1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #ifndef _UAPI__LINUX_BPF_H__ 9 #define _UAPI__LINUX_BPF_H__ 10 11 #include <linux/types.h> 12 #include <linux/bpf_common.h> 13 14 /* Extended instruction set based on top of classic BPF */ 15 16 /* instruction classes */ 17 #define BPF_ALU64 0x07 /* alu mode in double word width */ 18 19 /* ld/ldx fields */ 20 #define BPF_DW 0x18 /* double word (64-bit) */ 21 #define BPF_XADD 0xc0 /* exclusive add */ 22 23 /* alu/jmp fields */ 24 #define BPF_MOV 0xb0 /* mov reg to reg */ 25 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */ 26 27 /* change endianness of a register */ 28 #define BPF_END 0xd0 /* flags for endianness conversion: */ 29 #define BPF_TO_LE 0x00 /* convert to little-endian */ 30 #define BPF_TO_BE 0x08 /* convert to big-endian */ 31 #define BPF_FROM_LE BPF_TO_LE 32 #define BPF_FROM_BE BPF_TO_BE 33 34 /* jmp encodings */ 35 #define BPF_JNE 0x50 /* jump != */ 36 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */ 37 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */ 38 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */ 39 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */ 40 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */ 41 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */ 42 #define BPF_CALL 0x80 /* function call */ 43 #define BPF_EXIT 0x90 /* function return */ 44 45 /* Register numbers */ 46 enum { 47 BPF_REG_0 = 0, 48 BPF_REG_1, 49 BPF_REG_2, 50 BPF_REG_3, 51 BPF_REG_4, 52 BPF_REG_5, 53 BPF_REG_6, 54 BPF_REG_7, 55 BPF_REG_8, 56 BPF_REG_9, 57 BPF_REG_10, 58 __MAX_BPF_REG, 59 }; 60 61 /* BPF has 10 general purpose 64-bit registers and stack frame. */ 62 #define MAX_BPF_REG __MAX_BPF_REG 63 64 struct bpf_insn { 65 __u8 code; /* opcode */ 66 __u8 dst_reg:4; /* dest register */ 67 __u8 src_reg:4; /* source register */ 68 __s16 off; /* signed offset */ 69 __s32 imm; /* signed immediate constant */ 70 }; 71 72 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ 73 struct bpf_lpm_trie_key { 74 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ 75 __u8 data[0]; /* Arbitrary size */ 76 }; 77 78 struct bpf_cgroup_storage_key { 79 __u64 cgroup_inode_id; /* cgroup inode id */ 80 __u32 attach_type; /* program attach type */ 81 }; 82 83 /* BPF syscall commands, see bpf(2) man-page for details. */ 84 enum bpf_cmd { 85 BPF_MAP_CREATE, 86 BPF_MAP_LOOKUP_ELEM, 87 BPF_MAP_UPDATE_ELEM, 88 BPF_MAP_DELETE_ELEM, 89 BPF_MAP_GET_NEXT_KEY, 90 BPF_PROG_LOAD, 91 BPF_OBJ_PIN, 92 BPF_OBJ_GET, 93 BPF_PROG_ATTACH, 94 BPF_PROG_DETACH, 95 BPF_PROG_TEST_RUN, 96 BPF_PROG_GET_NEXT_ID, 97 BPF_MAP_GET_NEXT_ID, 98 BPF_PROG_GET_FD_BY_ID, 99 BPF_MAP_GET_FD_BY_ID, 100 BPF_OBJ_GET_INFO_BY_FD, 101 BPF_PROG_QUERY, 102 BPF_RAW_TRACEPOINT_OPEN, 103 BPF_BTF_LOAD, 104 BPF_BTF_GET_FD_BY_ID, 105 BPF_TASK_FD_QUERY, 106 BPF_MAP_LOOKUP_AND_DELETE_ELEM, 107 }; 108 109 enum bpf_map_type { 110 BPF_MAP_TYPE_UNSPEC, 111 BPF_MAP_TYPE_HASH, 112 BPF_MAP_TYPE_ARRAY, 113 BPF_MAP_TYPE_PROG_ARRAY, 114 BPF_MAP_TYPE_PERF_EVENT_ARRAY, 115 BPF_MAP_TYPE_PERCPU_HASH, 116 BPF_MAP_TYPE_PERCPU_ARRAY, 117 BPF_MAP_TYPE_STACK_TRACE, 118 BPF_MAP_TYPE_CGROUP_ARRAY, 119 BPF_MAP_TYPE_LRU_HASH, 120 BPF_MAP_TYPE_LRU_PERCPU_HASH, 121 BPF_MAP_TYPE_LPM_TRIE, 122 BPF_MAP_TYPE_ARRAY_OF_MAPS, 123 BPF_MAP_TYPE_HASH_OF_MAPS, 124 BPF_MAP_TYPE_DEVMAP, 125 BPF_MAP_TYPE_SOCKMAP, 126 BPF_MAP_TYPE_CPUMAP, 127 BPF_MAP_TYPE_XSKMAP, 128 BPF_MAP_TYPE_SOCKHASH, 129 BPF_MAP_TYPE_CGROUP_STORAGE, 130 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 131 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, 132 BPF_MAP_TYPE_QUEUE, 133 BPF_MAP_TYPE_STACK, 134 }; 135 136 /* Note that tracing related programs such as 137 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT} 138 * are not subject to a stable API since kernel internal data 139 * structures can change from release to release and may 140 * therefore break existing tracing BPF programs. Tracing BPF 141 * programs correspond to /a/ specific kernel which is to be 142 * analyzed, and not /a/ specific kernel /and/ all future ones. 143 */ 144 enum bpf_prog_type { 145 BPF_PROG_TYPE_UNSPEC, 146 BPF_PROG_TYPE_SOCKET_FILTER, 147 BPF_PROG_TYPE_KPROBE, 148 BPF_PROG_TYPE_SCHED_CLS, 149 BPF_PROG_TYPE_SCHED_ACT, 150 BPF_PROG_TYPE_TRACEPOINT, 151 BPF_PROG_TYPE_XDP, 152 BPF_PROG_TYPE_PERF_EVENT, 153 BPF_PROG_TYPE_CGROUP_SKB, 154 BPF_PROG_TYPE_CGROUP_SOCK, 155 BPF_PROG_TYPE_LWT_IN, 156 BPF_PROG_TYPE_LWT_OUT, 157 BPF_PROG_TYPE_LWT_XMIT, 158 BPF_PROG_TYPE_SOCK_OPS, 159 BPF_PROG_TYPE_SK_SKB, 160 BPF_PROG_TYPE_CGROUP_DEVICE, 161 BPF_PROG_TYPE_SK_MSG, 162 BPF_PROG_TYPE_RAW_TRACEPOINT, 163 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 164 BPF_PROG_TYPE_LWT_SEG6LOCAL, 165 BPF_PROG_TYPE_LIRC_MODE2, 166 BPF_PROG_TYPE_SK_REUSEPORT, 167 BPF_PROG_TYPE_FLOW_DISSECTOR, 168 }; 169 170 enum bpf_attach_type { 171 BPF_CGROUP_INET_INGRESS, 172 BPF_CGROUP_INET_EGRESS, 173 BPF_CGROUP_INET_SOCK_CREATE, 174 BPF_CGROUP_SOCK_OPS, 175 BPF_SK_SKB_STREAM_PARSER, 176 BPF_SK_SKB_STREAM_VERDICT, 177 BPF_CGROUP_DEVICE, 178 BPF_SK_MSG_VERDICT, 179 BPF_CGROUP_INET4_BIND, 180 BPF_CGROUP_INET6_BIND, 181 BPF_CGROUP_INET4_CONNECT, 182 BPF_CGROUP_INET6_CONNECT, 183 BPF_CGROUP_INET4_POST_BIND, 184 BPF_CGROUP_INET6_POST_BIND, 185 BPF_CGROUP_UDP4_SENDMSG, 186 BPF_CGROUP_UDP6_SENDMSG, 187 BPF_LIRC_MODE2, 188 BPF_FLOW_DISSECTOR, 189 __MAX_BPF_ATTACH_TYPE 190 }; 191 192 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE 193 194 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command 195 * 196 * NONE(default): No further bpf programs allowed in the subtree. 197 * 198 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, 199 * the program in this cgroup yields to sub-cgroup program. 200 * 201 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, 202 * that cgroup program gets run in addition to the program in this cgroup. 203 * 204 * Only one program is allowed to be attached to a cgroup with 205 * NONE or BPF_F_ALLOW_OVERRIDE flag. 206 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will 207 * release old program and attach the new one. Attach flags has to match. 208 * 209 * Multiple programs are allowed to be attached to a cgroup with 210 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order 211 * (those that were attached first, run first) 212 * The programs of sub-cgroup are executed first, then programs of 213 * this cgroup and then programs of parent cgroup. 214 * When children program makes decision (like picking TCP CA or sock bind) 215 * parent program has a chance to override it. 216 * 217 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups. 218 * A cgroup with NONE doesn't allow any programs in sub-cgroups. 219 * Ex1: 220 * cgrp1 (MULTI progs A, B) -> 221 * cgrp2 (OVERRIDE prog C) -> 222 * cgrp3 (MULTI prog D) -> 223 * cgrp4 (OVERRIDE prog E) -> 224 * cgrp5 (NONE prog F) 225 * the event in cgrp5 triggers execution of F,D,A,B in that order. 226 * if prog F is detached, the execution is E,D,A,B 227 * if prog F and D are detached, the execution is E,A,B 228 * if prog F, E and D are detached, the execution is C,A,B 229 * 230 * All eligible programs are executed regardless of return code from 231 * earlier programs. 232 */ 233 #define BPF_F_ALLOW_OVERRIDE (1U << 0) 234 #define BPF_F_ALLOW_MULTI (1U << 1) 235 236 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the 237 * verifier will perform strict alignment checking as if the kernel 238 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, 239 * and NET_IP_ALIGN defined to 2. 240 */ 241 #define BPF_F_STRICT_ALIGNMENT (1U << 0) 242 243 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the 244 * verifier will allow any alignment whatsoever. On platforms 245 * with strict alignment requirements for loads ands stores (such 246 * as sparc and mips) the verifier validates that all loads and 247 * stores provably follow this requirement. This flag turns that 248 * checking and enforcement off. 249 * 250 * It is mostly used for testing when we want to validate the 251 * context and memory access aspects of the verifier, but because 252 * of an unaligned access the alignment check would trigger before 253 * the one we are interested in. 254 */ 255 #define BPF_F_ANY_ALIGNMENT (1U << 1) 256 257 /* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */ 258 #define BPF_PSEUDO_MAP_FD 1 259 260 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative 261 * offset to another bpf function 262 */ 263 #define BPF_PSEUDO_CALL 1 264 265 /* flags for BPF_MAP_UPDATE_ELEM command */ 266 #define BPF_ANY 0 /* create new element or update existing */ 267 #define BPF_NOEXIST 1 /* create new element if it didn't exist */ 268 #define BPF_EXIST 2 /* update existing element */ 269 270 /* flags for BPF_MAP_CREATE command */ 271 #define BPF_F_NO_PREALLOC (1U << 0) 272 /* Instead of having one common LRU list in the 273 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list 274 * which can scale and perform better. 275 * Note, the LRU nodes (including free nodes) cannot be moved 276 * across different LRU lists. 277 */ 278 #define BPF_F_NO_COMMON_LRU (1U << 1) 279 /* Specify numa node during map creation */ 280 #define BPF_F_NUMA_NODE (1U << 2) 281 282 #define BPF_OBJ_NAME_LEN 16U 283 284 /* Flags for accessing BPF object */ 285 #define BPF_F_RDONLY (1U << 3) 286 #define BPF_F_WRONLY (1U << 4) 287 288 /* Flag for stack_map, store build_id+offset instead of pointer */ 289 #define BPF_F_STACK_BUILD_ID (1U << 5) 290 291 /* Zero-initialize hash function seed. This should only be used for testing. */ 292 #define BPF_F_ZERO_SEED (1U << 6) 293 294 /* flags for BPF_PROG_QUERY */ 295 #define BPF_F_QUERY_EFFECTIVE (1U << 0) 296 297 enum bpf_stack_build_id_status { 298 /* user space need an empty entry to identify end of a trace */ 299 BPF_STACK_BUILD_ID_EMPTY = 0, 300 /* with valid build_id and offset */ 301 BPF_STACK_BUILD_ID_VALID = 1, 302 /* couldn't get build_id, fallback to ip */ 303 BPF_STACK_BUILD_ID_IP = 2, 304 }; 305 306 #define BPF_BUILD_ID_SIZE 20 307 struct bpf_stack_build_id { 308 __s32 status; 309 unsigned char build_id[BPF_BUILD_ID_SIZE]; 310 union { 311 __u64 offset; 312 __u64 ip; 313 }; 314 }; 315 316 union bpf_attr { 317 struct { /* anonymous struct used by BPF_MAP_CREATE command */ 318 __u32 map_type; /* one of enum bpf_map_type */ 319 __u32 key_size; /* size of key in bytes */ 320 __u32 value_size; /* size of value in bytes */ 321 __u32 max_entries; /* max number of entries in a map */ 322 __u32 map_flags; /* BPF_MAP_CREATE related 323 * flags defined above. 324 */ 325 __u32 inner_map_fd; /* fd pointing to the inner map */ 326 __u32 numa_node; /* numa node (effective only if 327 * BPF_F_NUMA_NODE is set). 328 */ 329 char map_name[BPF_OBJ_NAME_LEN]; 330 __u32 map_ifindex; /* ifindex of netdev to create on */ 331 __u32 btf_fd; /* fd pointing to a BTF type data */ 332 __u32 btf_key_type_id; /* BTF type_id of the key */ 333 __u32 btf_value_type_id; /* BTF type_id of the value */ 334 }; 335 336 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ 337 __u32 map_fd; 338 __aligned_u64 key; 339 union { 340 __aligned_u64 value; 341 __aligned_u64 next_key; 342 }; 343 __u64 flags; 344 }; 345 346 struct { /* anonymous struct used by BPF_PROG_LOAD command */ 347 __u32 prog_type; /* one of enum bpf_prog_type */ 348 __u32 insn_cnt; 349 __aligned_u64 insns; 350 __aligned_u64 license; 351 __u32 log_level; /* verbosity level of verifier */ 352 __u32 log_size; /* size of user buffer */ 353 __aligned_u64 log_buf; /* user supplied buffer */ 354 __u32 kern_version; /* not used */ 355 __u32 prog_flags; 356 char prog_name[BPF_OBJ_NAME_LEN]; 357 __u32 prog_ifindex; /* ifindex of netdev to prep for */ 358 /* For some prog types expected attach type must be known at 359 * load time to verify attach type specific parts of prog 360 * (context accesses, allowed helpers, etc). 361 */ 362 __u32 expected_attach_type; 363 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 364 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 365 __aligned_u64 func_info; /* func info */ 366 __u32 func_info_cnt; /* number of bpf_func_info records */ 367 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 368 __aligned_u64 line_info; /* line info */ 369 __u32 line_info_cnt; /* number of bpf_line_info records */ 370 }; 371 372 struct { /* anonymous struct used by BPF_OBJ_* commands */ 373 __aligned_u64 pathname; 374 __u32 bpf_fd; 375 __u32 file_flags; 376 }; 377 378 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */ 379 __u32 target_fd; /* container object to attach to */ 380 __u32 attach_bpf_fd; /* eBPF program to attach */ 381 __u32 attach_type; 382 __u32 attach_flags; 383 }; 384 385 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */ 386 __u32 prog_fd; 387 __u32 retval; 388 __u32 data_size_in; /* input: len of data_in */ 389 __u32 data_size_out; /* input/output: len of data_out 390 * returns ENOSPC if data_out 391 * is too small. 392 */ 393 __aligned_u64 data_in; 394 __aligned_u64 data_out; 395 __u32 repeat; 396 __u32 duration; 397 } test; 398 399 struct { /* anonymous struct used by BPF_*_GET_*_ID */ 400 union { 401 __u32 start_id; 402 __u32 prog_id; 403 __u32 map_id; 404 __u32 btf_id; 405 }; 406 __u32 next_id; 407 __u32 open_flags; 408 }; 409 410 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */ 411 __u32 bpf_fd; 412 __u32 info_len; 413 __aligned_u64 info; 414 } info; 415 416 struct { /* anonymous struct used by BPF_PROG_QUERY command */ 417 __u32 target_fd; /* container object to query */ 418 __u32 attach_type; 419 __u32 query_flags; 420 __u32 attach_flags; 421 __aligned_u64 prog_ids; 422 __u32 prog_cnt; 423 } query; 424 425 struct { 426 __u64 name; 427 __u32 prog_fd; 428 } raw_tracepoint; 429 430 struct { /* anonymous struct for BPF_BTF_LOAD */ 431 __aligned_u64 btf; 432 __aligned_u64 btf_log_buf; 433 __u32 btf_size; 434 __u32 btf_log_size; 435 __u32 btf_log_level; 436 }; 437 438 struct { 439 __u32 pid; /* input: pid */ 440 __u32 fd; /* input: fd */ 441 __u32 flags; /* input: flags */ 442 __u32 buf_len; /* input/output: buf len */ 443 __aligned_u64 buf; /* input/output: 444 * tp_name for tracepoint 445 * symbol for kprobe 446 * filename for uprobe 447 */ 448 __u32 prog_id; /* output: prod_id */ 449 __u32 fd_type; /* output: BPF_FD_TYPE_* */ 450 __u64 probe_offset; /* output: probe_offset */ 451 __u64 probe_addr; /* output: probe_addr */ 452 } task_fd_query; 453 } __attribute__((aligned(8))); 454 455 /* The description below is an attempt at providing documentation to eBPF 456 * developers about the multiple available eBPF helper functions. It can be 457 * parsed and used to produce a manual page. The workflow is the following, 458 * and requires the rst2man utility: 459 * 460 * $ ./scripts/bpf_helpers_doc.py \ 461 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst 462 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 463 * $ man /tmp/bpf-helpers.7 464 * 465 * Note that in order to produce this external documentation, some RST 466 * formatting is used in the descriptions to get "bold" and "italics" in 467 * manual pages. Also note that the few trailing white spaces are 468 * intentional, removing them would break paragraphs for rst2man. 469 * 470 * Start of BPF helper function descriptions: 471 * 472 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 473 * Description 474 * Perform a lookup in *map* for an entry associated to *key*. 475 * Return 476 * Map value associated to *key*, or **NULL** if no entry was 477 * found. 478 * 479 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 480 * Description 481 * Add or update the value of the entry associated to *key* in 482 * *map* with *value*. *flags* is one of: 483 * 484 * **BPF_NOEXIST** 485 * The entry for *key* must not exist in the map. 486 * **BPF_EXIST** 487 * The entry for *key* must already exist in the map. 488 * **BPF_ANY** 489 * No condition on the existence of the entry for *key*. 490 * 491 * Flag value **BPF_NOEXIST** cannot be used for maps of types 492 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all 493 * elements always exist), the helper would return an error. 494 * Return 495 * 0 on success, or a negative error in case of failure. 496 * 497 * int bpf_map_delete_elem(struct bpf_map *map, const void *key) 498 * Description 499 * Delete entry with *key* from *map*. 500 * Return 501 * 0 on success, or a negative error in case of failure. 502 * 503 * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags) 504 * Description 505 * Push an element *value* in *map*. *flags* is one of: 506 * 507 * **BPF_EXIST** 508 * If the queue/stack is full, the oldest element is removed to 509 * make room for this. 510 * Return 511 * 0 on success, or a negative error in case of failure. 512 * 513 * int bpf_probe_read(void *dst, u32 size, const void *src) 514 * Description 515 * For tracing programs, safely attempt to read *size* bytes from 516 * address *src* and store the data in *dst*. 517 * Return 518 * 0 on success, or a negative error in case of failure. 519 * 520 * u64 bpf_ktime_get_ns(void) 521 * Description 522 * Return the time elapsed since system boot, in nanoseconds. 523 * Return 524 * Current *ktime*. 525 * 526 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...) 527 * Description 528 * This helper is a "printk()-like" facility for debugging. It 529 * prints a message defined by format *fmt* (of size *fmt_size*) 530 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if 531 * available. It can take up to three additional **u64** 532 * arguments (as an eBPF helpers, the total number of arguments is 533 * limited to five). 534 * 535 * Each time the helper is called, it appends a line to the trace. 536 * The format of the trace is customizable, and the exact output 537 * one will get depends on the options set in 538 * *\/sys/kernel/debug/tracing/trace_options* (see also the 539 * *README* file under the same directory). However, it usually 540 * defaults to something like: 541 * 542 * :: 543 * 544 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> 545 * 546 * In the above: 547 * 548 * * ``telnet`` is the name of the current task. 549 * * ``470`` is the PID of the current task. 550 * * ``001`` is the CPU number on which the task is 551 * running. 552 * * In ``.N..``, each character refers to a set of 553 * options (whether irqs are enabled, scheduling 554 * options, whether hard/softirqs are running, level of 555 * preempt_disabled respectively). **N** means that 556 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** 557 * are set. 558 * * ``419421.045894`` is a timestamp. 559 * * ``0x00000001`` is a fake value used by BPF for the 560 * instruction pointer register. 561 * * ``<formatted msg>`` is the message formatted with 562 * *fmt*. 563 * 564 * The conversion specifiers supported by *fmt* are similar, but 565 * more limited than for printk(). They are **%d**, **%i**, 566 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, 567 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size 568 * of field, padding with zeroes, etc.) is available, and the 569 * helper will return **-EINVAL** (but print nothing) if it 570 * encounters an unknown specifier. 571 * 572 * Also, note that **bpf_trace_printk**\ () is slow, and should 573 * only be used for debugging purposes. For this reason, a notice 574 * bloc (spanning several lines) is printed to kernel logs and 575 * states that the helper should not be used "for production use" 576 * the first time this helper is used (or more precisely, when 577 * **trace_printk**\ () buffers are allocated). For passing values 578 * to user space, perf events should be preferred. 579 * Return 580 * The number of bytes written to the buffer, or a negative error 581 * in case of failure. 582 * 583 * u32 bpf_get_prandom_u32(void) 584 * Description 585 * Get a pseudo-random number. 586 * 587 * From a security point of view, this helper uses its own 588 * pseudo-random internal state, and cannot be used to infer the 589 * seed of other random functions in the kernel. However, it is 590 * essential to note that the generator used by the helper is not 591 * cryptographically secure. 592 * Return 593 * A random 32-bit unsigned value. 594 * 595 * u32 bpf_get_smp_processor_id(void) 596 * Description 597 * Get the SMP (symmetric multiprocessing) processor id. Note that 598 * all programs run with preemption disabled, which means that the 599 * SMP processor id is stable during all the execution of the 600 * program. 601 * Return 602 * The SMP id of the processor running the program. 603 * 604 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) 605 * Description 606 * Store *len* bytes from address *from* into the packet 607 * associated to *skb*, at *offset*. *flags* are a combination of 608 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the 609 * checksum for the packet after storing the bytes) and 610 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ 611 * **->swhash** and *skb*\ **->l4hash** to 0). 612 * 613 * A call to this helper is susceptible to change the underlaying 614 * packet buffer. Therefore, at load time, all checks on pointers 615 * previously done by the verifier are invalidated and must be 616 * performed again, if the helper is used in combination with 617 * direct packet access. 618 * Return 619 * 0 on success, or a negative error in case of failure. 620 * 621 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) 622 * Description 623 * Recompute the layer 3 (e.g. IP) checksum for the packet 624 * associated to *skb*. Computation is incremental, so the helper 625 * must know the former value of the header field that was 626 * modified (*from*), the new value of this field (*to*), and the 627 * number of bytes (2 or 4) for this field, stored in *size*. 628 * Alternatively, it is possible to store the difference between 629 * the previous and the new values of the header field in *to*, by 630 * setting *from* and *size* to 0. For both methods, *offset* 631 * indicates the location of the IP checksum within the packet. 632 * 633 * This helper works in combination with **bpf_csum_diff**\ (), 634 * which does not update the checksum in-place, but offers more 635 * flexibility and can handle sizes larger than 2 or 4 for the 636 * checksum to update. 637 * 638 * A call to this helper is susceptible to change the underlaying 639 * packet buffer. Therefore, at load time, all checks on pointers 640 * previously done by the verifier are invalidated and must be 641 * performed again, if the helper is used in combination with 642 * direct packet access. 643 * Return 644 * 0 on success, or a negative error in case of failure. 645 * 646 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) 647 * Description 648 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the 649 * packet associated to *skb*. Computation is incremental, so the 650 * helper must know the former value of the header field that was 651 * modified (*from*), the new value of this field (*to*), and the 652 * number of bytes (2 or 4) for this field, stored on the lowest 653 * four bits of *flags*. Alternatively, it is possible to store 654 * the difference between the previous and the new values of the 655 * header field in *to*, by setting *from* and the four lowest 656 * bits of *flags* to 0. For both methods, *offset* indicates the 657 * location of the IP checksum within the packet. In addition to 658 * the size of the field, *flags* can be added (bitwise OR) actual 659 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left 660 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and 661 * for updates resulting in a null checksum the value is set to 662 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates 663 * the checksum is to be computed against a pseudo-header. 664 * 665 * This helper works in combination with **bpf_csum_diff**\ (), 666 * which does not update the checksum in-place, but offers more 667 * flexibility and can handle sizes larger than 2 or 4 for the 668 * checksum to update. 669 * 670 * A call to this helper is susceptible to change the underlaying 671 * packet buffer. Therefore, at load time, all checks on pointers 672 * previously done by the verifier are invalidated and must be 673 * performed again, if the helper is used in combination with 674 * direct packet access. 675 * Return 676 * 0 on success, or a negative error in case of failure. 677 * 678 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) 679 * Description 680 * This special helper is used to trigger a "tail call", or in 681 * other words, to jump into another eBPF program. The same stack 682 * frame is used (but values on stack and in registers for the 683 * caller are not accessible to the callee). This mechanism allows 684 * for program chaining, either for raising the maximum number of 685 * available eBPF instructions, or to execute given programs in 686 * conditional blocks. For security reasons, there is an upper 687 * limit to the number of successive tail calls that can be 688 * performed. 689 * 690 * Upon call of this helper, the program attempts to jump into a 691 * program referenced at index *index* in *prog_array_map*, a 692 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes 693 * *ctx*, a pointer to the context. 694 * 695 * If the call succeeds, the kernel immediately runs the first 696 * instruction of the new program. This is not a function call, 697 * and it never returns to the previous program. If the call 698 * fails, then the helper has no effect, and the caller continues 699 * to run its subsequent instructions. A call can fail if the 700 * destination program for the jump does not exist (i.e. *index* 701 * is superior to the number of entries in *prog_array_map*), or 702 * if the maximum number of tail calls has been reached for this 703 * chain of programs. This limit is defined in the kernel by the 704 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), 705 * which is currently set to 32. 706 * Return 707 * 0 on success, or a negative error in case of failure. 708 * 709 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) 710 * Description 711 * Clone and redirect the packet associated to *skb* to another 712 * net device of index *ifindex*. Both ingress and egress 713 * interfaces can be used for redirection. The **BPF_F_INGRESS** 714 * value in *flags* is used to make the distinction (ingress path 715 * is selected if the flag is present, egress path otherwise). 716 * This is the only flag supported for now. 717 * 718 * In comparison with **bpf_redirect**\ () helper, 719 * **bpf_clone_redirect**\ () has the associated cost of 720 * duplicating the packet buffer, but this can be executed out of 721 * the eBPF program. Conversely, **bpf_redirect**\ () is more 722 * efficient, but it is handled through an action code where the 723 * redirection happens only after the eBPF program has returned. 724 * 725 * A call to this helper is susceptible to change the underlaying 726 * packet buffer. Therefore, at load time, all checks on pointers 727 * previously done by the verifier are invalidated and must be 728 * performed again, if the helper is used in combination with 729 * direct packet access. 730 * Return 731 * 0 on success, or a negative error in case of failure. 732 * 733 * u64 bpf_get_current_pid_tgid(void) 734 * Return 735 * A 64-bit integer containing the current tgid and pid, and 736 * created as such: 737 * *current_task*\ **->tgid << 32 \|** 738 * *current_task*\ **->pid**. 739 * 740 * u64 bpf_get_current_uid_gid(void) 741 * Return 742 * A 64-bit integer containing the current GID and UID, and 743 * created as such: *current_gid* **<< 32 \|** *current_uid*. 744 * 745 * int bpf_get_current_comm(char *buf, u32 size_of_buf) 746 * Description 747 * Copy the **comm** attribute of the current task into *buf* of 748 * *size_of_buf*. The **comm** attribute contains the name of 749 * the executable (excluding the path) for the current task. The 750 * *size_of_buf* must be strictly positive. On success, the 751 * helper makes sure that the *buf* is NUL-terminated. On failure, 752 * it is filled with zeroes. 753 * Return 754 * 0 on success, or a negative error in case of failure. 755 * 756 * u32 bpf_get_cgroup_classid(struct sk_buff *skb) 757 * Description 758 * Retrieve the classid for the current task, i.e. for the net_cls 759 * cgroup to which *skb* belongs. 760 * 761 * This helper can be used on TC egress path, but not on ingress. 762 * 763 * The net_cls cgroup provides an interface to tag network packets 764 * based on a user-provided identifier for all traffic coming from 765 * the tasks belonging to the related cgroup. See also the related 766 * kernel documentation, available from the Linux sources in file 767 * *Documentation/cgroup-v1/net_cls.txt*. 768 * 769 * The Linux kernel has two versions for cgroups: there are 770 * cgroups v1 and cgroups v2. Both are available to users, who can 771 * use a mixture of them, but note that the net_cls cgroup is for 772 * cgroup v1 only. This makes it incompatible with BPF programs 773 * run on cgroups, which is a cgroup-v2-only feature (a socket can 774 * only hold data for one version of cgroups at a time). 775 * 776 * This helper is only available is the kernel was compiled with 777 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to 778 * "**y**" or to "**m**". 779 * Return 780 * The classid, or 0 for the default unconfigured classid. 781 * 782 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 783 * Description 784 * Push a *vlan_tci* (VLAN tag control information) of protocol 785 * *vlan_proto* to the packet associated to *skb*, then update 786 * the checksum. Note that if *vlan_proto* is different from 787 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to 788 * be **ETH_P_8021Q**. 789 * 790 * A call to this helper is susceptible to change the underlaying 791 * packet buffer. Therefore, at load time, all checks on pointers 792 * previously done by the verifier are invalidated and must be 793 * performed again, if the helper is used in combination with 794 * direct packet access. 795 * Return 796 * 0 on success, or a negative error in case of failure. 797 * 798 * int bpf_skb_vlan_pop(struct sk_buff *skb) 799 * Description 800 * Pop a VLAN header from the packet associated to *skb*. 801 * 802 * A call to this helper is susceptible to change the underlaying 803 * packet buffer. Therefore, at load time, all checks on pointers 804 * previously done by the verifier are invalidated and must be 805 * performed again, if the helper is used in combination with 806 * direct packet access. 807 * Return 808 * 0 on success, or a negative error in case of failure. 809 * 810 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 811 * Description 812 * Get tunnel metadata. This helper takes a pointer *key* to an 813 * empty **struct bpf_tunnel_key** of **size**, that will be 814 * filled with tunnel metadata for the packet associated to *skb*. 815 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which 816 * indicates that the tunnel is based on IPv6 protocol instead of 817 * IPv4. 818 * 819 * The **struct bpf_tunnel_key** is an object that generalizes the 820 * principal parameters used by various tunneling protocols into a 821 * single struct. This way, it can be used to easily make a 822 * decision based on the contents of the encapsulation header, 823 * "summarized" in this struct. In particular, it holds the IP 824 * address of the remote end (IPv4 or IPv6, depending on the case) 825 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, 826 * this struct exposes the *key*\ **->tunnel_id**, which is 827 * generally mapped to a VNI (Virtual Network Identifier), making 828 * it programmable together with the **bpf_skb_set_tunnel_key**\ 829 * () helper. 830 * 831 * Let's imagine that the following code is part of a program 832 * attached to the TC ingress interface, on one end of a GRE 833 * tunnel, and is supposed to filter out all messages coming from 834 * remote ends with IPv4 address other than 10.0.0.1: 835 * 836 * :: 837 * 838 * int ret; 839 * struct bpf_tunnel_key key = {}; 840 * 841 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); 842 * if (ret < 0) 843 * return TC_ACT_SHOT; // drop packet 844 * 845 * if (key.remote_ipv4 != 0x0a000001) 846 * return TC_ACT_SHOT; // drop packet 847 * 848 * return TC_ACT_OK; // accept packet 849 * 850 * This interface can also be used with all encapsulation devices 851 * that can operate in "collect metadata" mode: instead of having 852 * one network device per specific configuration, the "collect 853 * metadata" mode only requires a single device where the 854 * configuration can be extracted from this helper. 855 * 856 * This can be used together with various tunnels such as VXLan, 857 * Geneve, GRE or IP in IP (IPIP). 858 * Return 859 * 0 on success, or a negative error in case of failure. 860 * 861 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 862 * Description 863 * Populate tunnel metadata for packet associated to *skb.* The 864 * tunnel metadata is set to the contents of *key*, of *size*. The 865 * *flags* can be set to a combination of the following values: 866 * 867 * **BPF_F_TUNINFO_IPV6** 868 * Indicate that the tunnel is based on IPv6 protocol 869 * instead of IPv4. 870 * **BPF_F_ZERO_CSUM_TX** 871 * For IPv4 packets, add a flag to tunnel metadata 872 * indicating that checksum computation should be skipped 873 * and checksum set to zeroes. 874 * **BPF_F_DONT_FRAGMENT** 875 * Add a flag to tunnel metadata indicating that the 876 * packet should not be fragmented. 877 * **BPF_F_SEQ_NUMBER** 878 * Add a flag to tunnel metadata indicating that a 879 * sequence number should be added to tunnel header before 880 * sending the packet. This flag was added for GRE 881 * encapsulation, but might be used with other protocols 882 * as well in the future. 883 * 884 * Here is a typical usage on the transmit path: 885 * 886 * :: 887 * 888 * struct bpf_tunnel_key key; 889 * populate key ... 890 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); 891 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); 892 * 893 * See also the description of the **bpf_skb_get_tunnel_key**\ () 894 * helper for additional information. 895 * Return 896 * 0 on success, or a negative error in case of failure. 897 * 898 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) 899 * Description 900 * Read the value of a perf event counter. This helper relies on a 901 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of 902 * the perf event counter is selected when *map* is updated with 903 * perf event file descriptors. The *map* is an array whose size 904 * is the number of available CPUs, and each cell contains a value 905 * relative to one CPU. The value to retrieve is indicated by 906 * *flags*, that contains the index of the CPU to look up, masked 907 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 908 * **BPF_F_CURRENT_CPU** to indicate that the value for the 909 * current CPU should be retrieved. 910 * 911 * Note that before Linux 4.13, only hardware perf event can be 912 * retrieved. 913 * 914 * Also, be aware that the newer helper 915 * **bpf_perf_event_read_value**\ () is recommended over 916 * **bpf_perf_event_read**\ () in general. The latter has some ABI 917 * quirks where error and counter value are used as a return code 918 * (which is wrong to do since ranges may overlap). This issue is 919 * fixed with **bpf_perf_event_read_value**\ (), which at the same 920 * time provides more features over the **bpf_perf_event_read**\ 921 * () interface. Please refer to the description of 922 * **bpf_perf_event_read_value**\ () for details. 923 * Return 924 * The value of the perf event counter read from the map, or a 925 * negative error code in case of failure. 926 * 927 * int bpf_redirect(u32 ifindex, u64 flags) 928 * Description 929 * Redirect the packet to another net device of index *ifindex*. 930 * This helper is somewhat similar to **bpf_clone_redirect**\ 931 * (), except that the packet is not cloned, which provides 932 * increased performance. 933 * 934 * Except for XDP, both ingress and egress interfaces can be used 935 * for redirection. The **BPF_F_INGRESS** value in *flags* is used 936 * to make the distinction (ingress path is selected if the flag 937 * is present, egress path otherwise). Currently, XDP only 938 * supports redirection to the egress interface, and accepts no 939 * flag at all. 940 * 941 * The same effect can be attained with the more generic 942 * **bpf_redirect_map**\ (), which requires specific maps to be 943 * used but offers better performance. 944 * Return 945 * For XDP, the helper returns **XDP_REDIRECT** on success or 946 * **XDP_ABORTED** on error. For other program types, the values 947 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on 948 * error. 949 * 950 * u32 bpf_get_route_realm(struct sk_buff *skb) 951 * Description 952 * Retrieve the realm or the route, that is to say the 953 * **tclassid** field of the destination for the *skb*. The 954 * indentifier retrieved is a user-provided tag, similar to the 955 * one used with the net_cls cgroup (see description for 956 * **bpf_get_cgroup_classid**\ () helper), but here this tag is 957 * held by a route (a destination entry), not by a task. 958 * 959 * Retrieving this identifier works with the clsact TC egress hook 960 * (see also **tc-bpf(8)**), or alternatively on conventional 961 * classful egress qdiscs, but not on TC ingress path. In case of 962 * clsact TC egress hook, this has the advantage that, internally, 963 * the destination entry has not been dropped yet in the transmit 964 * path. Therefore, the destination entry does not need to be 965 * artificially held via **netif_keep_dst**\ () for a classful 966 * qdisc until the *skb* is freed. 967 * 968 * This helper is available only if the kernel was compiled with 969 * **CONFIG_IP_ROUTE_CLASSID** configuration option. 970 * Return 971 * The realm of the route for the packet associated to *skb*, or 0 972 * if none was found. 973 * 974 * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 975 * Description 976 * Write raw *data* blob into a special BPF perf event held by 977 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 978 * event must have the following attributes: **PERF_SAMPLE_RAW** 979 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 980 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 981 * 982 * The *flags* are used to indicate the index in *map* for which 983 * the value must be put, masked with **BPF_F_INDEX_MASK**. 984 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 985 * to indicate that the index of the current CPU core should be 986 * used. 987 * 988 * The value to write, of *size*, is passed through eBPF stack and 989 * pointed by *data*. 990 * 991 * The context of the program *ctx* needs also be passed to the 992 * helper. 993 * 994 * On user space, a program willing to read the values needs to 995 * call **perf_event_open**\ () on the perf event (either for 996 * one or for all CPUs) and to store the file descriptor into the 997 * *map*. This must be done before the eBPF program can send data 998 * into it. An example is available in file 999 * *samples/bpf/trace_output_user.c* in the Linux kernel source 1000 * tree (the eBPF program counterpart is in 1001 * *samples/bpf/trace_output_kern.c*). 1002 * 1003 * **bpf_perf_event_output**\ () achieves better performance 1004 * than **bpf_trace_printk**\ () for sharing data with user 1005 * space, and is much better suitable for streaming data from eBPF 1006 * programs. 1007 * 1008 * Note that this helper is not restricted to tracing use cases 1009 * and can be used with programs attached to TC or XDP as well, 1010 * where it allows for passing data to user space listeners. Data 1011 * can be: 1012 * 1013 * * Only custom structs, 1014 * * Only the packet payload, or 1015 * * A combination of both. 1016 * Return 1017 * 0 on success, or a negative error in case of failure. 1018 * 1019 * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) 1020 * Description 1021 * This helper was provided as an easy way to load data from a 1022 * packet. It can be used to load *len* bytes from *offset* from 1023 * the packet associated to *skb*, into the buffer pointed by 1024 * *to*. 1025 * 1026 * Since Linux 4.7, usage of this helper has mostly been replaced 1027 * by "direct packet access", enabling packet data to be 1028 * manipulated with *skb*\ **->data** and *skb*\ **->data_end** 1029 * pointing respectively to the first byte of packet data and to 1030 * the byte after the last byte of packet data. However, it 1031 * remains useful if one wishes to read large quantities of data 1032 * at once from a packet into the eBPF stack. 1033 * Return 1034 * 0 on success, or a negative error in case of failure. 1035 * 1036 * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags) 1037 * Description 1038 * Walk a user or a kernel stack and return its id. To achieve 1039 * this, the helper needs *ctx*, which is a pointer to the context 1040 * on which the tracing program is executed, and a pointer to a 1041 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. 1042 * 1043 * The last argument, *flags*, holds the number of stack frames to 1044 * skip (from 0 to 255), masked with 1045 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1046 * a combination of the following flags: 1047 * 1048 * **BPF_F_USER_STACK** 1049 * Collect a user space stack instead of a kernel stack. 1050 * **BPF_F_FAST_STACK_CMP** 1051 * Compare stacks by hash only. 1052 * **BPF_F_REUSE_STACKID** 1053 * If two different stacks hash into the same *stackid*, 1054 * discard the old one. 1055 * 1056 * The stack id retrieved is a 32 bit long integer handle which 1057 * can be further combined with other data (including other stack 1058 * ids) and used as a key into maps. This can be useful for 1059 * generating a variety of graphs (such as flame graphs or off-cpu 1060 * graphs). 1061 * 1062 * For walking a stack, this helper is an improvement over 1063 * **bpf_probe_read**\ (), which can be used with unrolled loops 1064 * but is not efficient and consumes a lot of eBPF instructions. 1065 * Instead, **bpf_get_stackid**\ () can collect up to 1066 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that 1067 * this limit can be controlled with the **sysctl** program, and 1068 * that it should be manually increased in order to profile long 1069 * user stacks (such as stacks for Java programs). To do so, use: 1070 * 1071 * :: 1072 * 1073 * # sysctl kernel.perf_event_max_stack=<new value> 1074 * Return 1075 * The positive or null stack id on success, or a negative error 1076 * in case of failure. 1077 * 1078 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) 1079 * Description 1080 * Compute a checksum difference, from the raw buffer pointed by 1081 * *from*, of length *from_size* (that must be a multiple of 4), 1082 * towards the raw buffer pointed by *to*, of size *to_size* 1083 * (same remark). An optional *seed* can be added to the value 1084 * (this can be cascaded, the seed may come from a previous call 1085 * to the helper). 1086 * 1087 * This is flexible enough to be used in several ways: 1088 * 1089 * * With *from_size* == 0, *to_size* > 0 and *seed* set to 1090 * checksum, it can be used when pushing new data. 1091 * * With *from_size* > 0, *to_size* == 0 and *seed* set to 1092 * checksum, it can be used when removing data from a packet. 1093 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it 1094 * can be used to compute a diff. Note that *from_size* and 1095 * *to_size* do not need to be equal. 1096 * 1097 * This helper can be used in combination with 1098 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to 1099 * which one can feed in the difference computed with 1100 * **bpf_csum_diff**\ (). 1101 * Return 1102 * The checksum result, or a negative error code in case of 1103 * failure. 1104 * 1105 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1106 * Description 1107 * Retrieve tunnel options metadata for the packet associated to 1108 * *skb*, and store the raw tunnel option data to the buffer *opt* 1109 * of *size*. 1110 * 1111 * This helper can be used with encapsulation devices that can 1112 * operate in "collect metadata" mode (please refer to the related 1113 * note in the description of **bpf_skb_get_tunnel_key**\ () for 1114 * more details). A particular example where this can be used is 1115 * in combination with the Geneve encapsulation protocol, where it 1116 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) 1117 * and retrieving arbitrary TLVs (Type-Length-Value headers) from 1118 * the eBPF program. This allows for full customization of these 1119 * headers. 1120 * Return 1121 * The size of the option data retrieved. 1122 * 1123 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1124 * Description 1125 * Set tunnel options metadata for the packet associated to *skb* 1126 * to the option data contained in the raw buffer *opt* of *size*. 1127 * 1128 * See also the description of the **bpf_skb_get_tunnel_opt**\ () 1129 * helper for additional information. 1130 * Return 1131 * 0 on success, or a negative error in case of failure. 1132 * 1133 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) 1134 * Description 1135 * Change the protocol of the *skb* to *proto*. Currently 1136 * supported are transition from IPv4 to IPv6, and from IPv6 to 1137 * IPv4. The helper takes care of the groundwork for the 1138 * transition, including resizing the socket buffer. The eBPF 1139 * program is expected to fill the new headers, if any, via 1140 * **skb_store_bytes**\ () and to recompute the checksums with 1141 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ 1142 * (). The main case for this helper is to perform NAT64 1143 * operations out of an eBPF program. 1144 * 1145 * Internally, the GSO type is marked as dodgy so that headers are 1146 * checked and segments are recalculated by the GSO/GRO engine. 1147 * The size for GSO target is adapted as well. 1148 * 1149 * All values for *flags* are reserved for future usage, and must 1150 * be left at zero. 1151 * 1152 * A call to this helper is susceptible to change the underlaying 1153 * packet buffer. Therefore, at load time, all checks on pointers 1154 * previously done by the verifier are invalidated and must be 1155 * performed again, if the helper is used in combination with 1156 * direct packet access. 1157 * Return 1158 * 0 on success, or a negative error in case of failure. 1159 * 1160 * int bpf_skb_change_type(struct sk_buff *skb, u32 type) 1161 * Description 1162 * Change the packet type for the packet associated to *skb*. This 1163 * comes down to setting *skb*\ **->pkt_type** to *type*, except 1164 * the eBPF program does not have a write access to *skb*\ 1165 * **->pkt_type** beside this helper. Using a helper here allows 1166 * for graceful handling of errors. 1167 * 1168 * The major use case is to change incoming *skb*s to 1169 * **PACKET_HOST** in a programmatic way instead of having to 1170 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for 1171 * example. 1172 * 1173 * Note that *type* only allows certain values. At this time, they 1174 * are: 1175 * 1176 * **PACKET_HOST** 1177 * Packet is for us. 1178 * **PACKET_BROADCAST** 1179 * Send packet to all. 1180 * **PACKET_MULTICAST** 1181 * Send packet to group. 1182 * **PACKET_OTHERHOST** 1183 * Send packet to someone else. 1184 * Return 1185 * 0 on success, or a negative error in case of failure. 1186 * 1187 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) 1188 * Description 1189 * Check whether *skb* is a descendant of the cgroup2 held by 1190 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1191 * Return 1192 * The return value depends on the result of the test, and can be: 1193 * 1194 * * 0, if the *skb* failed the cgroup2 descendant test. 1195 * * 1, if the *skb* succeeded the cgroup2 descendant test. 1196 * * A negative error code, if an error occurred. 1197 * 1198 * u32 bpf_get_hash_recalc(struct sk_buff *skb) 1199 * Description 1200 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is 1201 * not set, in particular if the hash was cleared due to mangling, 1202 * recompute this hash. Later accesses to the hash can be done 1203 * directly with *skb*\ **->hash**. 1204 * 1205 * Calling **bpf_set_hash_invalid**\ (), changing a packet 1206 * prototype with **bpf_skb_change_proto**\ (), or calling 1207 * **bpf_skb_store_bytes**\ () with the 1208 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear 1209 * the hash and to trigger a new computation for the next call to 1210 * **bpf_get_hash_recalc**\ (). 1211 * Return 1212 * The 32-bit hash. 1213 * 1214 * u64 bpf_get_current_task(void) 1215 * Return 1216 * A pointer to the current task struct. 1217 * 1218 * int bpf_probe_write_user(void *dst, const void *src, u32 len) 1219 * Description 1220 * Attempt in a safe way to write *len* bytes from the buffer 1221 * *src* to *dst* in memory. It only works for threads that are in 1222 * user context, and *dst* must be a valid user space address. 1223 * 1224 * This helper should not be used to implement any kind of 1225 * security mechanism because of TOC-TOU attacks, but rather to 1226 * debug, divert, and manipulate execution of semi-cooperative 1227 * processes. 1228 * 1229 * Keep in mind that this feature is meant for experiments, and it 1230 * has a risk of crashing the system and running programs. 1231 * Therefore, when an eBPF program using this helper is attached, 1232 * a warning including PID and process name is printed to kernel 1233 * logs. 1234 * Return 1235 * 0 on success, or a negative error in case of failure. 1236 * 1237 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) 1238 * Description 1239 * Check whether the probe is being run is the context of a given 1240 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by 1241 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1242 * Return 1243 * The return value depends on the result of the test, and can be: 1244 * 1245 * * 0, if the *skb* task belongs to the cgroup2. 1246 * * 1, if the *skb* task does not belong to the cgroup2. 1247 * * A negative error code, if an error occurred. 1248 * 1249 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) 1250 * Description 1251 * Resize (trim or grow) the packet associated to *skb* to the 1252 * new *len*. The *flags* are reserved for future usage, and must 1253 * be left at zero. 1254 * 1255 * The basic idea is that the helper performs the needed work to 1256 * change the size of the packet, then the eBPF program rewrites 1257 * the rest via helpers like **bpf_skb_store_bytes**\ (), 1258 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () 1259 * and others. This helper is a slow path utility intended for 1260 * replies with control messages. And because it is targeted for 1261 * slow path, the helper itself can afford to be slow: it 1262 * implicitly linearizes, unclones and drops offloads from the 1263 * *skb*. 1264 * 1265 * A call to this helper is susceptible to change the underlaying 1266 * packet buffer. Therefore, at load time, all checks on pointers 1267 * previously done by the verifier are invalidated and must be 1268 * performed again, if the helper is used in combination with 1269 * direct packet access. 1270 * Return 1271 * 0 on success, or a negative error in case of failure. 1272 * 1273 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len) 1274 * Description 1275 * Pull in non-linear data in case the *skb* is non-linear and not 1276 * all of *len* are part of the linear section. Make *len* bytes 1277 * from *skb* readable and writable. If a zero value is passed for 1278 * *len*, then the whole length of the *skb* is pulled. 1279 * 1280 * This helper is only needed for reading and writing with direct 1281 * packet access. 1282 * 1283 * For direct packet access, testing that offsets to access 1284 * are within packet boundaries (test on *skb*\ **->data_end**) is 1285 * susceptible to fail if offsets are invalid, or if the requested 1286 * data is in non-linear parts of the *skb*. On failure the 1287 * program can just bail out, or in the case of a non-linear 1288 * buffer, use a helper to make the data available. The 1289 * **bpf_skb_load_bytes**\ () helper is a first solution to access 1290 * the data. Another one consists in using **bpf_skb_pull_data** 1291 * to pull in once the non-linear parts, then retesting and 1292 * eventually access the data. 1293 * 1294 * At the same time, this also makes sure the *skb* is uncloned, 1295 * which is a necessary condition for direct write. As this needs 1296 * to be an invariant for the write part only, the verifier 1297 * detects writes and adds a prologue that is calling 1298 * **bpf_skb_pull_data()** to effectively unclone the *skb* from 1299 * the very beginning in case it is indeed cloned. 1300 * 1301 * A call to this helper is susceptible to change the underlaying 1302 * packet buffer. Therefore, at load time, all checks on pointers 1303 * previously done by the verifier are invalidated and must be 1304 * performed again, if the helper is used in combination with 1305 * direct packet access. 1306 * Return 1307 * 0 on success, or a negative error in case of failure. 1308 * 1309 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) 1310 * Description 1311 * Add the checksum *csum* into *skb*\ **->csum** in case the 1312 * driver has supplied a checksum for the entire packet into that 1313 * field. Return an error otherwise. This helper is intended to be 1314 * used in combination with **bpf_csum_diff**\ (), in particular 1315 * when the checksum needs to be updated after data has been 1316 * written into the packet through direct packet access. 1317 * Return 1318 * The checksum on success, or a negative error code in case of 1319 * failure. 1320 * 1321 * void bpf_set_hash_invalid(struct sk_buff *skb) 1322 * Description 1323 * Invalidate the current *skb*\ **->hash**. It can be used after 1324 * mangling on headers through direct packet access, in order to 1325 * indicate that the hash is outdated and to trigger a 1326 * recalculation the next time the kernel tries to access this 1327 * hash or when the **bpf_get_hash_recalc**\ () helper is called. 1328 * 1329 * int bpf_get_numa_node_id(void) 1330 * Description 1331 * Return the id of the current NUMA node. The primary use case 1332 * for this helper is the selection of sockets for the local NUMA 1333 * node, when the program is attached to sockets using the 1334 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), 1335 * but the helper is also available to other eBPF program types, 1336 * similarly to **bpf_get_smp_processor_id**\ (). 1337 * Return 1338 * The id of current NUMA node. 1339 * 1340 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) 1341 * Description 1342 * Grows headroom of packet associated to *skb* and adjusts the 1343 * offset of the MAC header accordingly, adding *len* bytes of 1344 * space. It automatically extends and reallocates memory as 1345 * required. 1346 * 1347 * This helper can be used on a layer 3 *skb* to push a MAC header 1348 * for redirection into a layer 2 device. 1349 * 1350 * All values for *flags* are reserved for future usage, and must 1351 * be left at zero. 1352 * 1353 * A call to this helper is susceptible to change the underlaying 1354 * packet buffer. Therefore, at load time, all checks on pointers 1355 * previously done by the verifier are invalidated and must be 1356 * performed again, if the helper is used in combination with 1357 * direct packet access. 1358 * Return 1359 * 0 on success, or a negative error in case of failure. 1360 * 1361 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) 1362 * Description 1363 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that 1364 * it is possible to use a negative value for *delta*. This helper 1365 * can be used to prepare the packet for pushing or popping 1366 * headers. 1367 * 1368 * A call to this helper is susceptible to change the underlaying 1369 * packet buffer. Therefore, at load time, all checks on pointers 1370 * previously done by the verifier are invalidated and must be 1371 * performed again, if the helper is used in combination with 1372 * direct packet access. 1373 * Return 1374 * 0 on success, or a negative error in case of failure. 1375 * 1376 * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr) 1377 * Description 1378 * Copy a NUL terminated string from an unsafe address 1379 * *unsafe_ptr* to *dst*. The *size* should include the 1380 * terminating NUL byte. In case the string length is smaller than 1381 * *size*, the target is not padded with further NUL bytes. If the 1382 * string length is larger than *size*, just *size*-1 bytes are 1383 * copied and the last byte is set to NUL. 1384 * 1385 * On success, the length of the copied string is returned. This 1386 * makes this helper useful in tracing programs for reading 1387 * strings, and more importantly to get its length at runtime. See 1388 * the following snippet: 1389 * 1390 * :: 1391 * 1392 * SEC("kprobe/sys_open") 1393 * void bpf_sys_open(struct pt_regs *ctx) 1394 * { 1395 * char buf[PATHLEN]; // PATHLEN is defined to 256 1396 * int res = bpf_probe_read_str(buf, sizeof(buf), 1397 * ctx->di); 1398 * 1399 * // Consume buf, for example push it to 1400 * // userspace via bpf_perf_event_output(); we 1401 * // can use res (the string length) as event 1402 * // size, after checking its boundaries. 1403 * } 1404 * 1405 * In comparison, using **bpf_probe_read()** helper here instead 1406 * to read the string would require to estimate the length at 1407 * compile time, and would often result in copying more memory 1408 * than necessary. 1409 * 1410 * Another useful use case is when parsing individual process 1411 * arguments or individual environment variables navigating 1412 * *current*\ **->mm->arg_start** and *current*\ 1413 * **->mm->env_start**: using this helper and the return value, 1414 * one can quickly iterate at the right offset of the memory area. 1415 * Return 1416 * On success, the strictly positive length of the string, 1417 * including the trailing NUL character. On error, a negative 1418 * value. 1419 * 1420 * u64 bpf_get_socket_cookie(struct sk_buff *skb) 1421 * Description 1422 * If the **struct sk_buff** pointed by *skb* has a known socket, 1423 * retrieve the cookie (generated by the kernel) of this socket. 1424 * If no cookie has been set yet, generate a new cookie. Once 1425 * generated, the socket cookie remains stable for the life of the 1426 * socket. This helper can be useful for monitoring per socket 1427 * networking traffic statistics as it provides a unique socket 1428 * identifier per namespace. 1429 * Return 1430 * A 8-byte long non-decreasing number on success, or 0 if the 1431 * socket field is missing inside *skb*. 1432 * 1433 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) 1434 * Description 1435 * Equivalent to bpf_get_socket_cookie() helper that accepts 1436 * *skb*, but gets socket from **struct bpf_sock_addr** contex. 1437 * Return 1438 * A 8-byte long non-decreasing number. 1439 * 1440 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx) 1441 * Description 1442 * Equivalent to bpf_get_socket_cookie() helper that accepts 1443 * *skb*, but gets socket from **struct bpf_sock_ops** contex. 1444 * Return 1445 * A 8-byte long non-decreasing number. 1446 * 1447 * u32 bpf_get_socket_uid(struct sk_buff *skb) 1448 * Return 1449 * The owner UID of the socket associated to *skb*. If the socket 1450 * is **NULL**, or if it is not a full socket (i.e. if it is a 1451 * time-wait or a request socket instead), **overflowuid** value 1452 * is returned (note that **overflowuid** might also be the actual 1453 * UID value for the socket). 1454 * 1455 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash) 1456 * Description 1457 * Set the full hash for *skb* (set the field *skb*\ **->hash**) 1458 * to value *hash*. 1459 * Return 1460 * 0 1461 * 1462 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1463 * Description 1464 * Emulate a call to **setsockopt()** on the socket associated to 1465 * *bpf_socket*, which must be a full socket. The *level* at 1466 * which the option resides and the name *optname* of the option 1467 * must be specified, see **setsockopt(2)** for more information. 1468 * The option value of length *optlen* is pointed by *optval*. 1469 * 1470 * This helper actually implements a subset of **setsockopt()**. 1471 * It supports the following *level*\ s: 1472 * 1473 * * **SOL_SOCKET**, which supports the following *optname*\ s: 1474 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, 1475 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**. 1476 * * **IPPROTO_TCP**, which supports the following *optname*\ s: 1477 * **TCP_CONGESTION**, **TCP_BPF_IW**, 1478 * **TCP_BPF_SNDCWND_CLAMP**. 1479 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1480 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1481 * Return 1482 * 0 on success, or a negative error in case of failure. 1483 * 1484 * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags) 1485 * Description 1486 * Grow or shrink the room for data in the packet associated to 1487 * *skb* by *len_diff*, and according to the selected *mode*. 1488 * 1489 * There is a single supported mode at this time: 1490 * 1491 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer 1492 * (room space is added or removed below the layer 3 header). 1493 * 1494 * All values for *flags* are reserved for future usage, and must 1495 * be left at zero. 1496 * 1497 * A call to this helper is susceptible to change the underlaying 1498 * packet buffer. Therefore, at load time, all checks on pointers 1499 * previously done by the verifier are invalidated and must be 1500 * performed again, if the helper is used in combination with 1501 * direct packet access. 1502 * Return 1503 * 0 on success, or a negative error in case of failure. 1504 * 1505 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1506 * Description 1507 * Redirect the packet to the endpoint referenced by *map* at 1508 * index *key*. Depending on its type, this *map* can contain 1509 * references to net devices (for forwarding packets through other 1510 * ports), or to CPUs (for redirecting XDP frames to another CPU; 1511 * but this is only implemented for native XDP (with driver 1512 * support) as of this writing). 1513 * 1514 * All values for *flags* are reserved for future usage, and must 1515 * be left at zero. 1516 * 1517 * When used to redirect packets to net devices, this helper 1518 * provides a high performance increase over **bpf_redirect**\ (). 1519 * This is due to various implementation details of the underlying 1520 * mechanisms, one of which is the fact that **bpf_redirect_map**\ 1521 * () tries to send packet as a "bulk" to the device. 1522 * Return 1523 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error. 1524 * 1525 * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1526 * Description 1527 * Redirect the packet to the socket referenced by *map* (of type 1528 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1529 * egress interfaces can be used for redirection. The 1530 * **BPF_F_INGRESS** value in *flags* is used to make the 1531 * distinction (ingress path is selected if the flag is present, 1532 * egress path otherwise). This is the only flag supported for now. 1533 * Return 1534 * **SK_PASS** on success, or **SK_DROP** on error. 1535 * 1536 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 1537 * Description 1538 * Add an entry to, or update a *map* referencing sockets. The 1539 * *skops* is used as a new value for the entry associated to 1540 * *key*. *flags* is one of: 1541 * 1542 * **BPF_NOEXIST** 1543 * The entry for *key* must not exist in the map. 1544 * **BPF_EXIST** 1545 * The entry for *key* must already exist in the map. 1546 * **BPF_ANY** 1547 * No condition on the existence of the entry for *key*. 1548 * 1549 * If the *map* has eBPF programs (parser and verdict), those will 1550 * be inherited by the socket being added. If the socket is 1551 * already attached to eBPF programs, this results in an error. 1552 * Return 1553 * 0 on success, or a negative error in case of failure. 1554 * 1555 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) 1556 * Description 1557 * Adjust the address pointed by *xdp_md*\ **->data_meta** by 1558 * *delta* (which can be positive or negative). Note that this 1559 * operation modifies the address stored in *xdp_md*\ **->data**, 1560 * so the latter must be loaded only after the helper has been 1561 * called. 1562 * 1563 * The use of *xdp_md*\ **->data_meta** is optional and programs 1564 * are not required to use it. The rationale is that when the 1565 * packet is processed with XDP (e.g. as DoS filter), it is 1566 * possible to push further meta data along with it before passing 1567 * to the stack, and to give the guarantee that an ingress eBPF 1568 * program attached as a TC classifier on the same device can pick 1569 * this up for further post-processing. Since TC works with socket 1570 * buffers, it remains possible to set from XDP the **mark** or 1571 * **priority** pointers, or other pointers for the socket buffer. 1572 * Having this scratch space generic and programmable allows for 1573 * more flexibility as the user is free to store whatever meta 1574 * data they need. 1575 * 1576 * A call to this helper is susceptible to change the underlaying 1577 * packet buffer. Therefore, at load time, all checks on pointers 1578 * previously done by the verifier are invalidated and must be 1579 * performed again, if the helper is used in combination with 1580 * direct packet access. 1581 * Return 1582 * 0 on success, or a negative error in case of failure. 1583 * 1584 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) 1585 * Description 1586 * Read the value of a perf event counter, and store it into *buf* 1587 * of size *buf_size*. This helper relies on a *map* of type 1588 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event 1589 * counter is selected when *map* is updated with perf event file 1590 * descriptors. The *map* is an array whose size is the number of 1591 * available CPUs, and each cell contains a value relative to one 1592 * CPU. The value to retrieve is indicated by *flags*, that 1593 * contains the index of the CPU to look up, masked with 1594 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1595 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1596 * current CPU should be retrieved. 1597 * 1598 * This helper behaves in a way close to 1599 * **bpf_perf_event_read**\ () helper, save that instead of 1600 * just returning the value observed, it fills the *buf* 1601 * structure. This allows for additional data to be retrieved: in 1602 * particular, the enabled and running times (in *buf*\ 1603 * **->enabled** and *buf*\ **->running**, respectively) are 1604 * copied. In general, **bpf_perf_event_read_value**\ () is 1605 * recommended over **bpf_perf_event_read**\ (), which has some 1606 * ABI issues and provides fewer functionalities. 1607 * 1608 * These values are interesting, because hardware PMU (Performance 1609 * Monitoring Unit) counters are limited resources. When there are 1610 * more PMU based perf events opened than available counters, 1611 * kernel will multiplex these events so each event gets certain 1612 * percentage (but not all) of the PMU time. In case that 1613 * multiplexing happens, the number of samples or counter value 1614 * will not reflect the case compared to when no multiplexing 1615 * occurs. This makes comparison between different runs difficult. 1616 * Typically, the counter value should be normalized before 1617 * comparing to other experiments. The usual normalization is done 1618 * as follows. 1619 * 1620 * :: 1621 * 1622 * normalized_counter = counter * t_enabled / t_running 1623 * 1624 * Where t_enabled is the time enabled for event and t_running is 1625 * the time running for event since last normalization. The 1626 * enabled and running times are accumulated since the perf event 1627 * open. To achieve scaling factor between two invocations of an 1628 * eBPF program, users can can use CPU id as the key (which is 1629 * typical for perf array usage model) to remember the previous 1630 * value and do the calculation inside the eBPF program. 1631 * Return 1632 * 0 on success, or a negative error in case of failure. 1633 * 1634 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size) 1635 * Description 1636 * For en eBPF program attached to a perf event, retrieve the 1637 * value of the event counter associated to *ctx* and store it in 1638 * the structure pointed by *buf* and of size *buf_size*. Enabled 1639 * and running times are also stored in the structure (see 1640 * description of helper **bpf_perf_event_read_value**\ () for 1641 * more details). 1642 * Return 1643 * 0 on success, or a negative error in case of failure. 1644 * 1645 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1646 * Description 1647 * Emulate a call to **getsockopt()** on the socket associated to 1648 * *bpf_socket*, which must be a full socket. The *level* at 1649 * which the option resides and the name *optname* of the option 1650 * must be specified, see **getsockopt(2)** for more information. 1651 * The retrieved value is stored in the structure pointed by 1652 * *opval* and of length *optlen*. 1653 * 1654 * This helper actually implements a subset of **getsockopt()**. 1655 * It supports the following *level*\ s: 1656 * 1657 * * **IPPROTO_TCP**, which supports *optname* 1658 * **TCP_CONGESTION**. 1659 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1660 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1661 * Return 1662 * 0 on success, or a negative error in case of failure. 1663 * 1664 * int bpf_override_return(struct pt_reg *regs, u64 rc) 1665 * Description 1666 * Used for error injection, this helper uses kprobes to override 1667 * the return value of the probed function, and to set it to *rc*. 1668 * The first argument is the context *regs* on which the kprobe 1669 * works. 1670 * 1671 * This helper works by setting setting the PC (program counter) 1672 * to an override function which is run in place of the original 1673 * probed function. This means the probed function is not run at 1674 * all. The replacement function just returns with the required 1675 * value. 1676 * 1677 * This helper has security implications, and thus is subject to 1678 * restrictions. It is only available if the kernel was compiled 1679 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration 1680 * option, and in this case it only works on functions tagged with 1681 * **ALLOW_ERROR_INJECTION** in the kernel code. 1682 * 1683 * Also, the helper is only available for the architectures having 1684 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, 1685 * x86 architecture is the only one to support this feature. 1686 * Return 1687 * 0 1688 * 1689 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval) 1690 * Description 1691 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field 1692 * for the full TCP socket associated to *bpf_sock_ops* to 1693 * *argval*. 1694 * 1695 * The primary use of this field is to determine if there should 1696 * be calls to eBPF programs of type 1697 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP 1698 * code. A program of the same type can change its value, per 1699 * connection and as necessary, when the connection is 1700 * established. This field is directly accessible for reading, but 1701 * this helper must be used for updates in order to return an 1702 * error if an eBPF program tries to set a callback that is not 1703 * supported in the current kernel. 1704 * 1705 * The supported callback values that *argval* can combine are: 1706 * 1707 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) 1708 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) 1709 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) 1710 * 1711 * Here are some examples of where one could call such eBPF 1712 * program: 1713 * 1714 * * When RTO fires. 1715 * * When a packet is retransmitted. 1716 * * When the connection terminates. 1717 * * When a packet is sent. 1718 * * When a packet is received. 1719 * Return 1720 * Code **-EINVAL** if the socket is not a full TCP socket; 1721 * otherwise, a positive number containing the bits that could not 1722 * be set is returned (which comes down to 0 if all bits were set 1723 * as required). 1724 * 1725 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) 1726 * Description 1727 * This helper is used in programs implementing policies at the 1728 * socket level. If the message *msg* is allowed to pass (i.e. if 1729 * the verdict eBPF program returns **SK_PASS**), redirect it to 1730 * the socket referenced by *map* (of type 1731 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1732 * egress interfaces can be used for redirection. The 1733 * **BPF_F_INGRESS** value in *flags* is used to make the 1734 * distinction (ingress path is selected if the flag is present, 1735 * egress path otherwise). This is the only flag supported for now. 1736 * Return 1737 * **SK_PASS** on success, or **SK_DROP** on error. 1738 * 1739 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) 1740 * Description 1741 * For socket policies, apply the verdict of the eBPF program to 1742 * the next *bytes* (number of bytes) of message *msg*. 1743 * 1744 * For example, this helper can be used in the following cases: 1745 * 1746 * * A single **sendmsg**\ () or **sendfile**\ () system call 1747 * contains multiple logical messages that the eBPF program is 1748 * supposed to read and for which it should apply a verdict. 1749 * * An eBPF program only cares to read the first *bytes* of a 1750 * *msg*. If the message has a large payload, then setting up 1751 * and calling the eBPF program repeatedly for all bytes, even 1752 * though the verdict is already known, would create unnecessary 1753 * overhead. 1754 * 1755 * When called from within an eBPF program, the helper sets a 1756 * counter internal to the BPF infrastructure, that is used to 1757 * apply the last verdict to the next *bytes*. If *bytes* is 1758 * smaller than the current data being processed from a 1759 * **sendmsg**\ () or **sendfile**\ () system call, the first 1760 * *bytes* will be sent and the eBPF program will be re-run with 1761 * the pointer for start of data pointing to byte number *bytes* 1762 * **+ 1**. If *bytes* is larger than the current data being 1763 * processed, then the eBPF verdict will be applied to multiple 1764 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are 1765 * consumed. 1766 * 1767 * Note that if a socket closes with the internal counter holding 1768 * a non-zero value, this is not a problem because data is not 1769 * being buffered for *bytes* and is sent as it is received. 1770 * Return 1771 * 0 1772 * 1773 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) 1774 * Description 1775 * For socket policies, prevent the execution of the verdict eBPF 1776 * program for message *msg* until *bytes* (byte number) have been 1777 * accumulated. 1778 * 1779 * This can be used when one needs a specific number of bytes 1780 * before a verdict can be assigned, even if the data spans 1781 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme 1782 * case would be a user calling **sendmsg**\ () repeatedly with 1783 * 1-byte long message segments. Obviously, this is bad for 1784 * performance, but it is still valid. If the eBPF program needs 1785 * *bytes* bytes to validate a header, this helper can be used to 1786 * prevent the eBPF program to be called again until *bytes* have 1787 * been accumulated. 1788 * Return 1789 * 0 1790 * 1791 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) 1792 * Description 1793 * For socket policies, pull in non-linear data from user space 1794 * for *msg* and set pointers *msg*\ **->data** and *msg*\ 1795 * **->data_end** to *start* and *end* bytes offsets into *msg*, 1796 * respectively. 1797 * 1798 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 1799 * *msg* it can only parse data that the (**data**, **data_end**) 1800 * pointers have already consumed. For **sendmsg**\ () hooks this 1801 * is likely the first scatterlist element. But for calls relying 1802 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will 1803 * be the range (**0**, **0**) because the data is shared with 1804 * user space and by default the objective is to avoid allowing 1805 * user space to modify data while (or after) eBPF verdict is 1806 * being decided. This helper can be used to pull in data and to 1807 * set the start and end pointer to given values. Data will be 1808 * copied if necessary (i.e. if data was not linear and if start 1809 * and end pointers do not point to the same chunk). 1810 * 1811 * A call to this helper is susceptible to change the underlaying 1812 * packet buffer. Therefore, at load time, all checks on pointers 1813 * previously done by the verifier are invalidated and must be 1814 * performed again, if the helper is used in combination with 1815 * direct packet access. 1816 * 1817 * All values for *flags* are reserved for future usage, and must 1818 * be left at zero. 1819 * Return 1820 * 0 on success, or a negative error in case of failure. 1821 * 1822 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len) 1823 * Description 1824 * Bind the socket associated to *ctx* to the address pointed by 1825 * *addr*, of length *addr_len*. This allows for making outgoing 1826 * connection from the desired IP address, which can be useful for 1827 * example when all processes inside a cgroup should use one 1828 * single IP address on a host that has multiple IP configured. 1829 * 1830 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The 1831 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or 1832 * **AF_INET6**). Looking for a free port to bind to can be 1833 * expensive, therefore binding to port is not permitted by the 1834 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively) 1835 * must be set to zero. 1836 * Return 1837 * 0 on success, or a negative error in case of failure. 1838 * 1839 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) 1840 * Description 1841 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is 1842 * only possible to shrink the packet as of this writing, 1843 * therefore *delta* must be a negative integer. 1844 * 1845 * A call to this helper is susceptible to change the underlaying 1846 * packet buffer. Therefore, at load time, all checks on pointers 1847 * previously done by the verifier are invalidated and must be 1848 * performed again, if the helper is used in combination with 1849 * direct packet access. 1850 * Return 1851 * 0 on success, or a negative error in case of failure. 1852 * 1853 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) 1854 * Description 1855 * Retrieve the XFRM state (IP transform framework, see also 1856 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. 1857 * 1858 * The retrieved value is stored in the **struct bpf_xfrm_state** 1859 * pointed by *xfrm_state* and of length *size*. 1860 * 1861 * All values for *flags* are reserved for future usage, and must 1862 * be left at zero. 1863 * 1864 * This helper is available only if the kernel was compiled with 1865 * **CONFIG_XFRM** configuration option. 1866 * Return 1867 * 0 on success, or a negative error in case of failure. 1868 * 1869 * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags) 1870 * Description 1871 * Return a user or a kernel stack in bpf program provided buffer. 1872 * To achieve this, the helper needs *ctx*, which is a pointer 1873 * to the context on which the tracing program is executed. 1874 * To store the stacktrace, the bpf program provides *buf* with 1875 * a nonnegative *size*. 1876 * 1877 * The last argument, *flags*, holds the number of stack frames to 1878 * skip (from 0 to 255), masked with 1879 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1880 * the following flags: 1881 * 1882 * **BPF_F_USER_STACK** 1883 * Collect a user space stack instead of a kernel stack. 1884 * **BPF_F_USER_BUILD_ID** 1885 * Collect buildid+offset instead of ips for user stack, 1886 * only valid if **BPF_F_USER_STACK** is also specified. 1887 * 1888 * **bpf_get_stack**\ () can collect up to 1889 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 1890 * to sufficient large buffer size. Note that 1891 * this limit can be controlled with the **sysctl** program, and 1892 * that it should be manually increased in order to profile long 1893 * user stacks (such as stacks for Java programs). To do so, use: 1894 * 1895 * :: 1896 * 1897 * # sysctl kernel.perf_event_max_stack=<new value> 1898 * Return 1899 * A non-negative value equal to or less than *size* on success, 1900 * or a negative error in case of failure. 1901 * 1902 * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header) 1903 * Description 1904 * This helper is similar to **bpf_skb_load_bytes**\ () in that 1905 * it provides an easy way to load *len* bytes from *offset* 1906 * from the packet associated to *skb*, into the buffer pointed 1907 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that 1908 * a fifth argument *start_header* exists in order to select a 1909 * base offset to start from. *start_header* can be one of: 1910 * 1911 * **BPF_HDR_START_MAC** 1912 * Base offset to load data from is *skb*'s mac header. 1913 * **BPF_HDR_START_NET** 1914 * Base offset to load data from is *skb*'s network header. 1915 * 1916 * In general, "direct packet access" is the preferred method to 1917 * access packet data, however, this helper is in particular useful 1918 * in socket filters where *skb*\ **->data** does not always point 1919 * to the start of the mac header and where "direct packet access" 1920 * is not available. 1921 * Return 1922 * 0 on success, or a negative error in case of failure. 1923 * 1924 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags) 1925 * Description 1926 * Do FIB lookup in kernel tables using parameters in *params*. 1927 * If lookup is successful and result shows packet is to be 1928 * forwarded, the neighbor tables are searched for the nexthop. 1929 * If successful (ie., FIB lookup shows forwarding and nexthop 1930 * is resolved), the nexthop address is returned in ipv4_dst 1931 * or ipv6_dst based on family, smac is set to mac address of 1932 * egress device, dmac is set to nexthop mac address, rt_metric 1933 * is set to metric from route (IPv4/IPv6 only), and ifindex 1934 * is set to the device index of the nexthop from the FIB lookup. 1935 * 1936 * *plen* argument is the size of the passed in struct. 1937 * *flags* argument can be a combination of one or more of the 1938 * following values: 1939 * 1940 * **BPF_FIB_LOOKUP_DIRECT** 1941 * Do a direct table lookup vs full lookup using FIB 1942 * rules. 1943 * **BPF_FIB_LOOKUP_OUTPUT** 1944 * Perform lookup from an egress perspective (default is 1945 * ingress). 1946 * 1947 * *ctx* is either **struct xdp_md** for XDP programs or 1948 * **struct sk_buff** tc cls_act programs. 1949 * Return 1950 * * < 0 if any input argument is invalid 1951 * * 0 on success (packet is forwarded, nexthop neighbor exists) 1952 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the 1953 * packet is not forwarded or needs assist from full stack 1954 * 1955 * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags) 1956 * Description 1957 * Add an entry to, or update a sockhash *map* referencing sockets. 1958 * The *skops* is used as a new value for the entry associated to 1959 * *key*. *flags* is one of: 1960 * 1961 * **BPF_NOEXIST** 1962 * The entry for *key* must not exist in the map. 1963 * **BPF_EXIST** 1964 * The entry for *key* must already exist in the map. 1965 * **BPF_ANY** 1966 * No condition on the existence of the entry for *key*. 1967 * 1968 * If the *map* has eBPF programs (parser and verdict), those will 1969 * be inherited by the socket being added. If the socket is 1970 * already attached to eBPF programs, this results in an error. 1971 * Return 1972 * 0 on success, or a negative error in case of failure. 1973 * 1974 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags) 1975 * Description 1976 * This helper is used in programs implementing policies at the 1977 * socket level. If the message *msg* is allowed to pass (i.e. if 1978 * the verdict eBPF program returns **SK_PASS**), redirect it to 1979 * the socket referenced by *map* (of type 1980 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 1981 * egress interfaces can be used for redirection. The 1982 * **BPF_F_INGRESS** value in *flags* is used to make the 1983 * distinction (ingress path is selected if the flag is present, 1984 * egress path otherwise). This is the only flag supported for now. 1985 * Return 1986 * **SK_PASS** on success, or **SK_DROP** on error. 1987 * 1988 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags) 1989 * Description 1990 * This helper is used in programs implementing policies at the 1991 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e. 1992 * if the verdeict eBPF program returns **SK_PASS**), redirect it 1993 * to the socket referenced by *map* (of type 1994 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 1995 * egress interfaces can be used for redirection. The 1996 * **BPF_F_INGRESS** value in *flags* is used to make the 1997 * distinction (ingress path is selected if the flag is present, 1998 * egress otherwise). This is the only flag supported for now. 1999 * Return 2000 * **SK_PASS** on success, or **SK_DROP** on error. 2001 * 2002 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 2003 * Description 2004 * Encapsulate the packet associated to *skb* within a Layer 3 2005 * protocol header. This header is provided in the buffer at 2006 * address *hdr*, with *len* its size in bytes. *type* indicates 2007 * the protocol of the header and can be one of: 2008 * 2009 * **BPF_LWT_ENCAP_SEG6** 2010 * IPv6 encapsulation with Segment Routing Header 2011 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH, 2012 * the IPv6 header is computed by the kernel. 2013 * **BPF_LWT_ENCAP_SEG6_INLINE** 2014 * Only works if *skb* contains an IPv6 packet. Insert a 2015 * Segment Routing Header (**struct ipv6_sr_hdr**) inside 2016 * the IPv6 header. 2017 * 2018 * A call to this helper is susceptible to change the underlaying 2019 * packet buffer. Therefore, at load time, all checks on pointers 2020 * previously done by the verifier are invalidated and must be 2021 * performed again, if the helper is used in combination with 2022 * direct packet access. 2023 * Return 2024 * 0 on success, or a negative error in case of failure. 2025 * 2026 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len) 2027 * Description 2028 * Store *len* bytes from address *from* into the packet 2029 * associated to *skb*, at *offset*. Only the flags, tag and TLVs 2030 * inside the outermost IPv6 Segment Routing Header can be 2031 * modified through this helper. 2032 * 2033 * A call to this helper is susceptible to change the underlaying 2034 * packet buffer. Therefore, at load time, all checks on pointers 2035 * previously done by the verifier are invalidated and must be 2036 * performed again, if the helper is used in combination with 2037 * direct packet access. 2038 * Return 2039 * 0 on success, or a negative error in case of failure. 2040 * 2041 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta) 2042 * Description 2043 * Adjust the size allocated to TLVs in the outermost IPv6 2044 * Segment Routing Header contained in the packet associated to 2045 * *skb*, at position *offset* by *delta* bytes. Only offsets 2046 * after the segments are accepted. *delta* can be as well 2047 * positive (growing) as negative (shrinking). 2048 * 2049 * A call to this helper is susceptible to change the underlaying 2050 * packet buffer. Therefore, at load time, all checks on pointers 2051 * previously done by the verifier are invalidated and must be 2052 * performed again, if the helper is used in combination with 2053 * direct packet access. 2054 * Return 2055 * 0 on success, or a negative error in case of failure. 2056 * 2057 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len) 2058 * Description 2059 * Apply an IPv6 Segment Routing action of type *action* to the 2060 * packet associated to *skb*. Each action takes a parameter 2061 * contained at address *param*, and of length *param_len* bytes. 2062 * *action* can be one of: 2063 * 2064 * **SEG6_LOCAL_ACTION_END_X** 2065 * End.X action: Endpoint with Layer-3 cross-connect. 2066 * Type of *param*: **struct in6_addr**. 2067 * **SEG6_LOCAL_ACTION_END_T** 2068 * End.T action: Endpoint with specific IPv6 table lookup. 2069 * Type of *param*: **int**. 2070 * **SEG6_LOCAL_ACTION_END_B6** 2071 * End.B6 action: Endpoint bound to an SRv6 policy. 2072 * Type of param: **struct ipv6_sr_hdr**. 2073 * **SEG6_LOCAL_ACTION_END_B6_ENCAP** 2074 * End.B6.Encap action: Endpoint bound to an SRv6 2075 * encapsulation policy. 2076 * Type of param: **struct ipv6_sr_hdr**. 2077 * 2078 * A call to this helper is susceptible to change the underlaying 2079 * packet buffer. Therefore, at load time, all checks on pointers 2080 * previously done by the verifier are invalidated and must be 2081 * performed again, if the helper is used in combination with 2082 * direct packet access. 2083 * Return 2084 * 0 on success, or a negative error in case of failure. 2085 * 2086 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle) 2087 * Description 2088 * This helper is used in programs implementing IR decoding, to 2089 * report a successfully decoded key press with *scancode*, 2090 * *toggle* value in the given *protocol*. The scancode will be 2091 * translated to a keycode using the rc keymap, and reported as 2092 * an input key down event. After a period a key up event is 2093 * generated. This period can be extended by calling either 2094 * **bpf_rc_keydown**\ () again with the same values, or calling 2095 * **bpf_rc_repeat**\ (). 2096 * 2097 * Some protocols include a toggle bit, in case the button was 2098 * released and pressed again between consecutive scancodes. 2099 * 2100 * The *ctx* should point to the lirc sample as passed into 2101 * the program. 2102 * 2103 * The *protocol* is the decoded protocol number (see 2104 * **enum rc_proto** for some predefined values). 2105 * 2106 * This helper is only available is the kernel was compiled with 2107 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2108 * "**y**". 2109 * Return 2110 * 0 2111 * 2112 * int bpf_rc_repeat(void *ctx) 2113 * Description 2114 * This helper is used in programs implementing IR decoding, to 2115 * report a successfully decoded repeat key message. This delays 2116 * the generation of a key up event for previously generated 2117 * key down event. 2118 * 2119 * Some IR protocols like NEC have a special IR message for 2120 * repeating last button, for when a button is held down. 2121 * 2122 * The *ctx* should point to the lirc sample as passed into 2123 * the program. 2124 * 2125 * This helper is only available is the kernel was compiled with 2126 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2127 * "**y**". 2128 * Return 2129 * 0 2130 * 2131 * uint64_t bpf_skb_cgroup_id(struct sk_buff *skb) 2132 * Description 2133 * Return the cgroup v2 id of the socket associated with the *skb*. 2134 * This is roughly similar to the **bpf_get_cgroup_classid**\ () 2135 * helper for cgroup v1 by providing a tag resp. identifier that 2136 * can be matched on or used for map lookups e.g. to implement 2137 * policy. The cgroup v2 id of a given path in the hierarchy is 2138 * exposed in user space through the f_handle API in order to get 2139 * to the same 64-bit id. 2140 * 2141 * This helper can be used on TC egress path, but not on ingress, 2142 * and is available only if the kernel was compiled with the 2143 * **CONFIG_SOCK_CGROUP_DATA** configuration option. 2144 * Return 2145 * The id is returned or 0 in case the id could not be retrieved. 2146 * 2147 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level) 2148 * Description 2149 * Return id of cgroup v2 that is ancestor of cgroup associated 2150 * with the *skb* at the *ancestor_level*. The root cgroup is at 2151 * *ancestor_level* zero and each step down the hierarchy 2152 * increments the level. If *ancestor_level* == level of cgroup 2153 * associated with *skb*, then return value will be same as that 2154 * of **bpf_skb_cgroup_id**\ (). 2155 * 2156 * The helper is useful to implement policies based on cgroups 2157 * that are upper in hierarchy than immediate cgroup associated 2158 * with *skb*. 2159 * 2160 * The format of returned id and helper limitations are same as in 2161 * **bpf_skb_cgroup_id**\ (). 2162 * Return 2163 * The id is returned or 0 in case the id could not be retrieved. 2164 * 2165 * u64 bpf_get_current_cgroup_id(void) 2166 * Return 2167 * A 64-bit integer containing the current cgroup id based 2168 * on the cgroup within which the current task is running. 2169 * 2170 * void* get_local_storage(void *map, u64 flags) 2171 * Description 2172 * Get the pointer to the local storage area. 2173 * The type and the size of the local storage is defined 2174 * by the *map* argument. 2175 * The *flags* meaning is specific for each map type, 2176 * and has to be 0 for cgroup local storage. 2177 * 2178 * Depending on the BPF program type, a local storage area 2179 * can be shared between multiple instances of the BPF program, 2180 * running simultaneously. 2181 * 2182 * A user should care about the synchronization by himself. 2183 * For example, by using the **BPF_STX_XADD** instruction to alter 2184 * the shared data. 2185 * Return 2186 * A pointer to the local storage area. 2187 * 2188 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags) 2189 * Description 2190 * Select a **SO_REUSEPORT** socket from a 2191 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*. 2192 * It checks the selected socket is matching the incoming 2193 * request in the socket buffer. 2194 * Return 2195 * 0 on success, or a negative error in case of failure. 2196 * 2197 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2198 * Description 2199 * Look for TCP socket matching *tuple*, optionally in a child 2200 * network namespace *netns*. The return value must be checked, 2201 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2202 * 2203 * The *ctx* should point to the context of the program, such as 2204 * the skb or socket (depending on the hook in use). This is used 2205 * to determine the base network namespace for the lookup. 2206 * 2207 * *tuple_size* must be one of: 2208 * 2209 * **sizeof**\ (*tuple*\ **->ipv4**) 2210 * Look for an IPv4 socket. 2211 * **sizeof**\ (*tuple*\ **->ipv6**) 2212 * Look for an IPv6 socket. 2213 * 2214 * If the *netns* is a negative signed 32-bit integer, then the 2215 * socket lookup table in the netns associated with the *ctx* will 2216 * will be used. For the TC hooks, this is the netns of the device 2217 * in the skb. For socket hooks, this is the netns of the socket. 2218 * If *netns* is any other signed 32-bit value greater than or 2219 * equal to zero then it specifies the ID of the netns relative to 2220 * the netns associated with the *ctx*. *netns* values beyond the 2221 * range of 32-bit integers are reserved for future use. 2222 * 2223 * All values for *flags* are reserved for future usage, and must 2224 * be left at zero. 2225 * 2226 * This helper is available only if the kernel was compiled with 2227 * **CONFIG_NET** configuration option. 2228 * Return 2229 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2230 * For sockets with reuseport option, the **struct bpf_sock** 2231 * result is from **reuse->socks**\ [] using the hash of the tuple. 2232 * 2233 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2234 * Description 2235 * Look for UDP socket matching *tuple*, optionally in a child 2236 * network namespace *netns*. The return value must be checked, 2237 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2238 * 2239 * The *ctx* should point to the context of the program, such as 2240 * the skb or socket (depending on the hook in use). This is used 2241 * to determine the base network namespace for the lookup. 2242 * 2243 * *tuple_size* must be one of: 2244 * 2245 * **sizeof**\ (*tuple*\ **->ipv4**) 2246 * Look for an IPv4 socket. 2247 * **sizeof**\ (*tuple*\ **->ipv6**) 2248 * Look for an IPv6 socket. 2249 * 2250 * If the *netns* is a negative signed 32-bit integer, then the 2251 * socket lookup table in the netns associated with the *ctx* will 2252 * will be used. For the TC hooks, this is the netns of the device 2253 * in the skb. For socket hooks, this is the netns of the socket. 2254 * If *netns* is any other signed 32-bit value greater than or 2255 * equal to zero then it specifies the ID of the netns relative to 2256 * the netns associated with the *ctx*. *netns* values beyond the 2257 * range of 32-bit integers are reserved for future use. 2258 * 2259 * All values for *flags* are reserved for future usage, and must 2260 * be left at zero. 2261 * 2262 * This helper is available only if the kernel was compiled with 2263 * **CONFIG_NET** configuration option. 2264 * Return 2265 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2266 * For sockets with reuseport option, the **struct bpf_sock** 2267 * result is from **reuse->socks**\ [] using the hash of the tuple. 2268 * 2269 * int bpf_sk_release(struct bpf_sock *sock) 2270 * Description 2271 * Release the reference held by *sock*. *sock* must be a 2272 * non-**NULL** pointer that was returned from 2273 * **bpf_sk_lookup_xxx**\ (). 2274 * Return 2275 * 0 on success, or a negative error in case of failure. 2276 * 2277 * int bpf_map_pop_elem(struct bpf_map *map, void *value) 2278 * Description 2279 * Pop an element from *map*. 2280 * Return 2281 * 0 on success, or a negative error in case of failure. 2282 * 2283 * int bpf_map_peek_elem(struct bpf_map *map, void *value) 2284 * Description 2285 * Get an element from *map* without removing it. 2286 * Return 2287 * 0 on success, or a negative error in case of failure. 2288 * 2289 * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags) 2290 * Description 2291 * For socket policies, insert *len* bytes into *msg* at offset 2292 * *start*. 2293 * 2294 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2295 * *msg* it may want to insert metadata or options into the *msg*. 2296 * This can later be read and used by any of the lower layer BPF 2297 * hooks. 2298 * 2299 * This helper may fail if under memory pressure (a malloc 2300 * fails) in these cases BPF programs will get an appropriate 2301 * error and BPF programs will need to handle them. 2302 * Return 2303 * 0 on success, or a negative error in case of failure. 2304 * 2305 * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 pop, u64 flags) 2306 * Description 2307 * Will remove *pop* bytes from a *msg* starting at byte *start*. 2308 * This may result in **ENOMEM** errors under certain situations if 2309 * an allocation and copy are required due to a full ring buffer. 2310 * However, the helper will try to avoid doing the allocation 2311 * if possible. Other errors can occur if input parameters are 2312 * invalid either due to *start* byte not being valid part of *msg* 2313 * payload and/or *pop* value being to large. 2314 * Return 2315 * 0 on success, or a negative error in case of failure. 2316 * 2317 * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y) 2318 * Description 2319 * This helper is used in programs implementing IR decoding, to 2320 * report a successfully decoded pointer movement. 2321 * 2322 * The *ctx* should point to the lirc sample as passed into 2323 * the program. 2324 * 2325 * This helper is only available is the kernel was compiled with 2326 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2327 * "**y**". 2328 * Return 2329 * 0 2330 */ 2331 #define __BPF_FUNC_MAPPER(FN) \ 2332 FN(unspec), \ 2333 FN(map_lookup_elem), \ 2334 FN(map_update_elem), \ 2335 FN(map_delete_elem), \ 2336 FN(probe_read), \ 2337 FN(ktime_get_ns), \ 2338 FN(trace_printk), \ 2339 FN(get_prandom_u32), \ 2340 FN(get_smp_processor_id), \ 2341 FN(skb_store_bytes), \ 2342 FN(l3_csum_replace), \ 2343 FN(l4_csum_replace), \ 2344 FN(tail_call), \ 2345 FN(clone_redirect), \ 2346 FN(get_current_pid_tgid), \ 2347 FN(get_current_uid_gid), \ 2348 FN(get_current_comm), \ 2349 FN(get_cgroup_classid), \ 2350 FN(skb_vlan_push), \ 2351 FN(skb_vlan_pop), \ 2352 FN(skb_get_tunnel_key), \ 2353 FN(skb_set_tunnel_key), \ 2354 FN(perf_event_read), \ 2355 FN(redirect), \ 2356 FN(get_route_realm), \ 2357 FN(perf_event_output), \ 2358 FN(skb_load_bytes), \ 2359 FN(get_stackid), \ 2360 FN(csum_diff), \ 2361 FN(skb_get_tunnel_opt), \ 2362 FN(skb_set_tunnel_opt), \ 2363 FN(skb_change_proto), \ 2364 FN(skb_change_type), \ 2365 FN(skb_under_cgroup), \ 2366 FN(get_hash_recalc), \ 2367 FN(get_current_task), \ 2368 FN(probe_write_user), \ 2369 FN(current_task_under_cgroup), \ 2370 FN(skb_change_tail), \ 2371 FN(skb_pull_data), \ 2372 FN(csum_update), \ 2373 FN(set_hash_invalid), \ 2374 FN(get_numa_node_id), \ 2375 FN(skb_change_head), \ 2376 FN(xdp_adjust_head), \ 2377 FN(probe_read_str), \ 2378 FN(get_socket_cookie), \ 2379 FN(get_socket_uid), \ 2380 FN(set_hash), \ 2381 FN(setsockopt), \ 2382 FN(skb_adjust_room), \ 2383 FN(redirect_map), \ 2384 FN(sk_redirect_map), \ 2385 FN(sock_map_update), \ 2386 FN(xdp_adjust_meta), \ 2387 FN(perf_event_read_value), \ 2388 FN(perf_prog_read_value), \ 2389 FN(getsockopt), \ 2390 FN(override_return), \ 2391 FN(sock_ops_cb_flags_set), \ 2392 FN(msg_redirect_map), \ 2393 FN(msg_apply_bytes), \ 2394 FN(msg_cork_bytes), \ 2395 FN(msg_pull_data), \ 2396 FN(bind), \ 2397 FN(xdp_adjust_tail), \ 2398 FN(skb_get_xfrm_state), \ 2399 FN(get_stack), \ 2400 FN(skb_load_bytes_relative), \ 2401 FN(fib_lookup), \ 2402 FN(sock_hash_update), \ 2403 FN(msg_redirect_hash), \ 2404 FN(sk_redirect_hash), \ 2405 FN(lwt_push_encap), \ 2406 FN(lwt_seg6_store_bytes), \ 2407 FN(lwt_seg6_adjust_srh), \ 2408 FN(lwt_seg6_action), \ 2409 FN(rc_repeat), \ 2410 FN(rc_keydown), \ 2411 FN(skb_cgroup_id), \ 2412 FN(get_current_cgroup_id), \ 2413 FN(get_local_storage), \ 2414 FN(sk_select_reuseport), \ 2415 FN(skb_ancestor_cgroup_id), \ 2416 FN(sk_lookup_tcp), \ 2417 FN(sk_lookup_udp), \ 2418 FN(sk_release), \ 2419 FN(map_push_elem), \ 2420 FN(map_pop_elem), \ 2421 FN(map_peek_elem), \ 2422 FN(msg_push_data), \ 2423 FN(msg_pop_data), \ 2424 FN(rc_pointer_rel), 2425 2426 /* integer value in 'imm' field of BPF_CALL instruction selects which helper 2427 * function eBPF program intends to call 2428 */ 2429 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x 2430 enum bpf_func_id { 2431 __BPF_FUNC_MAPPER(__BPF_ENUM_FN) 2432 __BPF_FUNC_MAX_ID, 2433 }; 2434 #undef __BPF_ENUM_FN 2435 2436 /* All flags used by eBPF helper functions, placed here. */ 2437 2438 /* BPF_FUNC_skb_store_bytes flags. */ 2439 #define BPF_F_RECOMPUTE_CSUM (1ULL << 0) 2440 #define BPF_F_INVALIDATE_HASH (1ULL << 1) 2441 2442 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags. 2443 * First 4 bits are for passing the header field size. 2444 */ 2445 #define BPF_F_HDR_FIELD_MASK 0xfULL 2446 2447 /* BPF_FUNC_l4_csum_replace flags. */ 2448 #define BPF_F_PSEUDO_HDR (1ULL << 4) 2449 #define BPF_F_MARK_MANGLED_0 (1ULL << 5) 2450 #define BPF_F_MARK_ENFORCE (1ULL << 6) 2451 2452 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */ 2453 #define BPF_F_INGRESS (1ULL << 0) 2454 2455 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */ 2456 #define BPF_F_TUNINFO_IPV6 (1ULL << 0) 2457 2458 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */ 2459 #define BPF_F_SKIP_FIELD_MASK 0xffULL 2460 #define BPF_F_USER_STACK (1ULL << 8) 2461 /* flags used by BPF_FUNC_get_stackid only. */ 2462 #define BPF_F_FAST_STACK_CMP (1ULL << 9) 2463 #define BPF_F_REUSE_STACKID (1ULL << 10) 2464 /* flags used by BPF_FUNC_get_stack only. */ 2465 #define BPF_F_USER_BUILD_ID (1ULL << 11) 2466 2467 /* BPF_FUNC_skb_set_tunnel_key flags. */ 2468 #define BPF_F_ZERO_CSUM_TX (1ULL << 1) 2469 #define BPF_F_DONT_FRAGMENT (1ULL << 2) 2470 #define BPF_F_SEQ_NUMBER (1ULL << 3) 2471 2472 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and 2473 * BPF_FUNC_perf_event_read_value flags. 2474 */ 2475 #define BPF_F_INDEX_MASK 0xffffffffULL 2476 #define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK 2477 /* BPF_FUNC_perf_event_output for sk_buff input context. */ 2478 #define BPF_F_CTXLEN_MASK (0xfffffULL << 32) 2479 2480 /* Current network namespace */ 2481 #define BPF_F_CURRENT_NETNS (-1L) 2482 2483 /* Mode for BPF_FUNC_skb_adjust_room helper. */ 2484 enum bpf_adj_room_mode { 2485 BPF_ADJ_ROOM_NET, 2486 }; 2487 2488 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */ 2489 enum bpf_hdr_start_off { 2490 BPF_HDR_START_MAC, 2491 BPF_HDR_START_NET, 2492 }; 2493 2494 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */ 2495 enum bpf_lwt_encap_mode { 2496 BPF_LWT_ENCAP_SEG6, 2497 BPF_LWT_ENCAP_SEG6_INLINE 2498 }; 2499 2500 #define __bpf_md_ptr(type, name) \ 2501 union { \ 2502 type name; \ 2503 __u64 :64; \ 2504 } __attribute__((aligned(8))) 2505 2506 /* user accessible mirror of in-kernel sk_buff. 2507 * new fields can only be added to the end of this structure 2508 */ 2509 struct __sk_buff { 2510 __u32 len; 2511 __u32 pkt_type; 2512 __u32 mark; 2513 __u32 queue_mapping; 2514 __u32 protocol; 2515 __u32 vlan_present; 2516 __u32 vlan_tci; 2517 __u32 vlan_proto; 2518 __u32 priority; 2519 __u32 ingress_ifindex; 2520 __u32 ifindex; 2521 __u32 tc_index; 2522 __u32 cb[5]; 2523 __u32 hash; 2524 __u32 tc_classid; 2525 __u32 data; 2526 __u32 data_end; 2527 __u32 napi_id; 2528 2529 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */ 2530 __u32 family; 2531 __u32 remote_ip4; /* Stored in network byte order */ 2532 __u32 local_ip4; /* Stored in network byte order */ 2533 __u32 remote_ip6[4]; /* Stored in network byte order */ 2534 __u32 local_ip6[4]; /* Stored in network byte order */ 2535 __u32 remote_port; /* Stored in network byte order */ 2536 __u32 local_port; /* stored in host byte order */ 2537 /* ... here. */ 2538 2539 __u32 data_meta; 2540 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys); 2541 __u64 tstamp; 2542 __u32 wire_len; 2543 }; 2544 2545 struct bpf_tunnel_key { 2546 __u32 tunnel_id; 2547 union { 2548 __u32 remote_ipv4; 2549 __u32 remote_ipv6[4]; 2550 }; 2551 __u8 tunnel_tos; 2552 __u8 tunnel_ttl; 2553 __u16 tunnel_ext; /* Padding, future use. */ 2554 __u32 tunnel_label; 2555 }; 2556 2557 /* user accessible mirror of in-kernel xfrm_state. 2558 * new fields can only be added to the end of this structure 2559 */ 2560 struct bpf_xfrm_state { 2561 __u32 reqid; 2562 __u32 spi; /* Stored in network byte order */ 2563 __u16 family; 2564 __u16 ext; /* Padding, future use. */ 2565 union { 2566 __u32 remote_ipv4; /* Stored in network byte order */ 2567 __u32 remote_ipv6[4]; /* Stored in network byte order */ 2568 }; 2569 }; 2570 2571 /* Generic BPF return codes which all BPF program types may support. 2572 * The values are binary compatible with their TC_ACT_* counter-part to 2573 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT 2574 * programs. 2575 * 2576 * XDP is handled seprately, see XDP_*. 2577 */ 2578 enum bpf_ret_code { 2579 BPF_OK = 0, 2580 /* 1 reserved */ 2581 BPF_DROP = 2, 2582 /* 3-6 reserved */ 2583 BPF_REDIRECT = 7, 2584 /* >127 are reserved for prog type specific return codes */ 2585 }; 2586 2587 struct bpf_sock { 2588 __u32 bound_dev_if; 2589 __u32 family; 2590 __u32 type; 2591 __u32 protocol; 2592 __u32 mark; 2593 __u32 priority; 2594 __u32 src_ip4; /* Allows 1,2,4-byte read. 2595 * Stored in network byte order. 2596 */ 2597 __u32 src_ip6[4]; /* Allows 1,2,4-byte read. 2598 * Stored in network byte order. 2599 */ 2600 __u32 src_port; /* Allows 4-byte read. 2601 * Stored in host byte order 2602 */ 2603 }; 2604 2605 struct bpf_sock_tuple { 2606 union { 2607 struct { 2608 __be32 saddr; 2609 __be32 daddr; 2610 __be16 sport; 2611 __be16 dport; 2612 } ipv4; 2613 struct { 2614 __be32 saddr[4]; 2615 __be32 daddr[4]; 2616 __be16 sport; 2617 __be16 dport; 2618 } ipv6; 2619 }; 2620 }; 2621 2622 #define XDP_PACKET_HEADROOM 256 2623 2624 /* User return codes for XDP prog type. 2625 * A valid XDP program must return one of these defined values. All other 2626 * return codes are reserved for future use. Unknown return codes will 2627 * result in packet drops and a warning via bpf_warn_invalid_xdp_action(). 2628 */ 2629 enum xdp_action { 2630 XDP_ABORTED = 0, 2631 XDP_DROP, 2632 XDP_PASS, 2633 XDP_TX, 2634 XDP_REDIRECT, 2635 }; 2636 2637 /* user accessible metadata for XDP packet hook 2638 * new fields must be added to the end of this structure 2639 */ 2640 struct xdp_md { 2641 __u32 data; 2642 __u32 data_end; 2643 __u32 data_meta; 2644 /* Below access go through struct xdp_rxq_info */ 2645 __u32 ingress_ifindex; /* rxq->dev->ifindex */ 2646 __u32 rx_queue_index; /* rxq->queue_index */ 2647 }; 2648 2649 enum sk_action { 2650 SK_DROP = 0, 2651 SK_PASS, 2652 }; 2653 2654 /* user accessible metadata for SK_MSG packet hook, new fields must 2655 * be added to the end of this structure 2656 */ 2657 struct sk_msg_md { 2658 __bpf_md_ptr(void *, data); 2659 __bpf_md_ptr(void *, data_end); 2660 2661 __u32 family; 2662 __u32 remote_ip4; /* Stored in network byte order */ 2663 __u32 local_ip4; /* Stored in network byte order */ 2664 __u32 remote_ip6[4]; /* Stored in network byte order */ 2665 __u32 local_ip6[4]; /* Stored in network byte order */ 2666 __u32 remote_port; /* Stored in network byte order */ 2667 __u32 local_port; /* stored in host byte order */ 2668 __u32 size; /* Total size of sk_msg */ 2669 }; 2670 2671 struct sk_reuseport_md { 2672 /* 2673 * Start of directly accessible data. It begins from 2674 * the tcp/udp header. 2675 */ 2676 __bpf_md_ptr(void *, data); 2677 /* End of directly accessible data */ 2678 __bpf_md_ptr(void *, data_end); 2679 /* 2680 * Total length of packet (starting from the tcp/udp header). 2681 * Note that the directly accessible bytes (data_end - data) 2682 * could be less than this "len". Those bytes could be 2683 * indirectly read by a helper "bpf_skb_load_bytes()". 2684 */ 2685 __u32 len; 2686 /* 2687 * Eth protocol in the mac header (network byte order). e.g. 2688 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD) 2689 */ 2690 __u32 eth_protocol; 2691 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */ 2692 __u32 bind_inany; /* Is sock bound to an INANY address? */ 2693 __u32 hash; /* A hash of the packet 4 tuples */ 2694 }; 2695 2696 #define BPF_TAG_SIZE 8 2697 2698 struct bpf_prog_info { 2699 __u32 type; 2700 __u32 id; 2701 __u8 tag[BPF_TAG_SIZE]; 2702 __u32 jited_prog_len; 2703 __u32 xlated_prog_len; 2704 __aligned_u64 jited_prog_insns; 2705 __aligned_u64 xlated_prog_insns; 2706 __u64 load_time; /* ns since boottime */ 2707 __u32 created_by_uid; 2708 __u32 nr_map_ids; 2709 __aligned_u64 map_ids; 2710 char name[BPF_OBJ_NAME_LEN]; 2711 __u32 ifindex; 2712 __u32 gpl_compatible:1; 2713 __u64 netns_dev; 2714 __u64 netns_ino; 2715 __u32 nr_jited_ksyms; 2716 __u32 nr_jited_func_lens; 2717 __aligned_u64 jited_ksyms; 2718 __aligned_u64 jited_func_lens; 2719 __u32 btf_id; 2720 __u32 func_info_rec_size; 2721 __aligned_u64 func_info; 2722 __u32 nr_func_info; 2723 __u32 nr_line_info; 2724 __aligned_u64 line_info; 2725 __aligned_u64 jited_line_info; 2726 __u32 nr_jited_line_info; 2727 __u32 line_info_rec_size; 2728 __u32 jited_line_info_rec_size; 2729 __u32 nr_prog_tags; 2730 __aligned_u64 prog_tags; 2731 } __attribute__((aligned(8))); 2732 2733 struct bpf_map_info { 2734 __u32 type; 2735 __u32 id; 2736 __u32 key_size; 2737 __u32 value_size; 2738 __u32 max_entries; 2739 __u32 map_flags; 2740 char name[BPF_OBJ_NAME_LEN]; 2741 __u32 ifindex; 2742 __u32 :32; 2743 __u64 netns_dev; 2744 __u64 netns_ino; 2745 __u32 btf_id; 2746 __u32 btf_key_type_id; 2747 __u32 btf_value_type_id; 2748 } __attribute__((aligned(8))); 2749 2750 struct bpf_btf_info { 2751 __aligned_u64 btf; 2752 __u32 btf_size; 2753 __u32 id; 2754 } __attribute__((aligned(8))); 2755 2756 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed 2757 * by user and intended to be used by socket (e.g. to bind to, depends on 2758 * attach attach type). 2759 */ 2760 struct bpf_sock_addr { 2761 __u32 user_family; /* Allows 4-byte read, but no write. */ 2762 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write. 2763 * Stored in network byte order. 2764 */ 2765 __u32 user_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 2766 * Stored in network byte order. 2767 */ 2768 __u32 user_port; /* Allows 4-byte read and write. 2769 * Stored in network byte order 2770 */ 2771 __u32 family; /* Allows 4-byte read, but no write */ 2772 __u32 type; /* Allows 4-byte read, but no write */ 2773 __u32 protocol; /* Allows 4-byte read, but no write */ 2774 __u32 msg_src_ip4; /* Allows 1,2,4-byte read an 4-byte write. 2775 * Stored in network byte order. 2776 */ 2777 __u32 msg_src_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 2778 * Stored in network byte order. 2779 */ 2780 }; 2781 2782 /* User bpf_sock_ops struct to access socket values and specify request ops 2783 * and their replies. 2784 * Some of this fields are in network (bigendian) byte order and may need 2785 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h). 2786 * New fields can only be added at the end of this structure 2787 */ 2788 struct bpf_sock_ops { 2789 __u32 op; 2790 union { 2791 __u32 args[4]; /* Optionally passed to bpf program */ 2792 __u32 reply; /* Returned by bpf program */ 2793 __u32 replylong[4]; /* Optionally returned by bpf prog */ 2794 }; 2795 __u32 family; 2796 __u32 remote_ip4; /* Stored in network byte order */ 2797 __u32 local_ip4; /* Stored in network byte order */ 2798 __u32 remote_ip6[4]; /* Stored in network byte order */ 2799 __u32 local_ip6[4]; /* Stored in network byte order */ 2800 __u32 remote_port; /* Stored in network byte order */ 2801 __u32 local_port; /* stored in host byte order */ 2802 __u32 is_fullsock; /* Some TCP fields are only valid if 2803 * there is a full socket. If not, the 2804 * fields read as zero. 2805 */ 2806 __u32 snd_cwnd; 2807 __u32 srtt_us; /* Averaged RTT << 3 in usecs */ 2808 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */ 2809 __u32 state; 2810 __u32 rtt_min; 2811 __u32 snd_ssthresh; 2812 __u32 rcv_nxt; 2813 __u32 snd_nxt; 2814 __u32 snd_una; 2815 __u32 mss_cache; 2816 __u32 ecn_flags; 2817 __u32 rate_delivered; 2818 __u32 rate_interval_us; 2819 __u32 packets_out; 2820 __u32 retrans_out; 2821 __u32 total_retrans; 2822 __u32 segs_in; 2823 __u32 data_segs_in; 2824 __u32 segs_out; 2825 __u32 data_segs_out; 2826 __u32 lost_out; 2827 __u32 sacked_out; 2828 __u32 sk_txhash; 2829 __u64 bytes_received; 2830 __u64 bytes_acked; 2831 }; 2832 2833 /* Definitions for bpf_sock_ops_cb_flags */ 2834 #define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0) 2835 #define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1) 2836 #define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2) 2837 #define BPF_SOCK_OPS_ALL_CB_FLAGS 0x7 /* Mask of all currently 2838 * supported cb flags 2839 */ 2840 2841 /* List of known BPF sock_ops operators. 2842 * New entries can only be added at the end 2843 */ 2844 enum { 2845 BPF_SOCK_OPS_VOID, 2846 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or 2847 * -1 if default value should be used 2848 */ 2849 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized 2850 * window (in packets) or -1 if default 2851 * value should be used 2852 */ 2853 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an 2854 * active connection is initialized 2855 */ 2856 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an 2857 * active connection is 2858 * established 2859 */ 2860 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a 2861 * passive connection is 2862 * established 2863 */ 2864 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control 2865 * needs ECN 2866 */ 2867 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is 2868 * based on the path and may be 2869 * dependent on the congestion control 2870 * algorithm. In general it indicates 2871 * a congestion threshold. RTTs above 2872 * this indicate congestion 2873 */ 2874 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered. 2875 * Arg1: value of icsk_retransmits 2876 * Arg2: value of icsk_rto 2877 * Arg3: whether RTO has expired 2878 */ 2879 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted. 2880 * Arg1: sequence number of 1st byte 2881 * Arg2: # segments 2882 * Arg3: return value of 2883 * tcp_transmit_skb (0 => success) 2884 */ 2885 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state. 2886 * Arg1: old_state 2887 * Arg2: new_state 2888 */ 2889 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after 2890 * socket transition to LISTEN state. 2891 */ 2892 }; 2893 2894 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect 2895 * changes between the TCP and BPF versions. Ideally this should never happen. 2896 * If it does, we need to add code to convert them before calling 2897 * the BPF sock_ops function. 2898 */ 2899 enum { 2900 BPF_TCP_ESTABLISHED = 1, 2901 BPF_TCP_SYN_SENT, 2902 BPF_TCP_SYN_RECV, 2903 BPF_TCP_FIN_WAIT1, 2904 BPF_TCP_FIN_WAIT2, 2905 BPF_TCP_TIME_WAIT, 2906 BPF_TCP_CLOSE, 2907 BPF_TCP_CLOSE_WAIT, 2908 BPF_TCP_LAST_ACK, 2909 BPF_TCP_LISTEN, 2910 BPF_TCP_CLOSING, /* Now a valid state */ 2911 BPF_TCP_NEW_SYN_RECV, 2912 2913 BPF_TCP_MAX_STATES /* Leave at the end! */ 2914 }; 2915 2916 #define TCP_BPF_IW 1001 /* Set TCP initial congestion window */ 2917 #define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */ 2918 2919 struct bpf_perf_event_value { 2920 __u64 counter; 2921 __u64 enabled; 2922 __u64 running; 2923 }; 2924 2925 #define BPF_DEVCG_ACC_MKNOD (1ULL << 0) 2926 #define BPF_DEVCG_ACC_READ (1ULL << 1) 2927 #define BPF_DEVCG_ACC_WRITE (1ULL << 2) 2928 2929 #define BPF_DEVCG_DEV_BLOCK (1ULL << 0) 2930 #define BPF_DEVCG_DEV_CHAR (1ULL << 1) 2931 2932 struct bpf_cgroup_dev_ctx { 2933 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */ 2934 __u32 access_type; 2935 __u32 major; 2936 __u32 minor; 2937 }; 2938 2939 struct bpf_raw_tracepoint_args { 2940 __u64 args[0]; 2941 }; 2942 2943 /* DIRECT: Skip the FIB rules and go to FIB table associated with device 2944 * OUTPUT: Do lookup from egress perspective; default is ingress 2945 */ 2946 #define BPF_FIB_LOOKUP_DIRECT BIT(0) 2947 #define BPF_FIB_LOOKUP_OUTPUT BIT(1) 2948 2949 enum { 2950 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */ 2951 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */ 2952 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */ 2953 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */ 2954 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */ 2955 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */ 2956 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */ 2957 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */ 2958 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */ 2959 }; 2960 2961 struct bpf_fib_lookup { 2962 /* input: network family for lookup (AF_INET, AF_INET6) 2963 * output: network family of egress nexthop 2964 */ 2965 __u8 family; 2966 2967 /* set if lookup is to consider L4 data - e.g., FIB rules */ 2968 __u8 l4_protocol; 2969 __be16 sport; 2970 __be16 dport; 2971 2972 /* total length of packet from network header - used for MTU check */ 2973 __u16 tot_len; 2974 2975 /* input: L3 device index for lookup 2976 * output: device index from FIB lookup 2977 */ 2978 __u32 ifindex; 2979 2980 union { 2981 /* inputs to lookup */ 2982 __u8 tos; /* AF_INET */ 2983 __be32 flowinfo; /* AF_INET6, flow_label + priority */ 2984 2985 /* output: metric of fib result (IPv4/IPv6 only) */ 2986 __u32 rt_metric; 2987 }; 2988 2989 union { 2990 __be32 ipv4_src; 2991 __u32 ipv6_src[4]; /* in6_addr; network order */ 2992 }; 2993 2994 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in 2995 * network header. output: bpf_fib_lookup sets to gateway address 2996 * if FIB lookup returns gateway route 2997 */ 2998 union { 2999 __be32 ipv4_dst; 3000 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3001 }; 3002 3003 /* output */ 3004 __be16 h_vlan_proto; 3005 __be16 h_vlan_TCI; 3006 __u8 smac[6]; /* ETH_ALEN */ 3007 __u8 dmac[6]; /* ETH_ALEN */ 3008 }; 3009 3010 enum bpf_task_fd_type { 3011 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */ 3012 BPF_FD_TYPE_TRACEPOINT, /* tp name */ 3013 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */ 3014 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */ 3015 BPF_FD_TYPE_UPROBE, /* filename + offset */ 3016 BPF_FD_TYPE_URETPROBE, /* filename + offset */ 3017 }; 3018 3019 struct bpf_flow_keys { 3020 __u16 nhoff; 3021 __u16 thoff; 3022 __u16 addr_proto; /* ETH_P_* of valid addrs */ 3023 __u8 is_frag; 3024 __u8 is_first_frag; 3025 __u8 is_encap; 3026 __u8 ip_proto; 3027 __be16 n_proto; 3028 __be16 sport; 3029 __be16 dport; 3030 union { 3031 struct { 3032 __be32 ipv4_src; 3033 __be32 ipv4_dst; 3034 }; 3035 struct { 3036 __u32 ipv6_src[4]; /* in6_addr; network order */ 3037 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3038 }; 3039 }; 3040 }; 3041 3042 struct bpf_func_info { 3043 __u32 insn_off; 3044 __u32 type_id; 3045 }; 3046 3047 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 3048 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 3049 3050 struct bpf_line_info { 3051 __u32 insn_off; 3052 __u32 file_name_off; 3053 __u32 line_off; 3054 __u32 line_col; 3055 }; 3056 3057 #endif /* _UAPI__LINUX_BPF_H__ */ 3058