 
    307 TextureBinding::TextureBinding (Context& context, const TestTextureSp& textureData, const TextureBinding::Type type, const TextureBinding::ImageBackingMode backingMode, const VkComponentMapping componentMapping)
    308 	: m_context				(context)
    309 	, m_type				(type)
    310 	, m_backingMode			(backingMode)
    311 	, m_textureData			(textureData)
    312 	, m_componentMapping	(componentMapping)
    313 {
    314 	updateTextureData(m_textureData, m_type);
    315 }
    316 
    317 void TextureBinding::updateTextureData (const TestTextureSp& textureData, const TextureBinding::Type textureType)
    318 {
    319 	const DeviceInterface&						vkd						= m_context.getDeviceInterface();
    320 	const VkDevice								vkDevice				= m_context.getDevice();
    321 	const bool									sparse					= m_backingMode == IMAGE_BACKING_MODE_SPARSE;
    322 	const deUint32								queueFamilyIndices[]	= {m_context.getUniversalQueueFamilyIndex(), m_context.getSparseQueueFamilyIndex()};
    323 	Allocator&									allocator				= m_context.getDefaultAllocator();
    324 	m_type			= textureType;
    325 	m_textureData	= textureData;
    326 
    327 	const bool									isCube					= m_type == TYPE_CUBE_MAP;
    328 	VkImageCreateFlags							imageCreateFlags		= (isCube ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0) | (sparse ? (VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) : 0);
    329 	const VkImageViewType						imageViewType			= textureTypeToImageViewType(textureType);
    330 	const VkImageType							imageType				= imageViewTypeToImageType(imageViewType);
    331 	const VkImageTiling							imageTiling				= VK_IMAGE_TILING_OPTIMAL;
    332 	const VkImageUsageFlags						imageUsageFlags			= VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
    333 	const VkFormat								format					= textureData->isCompressed() ? mapCompressedTextureFormat(textureData->getCompressedLevel(0, 0).getFormat()) : mapTextureFormat(textureData->getTextureFormat());
    334 	const tcu::UVec3							textureDimension		= textureData->getTextureDimension();
    335 	const deUint32								mipLevels				= textureData->getNumLevels();
    336 	const deUint32								arraySize				= textureData->getArraySize();
    337 	vk::VkImageFormatProperties					imageFormatProperties;
    338 	const VkResult								imageFormatQueryResult	= m_context.getInstanceInterface().getPhysicalDeviceImageFormatProperties(m_context.getPhysicalDevice(), format, imageType, imageTiling, imageUsageFlags, imageCreateFlags, &imageFormatProperties);
    339 	const VkSharingMode							sharingMode				= (sparse && m_context.getUniversalQueueFamilyIndex() != m_context.getSparseQueueFamilyIndex()) ? VK_SHARING_MODE_CONCURRENT : VK_SHARING_MODE_EXCLUSIVE;
    340 
    341 	if (imageFormatQueryResult == VK_ERROR_FORMAT_NOT_SUPPORTED)
    342 	{
    343 		TCU_THROW(NotSupportedError, (std::string("Format not supported: ") + vk::getFormatName(format)).c_str());
    344 	}
    345 	else
    346 		VK_CHECK(imageFormatQueryResult);
    347 
    348 	if (sparse)
    349 	{
    350 		deUint32 numSparseImageProperties = 0;
    351 		m_context.getInstanceInterface().getPhysicalDeviceSparseImageFormatProperties(m_context.getPhysicalDevice(), format, imageType, VK_SAMPLE_COUNT_1_BIT, imageUsageFlags, imageTiling, &numSparseImageProperties, DE_NULL);
    352 		if (numSparseImageProperties == 0)
    353 			TCU_THROW(NotSupportedError, (std::string("Sparse format not supported: ") + vk::getFormatName(format)).c_str());
    354 	}
    355 
    356 	if (imageFormatProperties.maxArrayLayers < arraySize)
    357 		TCU_THROW(NotSupportedError, ("Maximum array layers number for this format is not enough for this test."));
    358 
    359 	if (imageFormatProperties.maxMipLevels < mipLevels)
    360 		TCU_THROW(NotSupportedError, ("Maximum mimap level number for this format is not enough for this test."));
    361 
    362 	if (imageFormatProperties.maxExtent.width < textureDimension.x() ||
    363 		imageFormatProperties.maxExtent.height < textureDimension.y() ||
    364 		imageFormatProperties.maxExtent.depth < textureDimension.z())
    365 	{
    366 		TCU_THROW(NotSupportedError, ("Maximum image dimension for this format is not enough for this test."));
    367 	}
    368 
    369 	// Create image
    370 	const VkImageCreateInfo						imageParams				=
    371 	{
    372 		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,							// VkStructureType			sType;
    373 		DE_NULL,														// const void*				pNext;
    374 		imageCreateFlags,												// VkImageCreateFlags		flags;
    375 		imageType,														// VkImageType				imageType;
    376 		format,															// VkFormat					format;
    377 		{																// VkExtent3D				extent;
    378 			(deUint32)textureDimension.x(),
    379 			(deUint32)textureDimension.y(),
    380 			(deUint32)textureDimension.z()
    381 		},
    382 		mipLevels,														// deUint32					mipLevels;
    383 		arraySize,														// deUint32					arrayLayers;
    384 		VK_SAMPLE_COUNT_1_BIT,											// VkSampleCountFlagBits	samples;
    385 		imageTiling,													// VkImageTiling			tiling;
    386 		imageUsageFlags,												// VkImageUsageFlags		usage;
    387 		sharingMode,													// VkSharingMode			sharingMode;
    388 		sharingMode == VK_SHARING_MODE_CONCURRENT ? 2u : 1u,			// deUint32					queueFamilyIndexCount;
    389 		queueFamilyIndices,												// const deUint32*			pQueueFamilyIndices;
    390 		VK_IMAGE_LAYOUT_UNDEFINED										// VkImageLayout			initialLayout;
    391 	};
    392 
    393 	m_textureImage = createImage(vkd, vkDevice, &imageParams);
    394 
    395 	if (sparse)
    396 	{
    397 		pipeline::uploadTestTextureSparse	(vkd,
    398 											 vkDevice,
    399 											 m_context.getPhysicalDevice(),
    400 											 m_context.getInstanceInterface(),
    401 											 imageParams,
    402 											 m_context.getUniversalQueue(),
    403 											 m_context.getUniversalQueueFamilyIndex(),
    404 											 m_context.getSparseQueue(),
    405 											 allocator,
    406 											 m_allocations,
    407 											 *m_textureData,
    408 											 *m_textureImage);
    409 	}
    410 	else
    411 	{
    412 		m_textureImageMemory = allocator.allocate(getImageMemoryRequirements(vkd, vkDevice, *m_textureImage), MemoryRequirement::Any);
    413 		VK_CHECK(vkd.bindImageMemory(vkDevice, *m_textureImage, m_textureImageMemory->getMemory(), m_textureImageMemory->getOffset()));
    414 
    415 		pipeline::uploadTestTexture	(vkd,
    416 									 vkDevice,
    417 									 m_context.getUniversalQueue(),
    418 									 m_context.getUniversalQueueFamilyIndex(),
    419 									 allocator,
    420 									 *m_textureData,
    421 									 *m_textureImage);
    422 	}
    423 
    424 	updateTextureViewMipLevels(0, mipLevels - 1);
    425 }
    426 
    427 void TextureBinding::updateTextureViewMipLevels (deUint32 baseLevel, deUint32 maxLevel)
    428 {
    429 	const DeviceInterface&						vkd						= m_context.getDeviceInterface();
    430 	const VkDevice								vkDevice				= m_context.getDevice();
    431 	const vk::VkImageViewType					imageViewType			= textureTypeToImageViewType(m_type);
    432 	const vk::VkFormat							format					= m_textureData->isCompressed() ? mapCompressedTextureFormat(m_textureData->getCompressedLevel(0, 0).getFormat()) : mapTextureFormat(m_textureData->getTextureFormat());
    433 	const bool									isShadowTexture			= tcu::hasDepthComponent(m_textureData->getTextureFormat().order);
    434 	const VkImageAspectFlags					aspectMask				= isShadowTexture ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
    435 	const deUint32								layerCount				= m_textureData->getArraySize();
    436 	const vk::VkImageViewCreateInfo				viewParams				=
    437 	{
    438 		vk::VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,	// VkStructureType			sType;
    439 		NULL,											// const voide*				pNext;
    440 		0u,												// VkImageViewCreateFlags	flags;
    441 		*m_textureImage,								// VkImage					image;
    442 		imageViewType,									// VkImageViewType			viewType;
    443 		format,											// VkFormat					format;
    444 		m_componentMapping,								// VkComponentMapping		components;
    445 		{
    446 			aspectMask,									// VkImageAspectFlags	aspectMask;
    447 			baseLevel,									// deUint32				baseMipLevel;
    448 			maxLevel-baseLevel+1,						// deUint32				levelCount;
    449 			0,											// deUint32				baseArrayLayer;
    450 			layerCount									// deUint32				layerCount;
    451 		},												// VkImageSubresourceRange	subresourceRange;
    452 	};
    453 
    454 	m_textureImageView		= createImageView(vkd, vkDevice, &viewParams);
    455 }
    456 
    457 const deUint16		TextureRenderer::s_vertexIndices[6] = { 0, 1, 2, 2, 1, 3 };
    458 const VkDeviceSize	TextureRenderer::s_vertexIndexBufferSize = sizeof(TextureRenderer::s_vertexIndices);
    459 
    460 TextureRenderer::TextureRenderer (Context& context, VkSampleCountFlagBits sampleCount, deUint32 renderWidth, deUint32 renderHeight, VkComponentMapping componentMapping)
    461 	: m_context					(context)
    462 	, m_log						(context.getTestContext().getLog())
    463 	, m_renderWidth				(renderWidth)
    464 	, m_renderHeight			(renderHeight)
    465 	, m_sampleCount				(sampleCount)
    466 	, m_multisampling			(m_sampleCount != VK_SAMPLE_COUNT_1_BIT)
    467 	, m_imageFormat				(VK_FORMAT_R8G8B8A8_UNORM)
    468 	, m_textureFormat			(vk::mapVkFormat(m_imageFormat))
    469 	, m_uniformBufferSize		(sizeof(ShaderParameters))
    470 	, m_resultBufferSize		(renderWidth * renderHeight * m_textureFormat.getPixelSize())
    471 	, m_viewportOffsetX			(0.0f)
    472 	, m_viewportOffsetY			(0.0f)
    473 	, m_viewportWidth			((float)renderWidth)
    474 	, m_viewportHeight			((float)renderHeight)
    475 	, m_componentMapping		(componentMapping)
    476 {
    477 	const DeviceInterface&						vkd						= m_context.getDeviceInterface();
    478 	const VkDevice								vkDevice				= m_context.getDevice();
    479 	const deUint32								queueFamilyIndex		= m_context.getUniversalQueueFamilyIndex();
    480 	Allocator&									allocator				= m_context.getDefaultAllocator();
    481 
    482 	// Command Pool
    483 	m_commandPool = createCommandPool(vkd, vkDevice, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, queueFamilyIndex);
    484 
    485 	// Image
    486 	{
    487 		const VkImageUsageFlags	imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
    488 		VkImageFormatProperties	properties;
    489 
    490 		if ((m_context.getInstanceInterface().getPhysicalDeviceImageFormatProperties(m_context.getPhysicalDevice(),
    491 																					 m_imageFormat,
    492 																					 VK_IMAGE_TYPE_2D,
    493 																					 VK_IMAGE_TILING_OPTIMAL,
    494 																					 imageUsage,
    495 																					 0,
    496 																					 &properties) == VK_ERROR_FORMAT_NOT_SUPPORTED))
    497 		{
    498 			TCU_THROW(NotSupportedError, "Format not supported");
    499 		}
    500 
    501 		if ((properties.sampleCounts & m_sampleCount) != m_sampleCount)
    502 		{
    503 			TCU_THROW(NotSupportedError, "Format not supported");
    504 		}
    505 
    506 		const VkImageCreateInfo					imageCreateInfo			=
    507 		{
    508 			VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,		// VkStructureType			sType;
    509 			DE_NULL,									// const void*				pNext;
    510 			0u,											// VkImageCreateFlags		flags;
    511 			VK_IMAGE_TYPE_2D,							// VkImageType				imageType;
    512 			m_imageFormat,								// VkFormat					format;
    513 			{ m_renderWidth, m_renderHeight, 1u },		// VkExtent3D				extent;
    514 			1u,											// deUint32					mipLevels;
    515 			1u,											// deUint32					arrayLayers;
    516 			m_sampleCount,								// VkSampleCountFlagBits	samples;
    517 			VK_IMAGE_TILING_OPTIMAL,					// VkImageTiling			tiling;
    518 			imageUsage,									// VkImageUsageFlags		usage;
    519 			VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode			sharingMode;
    520 			1u,											// deUint32					queueFamilyIndexCount;
    521 			&queueFamilyIndex,							// const deUint32*			pQueueFamilyIndices;
    522 			VK_IMAGE_LAYOUT_UNDEFINED					// VkImageLayout			initialLayout;
    523 		};
    524 
    525 		m_image = vk::createImage(vkd, vkDevice, &imageCreateInfo, DE_NULL);
    526 
    527 		m_imageMemory	= allocator.allocate(getImageMemoryRequirements(vkd, vkDevice, *m_image), MemoryRequirement::Any);
    528 		VK_CHECK(vkd.bindImageMemory(vkDevice, *m_image, m_imageMemory->getMemory(), m_imageMemory->getOffset()));
    529 	}
    530 
    531 	// Image View
    532 	{
    533 		const VkImageViewCreateInfo				imageViewCreateInfo		=
    534 		{
    535 			VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,	// VkStructureType				sType;
    536 			DE_NULL,									// const void*					pNext;
    537 			0u,											// VkImageViewCreateFlags		flags;
    538 			*m_image,									// VkImage						image;
    539 			VK_IMAGE_VIEW_TYPE_2D,						// VkImageViewType				viewType;
    540 			m_imageFormat,								// VkFormat						format;
    541 			makeComponentMappingRGBA(),					// VkComponentMapping			components;
    542 			{
    543 				VK_IMAGE_ASPECT_COLOR_BIT,					// VkImageAspectFlags			aspectMask;
    544 				0u,											// deUint32						baseMipLevel;
    545 				1u,											// deUint32						mipLevels;
    546 				0u,											// deUint32						baseArrayLayer;
    547 				1u,											// deUint32						arraySize;
    548 			},											// VkImageSubresourceRange		subresourceRange;
    549 		};
    550 
    551 		m_imageView = vk::createImageView(vkd, vkDevice, &imageViewCreateInfo, DE_NULL);
    552 	}
    553 
    554 	if (m_multisampling)
    555 	{
    556 		{
    557 			// Resolved Image
    558 			const VkImageUsageFlags	imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
    559 			VkImageFormatProperties	properties;
    560 
    561 			if ((m_context.getInstanceInterface().getPhysicalDeviceImageFormatProperties(m_context.getPhysicalDevice(),
    562 																						 m_imageFormat,
    563 																						 VK_IMAGE_TYPE_2D,
    564 																						 VK_IMAGE_TILING_OPTIMAL,
    565 																						 imageUsage,
    566 																						 0,
    567 																						 &properties) == VK_ERROR_FORMAT_NOT_SUPPORTED))
    568 			{
    569 				TCU_THROW(NotSupportedError, "Format not supported");
    570 			}
    571 
    572 			const VkImageCreateInfo					imageCreateInfo			=
    573 			{
    574 				VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,		// VkStructureType			sType;
    575 				DE_NULL,									// const void*				pNext;
    576 				0u,											// VkImageCreateFlags		flags;
    577 				VK_IMAGE_TYPE_2D,							// VkImageType				imageType;
    578 				m_imageFormat,								// VkFormat					format;
    579 				{ m_renderWidth, m_renderHeight, 1u },		// VkExtent3D				extent;
    580 				1u,											// deUint32					mipLevels;
    581 				1u,											// deUint32					arrayLayers;
    582 				VK_SAMPLE_COUNT_1_BIT,						// VkSampleCountFlagBits	samples;
    583 				VK_IMAGE_TILING_OPTIMAL,					// VkImageTiling			tiling;
    584 				imageUsage,									// VkImageUsageFlags		usage;
    585 				VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode			sharingMode;
    586 				1u,											// deUint32					queueFamilyIndexCount;
    587 				&queueFamilyIndex,							// const deUint32*			pQueueFamilyIndices;
    588 				VK_IMAGE_LAYOUT_UNDEFINED					// VkImageLayout			initialLayout;
    589 			};
    590 
    591 			m_resolvedImage			= vk::createImage(vkd, vkDevice, &imageCreateInfo, DE_NULL);
    592 			m_resolvedImageMemory	= allocator.allocate(getImageMemoryRequirements(vkd, vkDevice, *m_resolvedImage), MemoryRequirement::Any);
    593 			VK_CHECK(vkd.bindImageMemory(vkDevice, *m_resolvedImage, m_resolvedImageMemory->getMemory(), m_resolvedImageMemory->getOffset()));
    594 		}
    595 
    596 		// Resolved Image View
    597 		{
    598 			const VkImageViewCreateInfo				imageViewCreateInfo		=
    599 			{
    600 				VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,	// VkStructureType				sType;
    601 				DE_NULL,									// const void*					pNext;
    602 				0u,											// VkImageViewCreateFlags		flags;
    603 				*m_resolvedImage,							// VkImage						image;
    604 				VK_IMAGE_VIEW_TYPE_2D,						// VkImageViewType				viewType;
    605 				m_imageFormat,								// VkFormat						format;
    606 				makeComponentMappingRGBA(),					// VkComponentMapping			components;
    607 				{
    608 					VK_IMAGE_ASPECT_COLOR_BIT,					// VkImageAspectFlags			aspectMask;
    609 					0u,											// deUint32						baseMipLevel;
    610 					1u,											// deUint32						mipLevels;
    611 					0u,											// deUint32						baseArrayLayer;
    612 					1u,											// deUint32						arraySize;
    613 				},											// VkImageSubresourceRange		subresourceRange;
    614 			};
    615 
    616 			m_resolvedImageView = vk::createImageView(vkd, vkDevice, &imageViewCreateInfo, DE_NULL);
    617 		}
    618 	}
    619 
    620 	// Render Pass
    621 	{
    622 		const VkImageLayout						imageLayout				= VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    623 		const VkAttachmentDescription			attachmentDesc[]		=
    624 		{
    625 			{
    626 				0u,													// VkAttachmentDescriptionFlags		flags;
    627 				m_imageFormat,										// VkFormat							format;
    628 				m_sampleCount,										// VkSampleCountFlagBits			samples;
    629 				VK_ATTACHMENT_LOAD_OP_LOAD,							// VkAttachmentLoadOp				loadOp;
    630 				VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp				storeOp;
    631 				VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				stencilLoadOp;
    632 				VK_ATTACHMENT_STORE_OP_DONT_CARE,					// VkAttachmentStoreOp				stencilStoreOp;
    633 				imageLayout,										// VkImageLayout					initialLayout;
    634 				imageLayout,										// VkImageLayout					finalLayout;
    635 			},
    636 			{
    637 				0u,													// VkAttachmentDescriptionFlags		flags;
    638 				m_imageFormat,										// VkFormat							format;
    639 				VK_SAMPLE_COUNT_1_BIT,								// VkSampleCountFlagBits			samples;
    640 				VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				loadOp;
    641 				VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp				storeOp;
    642 				VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				stencilLoadOp;
    643 				VK_ATTACHMENT_STORE_OP_DONT_CARE,					// VkAttachmentStoreOp				stencilStoreOp;
    644 				imageLayout,										// VkImageLayout					initialLayout;
    645 				imageLayout,										// VkImageLayout					finalLayout;
    646 			}
    647 		};
    648 
    649 		const VkAttachmentReference				attachmentRef			=
    650 		{
    651 			0u,													// deUint32							attachment;
    652 			imageLayout,										// VkImageLayout					layout;
    653 		};
    654 
    655 		const VkAttachmentReference				resolveAttachmentRef	=
    656 		{
    657 			1u,													// deUint32							attachment;
    658 			imageLayout,										// VkImageLayout					layout;
    659 		};
    660 
    661 		const VkSubpassDescription				subpassDesc				=
    662 		{
    663 			0u,													// VkSubpassDescriptionFlags		flags;
    664 			VK_PIPELINE_BIND_POINT_GRAPHICS,					// VkPipelineBindPoint				pipelineBindPoint;
    665 			0u,													// deUint32							inputAttachmentCount;
    666 			DE_NULL,											// const VkAttachmentReference*		pInputAttachments;
    667 			1u,													// deUint32							colorAttachmentCount;
    668 			&attachmentRef,										// const VkAttachmentReference*		pColorAttachments;
    669 			m_multisampling ? &resolveAttachmentRef : DE_NULL,	// const VkAttachmentReference*		pResolveAttachments;
    670 			DE_NULL,											// const VkAttachmentReference*		pDepthStencilAttachment;
    671 			0u,													// deUint32							preserveAttachmentCount;
    672 			DE_NULL,											// const VkAttachmentReference*		pPreserveAttachments;
    673 		};
    674 
    675 		const VkRenderPassCreateInfo			renderPassCreateInfo	=
    676 		{
    677 			VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,			// VkStructureType					sType;
    678 			DE_NULL,											// const void*						pNext;
    679 			0u,													// VkRenderPassCreateFlags			flags;
    680 			m_multisampling ? 2u : 1u,							// deUint32							attachmentCount;
    681 			attachmentDesc,										// const VkAttachmentDescription*	pAttachments;
    682 			1u,													// deUint32							subpassCount;
    683 			&subpassDesc,										// const VkSubpassDescription*		pSubpasses;
    684 			0u,													// deUint32							dependencyCount;
    685 			DE_NULL,											// const VkSubpassDependency*		pDependencies;
    686 		};
    687 
    688 		m_renderPass = createRenderPass(vkd, vkDevice, &renderPassCreateInfo, DE_NULL);
    689 	}
    690 
    691 	// Vertex index buffer
    692 	{
    693 		const VkBufferCreateInfo			indexBufferParams		=
    694 		{
    695 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
    696 			DE_NULL,									// const void*			pNext;
    697 			0u,											// VkBufferCreateFlags	flags;
    698 			s_vertexIndexBufferSize,					// VkDeviceSize			size;
    699 			VK_BUFFER_USAGE_INDEX_BUFFER_BIT,			// VkBufferUsageFlags	usage;
    700 			VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
    701 			1u,											// deUint32				queueFamilyCount;
    702 			&queueFamilyIndex							// const deUint32*		pQueueFamilyIndices;
    703 		};
    704 
    705 		m_vertexIndexBuffer			= createBuffer(vkd, vkDevice, &indexBufferParams);
    706 		m_vertexIndexBufferMemory	= allocator.allocate(getBufferMemoryRequirements(vkd, vkDevice, *m_vertexIndexBuffer), MemoryRequirement::HostVisible);
    707 
    708 		VK_CHECK(vkd.bindBufferMemory(vkDevice, *m_vertexIndexBuffer, m_vertexIndexBufferMemory->getMemory(), m_vertexIndexBufferMemory->getOffset()));
    709 
    710 		// Load vertices into vertex buffer
    711 		deMemcpy(m_vertexIndexBufferMemory->getHostPtr(), s_vertexIndices, s_vertexIndexBufferSize);
    712 		flushMappedMemoryRange(vkd, vkDevice, m_vertexIndexBufferMemory->getMemory(), m_vertexIndexBufferMemory->getOffset(), VK_WHOLE_SIZE);
    713 	}
    714 
    715 	// FrameBuffer
    716 	{
    717 		const VkImageView						attachments[]			=
    718 		{
    719 			*m_imageView,
    720 			*m_resolvedImageView,
    721 		};
    722 
    723 		const VkFramebufferCreateInfo			framebufferCreateInfo	=
    724 		{
    725 			VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,	// VkStructureType			sType;
    726 			DE_NULL,									// const void*				pNext;
    727 			0u,											// VkFramebufferCreateFlags	flags;
    728 			*m_renderPass,								// VkRenderPass				renderPass;
    729 			m_multisampling ? 2u : 1u,					// deUint32					attachmentCount;
    730 			attachments,								// const VkImageView*		pAttachments;
    731 			m_renderWidth,								// deUint32					width;
    732 			m_renderHeight,								// deUint32					height;
    733 			1u,											// deUint32					layers;
    734 		};
    735 
    736 		m_frameBuffer = createFramebuffer(vkd, vkDevice, &framebufferCreateInfo, DE_NULL);
    737 	}
    738 
    739 	// Uniform Buffer
    740 	{
    741 		const VkBufferCreateInfo				bufferCreateInfo		=
    742 		{
    743 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
    744 			DE_NULL,									// const void*			pNext;
    745 			0u,											// VkBufferCreateFlags	flags;
    746 			m_uniformBufferSize,						// VkDeviceSize			size;
    747 			VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,			// VkBufferUsageFlags	usage;
    748 			VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
    749 			1u,											// deUint32				queueFamilyIndexCount;
    750 			&queueFamilyIndex							// const deUint32*		pQueueFamilyIndices;
    751 		};
    752 
    753 		m_uniformBuffer			= createBuffer(vkd, vkDevice, &bufferCreateInfo);
    754 		m_uniformBufferMemory	= allocator.allocate(getBufferMemoryRequirements(vkd, vkDevice, *m_uniformBuffer), MemoryRequirement::HostVisible);
    755 
    756 		VK_CHECK(vkd.bindBufferMemory(vkDevice, *m_uniformBuffer, m_uniformBufferMemory->getMemory(), m_uniformBufferMemory->getOffset()));
    757 	}
    758 
    759 	// DescriptorPool
    760 	{
    761 		DescriptorPoolBuilder					descriptorPoolBuilder;
    762 
    763 		descriptorPoolBuilder.addType(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
    764 		descriptorPoolBuilder.addType(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
    765 		m_descriptorPool = descriptorPoolBuilder.build(vkd, vkDevice, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 2u);
    766 	}
    767 
    768 	// Result Buffer
    769 	{
    770 		const VkBufferCreateInfo				bufferCreateInfo		=
    771 		{
    772 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
    773 			DE_NULL,									// const void*			pNext;
    774 			0u,											// VkBufferCreateFlags	flags;
    775 			m_resultBufferSize,							// VkDeviceSize			size;
    776 			VK_BUFFER_USAGE_TRANSFER_DST_BIT,			// VkBufferUsageFlags	usage;
    777 			VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
    778 			1u,											// deUint32				queueFamilyIndexCount;
    779 			&queueFamilyIndex							// const deUint32*		pQueueFamilyIndices;
    780 		};
    781 
    782 		m_resultBuffer			= createBuffer(vkd, vkDevice, &bufferCreateInfo);
    783 		m_resultBufferMemory	= allocator.allocate(getBufferMemoryRequirements(vkd, vkDevice, *m_resultBuffer), MemoryRequirement::HostVisible);
    784 
    785 		VK_CHECK(vkd.bindBufferMemory(vkDevice, *m_resultBuffer, m_resultBufferMemory->getMemory(), m_resultBufferMemory->getOffset()));
    786 	}
    787 
    788 	clearImage(*m_image);
    789 	if(m_multisampling)
    790 		clearImage(*m_resolvedImage);
    791 }
    792 
    793 TextureRenderer::~TextureRenderer (void)
    794 {
    795 }
    796 
    797 void TextureRenderer::clearImage(VkImage image)
    798 {
    799 	const DeviceInterface&			vkd					= m_context.getDeviceInterface();
    800 	const VkDevice					vkDevice			= m_context.getDevice();
    801 	Move<VkCommandBuffer>			commandBuffer;
    802 	const VkQueue					queue				= m_context.getUniversalQueue();
    803 
    804 	const VkImageSubresourceRange	subResourcerange	=
    805 	{
    806 		VK_IMAGE_ASPECT_COLOR_BIT,		// VkImageAspectFlags	aspectMask;
    807 		0,								// deUint32				baseMipLevel;
    808 		1,								// deUint32				levelCount;
    809 		0,								// deUint32				baseArrayLayer;
    810 		1								// deUint32				layerCount;
    811 	};
    812 
    813 	commandBuffer = allocateCommandBuffer(vkd, vkDevice, *m_commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
    814 
    815 	beginCommandBuffer(vkd, *commandBuffer);
    816 
    817 	addImageTransitionBarrier(*commandBuffer, image,
    818 							  VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,				// VkPipelineStageFlags		srcStageMask
    819 							  VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,				// VkPipelineStageFlags		dstStageMask
    820 							  0,												// VkAccessFlags			srcAccessMask
    821 							  VK_ACCESS_TRANSFER_WRITE_BIT,						// VkAccessFlags			dstAccessMask
    822 							  VK_IMAGE_LAYOUT_UNDEFINED,						// VkImageLayout			oldLayout;
    823 							  VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);			// VkImageLayout			newLayout;
    824 
    825 	VkClearColorValue color = makeClearValueColorF32(0.0f, 0.0f, 0.0f, 1.0f).color;
    826 	vkd.cmdClearColorImage(*commandBuffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &color, 1, &subResourcerange);
    827 
    828 	addImageTransitionBarrier(*commandBuffer, image,
    829 							  VK_PIPELINE_STAGE_TRANSFER_BIT,					// VkPipelineStageFlags		srcStageMask
    830 							  VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,				// VkPipelineStageFlags		dstStageMask
    831 							  VK_ACCESS_TRANSFER_WRITE_BIT,						// VkAccessFlags			srcAccessMask
    832 							  VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,				// VkAccessFlags			dstAccessMask
    833 							  VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,				// VkImageLayout			oldLayout;
    834 							  VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);		// VkImageLayout			newLayout;
    835 
    836 	endCommandBuffer(vkd, *commandBuffer);
    837 
    838 	submitCommandsAndWait(vkd, vkDevice, queue, commandBuffer.get());
    839 }
    840 
    841 void TextureRenderer::add2DTexture (const TestTexture2DSp& texture, TextureBinding::ImageBackingMode backingMode)
    842 {
    843 	m_textureBindings.push_back(TextureBindingSp(new TextureBinding(m_context, texture, TextureBinding::TYPE_2D, backingMode, m_componentMapping)));
    844 }
    845 
    846 void TextureRenderer::addCubeTexture (const TestTextureCubeSp& texture, TextureBinding::ImageBackingMode backingMode)
    847 {
    848 	m_textureBindings.push_back(TextureBindingSp(new TextureBinding(m_context, texture, TextureBinding::TYPE_CUBE_MAP, backingMode, m_componentMapping)));
    849 }
    850 
    851 void TextureRenderer::add2DArrayTexture (const TestTexture2DArraySp& texture, TextureBinding::ImageBackingMode backingMode)
    852 {
    853 	m_textureBindings.push_back(TextureBindingSp(new TextureBinding(m_context, texture, TextureBinding::TYPE_2D_ARRAY, backingMode, m_componentMapping)));
    854 }
    855 
    856 void TextureRenderer::add3DTexture (const TestTexture3DSp& texture, TextureBinding::ImageBackingMode backingMode)
    857 {
    858 	m_textureBindings.push_back(TextureBindingSp(new TextureBinding(m_context, texture, TextureBinding::TYPE_3D, backingMode, m_componentMapping)));
    859 }
    860 
    861 const pipeline::TestTexture2D& TextureRenderer::get2DTexture (int textureIndex) const
    862 {
    863 	DE_ASSERT(m_textureBindings.size() > (size_t)textureIndex);
    864 	DE_ASSERT(m_textureBindings[textureIndex]->getType() == TextureBinding::TYPE_2D);
    865 
    866 	return dynamic_cast<const pipeline::TestTexture2D&>(m_textureBindings[textureIndex]->getTestTexture());
    867 }
    868 
    869 const pipeline::TestTextureCube& TextureRenderer::getCubeTexture (int textureIndex) const
    870 {
    871 	DE_ASSERT(m_textureBindings.size() > (size_t)textureIndex);
    872 	DE_ASSERT(m_textureBindings[textureIndex]->getType() == TextureBinding::TYPE_CUBE_MAP);
    873 
    874 	return dynamic_cast<const pipeline::TestTextureCube&>(m_textureBindings[textureIndex]->getTestTexture());
    875 }
    876 
    877 const pipeline::TestTexture2DArray& TextureRenderer::get2DArrayTexture (int textureIndex) const
    878 {
    879 	DE_ASSERT(m_textureBindings.size() > (size_t)textureIndex);
    880 	DE_ASSERT(m_textureBindings[textureIndex]->getType() == TextureBinding::TYPE_2D_ARRAY);
    881 
    882 	return dynamic_cast<const pipeline::TestTexture2DArray&>(m_textureBindings[textureIndex]->getTestTexture());
    883 }
    884 
    885 const pipeline::TestTexture3D& TextureRenderer::get3DTexture (int textureIndex) const
    886 {
    887 	DE_ASSERT(m_textureBindings.size() > (size_t)textureIndex);
    888 	DE_ASSERT(m_textureBindings[textureIndex]->getType() == TextureBinding::TYPE_3D);
    889 
    890 	return dynamic_cast<const pipeline::TestTexture3D&>(m_textureBindings[textureIndex]->getTestTexture());
    891 }
    892 
    893 void TextureRenderer::setViewport (float viewportX, float viewportY, float viewportW, float viewportH)
    894 {
    895 	m_viewportHeight = viewportH;
    896 	m_viewportWidth = viewportW;
    897 	m_viewportOffsetX = viewportX;
    898 	m_viewportOffsetY = viewportY;
    899 }
    900 
    901 TextureBinding* TextureRenderer::getTextureBinding (int textureIndex) const
    902 {
    903 	DE_ASSERT(m_textureBindings.size() > (size_t)textureIndex);
    904 	return m_textureBindings[textureIndex].get();
    905 }
    906 
    907 deUint32 TextureRenderer::getRenderWidth (void) const
    908 {
    909 	return m_renderWidth;
    910 }
    911 
    912 deUint32 TextureRenderer::getRenderHeight (void) const
    913 {
    914 	return m_renderHeight;
    915 }
    916 
    917 Move<VkDescriptorSet> TextureRenderer::makeDescriptorSet (const VkDescriptorPool descriptorPool, const VkDescriptorSetLayout setLayout) const
    918 {
    919 	const DeviceInterface&						vkd						= m_context.getDeviceInterface();
    920 	const VkDevice								vkDevice				= m_context.getDevice();
    921 
    922 	const VkDescriptorSetAllocateInfo			allocateParams			=
    923 	{
    924 			VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,		// VkStructureType					sType
    925 			DE_NULL,											// const void*						pNext
    926 			descriptorPool,										// VkDescriptorPool					descriptorPool
    927 			1u,													// deUint32							descriptorSetCount
    928 			&setLayout,											// const VkDescriptorSetLayout*		pSetLayouts
    929 	};
    930 	return allocateDescriptorSet(vkd, vkDevice, &allocateParams);
    931 }
    932 
    933 void TextureRenderer::addImageTransitionBarrier(VkCommandBuffer commandBuffer, VkImage image, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, VkAccessFlags srcAccessMask, VkAccessFlags dstAccessMask, VkImageLayout oldLayout, VkImageLayout newLayout) const
    934 {
    935 	const DeviceInterface&			vkd					= m_context.getDeviceInterface();
    936 
    937 	const VkImageSubresourceRange	subResourcerange	=
    938 	{
    939 		VK_IMAGE_ASPECT_COLOR_BIT,		// VkImageAspectFlags	aspectMask;
    940 		0,								// deUint32				baseMipLevel;
    941 		1,								// deUint32				levelCount;
    942 		0,								// deUint32				baseArrayLayer;
    943 		1								// deUint32				layerCount;
    944 	};
    945 
    946 	const VkImageMemoryBarrier		imageBarrier		=
    947 	{
    948 		VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,		// VkStructureType			sType;
    949 		DE_NULL,									// const void*				pNext;
    950 		srcAccessMask,								// VkAccessFlags			srcAccessMask;
    951 		dstAccessMask,								// VkAccessFlags			dstAccessMask;
    952 		oldLayout,									// VkImageLayout			oldLayout;
    953 		newLayout,									// VkImageLayout			newLayout;
    954 		VK_QUEUE_FAMILY_IGNORED,					// deUint32					srcQueueFamilyIndex;
    955 		VK_QUEUE_FAMILY_IGNORED,					// deUint32					destQueueFamilyIndex;
    956 		image,										// VkImage					image;
    957 		subResourcerange							// VkImageSubresourceRange	subresourceRange;
    958 	};
    959 
    960 	vkd.cmdPipelineBarrier(commandBuffer, srcStageMask, dstStageMask, 0, 0, DE_NULL, 0, DE_NULL, 1, &imageBarrier);
    961 }
    962 
    963 void TextureRenderer::renderQuad (tcu::Surface& result, int texUnit, const float* texCoord, TextureType texType)
    964 {
    965 	renderQuad(result, texUnit, texCoord, ReferenceParams(texType));
    966 }
    967 
    968 void TextureRenderer::renderQuad (tcu::Surface& result, int texUnit, const float* texCoord, const ReferenceParams& params)
    969 {
    970 	const float	maxAnisotropy = 1.0f;
    971 	float		positions[]	=
    972 	{
    973 		-1.0,	-1.0f,	0.0f,	1.0f,
    974 		-1.0f,	+1.0f,	0.0f,	1.0f,
    975 		+1.0f,	-1.0f,	0.0f,	1.0f,
    976 		+1.0f,	+1.0f,	0.0f,	1.0f
    977 	};
    978 	renderQuad(result, positions, texUnit, texCoord, params, maxAnisotropy);
    979 }
    980 
    981 void TextureRenderer::renderQuad (tcu::Surface&									result,
    982 								  const float*									positions,
    983 								  int											texUnit,
    984 								  const float*									texCoord,
    985 								  const glu::TextureTestUtil::ReferenceParams&	params,
    986 								  const float									maxAnisotropy)
    987 {
    988 	const DeviceInterface&		vkd						= m_context.getDeviceInterface();
    989 	const VkDevice				vkDevice				= m_context.getDevice();
    990 	const VkQueue				queue					= m_context.getUniversalQueue();
    991 	const deUint32				queueFamilyIndex		= m_context.getUniversalQueueFamilyIndex();
    992 	Allocator&					allocator				= m_context.getDefaultAllocator();
    993 
    994 	tcu::Vec4					wCoord					= params.flags & RenderParams::PROJECTED ? params.w : tcu::Vec4(1.0f);
    995 	bool						useBias					= !!(params.flags & RenderParams::USE_BIAS);
    996 	bool						logUniforms				= !!(params.flags & RenderParams::LOG_UNIFORMS);
    997 
    998 	// Render quad with texture.
    999 	float						position[]				=
   1000 	{
   1001 		positions[0]*wCoord.x(),	positions[1]*wCoord.x(),	positions[2],	positions[3]*wCoord.x(),
   1002 		positions[4]*wCoord.y(),	positions[5]*wCoord.y(),	positions[6],	positions[7]*wCoord.y(),
   1003 		positions[8]*wCoord.z(),	positions[9]*wCoord.z(),	positions[10],	positions[11]*wCoord.z(),
   1004 		positions[12]*wCoord.w(),	positions[13]*wCoord.w(),	positions[14],	positions[15]*wCoord.w()
   1005 	};
   1006 
   1007 	Program						progSpec				= PROGRAM_LAST;
   1008 	int							numComps				= 0;
   1009 
   1010 	if (params.texType == TEXTURETYPE_2D)
   1011 	{
   1012 		numComps = 2;
   1013 
   1014 		switch (params.samplerType)
   1015 		{
   1016 			case SAMPLERTYPE_FLOAT:		progSpec = useBias ? PROGRAM_2D_FLOAT_BIAS	: PROGRAM_2D_FLOAT;		break;
   1017 			case SAMPLERTYPE_INT:		progSpec = useBias ? PROGRAM_2D_INT_BIAS	: PROGRAM_2D_INT;		break;
   1018 			case SAMPLERTYPE_UINT:		progSpec = useBias ? PROGRAM_2D_UINT_BIAS	: PROGRAM_2D_UINT;		break;
   1019 			case SAMPLERTYPE_SHADOW:	progSpec = useBias ? PROGRAM_2D_SHADOW_BIAS	: PROGRAM_2D_SHADOW;	break;
   1020 			default:					DE_ASSERT(false);
   1021 		}
   1022 	}
   1023 	else if (params.texType == TEXTURETYPE_1D)
   1024 	{
   1025 		numComps = 1;
   1026 
   1027 		switch (params.samplerType)
   1028 		{
   1029 			case SAMPLERTYPE_FLOAT:		progSpec = useBias ? PROGRAM_1D_FLOAT_BIAS	: PROGRAM_1D_FLOAT;		break;
   1030 			case SAMPLERTYPE_INT:		progSpec = useBias ? PROGRAM_1D_INT_BIAS	: PROGRAM_1D_INT;		break;
   1031 			case SAMPLERTYPE_UINT:		progSpec = useBias ? PROGRAM_1D_UINT_BIAS	: PROGRAM_1D_UINT;		break;
   1032 			case SAMPLERTYPE_SHADOW:	progSpec = useBias ? PROGRAM_1D_SHADOW_BIAS	: PROGRAM_1D_SHADOW;	break;
   1033 			default:					DE_ASSERT(false);
   1034 		}
   1035 	}
   1036 	else if (params.texType == TEXTURETYPE_CUBE)
   1037 	{
   1038 		numComps = 3;
   1039 
   1040 		switch (params.samplerType)
   1041 		{
   1042 			case SAMPLERTYPE_FLOAT:		progSpec = useBias ? PROGRAM_CUBE_FLOAT_BIAS	: PROGRAM_CUBE_FLOAT;	break;
   1043 			case SAMPLERTYPE_INT:		progSpec = useBias ? PROGRAM_CUBE_INT_BIAS		: PROGRAM_CUBE_INT;		break;
   1044 			case SAMPLERTYPE_UINT:		progSpec = useBias ? PROGRAM_CUBE_UINT_BIAS		: PROGRAM_CUBE_UINT;	break;
   1045 			case SAMPLERTYPE_SHADOW:	progSpec = useBias ? PROGRAM_CUBE_SHADOW_BIAS	: PROGRAM_CUBE_SHADOW;	break;
   1046 			default:					DE_ASSERT(false);
   1047 		}
   1048 	}
   1049 	else if (params.texType == TEXTURETYPE_3D)
   1050 	{
   1051 		numComps = 3;
   1052 
   1053 		switch (params.samplerType)
   1054 		{
   1055 			case SAMPLERTYPE_FLOAT:		progSpec = useBias ? PROGRAM_3D_FLOAT_BIAS	: PROGRAM_3D_FLOAT;		break;
   1056 			case SAMPLERTYPE_INT:		progSpec = useBias ? PROGRAM_3D_INT_BIAS	: PROGRAM_3D_INT;		break;
   1057 			case SAMPLERTYPE_UINT:		progSpec = useBias ? PROGRAM_3D_UINT_BIAS	: PROGRAM_3D_UINT;		break;
   1058 			default:					DE_ASSERT(false);
   1059 		}
   1060 	}
   1061 	else if (params.texType == TEXTURETYPE_2D_ARRAY)
   1062 	{
   1063 		DE_ASSERT(!useBias); // \todo [2012-02-17 pyry] Support bias.
   1064 
   1065 		numComps = 3;
   1066 
   1067 		switch (params.samplerType)
   1068 		{
   1069 			case SAMPLERTYPE_FLOAT:		progSpec = PROGRAM_2D_ARRAY_FLOAT;	break;
   1070 			case SAMPLERTYPE_INT:		progSpec = PROGRAM_2D_ARRAY_INT;	break;
   1071 			case SAMPLERTYPE_UINT:		progSpec = PROGRAM_2D_ARRAY_UINT;	break;
   1072 			case SAMPLERTYPE_SHADOW:	progSpec = PROGRAM_2D_ARRAY_SHADOW;	break;
   1073 			default:					DE_ASSERT(false);
   1074 		}
   1075 	}
   1076 	else if (params.texType == TEXTURETYPE_CUBE_ARRAY)
   1077 	{
   1078 		DE_ASSERT(!useBias);
   1079 
   1080 		numComps = 4;
   1081 
   1082 		switch (params.samplerType)
   1083 		{
   1084 			case SAMPLERTYPE_FLOAT:		progSpec = PROGRAM_CUBE_ARRAY_FLOAT;	break;
   1085 			case SAMPLERTYPE_INT:		progSpec = PROGRAM_CUBE_ARRAY_INT;		break;
   1086 			case SAMPLERTYPE_UINT:		progSpec = PROGRAM_CUBE_ARRAY_UINT;		break;
   1087 			case SAMPLERTYPE_SHADOW:	progSpec = PROGRAM_CUBE_ARRAY_SHADOW;	break;
   1088 			default:					DE_ASSERT(false);
   1089 		}
   1090 	}
   1091 	else if (params.texType == TEXTURETYPE_1D_ARRAY)
   1092 	{
   1093 		DE_ASSERT(!useBias); // \todo [2012-02-17 pyry] Support bias.
   1094 
   1095 		numComps = 2;
   1096 
   1097 		switch (params.samplerType)
   1098 		{
   1099 			case SAMPLERTYPE_FLOAT:		progSpec = PROGRAM_1D_ARRAY_FLOAT;	break;
   1100 			case SAMPLERTYPE_INT:		progSpec = PROGRAM_1D_ARRAY_INT;	break;
   1101 			case SAMPLERTYPE_UINT:		progSpec = PROGRAM_1D_ARRAY_UINT;	break;
   1102 			case SAMPLERTYPE_SHADOW:	progSpec = PROGRAM_1D_ARRAY_SHADOW;	break;
   1103 			default:					DE_ASSERT(false);
   1104 		}
   1105 	}
   1106 	else if (params.texType == TEXTURETYPE_BUFFER)
   1107 	{
   1108 		numComps = 1;
   1109 
   1110 		switch (params.samplerType)
   1111 		{
   1112 			case SAMPLERTYPE_FETCH_FLOAT:	progSpec = PROGRAM_BUFFER_FLOAT;	break;
   1113 			case SAMPLERTYPE_FETCH_INT:		progSpec = PROGRAM_BUFFER_INT;		break;
   1114 			case SAMPLERTYPE_FETCH_UINT:	progSpec = PROGRAM_BUFFER_UINT;		break;
   1115 			default:						DE_ASSERT(false);
   1116 		}
   1117 	}
   1118 	else
   1119 		DE_ASSERT(DE_FALSE);
   1120 
   1121 	Unique<VkShaderModule>					vertexShaderModule			(createShaderModule(vkd, vkDevice, m_context.getBinaryCollection().get("vertext_" + std::string(getProgramName(progSpec))), 0));
   1122 	Unique<VkShaderModule>					fragmentShaderModule		(createShaderModule(vkd, vkDevice, m_context.getBinaryCollection().get("fragment_" + std::string(getProgramName(progSpec))), 0));
   1123 
   1124 	Move<VkSampler>							sampler;
   1125 	Move<VkDescriptorSet>					descriptorSet[2];
   1126 	Move<VkDescriptorSetLayout>				descriptorSetLayout[2];
   1127 	Move<VkPipelineLayout>					pipelineLayout;
   1128 
   1129 	Move<VkCommandBuffer>					commandBuffer;
   1130 	Move<VkPipeline>						graphicsPipeline;
   1131 	Move<VkBuffer>							vertexBuffer;
   1132 	de::MovePtr<Allocation>					vertexBufferMemory;
   1133 
   1134 	const VkDeviceSize						vertexBufferOffset			= 0;
   1135 	const deUint32							vertexPositionStrideSize	= deUint32(sizeof(tcu::Vec4));
   1136 	const deUint32							vertexTextureStrideSize		= deUint32(numComps * sizeof(float));
   1137 	const deUint32							positionDataSize			= vertexPositionStrideSize * 4u;
   1138 	const deUint32							textureCoordDataSize		= vertexTextureStrideSize * 4u;
   1139 
   1140 	const VkPhysicalDeviceProperties		properties					= m_context.getDeviceProperties();
   1141 
   1142 	if (positionDataSize > properties.limits.maxVertexInputAttributeOffset)
   1143 	{
   1144 		std::stringstream message;
   1145 		message << "Larger vertex input attribute offset is needed (" << positionDataSize << ") than the available maximum (" << properties.limits.maxVertexInputAttributeOffset << ").";
   1146 		TCU_THROW(NotSupportedError, message.str().c_str());
   1147 	}
   1148 
   1149 	// Create Graphics Pipeline
   1150 	{
   1151 		const VkVertexInputBindingDescription		vertexInputBindingDescription[2]	=
   1152 		{
   1153 			{
   1154 				0u,								// deUint32					binding;
   1155 				vertexPositionStrideSize,		// deUint32					strideInBytes;
   1156 				VK_VERTEX_INPUT_RATE_VERTEX		// VkVertexInputStepRate	stepRate;
   1157 			},
   1158 			{
   1159 				1u,								// deUint32					binding;
   1160 				vertexTextureStrideSize,		// deUint32					strideInBytes;
   1161 				VK_VERTEX_INPUT_RATE_VERTEX		// VkVertexInputStepRate	stepRate;
   1162 			}
   1163 		};
   1164 
   1165 		VkFormat									textureCoordinateFormat				= VK_FORMAT_R32G32B32A32_SFLOAT;
   1166 
   1167 		switch (numComps) {
   1168 			case 1: textureCoordinateFormat = VK_FORMAT_R32_SFLOAT;				break;
   1169 			case 2: textureCoordinateFormat = VK_FORMAT_R32G32_SFLOAT;			break;
   1170 			case 3: textureCoordinateFormat = VK_FORMAT_R32G32B32_SFLOAT;		break;
   1171 			case 4: textureCoordinateFormat = VK_FORMAT_R32G32B32A32_SFLOAT;	break;
   1172 			default:
   1173 				DE_ASSERT(false);
   1174 		}
   1175 
   1176 		const VkVertexInputAttributeDescription		vertexInputAttributeDescriptions[2]	=
   1177 		{
   1178 			{
   1179 				0u,									// deUint32	location;
   1180 				0u,									// deUint32	binding;
   1181 				VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat	format;
   1182 				0u									// deUint32	offsetInBytes;
   1183 			},
   1184 			{
   1185 				1u,									// deUint32	location;
   1186 				1u,									// deUint32	binding;
   1187 				textureCoordinateFormat,			// VkFormat	format;
   1188 				positionDataSize					// deUint32	offsetInBytes;
   1189 			}
   1190 		};
   1191 
   1192 		const VkPipelineVertexInputStateCreateInfo	vertexInputStateParams				=
   1193 		{
   1194 			VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,		// VkStructureType							sType;
   1195 			DE_NULL,														// const void*								pNext;
   1196 			0,																// VkPipelineVertexInputStateCreateFlags	flags;
   1197 			2u,																// deUint32									bindingCount;
   1198 			vertexInputBindingDescription,									// const VkVertexInputBindingDescription*	pVertexBindingDescriptions;
   1199 			2u,																// deUint32									attributeCount;
   1200 			vertexInputAttributeDescriptions								// const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
   1201 		};
   1202 
   1203 		const VkViewport							viewport							=
   1204 		{
   1205 			m_viewportOffsetX,			// float	originX;
   1206 			m_viewportOffsetY,			// float	originY;
   1207 			m_viewportWidth,			// float	width;
   1208 			m_viewportHeight,			// float	height;
   1209 			0.0f,						// float	minDepth;
   1210 			1.0f						// float	maxDepth;
   1211 		};
   1212 		const std::vector<VkViewport>				viewports							(1, viewport);
   1213 		const std::vector<VkRect2D>					scissors							(1, makeRect2D(tcu::UVec2(m_renderWidth, m_renderHeight)));
   1214 
   1215 		const VkPipelineMultisampleStateCreateInfo	multisampleStateParams				=
   1216 		{
   1217 			VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,		// VkStructureType							sType;
   1218 			DE_NULL,														// const void*								pNext;
   1219 			0u,																// VkPipelineMultisampleStateCreateFlags	flags;
   1220 			m_sampleCount,													// VkSampleCountFlagBits					rasterizationSamples;
   1221 			VK_FALSE,														// VkBool32									sampleShadingEnable;
   1222 			0.0f,															// float									minSampleShading;
   1223 			DE_NULL,														// const VkSampleMask*						pSampleMask;
   1224 			VK_FALSE,														// VkBool32									alphaToCoverageEnable;
   1225 			VK_FALSE														// VkBool32									alphaToOneEnable;
   1226 		};
   1227 
   1228 		VkSamplerCreateInfo							samplerCreateInfo					= mapSampler(params.sampler, m_textureBindings[texUnit]->getTestTexture().getTextureFormat(), params.minLod, params.maxLod, params.unnormal);
   1229 
   1230 		if (maxAnisotropy > 1.0f)
   1231 		{
   1232 			samplerCreateInfo.anisotropyEnable = VK_TRUE;
   1233 			samplerCreateInfo.maxAnisotropy = maxAnisotropy;
   1234 		}
   1235 
   1236 		if (samplerCreateInfo.magFilter == VK_FILTER_LINEAR || samplerCreateInfo.minFilter == VK_FILTER_LINEAR || samplerCreateInfo.mipmapMode == VK_SAMPLER_MIPMAP_MODE_LINEAR)
   1237 		{
   1238 			const pipeline::TestTexture&	testTexture			= m_textureBindings[texUnit]->getTestTexture();
   1239 			const VkFormat					textureFormat		= testTexture.isCompressed() ? mapCompressedTextureFormat(testTexture.getCompressedLevel(0, 0).getFormat())
   1240 																							 : mapTextureFormat          (testTexture.getTextureFormat());
   1241 			const VkFormatProperties		formatProperties	= getPhysicalDeviceFormatProperties(m_context.getInstanceInterface(), m_context.getPhysicalDevice(), textureFormat);
   1242 
   1243 			if (!(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT))
   1244 				TCU_THROW(NotSupportedError, "Linear filtering for this image format is not supported");
   1245 		}
   1246 
   1247 		sampler = createSampler(vkd, vkDevice, &samplerCreateInfo);
   1248 
   1249 		descriptorSetLayout[0] = DescriptorSetLayoutBuilder()
   1250 											.addSingleBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT)
   1251 												.build(vkd, vkDevice);
   1252 
   1253 		descriptorSetLayout[1] = DescriptorSetLayoutBuilder()
   1254 											.addSingleSamplerBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, &sampler.get())
   1255 											.build(vkd, vkDevice);
   1256 
   1257 		descriptorSet[0] = makeDescriptorSet(*m_descriptorPool, *descriptorSetLayout[0]);
   1258 		descriptorSet[1] = makeDescriptorSet(*m_descriptorPool, *descriptorSetLayout[1]);
   1259 
   1260 		{
   1261 			const VkDescriptorBufferInfo			descriptorBufferInfo	=
   1262 			{
   1263 				*m_uniformBuffer,							// VkBuffer		buffer;
   1264 				0u,											// VkDeviceSize	offset;
   1265 				VK_WHOLE_SIZE								// VkDeviceSize	range;
   1266 			};
   1267 
   1268 			DescriptorSetUpdateBuilder()
   1269 				.writeSingle(*descriptorSet[0], DescriptorSetUpdateBuilder::Location::binding(0), VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, &descriptorBufferInfo)
   1270 				.update(vkd, vkDevice);
   1271 		}
   1272 
   1273 		{
   1274 			VkDescriptorImageInfo					descriptorImageInfo		=
   1275 			{
   1276 				*sampler,										// VkSampler		sampler;
   1277 				m_textureBindings[texUnit]->getImageView(),		// VkImageView		imageView;
   1278 				VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL		// VkImageLayout	imageLayout;
   1279 			};
   1280 
   1281 			DescriptorSetUpdateBuilder()
   1282 				.writeSingle(*descriptorSet[1], DescriptorSetUpdateBuilder::Location::binding(0), VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, &descriptorImageInfo)
   1283 				.update(vkd, vkDevice);
   1284 		}
   1285 
   1286 		// Pipeline Layout
   1287 		{
   1288 			VkDescriptorSetLayout					descriptorSetLayouts[2]		=
   1289 			{
   1290 				*descriptorSetLayout[0],
   1291 				*descriptorSetLayout[1]
   1292 			};
   1293 
   1294 			const VkPipelineLayoutCreateInfo		pipelineLayoutCreateInfo	=
   1295 			{
   1296 				VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,		// VkStructureType				sType;
   1297 				DE_NULL,											// const void*					pNext;
   1298 				0u,													// VkPipelineLayoutCreateFlags	flags;
   1299 				2u,													// deUint32						descriptorSetCount;
   1300 				descriptorSetLayouts,								// const VkDescriptorSetLayout*	pSetLayouts;
   1301 				0u,													// deUint32						pushConstantRangeCount;
   1302 				DE_NULL												// const VkPushConstantRange*	pPushConstantRanges;
   1303 			};
   1304 
   1305 			pipelineLayout = createPipelineLayout(vkd, vkDevice, &pipelineLayoutCreateInfo);
   1306 		}
   1307 
   1308 		graphicsPipeline = makeGraphicsPipeline(vkd,									// const DeviceInterface&                        vk
   1309 												vkDevice,								// const VkDevice                                device
   1310 												*pipelineLayout,						// const VkPipelineLayout                        pipelineLayout
   1311 												*vertexShaderModule,					// const VkShaderModule                          vertexShaderModule
   1312 												DE_NULL,								// const VkShaderModule                          tessellationControlShaderModule
   1313 												DE_NULL,								// const VkShaderModule                          tessellationEvalShaderModule
   1314 												DE_NULL,								// const VkShaderModule                          geometryShaderModule
   1315 												*fragmentShaderModule,					// const VkShaderModule                          fragmentShaderModule
   1316 												*m_renderPass,							// const VkRenderPass                            renderPass
   1317 												viewports,								// const std::vector<VkViewport>&                viewports
   1318 												scissors,								// const std::vector<VkRect2D>&                  scissors
   1319 												VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,	// const VkPrimitiveTopology                     topology
   1320 												0u,										// const deUint32                                subpass
   1321 												0u,										// const deUint32                                patchControlPoints
   1322 												&vertexInputStateParams,				// const VkPipelineVertexInputStateCreateInfo*   vertexInputStateCreateInfo
   1323 												DE_NULL,								// const VkPipelineRasterizationStateCreateInfo* rasterizationStateCreateInfo
   1324 												&multisampleStateParams);				// const VkPipelineMultisampleStateCreateInfo*   multisampleStateCreateInfo
   1325 	}
   1326 
   1327 	// Create Vertex Buffer
   1328 	{
   1329 		VkDeviceSize bufferSize = positionDataSize + textureCoordDataSize;
   1330 
   1331 		// Pad the buffer size to a stride multiple for the last element so that it isn't out of bounds
   1332 		bufferSize += vertexTextureStrideSize - ((bufferSize - vertexBufferOffset) % vertexTextureStrideSize);
   1333 
   1334 		const VkBufferCreateInfo			vertexBufferParams		=
   1335 		{
   1336 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
   1337 			DE_NULL,									// const void*			pNext;
   1338 			0u,											// VkBufferCreateFlags	flags;
   1339 			bufferSize,									// VkDeviceSize			size;
   1340 			VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,			// VkBufferUsageFlags	usage;
   1341 			VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
   1342 			1u,											// deUint32				queueFamilyCount;
   1343 			&queueFamilyIndex							// const deUint32*		pQueueFamilyIndices;
   1344 		};
   1345 
   1346 		vertexBuffer		= createBuffer(vkd, vkDevice, &vertexBufferParams);
   1347 		vertexBufferMemory	= allocator.allocate(getBufferMemoryRequirements(vkd, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible);
   1348 
   1349 		VK_CHECK(vkd.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset()));
   1350 
   1351 		// Load vertices into vertex buffer
   1352 		deMemcpy(vertexBufferMemory->getHostPtr(), position, positionDataSize);
   1353 		deMemcpy(reinterpret_cast<deUint8*>(vertexBufferMemory->getHostPtr()) + positionDataSize, texCoord, textureCoordDataSize);
   1354 		flushMappedMemoryRange(vkd, vkDevice, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset(), VK_WHOLE_SIZE);
   1355 	}
   1356 
   1357 	// Create Command Buffer
   1358 	commandBuffer = allocateCommandBuffer(vkd, vkDevice, *m_commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
   1359 
   1360 	// Begin Command Buffer
   1361 	beginCommandBuffer(vkd, *commandBuffer);
   1362 
   1363 	// Begin Render Pass
   1364 	beginRenderPass(vkd, *commandBuffer, *m_renderPass, *m_frameBuffer, makeRect2D(0, 0, m_renderWidth, m_renderHeight));
   1365 
   1366 	vkd.cmdBindPipeline(*commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *graphicsPipeline);
   1367 	vkd.cmdBindDescriptorSets(*commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineLayout, 0u, 1, &descriptorSet[0].get(), 0u, DE_NULL);
   1368 	vkd.cmdBindDescriptorSets(*commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineLayout, 1u, 1, &descriptorSet[1].get(), 0u, DE_NULL);
   1369 	vkd.cmdBindVertexBuffers(*commandBuffer, 0, 1, &vertexBuffer.get(), &vertexBufferOffset);
   1370 	vkd.cmdBindVertexBuffers(*commandBuffer, 1, 1, &vertexBuffer.get(), &vertexBufferOffset);
   1371 	vkd.cmdBindIndexBuffer(*commandBuffer, *m_vertexIndexBuffer, 0, VK_INDEX_TYPE_UINT16);
   1372 	vkd.cmdDrawIndexed(*commandBuffer, 6, 1, 0, 0, 0);
   1373 	endRenderPass(vkd, *commandBuffer);
   1374 
   1375 	// Copy Image
   1376 	{
   1377 		copyImageToBuffer(vkd, *commandBuffer, m_multisampling ? *m_resolvedImage : *m_image, *m_resultBuffer, tcu::IVec2(m_renderWidth, m_renderHeight));
   1378 
   1379 		addImageTransitionBarrier(*commandBuffer,
   1380 								  m_multisampling ? *m_resolvedImage : *m_image,
   1381 								  VK_PIPELINE_STAGE_TRANSFER_BIT,					// VkPipelineStageFlags		srcStageMask
   1382 								  VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,	// VkPipelineStageFlags		dstStageMask
   1383 								  VK_ACCESS_TRANSFER_READ_BIT,						// VkAccessFlags			srcAccessMask
   1384 								  VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,				// VkAccessFlags			dstAccessMask
   1385 								  VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,				// VkImageLayout			oldLayout;
   1386 								  VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);		// VkImageLayout			newLayout;
   1387 	}
   1388 
   1389 	endCommandBuffer(vkd, *commandBuffer);
   1390 
   1391 	// Upload uniform buffer data
   1392 	{
   1393 		const ShaderParameters	shaderParameters	=
   1394 		{
   1395 			params.bias,			// float		bias;				//!< User-supplied bias.
   1396 			params.ref,				// float		ref;				//!< Reference value for shadow lookups.
   1397 			tcu::Vec2(),			// tcu::Vec2	padding;			//!< Shader uniform padding.
   1398 			params.colorScale,		// tcu::Vec4	colorScale;			//!< Scale for texture color values.
   1399 			params.colorBias		// tcu::Vec4	colorBias;			//!< Bias for texture color values.
   1400 		};
   1401 		deMemcpy(m_uniformBufferMemory->getHostPtr(), &shaderParameters, sizeof(shaderParameters));
   1402 		flushMappedMemoryRange(vkd, vkDevice, m_uniformBufferMemory->getMemory(), m_uniformBufferMemory->getOffset(), VK_WHOLE_SIZE);
   1403 
   1404 		if (logUniforms)
   1405 			m_log << TestLog::Message << "u_sampler = " << texUnit << TestLog::EndMessage;
   1406 
   1407 		if (useBias)
   1408 		{
   1409 			if (logUniforms)
   1410 				m_log << TestLog::Message << "u_bias = " << shaderParameters.bias << TestLog::EndMessage;
   1411 		}
   1412 
   1413 		if (params.samplerType == SAMPLERTYPE_SHADOW)
   1414 		{
   1415 			if (logUniforms)
   1416 				m_log << TestLog::Message << "u_ref = " << shaderParameters.ref << TestLog::EndMessage;
   1417 		}
   1418 
   1419 		if (logUniforms)
   1420 		{
   1421 			m_log << TestLog::Message << "u_colorScale = " << shaderParameters.colorScale << TestLog::EndMessage;
   1422 			m_log << TestLog::Message << "u_colorBias = " << shaderParameters.colorBias << TestLog::EndMessage;
   1423 		}
   1424 	}
   1425 
   1426 	// Submit
   1427 	submitCommandsAndWait(vkd, vkDevice, queue, commandBuffer.get());
   1428 
   1429 	invalidateMappedMemoryRange(vkd, vkDevice, m_resultBufferMemory->getMemory(), m_resultBufferMemory->getOffset(), VK_WHOLE_SIZE);
   1430 
   1431 	tcu::copy(result.getAccess(), tcu::ConstPixelBufferAccess(m_textureFormat, tcu::IVec3(m_renderWidth, m_renderHeight, 1u), m_resultBufferMemory->getHostPtr()));
   1432 }
   1433 
   1434 /*--------------------------------------------------------------------*//*!
   1435  * \brief Map Vulkan sampler parameters to tcu::Sampler.
   1436  *
   1437  * If no mapping is found, throws tcu::InternalError.
   1438  *
   1439  * \param wrapU			U-component wrap mode
   1440  * \param wrapV			V-component wrap mode
   1441  * \param wrapW			W-component wrap mode
   1442  * \param minFilterMode	Minification filter mode
   1443  * \param magFilterMode	Magnification filter mode
   1444  * \return Sampler description.
   1445  *//*--------------------------------------------------------------------*/
   1446 tcu::Sampler createSampler (tcu::Sampler::WrapMode wrapU, tcu::Sampler::WrapMode wrapV, tcu::Sampler::WrapMode wrapW, tcu::Sampler::FilterMode minFilterMode, tcu::Sampler::FilterMode magFilterMode, bool normalizedCoords)
   1447 {
   1448 	return tcu::Sampler(wrapU, wrapV, wrapW,
   1449 						minFilterMode, magFilterMode,
   1450 						0.0f /* lod threshold */,
   1451 						normalizedCoords /* normalized coords */,
   1452 						tcu::Sampler::COMPAREMODE_NONE /* no compare */,
   1453 						0 /* compare channel */,
   1454 						tcu::Vec4(0.0f) /* border color, not used */);
   1455 }
   1456 
   1457 /*--------------------------------------------------------------------*//*!
   1458  * \brief Map Vulkan sampler parameters to tcu::Sampler.
   1459  *
   1460  * If no mapping is found, throws tcu::InternalError.
   1461  *
   1462  * \param wrapU			U-component wrap mode
   1463  * \param wrapV			V-component wrap mode
   1464  * \param minFilterMode	Minification filter mode
   1465  * \param minFilterMode	Magnification filter mode
   1466  * \return Sampler description.
   1467  *//*--------------------------------------------------------------------*/
   1468 tcu::Sampler createSampler (tcu::Sampler::WrapMode wrapU, tcu::Sampler::WrapMode wrapV, tcu::Sampler::FilterMode minFilterMode, tcu::Sampler::FilterMode magFilterMode, bool normalizedCoords)
   1469 {
   1470 	return createSampler(wrapU, wrapV, wrapU, minFilterMode, magFilterMode, normalizedCoords);
   1471 }
   1472 
   1473 /*--------------------------------------------------------------------*//*!
   1474  * \brief Map Vulkan sampler parameters to tcu::Sampler.
   1475  *
   1476  * If no mapping is found, throws tcu::InternalError.
   1477  *
   1478  * \param wrapU			U-component wrap mode
   1479  * \param minFilterMode	Minification filter mode
   1480  * \return Sampler description.
   1481  *//*--------------------------------------------------------------------*/
   1482 tcu::Sampler createSampler (tcu::Sampler::WrapMode wrapU, tcu::Sampler::FilterMode minFilterMode, tcu::Sampler::FilterMode magFilterMode, bool normalizedCoords)
   1483 {
   1484 	return createSampler(wrapU, wrapU, wrapU, minFilterMode, magFilterMode, normalizedCoords);
   1485 }
   1486 
   1487 TestTexture2DSp loadTexture2D (const tcu::Archive& archive, const std::vector<std::string>& filenames)
   1488 {
   1489 	DE_ASSERT(filenames.size() > 0);
   1490 
   1491 	TestTexture2DSp texture;
   1492 
   1493 	std::string ext = de::FilePath(filenames[0]).getFileExtension();
   1494 
   1495 	if (ext == "png")
   1496 	{
   1497 
   1498 		for (size_t fileIndex = 0; fileIndex < filenames.size(); ++fileIndex)
   1499 		{
   1500 			tcu::TextureLevel level;
   1501 
   1502 			tcu::ImageIO::loadImage(level, archive, filenames[fileIndex].c_str());
   1503 
   1504 			TCU_CHECK_INTERNAL(level.getFormat() == tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8) ||
   1505 											   level.getFormat() == tcu::TextureFormat(tcu::TextureFormat::RGB, tcu::TextureFormat::UNORM_INT8));
   1506 
   1507 			if (fileIndex == 0)
   1508 				texture = TestTexture2DSp(new pipeline::TestTexture2D(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), level.getWidth(), level.getHeight()));
   1509 
   1510 			tcu::copy(texture->getLevel((int)fileIndex, 0), level.getAccess());
   1511 		}
   1512 	}
   1513 	else if (ext == "pkm")
   1514 	{
   1515 
   1516 		for (size_t fileIndex = 0; fileIndex < filenames.size(); ++fileIndex)
   1517 		{
   1518 			// Compressed texture.
   1519 			tcu::CompressedTexture	level;
   1520 
   1521 			tcu::ImageIO::loadPKM(level, archive, filenames[fileIndex].c_str());
   1522 
   1523 			tcu::TextureFormat		uncompressedFormat		= tcu::getUncompressedFormat(level.getFormat());
   1524 			std::vector<deUint8>	uncompressedData		(uncompressedFormat.getPixelSize() * level.getWidth() * level.getHeight(), 0);
   1525 			tcu::PixelBufferAccess	decompressedBuffer		(uncompressedFormat, level.getWidth(), level.getHeight(), 1, uncompressedData.data());
   1526 
   1527 			tcu::TextureFormat		commonFormat			= tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8);
   1528 			std::vector<deUint8>	commonFromatData		(commonFormat.getPixelSize() * level.getWidth() * level.getHeight(), 0);
   1529 			tcu::PixelBufferAccess	commonFormatBuffer		(commonFormat, level.getWidth(), level.getHeight(), 1, commonFromatData.data());
   1530 
   1531 			if (fileIndex == 0)
   1532 				texture = TestTexture2DSp(new pipeline::TestTexture2D(commonFormat, level.getWidth(), level.getHeight()));
   1533 
   1534 			level.decompress(decompressedBuffer, tcu::TexDecompressionParams(tcu::TexDecompressionParams::ASTCMODE_LDR));
   1535 
   1536 			tcu::copy(commonFormatBuffer, decompressedBuffer);
   1537 			tcu::copy(texture->getLevel((int)fileIndex, 0), commonFormatBuffer);
   1538 		}
   1539 	}
   1540 	else
   1541 		TCU_FAIL("Unsupported file format");
   1542 
   1543 	return texture;
   1544 }
   1545 
   1546 TestTextureCubeSp loadTextureCube (const tcu::Archive& archive, const std::vector<std::string>& filenames)
   1547 {
   1548 	DE_ASSERT(filenames.size() > 0);
   1549 	DE_STATIC_ASSERT(tcu::CUBEFACE_LAST == 6);
   1550 	TCU_CHECK((int)filenames.size() % tcu::CUBEFACE_LAST == 0);
   1551 
   1552 	TestTextureCubeSp texture;
   1553 
   1554 	std::string ext = de::FilePath(filenames[0]).getFileExtension();
   1555 
   1556 	if (ext == "png")
   1557 	{
   1558 
   1559 		for (size_t fileIndex = 0; fileIndex < filenames.size(); ++fileIndex)
   1560 		{
   1561 			tcu::TextureLevel level;
   1562 
   1563 			tcu::ImageIO::loadImage(level, archive, filenames[fileIndex].c_str());
   1564 
   1565 			TCU_CHECK_INTERNAL(level.getFormat() == tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8) ||
   1566 											   level.getFormat() == tcu::TextureFormat(tcu::TextureFormat::RGB, tcu::TextureFormat::UNORM_INT8));
   1567 
   1568 			TCU_CHECK( level.getWidth() == level.getHeight());
   1569 
   1570 			if (fileIndex == 0)
   1571 				texture = TestTextureCubeSp(new pipeline::TestTextureCube(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), level.getWidth()));
   1572 
   1573 			tcu::copy(texture->getLevel((int)fileIndex / 6, (int)fileIndex % 6), level.getAccess());
   1574 		}
   1575 	}
   1576 	else if (ext == "pkm")
   1577 	{
   1578 		for (size_t fileIndex = 0; fileIndex < filenames.size(); ++fileIndex)
   1579 		{
   1580 			// Compressed texture.
   1581 			tcu::CompressedTexture	level;
   1582 
   1583 			tcu::ImageIO::loadPKM(level, archive, filenames[fileIndex].c_str());
   1584 
   1585 			TCU_CHECK( level.getWidth() == level.getHeight());
   1586 
   1587 			tcu::TextureFormat		uncompressedFormat				= tcu::getUncompressedFormat(level.getFormat());
   1588 			std::vector<deUint8>	uncompressedData				(uncompressedFormat.getPixelSize() * level.getWidth() * level.getHeight(), 0);
   1589 			tcu::PixelBufferAccess	decompressedBuffer				(uncompressedFormat, level.getWidth(), level.getHeight(), 1, uncompressedData.data());
   1590 
   1591 			tcu::TextureFormat		commonFormat					= tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8);
   1592 			std::vector<deUint8>	commonFromatData				(commonFormat.getPixelSize() * level.getWidth() * level.getHeight(), 0);
   1593 			tcu::PixelBufferAccess	commonFormatBuffer				(commonFormat, level.getWidth(), level.getHeight(), 1, commonFromatData.data());
   1594 
   1595 			if (fileIndex == 0)
   1596 				texture = TestTextureCubeSp(new pipeline::TestTextureCube(commonFormat, level.getWidth()));
   1597 
   1598 			level.decompress(decompressedBuffer, tcu::TexDecompressionParams(tcu::TexDecompressionParams::ASTCMODE_LDR));
   1599 
   1600 			tcu::copy(commonFormatBuffer, decompressedBuffer);
   1601 			tcu::copy(texture->getLevel((int)fileIndex / 6, (int)fileIndex % 6), commonFormatBuffer);
   1602 		}
   1603 	}
   1604 	else
   1605 		TCU_FAIL("Unsupported file format");
   1606 
   1607 	return texture;
   1608 }
   1609 
   1610 TextureCommonTestCaseParameters::TextureCommonTestCaseParameters (void)
   1611 	: sampleCount			(VK_SAMPLE_COUNT_1_BIT)
   1612 	, texCoordPrecision		(glu::PRECISION_HIGHP)
   1613 	, minFilter				(tcu::Sampler::LINEAR)
   1614 	, magFilter				(tcu::Sampler::LINEAR)
   1615 	, wrapS					(tcu::Sampler::REPEAT_GL)
   1616 	, wrapT					(tcu::Sampler::REPEAT_GL)
   1617 	, format				(VK_FORMAT_R8G8B8A8_UNORM)
   1618 	, unnormal				(false)
   1619 {
   1620 }
   1621 
   1622 Texture2DTestCaseParameters::Texture2DTestCaseParameters (void)
   1623 	: width					(64)
   1624 	, height				(64)
   1625 {
   1626 }
   1627 
   1628 TextureCubeTestCaseParameters::TextureCubeTestCaseParameters (void)
   1629 	: size					(64)
   1630 {
   1631 }
   1632 
   1633 Texture2DArrayTestCaseParameters::Texture2DArrayTestCaseParameters (void)
   1634 	: numLayers				(8)
   1635 {
   1636 }
   1637 
   1638 Texture3DTestCaseParameters::Texture3DTestCaseParameters (void)
   1639 	: wrapR					(tcu::Sampler::REPEAT_GL)
   1640 	, depth					(64)
   1641 {
   1642 }
   1643 
   1644 } // util
   1645 } // texture
   1646 } // vkt
   1647