Home | History | Annotate | Download | only in products
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
     11 #define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
     12 
     13 namespace Eigen {
     14 
     15 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
     16 struct selfadjoint_rank1_update;
     17 
     18 namespace internal {
     19 
     20 /**********************************************************************
     21 * This file implements a general A * B product while
     22 * evaluating only one triangular part of the product.
     23 * This is a more general version of self adjoint product (C += A A^T)
     24 * as the level 3 SYRK Blas routine.
     25 **********************************************************************/
     26 
     27 // forward declarations (defined at the end of this file)
     28 template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
     29 struct tribb_kernel;
     30 
     31 /* Optimized matrix-matrix product evaluating only one triangular half */
     32 template <typename Index,
     33           typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
     34           typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
     35                               int ResStorageOrder, int  UpLo, int Version = Specialized>
     36 struct general_matrix_matrix_triangular_product;
     37 
     38 // as usual if the result is row major => we transpose the product
     39 template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
     40                           typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int  UpLo, int Version>
     41 struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,UpLo,Version>
     42 {
     43   typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
     44   static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride,
     45                                       const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resStride,
     46                                       const ResScalar& alpha, level3_blocking<RhsScalar,LhsScalar>& blocking)
     47   {
     48     general_matrix_matrix_triangular_product<Index,
     49         RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
     50         LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
     51         ColMajor, UpLo==Lower?Upper:Lower>
     52       ::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking);
     53   }
     54 };
     55 
     56 template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
     57                           typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int  UpLo, int Version>
     58 struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,UpLo,Version>
     59 {
     60   typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
     61   static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride,
     62                                       const RhsScalar* _rhs, Index rhsStride, ResScalar* _res, Index resStride,
     63                                       const ResScalar& alpha, level3_blocking<LhsScalar,RhsScalar>& blocking)
     64   {
     65     typedef gebp_traits<LhsScalar,RhsScalar> Traits;
     66 
     67     typedef const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> LhsMapper;
     68     typedef const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> RhsMapper;
     69     typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor> ResMapper;
     70     LhsMapper lhs(_lhs,lhsStride);
     71     RhsMapper rhs(_rhs,rhsStride);
     72     ResMapper res(_res, resStride);
     73 
     74     Index kc = blocking.kc();
     75     Index mc = (std::min)(size,blocking.mc());
     76 
     77     // !!! mc must be a multiple of nr:
     78     if(mc > Traits::nr)
     79       mc = (mc/Traits::nr)*Traits::nr;
     80 
     81     std::size_t sizeA = kc*mc;
     82     std::size_t sizeB = kc*size;
     83 
     84     ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
     85     ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
     86 
     87     gemm_pack_lhs<LhsScalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
     88     gemm_pack_rhs<RhsScalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs;
     89     gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
     90     tribb_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs, UpLo> sybb;
     91 
     92     for(Index k2=0; k2<depth; k2+=kc)
     93     {
     94       const Index actual_kc = (std::min)(k2+kc,depth)-k2;
     95 
     96       // note that the actual rhs is the transpose/adjoint of mat
     97       pack_rhs(blockB, rhs.getSubMapper(k2,0), actual_kc, size);
     98 
     99       for(Index i2=0; i2<size; i2+=mc)
    100       {
    101         const Index actual_mc = (std::min)(i2+mc,size)-i2;
    102 
    103         pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
    104 
    105         // the selected actual_mc * size panel of res is split into three different part:
    106         //  1 - before the diagonal => processed with gebp or skipped
    107         //  2 - the actual_mc x actual_mc symmetric block => processed with a special kernel
    108         //  3 - after the diagonal => processed with gebp or skipped
    109         if (UpLo==Lower)
    110           gebp(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc,
    111                (std::min)(size,i2), alpha, -1, -1, 0, 0);
    112 
    113 
    114         sybb(_res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha);
    115 
    116         if (UpLo==Upper)
    117         {
    118           Index j2 = i2+actual_mc;
    119           gebp(res.getSubMapper(i2, j2), blockA, blockB+actual_kc*j2, actual_mc,
    120                actual_kc, (std::max)(Index(0), size-j2), alpha, -1, -1, 0, 0);
    121         }
    122       }
    123     }
    124   }
    125 };
    126 
    127 // Optimized packed Block * packed Block product kernel evaluating only one given triangular part
    128 // This kernel is built on top of the gebp kernel:
    129 // - the current destination block is processed per panel of actual_mc x BlockSize
    130 //   where BlockSize is set to the minimal value allowing gebp to be as fast as possible
    131 // - then, as usual, each panel is split into three parts along the diagonal,
    132 //   the sub blocks above and below the diagonal are processed as usual,
    133 //   while the triangular block overlapping the diagonal is evaluated into a
    134 //   small temporary buffer which is then accumulated into the result using a
    135 //   triangular traversal.
    136 template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
    137 struct tribb_kernel
    138 {
    139   typedef gebp_traits<LhsScalar,RhsScalar,ConjLhs,ConjRhs> Traits;
    140   typedef typename Traits::ResScalar ResScalar;
    141 
    142   enum {
    143     BlockSize  = meta_least_common_multiple<EIGEN_PLAIN_ENUM_MAX(mr,nr),EIGEN_PLAIN_ENUM_MIN(mr,nr)>::ret
    144   };
    145   void operator()(ResScalar* _res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha)
    146   {
    147     typedef blas_data_mapper<ResScalar, Index, ColMajor> ResMapper;
    148     ResMapper res(_res, resStride);
    149     gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, mr, nr, ConjLhs, ConjRhs> gebp_kernel;
    150 
    151     Matrix<ResScalar,BlockSize,BlockSize,ColMajor> buffer((internal::constructor_without_unaligned_array_assert()));
    152 
    153     // let's process the block per panel of actual_mc x BlockSize,
    154     // again, each is split into three parts, etc.
    155     for (Index j=0; j<size; j+=BlockSize)
    156     {
    157       Index actualBlockSize = std::min<Index>(BlockSize,size - j);
    158       const RhsScalar* actual_b = blockB+j*depth;
    159 
    160       if(UpLo==Upper)
    161         gebp_kernel(res.getSubMapper(0, j), blockA, actual_b, j, depth, actualBlockSize, alpha,
    162                     -1, -1, 0, 0);
    163 
    164       // selfadjoint micro block
    165       {
    166         Index i = j;
    167         buffer.setZero();
    168         // 1 - apply the kernel on the temporary buffer
    169         gebp_kernel(ResMapper(buffer.data(), BlockSize), blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
    170                     -1, -1, 0, 0);
    171         // 2 - triangular accumulation
    172         for(Index j1=0; j1<actualBlockSize; ++j1)
    173         {
    174           ResScalar* r = &res(i, j + j1);
    175           for(Index i1=UpLo==Lower ? j1 : 0;
    176               UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1)
    177             r[i1] += buffer(i1,j1);
    178         }
    179       }
    180 
    181       if(UpLo==Lower)
    182       {
    183         Index i = j+actualBlockSize;
    184         gebp_kernel(res.getSubMapper(i, j), blockA+depth*i, actual_b, size-i,
    185                     depth, actualBlockSize, alpha, -1, -1, 0, 0);
    186       }
    187     }
    188   }
    189 };
    190 
    191 } // end namespace internal
    192 
    193 // high level API
    194 
    195 template<typename MatrixType, typename ProductType, int UpLo, bool IsOuterProduct>
    196 struct general_product_to_triangular_selector;
    197 
    198 
    199 template<typename MatrixType, typename ProductType, int UpLo>
    200 struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,true>
    201 {
    202   static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta)
    203   {
    204     typedef typename MatrixType::Scalar Scalar;
    205 
    206     typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
    207     typedef internal::blas_traits<Lhs> LhsBlasTraits;
    208     typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
    209     typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
    210     typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
    211 
    212     typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
    213     typedef internal::blas_traits<Rhs> RhsBlasTraits;
    214     typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
    215     typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
    216     typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
    217 
    218     Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
    219 
    220     if(!beta)
    221       mat.template triangularView<UpLo>().setZero();
    222 
    223     enum {
    224       StorageOrder = (internal::traits<MatrixType>::Flags&RowMajorBit) ? RowMajor : ColMajor,
    225       UseLhsDirectly = _ActualLhs::InnerStrideAtCompileTime==1,
    226       UseRhsDirectly = _ActualRhs::InnerStrideAtCompileTime==1
    227     };
    228 
    229     internal::gemv_static_vector_if<Scalar,Lhs::SizeAtCompileTime,Lhs::MaxSizeAtCompileTime,!UseLhsDirectly> static_lhs;
    230     ei_declare_aligned_stack_constructed_variable(Scalar, actualLhsPtr, actualLhs.size(),
    231       (UseLhsDirectly ? const_cast<Scalar*>(actualLhs.data()) : static_lhs.data()));
    232     if(!UseLhsDirectly) Map<typename _ActualLhs::PlainObject>(actualLhsPtr, actualLhs.size()) = actualLhs;
    233 
    234     internal::gemv_static_vector_if<Scalar,Rhs::SizeAtCompileTime,Rhs::MaxSizeAtCompileTime,!UseRhsDirectly> static_rhs;
    235     ei_declare_aligned_stack_constructed_variable(Scalar, actualRhsPtr, actualRhs.size(),
    236       (UseRhsDirectly ? const_cast<Scalar*>(actualRhs.data()) : static_rhs.data()));
    237     if(!UseRhsDirectly) Map<typename _ActualRhs::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
    238 
    239 
    240     selfadjoint_rank1_update<Scalar,Index,StorageOrder,UpLo,
    241                               LhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
    242                               RhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex>
    243           ::run(actualLhs.size(), mat.data(), mat.outerStride(), actualLhsPtr, actualRhsPtr, actualAlpha);
    244   }
    245 };
    246 
    247 template<typename MatrixType, typename ProductType, int UpLo>
    248 struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
    249 {
    250   static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta)
    251   {
    252     typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
    253     typedef internal::blas_traits<Lhs> LhsBlasTraits;
    254     typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
    255     typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
    256     typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
    257 
    258     typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
    259     typedef internal::blas_traits<Rhs> RhsBlasTraits;
    260     typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
    261     typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
    262     typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
    263 
    264     typename ProductType::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
    265 
    266     if(!beta)
    267       mat.template triangularView<UpLo>().setZero();
    268 
    269     enum {
    270       IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0,
    271       LhsIsRowMajor = _ActualLhs::Flags&RowMajorBit ? 1 : 0,
    272       RhsIsRowMajor = _ActualRhs::Flags&RowMajorBit ? 1 : 0,
    273       SkipDiag = (UpLo&(UnitDiag|ZeroDiag))!=0
    274     };
    275 
    276     Index size = mat.cols();
    277     if(SkipDiag)
    278       size--;
    279     Index depth = actualLhs.cols();
    280 
    281     typedef internal::gemm_blocking_space<IsRowMajor ? RowMajor : ColMajor,typename Lhs::Scalar,typename Rhs::Scalar,
    282           MatrixType::MaxColsAtCompileTime, MatrixType::MaxColsAtCompileTime, _ActualRhs::MaxColsAtCompileTime> BlockingType;
    283 
    284     BlockingType blocking(size, size, depth, 1, false);
    285 
    286     internal::general_matrix_matrix_triangular_product<Index,
    287       typename Lhs::Scalar, LhsIsRowMajor ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
    288       typename Rhs::Scalar, RhsIsRowMajor ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
    289       IsRowMajor ? RowMajor : ColMajor, UpLo&(Lower|Upper)>
    290       ::run(size, depth,
    291             &actualLhs.coeffRef(SkipDiag&&(UpLo&Lower)==Lower ? 1 : 0,0), actualLhs.outerStride(),
    292             &actualRhs.coeffRef(0,SkipDiag&&(UpLo&Upper)==Upper ? 1 : 0), actualRhs.outerStride(),
    293             mat.data() + (SkipDiag ? (bool(IsRowMajor) != ((UpLo&Lower)==Lower) ? 1 : mat.outerStride() ) : 0), mat.outerStride(), actualAlpha, blocking);
    294   }
    295 };
    296 
    297 template<typename MatrixType, unsigned int UpLo>
    298 template<typename ProductType>
    299 TriangularView<MatrixType,UpLo>& TriangularViewImpl<MatrixType,UpLo,Dense>::_assignProduct(const ProductType& prod, const Scalar& alpha, bool beta)
    300 {
    301   EIGEN_STATIC_ASSERT((UpLo&UnitDiag)==0, WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED);
    302   eigen_assert(derived().nestedExpression().rows() == prod.rows() && derived().cols() == prod.cols());
    303 
    304   general_product_to_triangular_selector<MatrixType, ProductType, UpLo, internal::traits<ProductType>::InnerSize==1>::run(derived().nestedExpression().const_cast_derived(), prod, alpha, beta);
    305 
    306   return derived();
    307 }
    308 
    309 } // end namespace Eigen
    310 
    311 #endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
    312