Home | History | Annotate | Download | only in QR
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 // Copyright (C) 2010 Vincent Lejeune
      7 //
      8 // This Source Code Form is subject to the terms of the Mozilla
      9 // Public License v. 2.0. If a copy of the MPL was not distributed
     10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     11 
     12 #ifndef EIGEN_QR_H
     13 #define EIGEN_QR_H
     14 
     15 namespace Eigen {
     16 
     17 /** \ingroup QR_Module
     18   *
     19   *
     20   * \class HouseholderQR
     21   *
     22   * \brief Householder QR decomposition of a matrix
     23   *
     24   * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
     25   *
     26   * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
     27   * such that
     28   * \f[
     29   *  \mathbf{A} = \mathbf{Q} \, \mathbf{R}
     30   * \f]
     31   * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
     32   * The result is stored in a compact way compatible with LAPACK.
     33   *
     34   * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
     35   * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
     36   *
     37   * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
     38   * FullPivHouseholderQR or ColPivHouseholderQR.
     39   *
     40   * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
     41   *
     42   * \sa MatrixBase::householderQr()
     43   */
     44 template<typename _MatrixType> class HouseholderQR
     45 {
     46   public:
     47 
     48     typedef _MatrixType MatrixType;
     49     enum {
     50       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     51       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     52       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     53       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
     54     };
     55     typedef typename MatrixType::Scalar Scalar;
     56     typedef typename MatrixType::RealScalar RealScalar;
     57     // FIXME should be int
     58     typedef typename MatrixType::StorageIndex StorageIndex;
     59     typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
     60     typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
     61     typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
     62     typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
     63 
     64     /**
     65       * \brief Default Constructor.
     66       *
     67       * The default constructor is useful in cases in which the user intends to
     68       * perform decompositions via HouseholderQR::compute(const MatrixType&).
     69       */
     70     HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}
     71 
     72     /** \brief Default Constructor with memory preallocation
     73       *
     74       * Like the default constructor but with preallocation of the internal data
     75       * according to the specified problem \a size.
     76       * \sa HouseholderQR()
     77       */
     78     HouseholderQR(Index rows, Index cols)
     79       : m_qr(rows, cols),
     80         m_hCoeffs((std::min)(rows,cols)),
     81         m_temp(cols),
     82         m_isInitialized(false) {}
     83 
     84     /** \brief Constructs a QR factorization from a given matrix
     85       *
     86       * This constructor computes the QR factorization of the matrix \a matrix by calling
     87       * the method compute(). It is a short cut for:
     88       *
     89       * \code
     90       * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
     91       * qr.compute(matrix);
     92       * \endcode
     93       *
     94       * \sa compute()
     95       */
     96     template<typename InputType>
     97     explicit HouseholderQR(const EigenBase<InputType>& matrix)
     98       : m_qr(matrix.rows(), matrix.cols()),
     99         m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
    100         m_temp(matrix.cols()),
    101         m_isInitialized(false)
    102     {
    103       compute(matrix.derived());
    104     }
    105 
    106 
    107     /** \brief Constructs a QR factorization from a given matrix
    108       *
    109       * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when
    110       * \c MatrixType is a Eigen::Ref.
    111       *
    112       * \sa HouseholderQR(const EigenBase&)
    113       */
    114     template<typename InputType>
    115     explicit HouseholderQR(EigenBase<InputType>& matrix)
    116       : m_qr(matrix.derived()),
    117         m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
    118         m_temp(matrix.cols()),
    119         m_isInitialized(false)
    120     {
    121       computeInPlace();
    122     }
    123 
    124     /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
    125       * *this is the QR decomposition, if any exists.
    126       *
    127       * \param b the right-hand-side of the equation to solve.
    128       *
    129       * \returns a solution.
    130       *
    131       * \note_about_checking_solutions
    132       *
    133       * \note_about_arbitrary_choice_of_solution
    134       *
    135       * Example: \include HouseholderQR_solve.cpp
    136       * Output: \verbinclude HouseholderQR_solve.out
    137       */
    138     template<typename Rhs>
    139     inline const Solve<HouseholderQR, Rhs>
    140     solve(const MatrixBase<Rhs>& b) const
    141     {
    142       eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
    143       return Solve<HouseholderQR, Rhs>(*this, b.derived());
    144     }
    145 
    146     /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
    147       *
    148       * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
    149       * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
    150       *
    151       * Example: \include HouseholderQR_householderQ.cpp
    152       * Output: \verbinclude HouseholderQR_householderQ.out
    153       */
    154     HouseholderSequenceType householderQ() const
    155     {
    156       eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
    157       return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
    158     }
    159 
    160     /** \returns a reference to the matrix where the Householder QR decomposition is stored
    161       * in a LAPACK-compatible way.
    162       */
    163     const MatrixType& matrixQR() const
    164     {
    165         eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
    166         return m_qr;
    167     }
    168 
    169     template<typename InputType>
    170     HouseholderQR& compute(const EigenBase<InputType>& matrix) {
    171       m_qr = matrix.derived();
    172       computeInPlace();
    173       return *this;
    174     }
    175 
    176     /** \returns the absolute value of the determinant of the matrix of which
    177       * *this is the QR decomposition. It has only linear complexity
    178       * (that is, O(n) where n is the dimension of the square matrix)
    179       * as the QR decomposition has already been computed.
    180       *
    181       * \note This is only for square matrices.
    182       *
    183       * \warning a determinant can be very big or small, so for matrices
    184       * of large enough dimension, there is a risk of overflow/underflow.
    185       * One way to work around that is to use logAbsDeterminant() instead.
    186       *
    187       * \sa logAbsDeterminant(), MatrixBase::determinant()
    188       */
    189     typename MatrixType::RealScalar absDeterminant() const;
    190 
    191     /** \returns the natural log of the absolute value of the determinant of the matrix of which
    192       * *this is the QR decomposition. It has only linear complexity
    193       * (that is, O(n) where n is the dimension of the square matrix)
    194       * as the QR decomposition has already been computed.
    195       *
    196       * \note This is only for square matrices.
    197       *
    198       * \note This method is useful to work around the risk of overflow/underflow that's inherent
    199       * to determinant computation.
    200       *
    201       * \sa absDeterminant(), MatrixBase::determinant()
    202       */
    203     typename MatrixType::RealScalar logAbsDeterminant() const;
    204 
    205     inline Index rows() const { return m_qr.rows(); }
    206     inline Index cols() const { return m_qr.cols(); }
    207 
    208     /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
    209       *
    210       * For advanced uses only.
    211       */
    212     const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
    213 
    214     #ifndef EIGEN_PARSED_BY_DOXYGEN
    215     template<typename RhsType, typename DstType>
    216     EIGEN_DEVICE_FUNC
    217     void _solve_impl(const RhsType &rhs, DstType &dst) const;
    218     #endif
    219 
    220   protected:
    221 
    222     static void check_template_parameters()
    223     {
    224       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    225     }
    226 
    227     void computeInPlace();
    228 
    229     MatrixType m_qr;
    230     HCoeffsType m_hCoeffs;
    231     RowVectorType m_temp;
    232     bool m_isInitialized;
    233 };
    234 
    235 template<typename MatrixType>
    236 typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
    237 {
    238   using std::abs;
    239   eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
    240   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
    241   return abs(m_qr.diagonal().prod());
    242 }
    243 
    244 template<typename MatrixType>
    245 typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
    246 {
    247   eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
    248   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
    249   return m_qr.diagonal().cwiseAbs().array().log().sum();
    250 }
    251 
    252 namespace internal {
    253 
    254 /** \internal */
    255 template<typename MatrixQR, typename HCoeffs>
    256 void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
    257 {
    258   typedef typename MatrixQR::Scalar Scalar;
    259   typedef typename MatrixQR::RealScalar RealScalar;
    260   Index rows = mat.rows();
    261   Index cols = mat.cols();
    262   Index size = (std::min)(rows,cols);
    263 
    264   eigen_assert(hCoeffs.size() == size);
    265 
    266   typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
    267   TempType tempVector;
    268   if(tempData==0)
    269   {
    270     tempVector.resize(cols);
    271     tempData = tempVector.data();
    272   }
    273 
    274   for(Index k = 0; k < size; ++k)
    275   {
    276     Index remainingRows = rows - k;
    277     Index remainingCols = cols - k - 1;
    278 
    279     RealScalar beta;
    280     mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
    281     mat.coeffRef(k,k) = beta;
    282 
    283     // apply H to remaining part of m_qr from the left
    284     mat.bottomRightCorner(remainingRows, remainingCols)
    285         .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
    286   }
    287 }
    288 
    289 /** \internal */
    290 template<typename MatrixQR, typename HCoeffs,
    291   typename MatrixQRScalar = typename MatrixQR::Scalar,
    292   bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
    293 struct householder_qr_inplace_blocked
    294 {
    295   // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h
    296   static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index maxBlockSize=32,
    297       typename MatrixQR::Scalar* tempData = 0)
    298   {
    299     typedef typename MatrixQR::Scalar Scalar;
    300     typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
    301 
    302     Index rows = mat.rows();
    303     Index cols = mat.cols();
    304     Index size = (std::min)(rows, cols);
    305 
    306     typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
    307     TempType tempVector;
    308     if(tempData==0)
    309     {
    310       tempVector.resize(cols);
    311       tempData = tempVector.data();
    312     }
    313 
    314     Index blockSize = (std::min)(maxBlockSize,size);
    315 
    316     Index k = 0;
    317     for (k = 0; k < size; k += blockSize)
    318     {
    319       Index bs = (std::min)(size-k,blockSize);  // actual size of the block
    320       Index tcols = cols - k - bs;              // trailing columns
    321       Index brows = rows-k;                     // rows of the block
    322 
    323       // partition the matrix:
    324       //        A00 | A01 | A02
    325       // mat  = A10 | A11 | A12
    326       //        A20 | A21 | A22
    327       // and performs the qr dec of [A11^T A12^T]^T
    328       // and update [A21^T A22^T]^T using level 3 operations.
    329       // Finally, the algorithm continue on A22
    330 
    331       BlockType A11_21 = mat.block(k,k,brows,bs);
    332       Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);
    333 
    334       householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);
    335 
    336       if(tcols)
    337       {
    338         BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
    339         apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment, false); // false == backward
    340       }
    341     }
    342   }
    343 };
    344 
    345 } // end namespace internal
    346 
    347 #ifndef EIGEN_PARSED_BY_DOXYGEN
    348 template<typename _MatrixType>
    349 template<typename RhsType, typename DstType>
    350 void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
    351 {
    352   const Index rank = (std::min)(rows(), cols());
    353   eigen_assert(rhs.rows() == rows());
    354 
    355   typename RhsType::PlainObject c(rhs);
    356 
    357   // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
    358   c.applyOnTheLeft(householderSequence(
    359     m_qr.leftCols(rank),
    360     m_hCoeffs.head(rank)).transpose()
    361   );
    362 
    363   m_qr.topLeftCorner(rank, rank)
    364       .template triangularView<Upper>()
    365       .solveInPlace(c.topRows(rank));
    366 
    367   dst.topRows(rank) = c.topRows(rank);
    368   dst.bottomRows(cols()-rank).setZero();
    369 }
    370 #endif
    371 
    372 /** Performs the QR factorization of the given matrix \a matrix. The result of
    373   * the factorization is stored into \c *this, and a reference to \c *this
    374   * is returned.
    375   *
    376   * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
    377   */
    378 template<typename MatrixType>
    379 void HouseholderQR<MatrixType>::computeInPlace()
    380 {
    381   check_template_parameters();
    382 
    383   Index rows = m_qr.rows();
    384   Index cols = m_qr.cols();
    385   Index size = (std::min)(rows,cols);
    386 
    387   m_hCoeffs.resize(size);
    388 
    389   m_temp.resize(cols);
    390 
    391   internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
    392 
    393   m_isInitialized = true;
    394 }
    395 
    396 /** \return the Householder QR decomposition of \c *this.
    397   *
    398   * \sa class HouseholderQR
    399   */
    400 template<typename Derived>
    401 const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
    402 MatrixBase<Derived>::householderQr() const
    403 {
    404   return HouseholderQR<PlainObject>(eval());
    405 }
    406 
    407 } // end namespace Eigen
    408 
    409 #endif // EIGEN_QR_H
    410