Home | History | Annotate | Download | only in linux
      1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
      2 /*
      3  * Performance events:
      4  *
      5  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx (at) linutronix.de>
      6  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
      7  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
      8  *
      9  * Data type definitions, declarations, prototypes.
     10  *
     11  *    Started by: Thomas Gleixner and Ingo Molnar
     12  *
     13  * For licencing details see kernel-base/COPYING
     14  */
     15 #ifndef _UAPI_LINUX_PERF_EVENT_H
     16 #define _UAPI_LINUX_PERF_EVENT_H
     17 
     18 #include <linux/types.h>
     19 #include <linux/ioctl.h>
     20 #include <asm/byteorder.h>
     21 
     22 /*
     23  * User-space ABI bits:
     24  */
     25 
     26 /*
     27  * attr.type
     28  */
     29 enum perf_type_id {
     30 	PERF_TYPE_HARDWARE			= 0,
     31 	PERF_TYPE_SOFTWARE			= 1,
     32 	PERF_TYPE_TRACEPOINT			= 2,
     33 	PERF_TYPE_HW_CACHE			= 3,
     34 	PERF_TYPE_RAW				= 4,
     35 	PERF_TYPE_BREAKPOINT			= 5,
     36 
     37 	PERF_TYPE_MAX,				/* non-ABI */
     38 };
     39 
     40 /*
     41  * Generalized performance event event_id types, used by the
     42  * attr.event_id parameter of the sys_perf_event_open()
     43  * syscall:
     44  */
     45 enum perf_hw_id {
     46 	/*
     47 	 * Common hardware events, generalized by the kernel:
     48 	 */
     49 	PERF_COUNT_HW_CPU_CYCLES		= 0,
     50 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
     51 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
     52 	PERF_COUNT_HW_CACHE_MISSES		= 3,
     53 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
     54 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
     55 	PERF_COUNT_HW_BUS_CYCLES		= 6,
     56 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
     57 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
     58 	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
     59 
     60 	PERF_COUNT_HW_MAX,			/* non-ABI */
     61 };
     62 
     63 /*
     64  * Generalized hardware cache events:
     65  *
     66  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
     67  *       { read, write, prefetch } x
     68  *       { accesses, misses }
     69  */
     70 enum perf_hw_cache_id {
     71 	PERF_COUNT_HW_CACHE_L1D			= 0,
     72 	PERF_COUNT_HW_CACHE_L1I			= 1,
     73 	PERF_COUNT_HW_CACHE_LL			= 2,
     74 	PERF_COUNT_HW_CACHE_DTLB		= 3,
     75 	PERF_COUNT_HW_CACHE_ITLB		= 4,
     76 	PERF_COUNT_HW_CACHE_BPU			= 5,
     77 	PERF_COUNT_HW_CACHE_NODE		= 6,
     78 
     79 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
     80 };
     81 
     82 enum perf_hw_cache_op_id {
     83 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
     84 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
     85 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
     86 
     87 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
     88 };
     89 
     90 enum perf_hw_cache_op_result_id {
     91 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
     92 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
     93 
     94 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
     95 };
     96 
     97 /*
     98  * Special "software" events provided by the kernel, even if the hardware
     99  * does not support performance events. These events measure various
    100  * physical and sw events of the kernel (and allow the profiling of them as
    101  * well):
    102  */
    103 enum perf_sw_ids {
    104 	PERF_COUNT_SW_CPU_CLOCK			= 0,
    105 	PERF_COUNT_SW_TASK_CLOCK		= 1,
    106 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
    107 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
    108 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
    109 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
    110 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
    111 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
    112 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
    113 	PERF_COUNT_SW_DUMMY			= 9,
    114 	PERF_COUNT_SW_BPF_OUTPUT		= 10,
    115 
    116 	PERF_COUNT_SW_MAX,			/* non-ABI */
    117 };
    118 
    119 /*
    120  * Bits that can be set in attr.sample_type to request information
    121  * in the overflow packets.
    122  */
    123 enum perf_event_sample_format {
    124 	PERF_SAMPLE_IP				= 1U << 0,
    125 	PERF_SAMPLE_TID				= 1U << 1,
    126 	PERF_SAMPLE_TIME			= 1U << 2,
    127 	PERF_SAMPLE_ADDR			= 1U << 3,
    128 	PERF_SAMPLE_READ			= 1U << 4,
    129 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
    130 	PERF_SAMPLE_ID				= 1U << 6,
    131 	PERF_SAMPLE_CPU				= 1U << 7,
    132 	PERF_SAMPLE_PERIOD			= 1U << 8,
    133 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
    134 	PERF_SAMPLE_RAW				= 1U << 10,
    135 	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
    136 	PERF_SAMPLE_REGS_USER			= 1U << 12,
    137 	PERF_SAMPLE_STACK_USER			= 1U << 13,
    138 	PERF_SAMPLE_WEIGHT			= 1U << 14,
    139 	PERF_SAMPLE_DATA_SRC			= 1U << 15,
    140 	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
    141 	PERF_SAMPLE_TRANSACTION			= 1U << 17,
    142 	PERF_SAMPLE_REGS_INTR			= 1U << 18,
    143 	PERF_SAMPLE_PHYS_ADDR			= 1U << 19,
    144 
    145 	PERF_SAMPLE_MAX = 1U << 20,		/* non-ABI */
    146 
    147 	__PERF_SAMPLE_CALLCHAIN_EARLY		= 1ULL << 63, /* non-ABI; internal use */
    148 };
    149 
    150 /*
    151  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
    152  *
    153  * If the user does not pass priv level information via branch_sample_type,
    154  * the kernel uses the event's priv level. Branch and event priv levels do
    155  * not have to match. Branch priv level is checked for permissions.
    156  *
    157  * The branch types can be combined, however BRANCH_ANY covers all types
    158  * of branches and therefore it supersedes all the other types.
    159  */
    160 enum perf_branch_sample_type_shift {
    161 	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
    162 	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
    163 	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
    164 
    165 	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
    166 	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
    167 	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
    168 	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
    169 	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
    170 	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
    171 	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
    172 	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
    173 
    174 	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
    175 	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
    176 	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
    177 
    178 	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
    179 	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
    180 
    181 	PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT	= 16, /* save branch type */
    182 
    183 	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
    184 };
    185 
    186 enum perf_branch_sample_type {
    187 	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
    188 	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
    189 	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
    190 
    191 	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
    192 	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
    193 	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
    194 	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
    195 	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
    196 	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
    197 	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
    198 	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
    199 
    200 	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
    201 	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
    202 	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
    203 
    204 	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
    205 	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
    206 
    207 	PERF_SAMPLE_BRANCH_TYPE_SAVE	=
    208 		1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
    209 
    210 	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
    211 };
    212 
    213 /*
    214  * Common flow change classification
    215  */
    216 enum {
    217 	PERF_BR_UNKNOWN		= 0,	/* unknown */
    218 	PERF_BR_COND		= 1,	/* conditional */
    219 	PERF_BR_UNCOND		= 2,	/* unconditional  */
    220 	PERF_BR_IND		= 3,	/* indirect */
    221 	PERF_BR_CALL		= 4,	/* function call */
    222 	PERF_BR_IND_CALL	= 5,	/* indirect function call */
    223 	PERF_BR_RET		= 6,	/* function return */
    224 	PERF_BR_SYSCALL		= 7,	/* syscall */
    225 	PERF_BR_SYSRET		= 8,	/* syscall return */
    226 	PERF_BR_COND_CALL	= 9,	/* conditional function call */
    227 	PERF_BR_COND_RET	= 10,	/* conditional function return */
    228 	PERF_BR_MAX,
    229 };
    230 
    231 #define PERF_SAMPLE_BRANCH_PLM_ALL \
    232 	(PERF_SAMPLE_BRANCH_USER|\
    233 	 PERF_SAMPLE_BRANCH_KERNEL|\
    234 	 PERF_SAMPLE_BRANCH_HV)
    235 
    236 /*
    237  * Values to determine ABI of the registers dump.
    238  */
    239 enum perf_sample_regs_abi {
    240 	PERF_SAMPLE_REGS_ABI_NONE	= 0,
    241 	PERF_SAMPLE_REGS_ABI_32		= 1,
    242 	PERF_SAMPLE_REGS_ABI_64		= 2,
    243 };
    244 
    245 /*
    246  * Values for the memory transaction event qualifier, mostly for
    247  * abort events. Multiple bits can be set.
    248  */
    249 enum {
    250 	PERF_TXN_ELISION        = (1 << 0), /* From elision */
    251 	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
    252 	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
    253 	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
    254 	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
    255 	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
    256 	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
    257 	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
    258 
    259 	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
    260 
    261 	/* bits 32..63 are reserved for the abort code */
    262 
    263 	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
    264 	PERF_TXN_ABORT_SHIFT = 32,
    265 };
    266 
    267 /*
    268  * The format of the data returned by read() on a perf event fd,
    269  * as specified by attr.read_format:
    270  *
    271  * struct read_format {
    272  *	{ u64		value;
    273  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
    274  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
    275  *	  { u64		id;           } && PERF_FORMAT_ID
    276  *	} && !PERF_FORMAT_GROUP
    277  *
    278  *	{ u64		nr;
    279  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
    280  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
    281  *	  { u64		value;
    282  *	    { u64	id;           } && PERF_FORMAT_ID
    283  *	  }		cntr[nr];
    284  *	} && PERF_FORMAT_GROUP
    285  * };
    286  */
    287 enum perf_event_read_format {
    288 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
    289 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
    290 	PERF_FORMAT_ID				= 1U << 2,
    291 	PERF_FORMAT_GROUP			= 1U << 3,
    292 
    293 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
    294 };
    295 
    296 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
    297 #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
    298 #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
    299 #define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
    300 					/* add: sample_stack_user */
    301 #define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
    302 #define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
    303 
    304 /*
    305  * Hardware event_id to monitor via a performance monitoring event:
    306  *
    307  * @sample_max_stack: Max number of frame pointers in a callchain,
    308  *		      should be < /proc/sys/kernel/perf_event_max_stack
    309  */
    310 struct perf_event_attr {
    311 
    312 	/*
    313 	 * Major type: hardware/software/tracepoint/etc.
    314 	 */
    315 	__u32			type;
    316 
    317 	/*
    318 	 * Size of the attr structure, for fwd/bwd compat.
    319 	 */
    320 	__u32			size;
    321 
    322 	/*
    323 	 * Type specific configuration information.
    324 	 */
    325 	__u64			config;
    326 
    327 	union {
    328 		__u64		sample_period;
    329 		__u64		sample_freq;
    330 	};
    331 
    332 	__u64			sample_type;
    333 	__u64			read_format;
    334 
    335 	__u64			disabled       :  1, /* off by default        */
    336 				inherit	       :  1, /* children inherit it   */
    337 				pinned	       :  1, /* must always be on PMU */
    338 				exclusive      :  1, /* only group on PMU     */
    339 				exclude_user   :  1, /* don't count user      */
    340 				exclude_kernel :  1, /* ditto kernel          */
    341 				exclude_hv     :  1, /* ditto hypervisor      */
    342 				exclude_idle   :  1, /* don't count when idle */
    343 				mmap           :  1, /* include mmap data     */
    344 				comm	       :  1, /* include comm data     */
    345 				freq           :  1, /* use freq, not period  */
    346 				inherit_stat   :  1, /* per task counts       */
    347 				enable_on_exec :  1, /* next exec enables     */
    348 				task           :  1, /* trace fork/exit       */
    349 				watermark      :  1, /* wakeup_watermark      */
    350 				/*
    351 				 * precise_ip:
    352 				 *
    353 				 *  0 - SAMPLE_IP can have arbitrary skid
    354 				 *  1 - SAMPLE_IP must have constant skid
    355 				 *  2 - SAMPLE_IP requested to have 0 skid
    356 				 *  3 - SAMPLE_IP must have 0 skid
    357 				 *
    358 				 *  See also PERF_RECORD_MISC_EXACT_IP
    359 				 */
    360 				precise_ip     :  2, /* skid constraint       */
    361 				mmap_data      :  1, /* non-exec mmap data    */
    362 				sample_id_all  :  1, /* sample_type all events */
    363 
    364 				exclude_host   :  1, /* don't count in host   */
    365 				exclude_guest  :  1, /* don't count in guest  */
    366 
    367 				exclude_callchain_kernel : 1, /* exclude kernel callchains */
    368 				exclude_callchain_user   : 1, /* exclude user callchains */
    369 				mmap2          :  1, /* include mmap with inode data     */
    370 				comm_exec      :  1, /* flag comm events that are due to an exec */
    371 				use_clockid    :  1, /* use @clockid for time fields */
    372 				context_switch :  1, /* context switch data */
    373 				write_backward :  1, /* Write ring buffer from end to beginning */
    374 				namespaces     :  1, /* include namespaces data */
    375 				__reserved_1   : 35;
    376 
    377 	union {
    378 		__u32		wakeup_events;	  /* wakeup every n events */
    379 		__u32		wakeup_watermark; /* bytes before wakeup   */
    380 	};
    381 
    382 	__u32			bp_type;
    383 	union {
    384 		__u64		bp_addr;
    385 		__u64		kprobe_func; /* for perf_kprobe */
    386 		__u64		uprobe_path; /* for perf_uprobe */
    387 		__u64		config1; /* extension of config */
    388 	};
    389 	union {
    390 		__u64		bp_len;
    391 		__u64		kprobe_addr; /* when kprobe_func == NULL */
    392 		__u64		probe_offset; /* for perf_[k,u]probe */
    393 		__u64		config2; /* extension of config1 */
    394 	};
    395 	__u64	branch_sample_type; /* enum perf_branch_sample_type */
    396 
    397 	/*
    398 	 * Defines set of user regs to dump on samples.
    399 	 * See asm/perf_regs.h for details.
    400 	 */
    401 	__u64	sample_regs_user;
    402 
    403 	/*
    404 	 * Defines size of the user stack to dump on samples.
    405 	 */
    406 	__u32	sample_stack_user;
    407 
    408 	__s32	clockid;
    409 	/*
    410 	 * Defines set of regs to dump for each sample
    411 	 * state captured on:
    412 	 *  - precise = 0: PMU interrupt
    413 	 *  - precise > 0: sampled instruction
    414 	 *
    415 	 * See asm/perf_regs.h for details.
    416 	 */
    417 	__u64	sample_regs_intr;
    418 
    419 	/*
    420 	 * Wakeup watermark for AUX area
    421 	 */
    422 	__u32	aux_watermark;
    423 	__u16	sample_max_stack;
    424 	__u16	__reserved_2;	/* align to __u64 */
    425 };
    426 
    427 /*
    428  * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
    429  * to query bpf programs attached to the same perf tracepoint
    430  * as the given perf event.
    431  */
    432 struct perf_event_query_bpf {
    433 	/*
    434 	 * The below ids array length
    435 	 */
    436 	__u32	ids_len;
    437 	/*
    438 	 * Set by the kernel to indicate the number of
    439 	 * available programs
    440 	 */
    441 	__u32	prog_cnt;
    442 	/*
    443 	 * User provided buffer to store program ids
    444 	 */
    445 	__u32	ids[0];
    446 };
    447 
    448 #define perf_flags(attr)	(*(&(attr)->read_format + 1))
    449 
    450 /*
    451  * Ioctls that can be done on a perf event fd:
    452  */
    453 #define PERF_EVENT_IOC_ENABLE			_IO ('$', 0)
    454 #define PERF_EVENT_IOC_DISABLE			_IO ('$', 1)
    455 #define PERF_EVENT_IOC_REFRESH			_IO ('$', 2)
    456 #define PERF_EVENT_IOC_RESET			_IO ('$', 3)
    457 #define PERF_EVENT_IOC_PERIOD			_IOW('$', 4, __u64)
    458 #define PERF_EVENT_IOC_SET_OUTPUT		_IO ('$', 5)
    459 #define PERF_EVENT_IOC_SET_FILTER		_IOW('$', 6, char *)
    460 #define PERF_EVENT_IOC_ID			_IOR('$', 7, __u64 *)
    461 #define PERF_EVENT_IOC_SET_BPF			_IOW('$', 8, __u32)
    462 #define PERF_EVENT_IOC_PAUSE_OUTPUT		_IOW('$', 9, __u32)
    463 #define PERF_EVENT_IOC_QUERY_BPF		_IOWR('$', 10, struct perf_event_query_bpf *)
    464 #define PERF_EVENT_IOC_MODIFY_ATTRIBUTES	_IOW('$', 11, struct perf_event_attr *)
    465 
    466 enum perf_event_ioc_flags {
    467 	PERF_IOC_FLAG_GROUP		= 1U << 0,
    468 };
    469 
    470 /*
    471  * Structure of the page that can be mapped via mmap
    472  */
    473 struct perf_event_mmap_page {
    474 	__u32	version;		/* version number of this structure */
    475 	__u32	compat_version;		/* lowest version this is compat with */
    476 
    477 	/*
    478 	 * Bits needed to read the hw events in user-space.
    479 	 *
    480 	 *   u32 seq, time_mult, time_shift, index, width;
    481 	 *   u64 count, enabled, running;
    482 	 *   u64 cyc, time_offset;
    483 	 *   s64 pmc = 0;
    484 	 *
    485 	 *   do {
    486 	 *     seq = pc->lock;
    487 	 *     barrier()
    488 	 *
    489 	 *     enabled = pc->time_enabled;
    490 	 *     running = pc->time_running;
    491 	 *
    492 	 *     if (pc->cap_usr_time && enabled != running) {
    493 	 *       cyc = rdtsc();
    494 	 *       time_offset = pc->time_offset;
    495 	 *       time_mult   = pc->time_mult;
    496 	 *       time_shift  = pc->time_shift;
    497 	 *     }
    498 	 *
    499 	 *     index = pc->index;
    500 	 *     count = pc->offset;
    501 	 *     if (pc->cap_user_rdpmc && index) {
    502 	 *       width = pc->pmc_width;
    503 	 *       pmc = rdpmc(index - 1);
    504 	 *     }
    505 	 *
    506 	 *     barrier();
    507 	 *   } while (pc->lock != seq);
    508 	 *
    509 	 * NOTE: for obvious reason this only works on self-monitoring
    510 	 *       processes.
    511 	 */
    512 	__u32	lock;			/* seqlock for synchronization */
    513 	__u32	index;			/* hardware event identifier */
    514 	__s64	offset;			/* add to hardware event value */
    515 	__u64	time_enabled;		/* time event active */
    516 	__u64	time_running;		/* time event on cpu */
    517 	union {
    518 		__u64	capabilities;
    519 		struct {
    520 			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
    521 				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
    522 
    523 				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
    524 				cap_user_time		: 1, /* The time_* fields are used */
    525 				cap_user_time_zero	: 1, /* The time_zero field is used */
    526 				cap_____res		: 59;
    527 		};
    528 	};
    529 
    530 	/*
    531 	 * If cap_user_rdpmc this field provides the bit-width of the value
    532 	 * read using the rdpmc() or equivalent instruction. This can be used
    533 	 * to sign extend the result like:
    534 	 *
    535 	 *   pmc <<= 64 - width;
    536 	 *   pmc >>= 64 - width; // signed shift right
    537 	 *   count += pmc;
    538 	 */
    539 	__u16	pmc_width;
    540 
    541 	/*
    542 	 * If cap_usr_time the below fields can be used to compute the time
    543 	 * delta since time_enabled (in ns) using rdtsc or similar.
    544 	 *
    545 	 *   u64 quot, rem;
    546 	 *   u64 delta;
    547 	 *
    548 	 *   quot = (cyc >> time_shift);
    549 	 *   rem = cyc & (((u64)1 << time_shift) - 1);
    550 	 *   delta = time_offset + quot * time_mult +
    551 	 *              ((rem * time_mult) >> time_shift);
    552 	 *
    553 	 * Where time_offset,time_mult,time_shift and cyc are read in the
    554 	 * seqcount loop described above. This delta can then be added to
    555 	 * enabled and possible running (if index), improving the scaling:
    556 	 *
    557 	 *   enabled += delta;
    558 	 *   if (index)
    559 	 *     running += delta;
    560 	 *
    561 	 *   quot = count / running;
    562 	 *   rem  = count % running;
    563 	 *   count = quot * enabled + (rem * enabled) / running;
    564 	 */
    565 	__u16	time_shift;
    566 	__u32	time_mult;
    567 	__u64	time_offset;
    568 	/*
    569 	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
    570 	 * from sample timestamps.
    571 	 *
    572 	 *   time = timestamp - time_zero;
    573 	 *   quot = time / time_mult;
    574 	 *   rem  = time % time_mult;
    575 	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
    576 	 *
    577 	 * And vice versa:
    578 	 *
    579 	 *   quot = cyc >> time_shift;
    580 	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
    581 	 *   timestamp = time_zero + quot * time_mult +
    582 	 *               ((rem * time_mult) >> time_shift);
    583 	 */
    584 	__u64	time_zero;
    585 	__u32	size;			/* Header size up to __reserved[] fields. */
    586 
    587 		/*
    588 		 * Hole for extension of the self monitor capabilities
    589 		 */
    590 
    591 	__u8	__reserved[118*8+4];	/* align to 1k. */
    592 
    593 	/*
    594 	 * Control data for the mmap() data buffer.
    595 	 *
    596 	 * User-space reading the @data_head value should issue an smp_rmb(),
    597 	 * after reading this value.
    598 	 *
    599 	 * When the mapping is PROT_WRITE the @data_tail value should be
    600 	 * written by userspace to reflect the last read data, after issueing
    601 	 * an smp_mb() to separate the data read from the ->data_tail store.
    602 	 * In this case the kernel will not over-write unread data.
    603 	 *
    604 	 * See perf_output_put_handle() for the data ordering.
    605 	 *
    606 	 * data_{offset,size} indicate the location and size of the perf record
    607 	 * buffer within the mmapped area.
    608 	 */
    609 	__u64   data_head;		/* head in the data section */
    610 	__u64	data_tail;		/* user-space written tail */
    611 	__u64	data_offset;		/* where the buffer starts */
    612 	__u64	data_size;		/* data buffer size */
    613 
    614 	/*
    615 	 * AUX area is defined by aux_{offset,size} fields that should be set
    616 	 * by the userspace, so that
    617 	 *
    618 	 *   aux_offset >= data_offset + data_size
    619 	 *
    620 	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
    621 	 *
    622 	 * Ring buffer pointers aux_{head,tail} have the same semantics as
    623 	 * data_{head,tail} and same ordering rules apply.
    624 	 */
    625 	__u64	aux_head;
    626 	__u64	aux_tail;
    627 	__u64	aux_offset;
    628 	__u64	aux_size;
    629 };
    630 
    631 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
    632 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
    633 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
    634 #define PERF_RECORD_MISC_USER			(2 << 0)
    635 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
    636 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
    637 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
    638 
    639 /*
    640  * Indicates that /proc/PID/maps parsing are truncated by time out.
    641  */
    642 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
    643 /*
    644  * Following PERF_RECORD_MISC_* are used on different
    645  * events, so can reuse the same bit position:
    646  *
    647  *   PERF_RECORD_MISC_MMAP_DATA  - PERF_RECORD_MMAP* events
    648  *   PERF_RECORD_MISC_COMM_EXEC  - PERF_RECORD_COMM event
    649  *   PERF_RECORD_MISC_FORK_EXEC  - PERF_RECORD_FORK event (perf internal)
    650  *   PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
    651  */
    652 #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
    653 #define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
    654 #define PERF_RECORD_MISC_FORK_EXEC		(1 << 13)
    655 #define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
    656 /*
    657  * These PERF_RECORD_MISC_* flags below are safely reused
    658  * for the following events:
    659  *
    660  *   PERF_RECORD_MISC_EXACT_IP           - PERF_RECORD_SAMPLE of precise events
    661  *   PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
    662  *
    663  *
    664  * PERF_RECORD_MISC_EXACT_IP:
    665  *   Indicates that the content of PERF_SAMPLE_IP points to
    666  *   the actual instruction that triggered the event. See also
    667  *   perf_event_attr::precise_ip.
    668  *
    669  * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
    670  *   Indicates that thread was preempted in TASK_RUNNING state.
    671  */
    672 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
    673 #define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT	(1 << 14)
    674 /*
    675  * Reserve the last bit to indicate some extended misc field
    676  */
    677 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
    678 
    679 struct perf_event_header {
    680 	__u32	type;
    681 	__u16	misc;
    682 	__u16	size;
    683 };
    684 
    685 struct perf_ns_link_info {
    686 	__u64	dev;
    687 	__u64	ino;
    688 };
    689 
    690 enum {
    691 	NET_NS_INDEX		= 0,
    692 	UTS_NS_INDEX		= 1,
    693 	IPC_NS_INDEX		= 2,
    694 	PID_NS_INDEX		= 3,
    695 	USER_NS_INDEX		= 4,
    696 	MNT_NS_INDEX		= 5,
    697 	CGROUP_NS_INDEX		= 6,
    698 
    699 	NR_NAMESPACES,		/* number of available namespaces */
    700 };
    701 
    702 enum perf_event_type {
    703 
    704 	/*
    705 	 * If perf_event_attr.sample_id_all is set then all event types will
    706 	 * have the sample_type selected fields related to where/when
    707 	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
    708 	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
    709 	 * just after the perf_event_header and the fields already present for
    710 	 * the existing fields, i.e. at the end of the payload. That way a newer
    711 	 * perf.data file will be supported by older perf tools, with these new
    712 	 * optional fields being ignored.
    713 	 *
    714 	 * struct sample_id {
    715 	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
    716 	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
    717 	 * 	{ u64			id;       } && PERF_SAMPLE_ID
    718 	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
    719 	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
    720 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
    721 	 * } && perf_event_attr::sample_id_all
    722 	 *
    723 	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
    724 	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
    725 	 * relative to header.size.
    726 	 */
    727 
    728 	/*
    729 	 * The MMAP events record the PROT_EXEC mappings so that we can
    730 	 * correlate userspace IPs to code. They have the following structure:
    731 	 *
    732 	 * struct {
    733 	 *	struct perf_event_header	header;
    734 	 *
    735 	 *	u32				pid, tid;
    736 	 *	u64				addr;
    737 	 *	u64				len;
    738 	 *	u64				pgoff;
    739 	 *	char				filename[];
    740 	 * 	struct sample_id		sample_id;
    741 	 * };
    742 	 */
    743 	PERF_RECORD_MMAP			= 1,
    744 
    745 	/*
    746 	 * struct {
    747 	 *	struct perf_event_header	header;
    748 	 *	u64				id;
    749 	 *	u64				lost;
    750 	 * 	struct sample_id		sample_id;
    751 	 * };
    752 	 */
    753 	PERF_RECORD_LOST			= 2,
    754 
    755 	/*
    756 	 * struct {
    757 	 *	struct perf_event_header	header;
    758 	 *
    759 	 *	u32				pid, tid;
    760 	 *	char				comm[];
    761 	 * 	struct sample_id		sample_id;
    762 	 * };
    763 	 */
    764 	PERF_RECORD_COMM			= 3,
    765 
    766 	/*
    767 	 * struct {
    768 	 *	struct perf_event_header	header;
    769 	 *	u32				pid, ppid;
    770 	 *	u32				tid, ptid;
    771 	 *	u64				time;
    772 	 * 	struct sample_id		sample_id;
    773 	 * };
    774 	 */
    775 	PERF_RECORD_EXIT			= 4,
    776 
    777 	/*
    778 	 * struct {
    779 	 *	struct perf_event_header	header;
    780 	 *	u64				time;
    781 	 *	u64				id;
    782 	 *	u64				stream_id;
    783 	 * 	struct sample_id		sample_id;
    784 	 * };
    785 	 */
    786 	PERF_RECORD_THROTTLE			= 5,
    787 	PERF_RECORD_UNTHROTTLE			= 6,
    788 
    789 	/*
    790 	 * struct {
    791 	 *	struct perf_event_header	header;
    792 	 *	u32				pid, ppid;
    793 	 *	u32				tid, ptid;
    794 	 *	u64				time;
    795 	 * 	struct sample_id		sample_id;
    796 	 * };
    797 	 */
    798 	PERF_RECORD_FORK			= 7,
    799 
    800 	/*
    801 	 * struct {
    802 	 *	struct perf_event_header	header;
    803 	 *	u32				pid, tid;
    804 	 *
    805 	 *	struct read_format		values;
    806 	 * 	struct sample_id		sample_id;
    807 	 * };
    808 	 */
    809 	PERF_RECORD_READ			= 8,
    810 
    811 	/*
    812 	 * struct {
    813 	 *	struct perf_event_header	header;
    814 	 *
    815 	 *	#
    816 	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
    817 	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
    818 	 *	# is fixed relative to header.
    819 	 *	#
    820 	 *
    821 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
    822 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
    823 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
    824 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
    825 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
    826 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
    827 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
    828 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
    829 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
    830 	 *
    831 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
    832 	 *
    833 	 *	{ u64			nr,
    834 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
    835 	 *
    836 	 *	#
    837 	 *	# The RAW record below is opaque data wrt the ABI
    838 	 *	#
    839 	 *	# That is, the ABI doesn't make any promises wrt to
    840 	 *	# the stability of its content, it may vary depending
    841 	 *	# on event, hardware, kernel version and phase of
    842 	 *	# the moon.
    843 	 *	#
    844 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
    845 	 *	#
    846 	 *
    847 	 *	{ u32			size;
    848 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
    849 	 *
    850 	 *	{ u64                   nr;
    851 	 *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
    852 	 *
    853 	 * 	{ u64			abi; # enum perf_sample_regs_abi
    854 	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
    855 	 *
    856 	 * 	{ u64			size;
    857 	 * 	  char			data[size];
    858 	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
    859 	 *
    860 	 *	{ u64			weight;   } && PERF_SAMPLE_WEIGHT
    861 	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
    862 	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
    863 	 *	{ u64			abi; # enum perf_sample_regs_abi
    864 	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
    865 	 *	{ u64			phys_addr;} && PERF_SAMPLE_PHYS_ADDR
    866 	 * };
    867 	 */
    868 	PERF_RECORD_SAMPLE			= 9,
    869 
    870 	/*
    871 	 * The MMAP2 records are an augmented version of MMAP, they add
    872 	 * maj, min, ino numbers to be used to uniquely identify each mapping
    873 	 *
    874 	 * struct {
    875 	 *	struct perf_event_header	header;
    876 	 *
    877 	 *	u32				pid, tid;
    878 	 *	u64				addr;
    879 	 *	u64				len;
    880 	 *	u64				pgoff;
    881 	 *	u32				maj;
    882 	 *	u32				min;
    883 	 *	u64				ino;
    884 	 *	u64				ino_generation;
    885 	 *	u32				prot, flags;
    886 	 *	char				filename[];
    887 	 * 	struct sample_id		sample_id;
    888 	 * };
    889 	 */
    890 	PERF_RECORD_MMAP2			= 10,
    891 
    892 	/*
    893 	 * Records that new data landed in the AUX buffer part.
    894 	 *
    895 	 * struct {
    896 	 * 	struct perf_event_header	header;
    897 	 *
    898 	 * 	u64				aux_offset;
    899 	 * 	u64				aux_size;
    900 	 *	u64				flags;
    901 	 * 	struct sample_id		sample_id;
    902 	 * };
    903 	 */
    904 	PERF_RECORD_AUX				= 11,
    905 
    906 	/*
    907 	 * Indicates that instruction trace has started
    908 	 *
    909 	 * struct {
    910 	 *	struct perf_event_header	header;
    911 	 *	u32				pid;
    912 	 *	u32				tid;
    913 	 *	struct sample_id		sample_id;
    914 	 * };
    915 	 */
    916 	PERF_RECORD_ITRACE_START		= 12,
    917 
    918 	/*
    919 	 * Records the dropped/lost sample number.
    920 	 *
    921 	 * struct {
    922 	 *	struct perf_event_header	header;
    923 	 *
    924 	 *	u64				lost;
    925 	 *	struct sample_id		sample_id;
    926 	 * };
    927 	 */
    928 	PERF_RECORD_LOST_SAMPLES		= 13,
    929 
    930 	/*
    931 	 * Records a context switch in or out (flagged by
    932 	 * PERF_RECORD_MISC_SWITCH_OUT). See also
    933 	 * PERF_RECORD_SWITCH_CPU_WIDE.
    934 	 *
    935 	 * struct {
    936 	 *	struct perf_event_header	header;
    937 	 *	struct sample_id		sample_id;
    938 	 * };
    939 	 */
    940 	PERF_RECORD_SWITCH			= 14,
    941 
    942 	/*
    943 	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
    944 	 * next_prev_tid that are the next (switching out) or previous
    945 	 * (switching in) pid/tid.
    946 	 *
    947 	 * struct {
    948 	 *	struct perf_event_header	header;
    949 	 *	u32				next_prev_pid;
    950 	 *	u32				next_prev_tid;
    951 	 *	struct sample_id		sample_id;
    952 	 * };
    953 	 */
    954 	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
    955 
    956 	/*
    957 	 * struct {
    958 	 *	struct perf_event_header	header;
    959 	 *	u32				pid;
    960 	 *	u32				tid;
    961 	 *	u64				nr_namespaces;
    962 	 *	{ u64				dev, inode; } [nr_namespaces];
    963 	 *	struct sample_id		sample_id;
    964 	 * };
    965 	 */
    966 	PERF_RECORD_NAMESPACES			= 16,
    967 
    968 	PERF_RECORD_MAX,			/* non-ABI */
    969 };
    970 
    971 #define PERF_MAX_STACK_DEPTH		127
    972 #define PERF_MAX_CONTEXTS_PER_STACK	  8
    973 
    974 enum perf_callchain_context {
    975 	PERF_CONTEXT_HV			= (__u64)-32,
    976 	PERF_CONTEXT_KERNEL		= (__u64)-128,
    977 	PERF_CONTEXT_USER		= (__u64)-512,
    978 
    979 	PERF_CONTEXT_GUEST		= (__u64)-2048,
    980 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
    981 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
    982 
    983 	PERF_CONTEXT_MAX		= (__u64)-4095,
    984 };
    985 
    986 /**
    987  * PERF_RECORD_AUX::flags bits
    988  */
    989 #define PERF_AUX_FLAG_TRUNCATED		0x01	/* record was truncated to fit */
    990 #define PERF_AUX_FLAG_OVERWRITE		0x02	/* snapshot from overwrite mode */
    991 #define PERF_AUX_FLAG_PARTIAL		0x04	/* record contains gaps */
    992 #define PERF_AUX_FLAG_COLLISION		0x08	/* sample collided with another */
    993 
    994 #define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
    995 #define PERF_FLAG_FD_OUTPUT		(1UL << 1)
    996 #define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
    997 #define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
    998 
    999 #if defined(__LITTLE_ENDIAN_BITFIELD)
   1000 union perf_mem_data_src {
   1001 	__u64 val;
   1002 	struct {
   1003 		__u64   mem_op:5,	/* type of opcode */
   1004 			mem_lvl:14,	/* memory hierarchy level */
   1005 			mem_snoop:5,	/* snoop mode */
   1006 			mem_lock:2,	/* lock instr */
   1007 			mem_dtlb:7,	/* tlb access */
   1008 			mem_lvl_num:4,	/* memory hierarchy level number */
   1009 			mem_remote:1,   /* remote */
   1010 			mem_snoopx:2,	/* snoop mode, ext */
   1011 			mem_rsvd:24;
   1012 	};
   1013 };
   1014 #elif defined(__BIG_ENDIAN_BITFIELD)
   1015 union perf_mem_data_src {
   1016 	__u64 val;
   1017 	struct {
   1018 		__u64	mem_rsvd:24,
   1019 			mem_snoopx:2,	/* snoop mode, ext */
   1020 			mem_remote:1,   /* remote */
   1021 			mem_lvl_num:4,	/* memory hierarchy level number */
   1022 			mem_dtlb:7,	/* tlb access */
   1023 			mem_lock:2,	/* lock instr */
   1024 			mem_snoop:5,	/* snoop mode */
   1025 			mem_lvl:14,	/* memory hierarchy level */
   1026 			mem_op:5;	/* type of opcode */
   1027 	};
   1028 };
   1029 #else
   1030 #error "Unknown endianness"
   1031 #endif
   1032 
   1033 /* type of opcode (load/store/prefetch,code) */
   1034 #define PERF_MEM_OP_NA		0x01 /* not available */
   1035 #define PERF_MEM_OP_LOAD	0x02 /* load instruction */
   1036 #define PERF_MEM_OP_STORE	0x04 /* store instruction */
   1037 #define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
   1038 #define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
   1039 #define PERF_MEM_OP_SHIFT	0
   1040 
   1041 /* memory hierarchy (memory level, hit or miss) */
   1042 #define PERF_MEM_LVL_NA		0x01  /* not available */
   1043 #define PERF_MEM_LVL_HIT	0x02  /* hit level */
   1044 #define PERF_MEM_LVL_MISS	0x04  /* miss level  */
   1045 #define PERF_MEM_LVL_L1		0x08  /* L1 */
   1046 #define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
   1047 #define PERF_MEM_LVL_L2		0x20  /* L2 */
   1048 #define PERF_MEM_LVL_L3		0x40  /* L3 */
   1049 #define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
   1050 #define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
   1051 #define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
   1052 #define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
   1053 #define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
   1054 #define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
   1055 #define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
   1056 #define PERF_MEM_LVL_SHIFT	5
   1057 
   1058 #define PERF_MEM_REMOTE_REMOTE	0x01  /* Remote */
   1059 #define PERF_MEM_REMOTE_SHIFT	37
   1060 
   1061 #define PERF_MEM_LVLNUM_L1	0x01 /* L1 */
   1062 #define PERF_MEM_LVLNUM_L2	0x02 /* L2 */
   1063 #define PERF_MEM_LVLNUM_L3	0x03 /* L3 */
   1064 #define PERF_MEM_LVLNUM_L4	0x04 /* L4 */
   1065 /* 5-0xa available */
   1066 #define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
   1067 #define PERF_MEM_LVLNUM_LFB	0x0c /* LFB */
   1068 #define PERF_MEM_LVLNUM_RAM	0x0d /* RAM */
   1069 #define PERF_MEM_LVLNUM_PMEM	0x0e /* PMEM */
   1070 #define PERF_MEM_LVLNUM_NA	0x0f /* N/A */
   1071 
   1072 #define PERF_MEM_LVLNUM_SHIFT	33
   1073 
   1074 /* snoop mode */
   1075 #define PERF_MEM_SNOOP_NA	0x01 /* not available */
   1076 #define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
   1077 #define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
   1078 #define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
   1079 #define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
   1080 #define PERF_MEM_SNOOP_SHIFT	19
   1081 
   1082 #define PERF_MEM_SNOOPX_FWD	0x01 /* forward */
   1083 /* 1 free */
   1084 #define PERF_MEM_SNOOPX_SHIFT	37
   1085 
   1086 /* locked instruction */
   1087 #define PERF_MEM_LOCK_NA	0x01 /* not available */
   1088 #define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
   1089 #define PERF_MEM_LOCK_SHIFT	24
   1090 
   1091 /* TLB access */
   1092 #define PERF_MEM_TLB_NA		0x01 /* not available */
   1093 #define PERF_MEM_TLB_HIT	0x02 /* hit level */
   1094 #define PERF_MEM_TLB_MISS	0x04 /* miss level */
   1095 #define PERF_MEM_TLB_L1		0x08 /* L1 */
   1096 #define PERF_MEM_TLB_L2		0x10 /* L2 */
   1097 #define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
   1098 #define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
   1099 #define PERF_MEM_TLB_SHIFT	26
   1100 
   1101 #define PERF_MEM_S(a, s) \
   1102 	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
   1103 
   1104 /*
   1105  * single taken branch record layout:
   1106  *
   1107  *      from: source instruction (may not always be a branch insn)
   1108  *        to: branch target
   1109  *   mispred: branch target was mispredicted
   1110  * predicted: branch target was predicted
   1111  *
   1112  * support for mispred, predicted is optional. In case it
   1113  * is not supported mispred = predicted = 0.
   1114  *
   1115  *     in_tx: running in a hardware transaction
   1116  *     abort: aborting a hardware transaction
   1117  *    cycles: cycles from last branch (or 0 if not supported)
   1118  *      type: branch type
   1119  */
   1120 struct perf_branch_entry {
   1121 	__u64	from;
   1122 	__u64	to;
   1123 	__u64	mispred:1,  /* target mispredicted */
   1124 		predicted:1,/* target predicted */
   1125 		in_tx:1,    /* in transaction */
   1126 		abort:1,    /* transaction abort */
   1127 		cycles:16,  /* cycle count to last branch */
   1128 		type:4,     /* branch type */
   1129 		reserved:40;
   1130 };
   1131 
   1132 #endif /* _UAPI_LINUX_PERF_EVENT_H */
   1133