Home | History | Annotate | Download | only in PowerPC
      1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===---------------------------------------------------------------------===//
      9 //
     10 // This pass analyzes vector computations and removes unnecessary
     11 // doubleword swaps (xxswapd instructions).  This pass is performed
     12 // only for little-endian VSX code generation.
     13 //
     14 // For this specific case, loads and stores of v4i32, v4f32, v2i64,
     15 // and v2f64 vectors are inefficient.  These are implemented using
     16 // the lxvd2x and stxvd2x instructions, which invert the order of
     17 // doublewords in a vector register.  Thus code generation inserts
     18 // an xxswapd after each such load, and prior to each such store.
     19 //
     20 // The extra xxswapd instructions reduce performance.  The purpose
     21 // of this pass is to reduce the number of xxswapd instructions
     22 // required for correctness.
     23 //
     24 // The primary insight is that much code that operates on vectors
     25 // does not care about the relative order of elements in a register,
     26 // so long as the correct memory order is preserved.  If we have a
     27 // computation where all input values are provided by lxvd2x/xxswapd,
     28 // all outputs are stored using xxswapd/lxvd2x, and all intermediate
     29 // computations are lane-insensitive (independent of element order),
     30 // then all the xxswapd instructions associated with the loads and
     31 // stores may be removed without changing observable semantics.
     32 //
     33 // This pass uses standard equivalence class infrastructure to create
     34 // maximal webs of computations fitting the above description.  Each
     35 // such web is then optimized by removing its unnecessary xxswapd
     36 // instructions.
     37 //
     38 // There are some lane-sensitive operations for which we can still
     39 // permit the optimization, provided we modify those operations
     40 // accordingly.  Such operations are identified as using "special
     41 // handling" within this module.
     42 //
     43 //===---------------------------------------------------------------------===//
     44 
     45 #include "PPCInstrInfo.h"
     46 #include "PPC.h"
     47 #include "PPCInstrBuilder.h"
     48 #include "PPCTargetMachine.h"
     49 #include "llvm/ADT/DenseMap.h"
     50 #include "llvm/ADT/EquivalenceClasses.h"
     51 #include "llvm/CodeGen/MachineFunctionPass.h"
     52 #include "llvm/CodeGen/MachineInstrBuilder.h"
     53 #include "llvm/CodeGen/MachineRegisterInfo.h"
     54 #include "llvm/Support/Debug.h"
     55 #include "llvm/Support/Format.h"
     56 #include "llvm/Support/raw_ostream.h"
     57 
     58 using namespace llvm;
     59 
     60 #define DEBUG_TYPE "ppc-vsx-swaps"
     61 
     62 namespace llvm {
     63   void initializePPCVSXSwapRemovalPass(PassRegistry&);
     64 }
     65 
     66 namespace {
     67 
     68 // A PPCVSXSwapEntry is created for each machine instruction that
     69 // is relevant to a vector computation.
     70 struct PPCVSXSwapEntry {
     71   // Pointer to the instruction.
     72   MachineInstr *VSEMI;
     73 
     74   // Unique ID (position in the swap vector).
     75   int VSEId;
     76 
     77   // Attributes of this node.
     78   unsigned int IsLoad : 1;
     79   unsigned int IsStore : 1;
     80   unsigned int IsSwap : 1;
     81   unsigned int MentionsPhysVR : 1;
     82   unsigned int IsSwappable : 1;
     83   unsigned int MentionsPartialVR : 1;
     84   unsigned int SpecialHandling : 3;
     85   unsigned int WebRejected : 1;
     86   unsigned int WillRemove : 1;
     87 };
     88 
     89 enum SHValues {
     90   SH_NONE = 0,
     91   SH_EXTRACT,
     92   SH_INSERT,
     93   SH_NOSWAP_LD,
     94   SH_NOSWAP_ST,
     95   SH_SPLAT,
     96   SH_XXPERMDI,
     97   SH_COPYWIDEN
     98 };
     99 
    100 struct PPCVSXSwapRemoval : public MachineFunctionPass {
    101 
    102   static char ID;
    103   const PPCInstrInfo *TII;
    104   MachineFunction *MF;
    105   MachineRegisterInfo *MRI;
    106 
    107   // Swap entries are allocated in a vector for better performance.
    108   std::vector<PPCVSXSwapEntry> SwapVector;
    109 
    110   // A mapping is maintained between machine instructions and
    111   // their swap entries.  The key is the address of the MI.
    112   DenseMap<MachineInstr*, int> SwapMap;
    113 
    114   // Equivalence classes are used to gather webs of related computation.
    115   // Swap entries are represented by their VSEId fields.
    116   EquivalenceClasses<int> *EC;
    117 
    118   PPCVSXSwapRemoval() : MachineFunctionPass(ID) {
    119     initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry());
    120   }
    121 
    122 private:
    123   // Initialize data structures.
    124   void initialize(MachineFunction &MFParm);
    125 
    126   // Walk the machine instructions to gather vector usage information.
    127   // Return true iff vector mentions are present.
    128   bool gatherVectorInstructions();
    129 
    130   // Add an entry to the swap vector and swap map.
    131   int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry);
    132 
    133   // Hunt backwards through COPY and SUBREG_TO_REG chains for a
    134   // source register.  VecIdx indicates the swap vector entry to
    135   // mark as mentioning a physical register if the search leads
    136   // to one.
    137   unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx);
    138 
    139   // Generate equivalence classes for related computations (webs).
    140   void formWebs();
    141 
    142   // Analyze webs and determine those that cannot be optimized.
    143   void recordUnoptimizableWebs();
    144 
    145   // Record which swap instructions can be safely removed.
    146   void markSwapsForRemoval();
    147 
    148   // Remove swaps and update other instructions requiring special
    149   // handling.  Return true iff any changes are made.
    150   bool removeSwaps();
    151 
    152   // Insert a swap instruction from SrcReg to DstReg at the given
    153   // InsertPoint.
    154   void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint,
    155                   unsigned DstReg, unsigned SrcReg);
    156 
    157   // Update instructions requiring special handling.
    158   void handleSpecialSwappables(int EntryIdx);
    159 
    160   // Dump a description of the entries in the swap vector.
    161   void dumpSwapVector();
    162 
    163   // Return true iff the given register is in the given class.
    164   bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) {
    165     if (TargetRegisterInfo::isVirtualRegister(Reg))
    166       return RC->hasSubClassEq(MRI->getRegClass(Reg));
    167     return RC->contains(Reg);
    168   }
    169 
    170   // Return true iff the given register is a full vector register.
    171   bool isVecReg(unsigned Reg) {
    172     return (isRegInClass(Reg, &PPC::VSRCRegClass) ||
    173             isRegInClass(Reg, &PPC::VRRCRegClass));
    174   }
    175 
    176   // Return true iff the given register is a partial vector register.
    177   bool isScalarVecReg(unsigned Reg) {
    178     return (isRegInClass(Reg, &PPC::VSFRCRegClass) ||
    179             isRegInClass(Reg, &PPC::VSSRCRegClass));
    180   }
    181 
    182   // Return true iff the given register mentions all or part of a
    183   // vector register.  Also sets Partial to true if the mention
    184   // is for just the floating-point register overlap of the register.
    185   bool isAnyVecReg(unsigned Reg, bool &Partial) {
    186     if (isScalarVecReg(Reg))
    187       Partial = true;
    188     return isScalarVecReg(Reg) || isVecReg(Reg);
    189   }
    190 
    191 public:
    192   // Main entry point for this pass.
    193   bool runOnMachineFunction(MachineFunction &MF) override {
    194     if (skipFunction(*MF.getFunction()))
    195       return false;
    196 
    197     // If we don't have VSX on the subtarget, don't do anything.
    198     const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
    199     if (!STI.hasVSX())
    200       return false;
    201 
    202     bool Changed = false;
    203     initialize(MF);
    204 
    205     if (gatherVectorInstructions()) {
    206       formWebs();
    207       recordUnoptimizableWebs();
    208       markSwapsForRemoval();
    209       Changed = removeSwaps();
    210     }
    211 
    212     // FIXME: See the allocation of EC in initialize().
    213     delete EC;
    214     return Changed;
    215   }
    216 };
    217 
    218 // Initialize data structures for this pass.  In particular, clear the
    219 // swap vector and allocate the equivalence class mapping before
    220 // processing each function.
    221 void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) {
    222   MF = &MFParm;
    223   MRI = &MF->getRegInfo();
    224   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
    225 
    226   // An initial vector size of 256 appears to work well in practice.
    227   // Small/medium functions with vector content tend not to incur a
    228   // reallocation at this size.  Three of the vector tests in
    229   // projects/test-suite reallocate, which seems like a reasonable rate.
    230   const int InitialVectorSize(256);
    231   SwapVector.clear();
    232   SwapVector.reserve(InitialVectorSize);
    233 
    234   // FIXME: Currently we allocate EC each time because we don't have
    235   // access to the set representation on which to call clear().  Should
    236   // consider adding a clear() method to the EquivalenceClasses class.
    237   EC = new EquivalenceClasses<int>;
    238 }
    239 
    240 // Create an entry in the swap vector for each instruction that mentions
    241 // a full vector register, recording various characteristics of the
    242 // instructions there.
    243 bool PPCVSXSwapRemoval::gatherVectorInstructions() {
    244   bool RelevantFunction = false;
    245 
    246   for (MachineBasicBlock &MBB : *MF) {
    247     for (MachineInstr &MI : MBB) {
    248 
    249       if (MI.isDebugValue())
    250         continue;
    251 
    252       bool RelevantInstr = false;
    253       bool Partial = false;
    254 
    255       for (const MachineOperand &MO : MI.operands()) {
    256         if (!MO.isReg())
    257           continue;
    258         unsigned Reg = MO.getReg();
    259         if (isAnyVecReg(Reg, Partial)) {
    260           RelevantInstr = true;
    261           break;
    262         }
    263       }
    264 
    265       if (!RelevantInstr)
    266         continue;
    267 
    268       RelevantFunction = true;
    269 
    270       // Create a SwapEntry initialized to zeros, then fill in the
    271       // instruction and ID fields before pushing it to the back
    272       // of the swap vector.
    273       PPCVSXSwapEntry SwapEntry{};
    274       int VecIdx = addSwapEntry(&MI, SwapEntry);
    275 
    276       switch(MI.getOpcode()) {
    277       default:
    278         // Unless noted otherwise, an instruction is considered
    279         // safe for the optimization.  There are a large number of
    280         // such true-SIMD instructions (all vector math, logical,
    281         // select, compare, etc.).  However, if the instruction
    282         // mentions a partial vector register and does not have
    283         // special handling defined, it is not swappable.
    284         if (Partial)
    285           SwapVector[VecIdx].MentionsPartialVR = 1;
    286         else
    287           SwapVector[VecIdx].IsSwappable = 1;
    288         break;
    289       case PPC::XXPERMDI: {
    290         // This is a swap if it is of the form XXPERMDI t, s, s, 2.
    291         // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
    292         // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
    293         // for example.  We have to look through chains of COPY and
    294         // SUBREG_TO_REG to find the real source value for comparison.
    295         // If the real source value is a physical register, then mark the
    296         // XXPERMDI as mentioning a physical register.
    297         int immed = MI.getOperand(3).getImm();
    298         if (immed == 2) {
    299           unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
    300                                                VecIdx);
    301           unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
    302                                                VecIdx);
    303           if (trueReg1 == trueReg2)
    304             SwapVector[VecIdx].IsSwap = 1;
    305           else {
    306             // We can still handle these if the two registers are not
    307             // identical, by adjusting the form of the XXPERMDI.
    308             SwapVector[VecIdx].IsSwappable = 1;
    309             SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
    310           }
    311         // This is a doubleword splat if it is of the form
    312         // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3.  As above we
    313         // must look through chains of copy-likes to find the source
    314         // register.  We turn off the marking for mention of a physical
    315         // register, because splatting it is safe; the optimization
    316         // will not swap the value in the physical register.  Whether
    317         // or not the two input registers are identical, we can handle
    318         // these by adjusting the form of the XXPERMDI.
    319         } else if (immed == 0 || immed == 3) {
    320 
    321           SwapVector[VecIdx].IsSwappable = 1;
    322           SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
    323 
    324           unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
    325                                                VecIdx);
    326           unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
    327                                                VecIdx);
    328           if (trueReg1 == trueReg2)
    329             SwapVector[VecIdx].MentionsPhysVR = 0;
    330 
    331         } else {
    332           // We can still handle these by adjusting the form of the XXPERMDI.
    333           SwapVector[VecIdx].IsSwappable = 1;
    334           SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
    335         }
    336         break;
    337       }
    338       case PPC::LVX:
    339         // Non-permuting loads are currently unsafe.  We can use special
    340         // handling for this in the future.  By not marking these as
    341         // IsSwap, we ensure computations containing them will be rejected
    342         // for now.
    343         SwapVector[VecIdx].IsLoad = 1;
    344         break;
    345       case PPC::LXVD2X:
    346       case PPC::LXVW4X:
    347         // Permuting loads are marked as both load and swap, and are
    348         // safe for optimization.
    349         SwapVector[VecIdx].IsLoad = 1;
    350         SwapVector[VecIdx].IsSwap = 1;
    351         break;
    352       case PPC::LXSDX:
    353       case PPC::LXSSPX:
    354         // A load of a floating-point value into the high-order half of
    355         // a vector register is safe, provided that we introduce a swap
    356         // following the load, which will be done by the SUBREG_TO_REG
    357         // support.  So just mark these as safe.
    358         SwapVector[VecIdx].IsLoad = 1;
    359         SwapVector[VecIdx].IsSwappable = 1;
    360         break;
    361       case PPC::STVX:
    362         // Non-permuting stores are currently unsafe.  We can use special
    363         // handling for this in the future.  By not marking these as
    364         // IsSwap, we ensure computations containing them will be rejected
    365         // for now.
    366         SwapVector[VecIdx].IsStore = 1;
    367         break;
    368       case PPC::STXVD2X:
    369       case PPC::STXVW4X:
    370         // Permuting stores are marked as both store and swap, and are
    371         // safe for optimization.
    372         SwapVector[VecIdx].IsStore = 1;
    373         SwapVector[VecIdx].IsSwap = 1;
    374         break;
    375       case PPC::COPY:
    376         // These are fine provided they are moving between full vector
    377         // register classes.
    378         if (isVecReg(MI.getOperand(0).getReg()) &&
    379             isVecReg(MI.getOperand(1).getReg()))
    380           SwapVector[VecIdx].IsSwappable = 1;
    381         // If we have a copy from one scalar floating-point register
    382         // to another, we can accept this even if it is a physical
    383         // register.  The only way this gets involved is if it feeds
    384         // a SUBREG_TO_REG, which is handled by introducing a swap.
    385         else if (isScalarVecReg(MI.getOperand(0).getReg()) &&
    386                  isScalarVecReg(MI.getOperand(1).getReg()))
    387           SwapVector[VecIdx].IsSwappable = 1;
    388         break;
    389       case PPC::SUBREG_TO_REG: {
    390         // These are fine provided they are moving between full vector
    391         // register classes.  If they are moving from a scalar
    392         // floating-point class to a vector class, we can handle those
    393         // as well, provided we introduce a swap.  It is generally the
    394         // case that we will introduce fewer swaps than we remove, but
    395         // (FIXME) a cost model could be used.  However, introduced
    396         // swaps could potentially be CSEd, so this is not trivial.
    397         if (isVecReg(MI.getOperand(0).getReg()) &&
    398             isVecReg(MI.getOperand(2).getReg()))
    399           SwapVector[VecIdx].IsSwappable = 1;
    400         else if (isVecReg(MI.getOperand(0).getReg()) &&
    401                  isScalarVecReg(MI.getOperand(2).getReg())) {
    402           SwapVector[VecIdx].IsSwappable = 1;
    403           SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN;
    404         }
    405         break;
    406       }
    407       case PPC::VSPLTB:
    408       case PPC::VSPLTH:
    409       case PPC::VSPLTW:
    410       case PPC::XXSPLTW:
    411         // Splats are lane-sensitive, but we can use special handling
    412         // to adjust the source lane for the splat.
    413         SwapVector[VecIdx].IsSwappable = 1;
    414         SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT;
    415         break;
    416       // The presence of the following lane-sensitive operations in a
    417       // web will kill the optimization, at least for now.  For these
    418       // we do nothing, causing the optimization to fail.
    419       // FIXME: Some of these could be permitted with special handling,
    420       // and will be phased in as time permits.
    421       // FIXME: There is no simple and maintainable way to express a set
    422       // of opcodes having a common attribute in TableGen.  Should this
    423       // change, this is a prime candidate to use such a mechanism.
    424       case PPC::INLINEASM:
    425       case PPC::EXTRACT_SUBREG:
    426       case PPC::INSERT_SUBREG:
    427       case PPC::COPY_TO_REGCLASS:
    428       case PPC::LVEBX:
    429       case PPC::LVEHX:
    430       case PPC::LVEWX:
    431       case PPC::LVSL:
    432       case PPC::LVSR:
    433       case PPC::LVXL:
    434       case PPC::STVEBX:
    435       case PPC::STVEHX:
    436       case PPC::STVEWX:
    437       case PPC::STVXL:
    438         // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX,
    439         // by adding special handling for narrowing copies as well as
    440         // widening ones.  However, I've experimented with this, and in
    441         // practice we currently do not appear to use STXSDX fed by
    442         // a narrowing copy from a full vector register.  Since I can't
    443         // generate any useful test cases, I've left this alone for now.
    444       case PPC::STXSDX:
    445       case PPC::STXSSPX:
    446       case PPC::VCIPHER:
    447       case PPC::VCIPHERLAST:
    448       case PPC::VMRGHB:
    449       case PPC::VMRGHH:
    450       case PPC::VMRGHW:
    451       case PPC::VMRGLB:
    452       case PPC::VMRGLH:
    453       case PPC::VMRGLW:
    454       case PPC::VMULESB:
    455       case PPC::VMULESH:
    456       case PPC::VMULESW:
    457       case PPC::VMULEUB:
    458       case PPC::VMULEUH:
    459       case PPC::VMULEUW:
    460       case PPC::VMULOSB:
    461       case PPC::VMULOSH:
    462       case PPC::VMULOSW:
    463       case PPC::VMULOUB:
    464       case PPC::VMULOUH:
    465       case PPC::VMULOUW:
    466       case PPC::VNCIPHER:
    467       case PPC::VNCIPHERLAST:
    468       case PPC::VPERM:
    469       case PPC::VPERMXOR:
    470       case PPC::VPKPX:
    471       case PPC::VPKSHSS:
    472       case PPC::VPKSHUS:
    473       case PPC::VPKSDSS:
    474       case PPC::VPKSDUS:
    475       case PPC::VPKSWSS:
    476       case PPC::VPKSWUS:
    477       case PPC::VPKUDUM:
    478       case PPC::VPKUDUS:
    479       case PPC::VPKUHUM:
    480       case PPC::VPKUHUS:
    481       case PPC::VPKUWUM:
    482       case PPC::VPKUWUS:
    483       case PPC::VPMSUMB:
    484       case PPC::VPMSUMD:
    485       case PPC::VPMSUMH:
    486       case PPC::VPMSUMW:
    487       case PPC::VRLB:
    488       case PPC::VRLD:
    489       case PPC::VRLH:
    490       case PPC::VRLW:
    491       case PPC::VSBOX:
    492       case PPC::VSHASIGMAD:
    493       case PPC::VSHASIGMAW:
    494       case PPC::VSL:
    495       case PPC::VSLDOI:
    496       case PPC::VSLO:
    497       case PPC::VSR:
    498       case PPC::VSRO:
    499       case PPC::VSUM2SWS:
    500       case PPC::VSUM4SBS:
    501       case PPC::VSUM4SHS:
    502       case PPC::VSUM4UBS:
    503       case PPC::VSUMSWS:
    504       case PPC::VUPKHPX:
    505       case PPC::VUPKHSB:
    506       case PPC::VUPKHSH:
    507       case PPC::VUPKHSW:
    508       case PPC::VUPKLPX:
    509       case PPC::VUPKLSB:
    510       case PPC::VUPKLSH:
    511       case PPC::VUPKLSW:
    512       case PPC::XXMRGHW:
    513       case PPC::XXMRGLW:
    514       // XXSLDWI could be replaced by a general permute with one of three
    515       // permute control vectors (for shift values 1, 2, 3).  However,
    516       // VPERM has a more restrictive register class.
    517       case PPC::XXSLDWI:
    518         break;
    519       }
    520     }
    521   }
    522 
    523   if (RelevantFunction) {
    524     DEBUG(dbgs() << "Swap vector when first built\n\n");
    525     dumpSwapVector();
    526   }
    527 
    528   return RelevantFunction;
    529 }
    530 
    531 // Add an entry to the swap vector and swap map, and make a
    532 // singleton equivalence class for the entry.
    533 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI,
    534                                   PPCVSXSwapEntry& SwapEntry) {
    535   SwapEntry.VSEMI = MI;
    536   SwapEntry.VSEId = SwapVector.size();
    537   SwapVector.push_back(SwapEntry);
    538   EC->insert(SwapEntry.VSEId);
    539   SwapMap[MI] = SwapEntry.VSEId;
    540   return SwapEntry.VSEId;
    541 }
    542 
    543 // This is used to find the "true" source register for an
    544 // XXPERMDI instruction, since MachineCSE does not handle the
    545 // "copy-like" operations (Copy and SubregToReg).  Returns
    546 // the original SrcReg unless it is the target of a copy-like
    547 // operation, in which case we chain backwards through all
    548 // such operations to the ultimate source register.  If a
    549 // physical register is encountered, we stop the search and
    550 // flag the swap entry indicated by VecIdx (the original
    551 // XXPERMDI) as mentioning a physical register.
    552 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg,
    553                                              unsigned VecIdx) {
    554   MachineInstr *MI = MRI->getVRegDef(SrcReg);
    555   if (!MI->isCopyLike())
    556     return SrcReg;
    557 
    558   unsigned CopySrcReg;
    559   if (MI->isCopy())
    560     CopySrcReg = MI->getOperand(1).getReg();
    561   else {
    562     assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
    563     CopySrcReg = MI->getOperand(2).getReg();
    564   }
    565 
    566   if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg)) {
    567     if (!isScalarVecReg(CopySrcReg))
    568       SwapVector[VecIdx].MentionsPhysVR = 1;
    569     return CopySrcReg;
    570   }
    571 
    572   return lookThruCopyLike(CopySrcReg, VecIdx);
    573 }
    574 
    575 // Generate equivalence classes for related computations (webs) by
    576 // def-use relationships of virtual registers.  Mention of a physical
    577 // register terminates the generation of equivalence classes as this
    578 // indicates a use of a parameter, definition of a return value, use
    579 // of a value returned from a call, or definition of a parameter to a
    580 // call.  Computations with physical register mentions are flagged
    581 // as such so their containing webs will not be optimized.
    582 void PPCVSXSwapRemoval::formWebs() {
    583 
    584   DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
    585 
    586   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
    587 
    588     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
    589 
    590     DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " ");
    591     DEBUG(MI->dump());
    592 
    593     // It's sufficient to walk vector uses and join them to their unique
    594     // definitions.  In addition, check full vector register operands
    595     // for physical regs.  We exclude partial-vector register operands
    596     // because we can handle them if copied to a full vector.
    597     for (const MachineOperand &MO : MI->operands()) {
    598       if (!MO.isReg())
    599         continue;
    600 
    601       unsigned Reg = MO.getReg();
    602       if (!isVecReg(Reg) && !isScalarVecReg(Reg))
    603         continue;
    604 
    605       if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
    606         if (!(MI->isCopy() && isScalarVecReg(Reg)))
    607           SwapVector[EntryIdx].MentionsPhysVR = 1;
    608         continue;
    609       }
    610 
    611       if (!MO.isUse())
    612         continue;
    613 
    614       MachineInstr* DefMI = MRI->getVRegDef(Reg);
    615       assert(SwapMap.find(DefMI) != SwapMap.end() &&
    616              "Inconsistency: def of vector reg not found in swap map!");
    617       int DefIdx = SwapMap[DefMI];
    618       (void)EC->unionSets(SwapVector[DefIdx].VSEId,
    619                           SwapVector[EntryIdx].VSEId);
    620 
    621       DEBUG(dbgs() << format("Unioning %d with %d\n", SwapVector[DefIdx].VSEId,
    622                              SwapVector[EntryIdx].VSEId));
    623       DEBUG(dbgs() << "  Def: ");
    624       DEBUG(DefMI->dump());
    625     }
    626   }
    627 }
    628 
    629 // Walk the swap vector entries looking for conditions that prevent their
    630 // containing computations from being optimized.  When such conditions are
    631 // found, mark the representative of the computation's equivalence class
    632 // as rejected.
    633 void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
    634 
    635   DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
    636 
    637   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
    638     int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
    639 
    640     // If representative is already rejected, don't waste further time.
    641     if (SwapVector[Repr].WebRejected)
    642       continue;
    643 
    644     // Reject webs containing mentions of physical or partial registers, or
    645     // containing operations that we don't know how to handle in a lane-
    646     // permuted region.
    647     if (SwapVector[EntryIdx].MentionsPhysVR ||
    648         SwapVector[EntryIdx].MentionsPartialVR ||
    649         !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) {
    650 
    651       SwapVector[Repr].WebRejected = 1;
    652 
    653       DEBUG(dbgs() <<
    654             format("Web %d rejected for physreg, partial reg, or not "
    655                    "swap[pable]\n", Repr));
    656       DEBUG(dbgs() << "  in " << EntryIdx << ": ");
    657       DEBUG(SwapVector[EntryIdx].VSEMI->dump());
    658       DEBUG(dbgs() << "\n");
    659     }
    660 
    661     // Reject webs than contain swapping loads that feed something other
    662     // than a swap instruction.
    663     else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
    664       MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
    665       unsigned DefReg = MI->getOperand(0).getReg();
    666 
    667       // We skip debug instructions in the analysis.  (Note that debug
    668       // location information is still maintained by this optimization
    669       // because it remains on the LXVD2X and STXVD2X instructions after
    670       // the XXPERMDIs are removed.)
    671       for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
    672         int UseIdx = SwapMap[&UseMI];
    673 
    674         if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad ||
    675             SwapVector[UseIdx].IsStore) {
    676 
    677           SwapVector[Repr].WebRejected = 1;
    678 
    679           DEBUG(dbgs() <<
    680                 format("Web %d rejected for load not feeding swap\n", Repr));
    681           DEBUG(dbgs() << "  def " << EntryIdx << ": ");
    682           DEBUG(MI->dump());
    683           DEBUG(dbgs() << "  use " << UseIdx << ": ");
    684           DEBUG(UseMI.dump());
    685           DEBUG(dbgs() << "\n");
    686         }
    687       }
    688 
    689     // Reject webs that contain swapping stores that are fed by something
    690     // other than a swap instruction.
    691     } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
    692       MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
    693       unsigned UseReg = MI->getOperand(0).getReg();
    694       MachineInstr *DefMI = MRI->getVRegDef(UseReg);
    695       unsigned DefReg = DefMI->getOperand(0).getReg();
    696       int DefIdx = SwapMap[DefMI];
    697 
    698       if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad ||
    699           SwapVector[DefIdx].IsStore) {
    700 
    701         SwapVector[Repr].WebRejected = 1;
    702 
    703         DEBUG(dbgs() <<
    704               format("Web %d rejected for store not fed by swap\n", Repr));
    705         DEBUG(dbgs() << "  def " << DefIdx << ": ");
    706         DEBUG(DefMI->dump());
    707         DEBUG(dbgs() << "  use " << EntryIdx << ": ");
    708         DEBUG(MI->dump());
    709         DEBUG(dbgs() << "\n");
    710       }
    711 
    712       // Ensure all uses of the register defined by DefMI feed store
    713       // instructions
    714       for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
    715         int UseIdx = SwapMap[&UseMI];
    716 
    717         if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) {
    718           SwapVector[Repr].WebRejected = 1;
    719 
    720           DEBUG(dbgs() <<
    721                 format("Web %d rejected for swap not feeding only stores\n",
    722                        Repr));
    723           DEBUG(dbgs() << "  def " << " : ");
    724           DEBUG(DefMI->dump());
    725           DEBUG(dbgs() << "  use " << UseIdx << ": ");
    726           DEBUG(SwapVector[UseIdx].VSEMI->dump());
    727           DEBUG(dbgs() << "\n");
    728         }
    729       }
    730     }
    731   }
    732 
    733   DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
    734   dumpSwapVector();
    735 }
    736 
    737 // Walk the swap vector entries looking for swaps fed by permuting loads
    738 // and swaps that feed permuting stores.  If the containing computation
    739 // has not been marked rejected, mark each such swap for removal.
    740 // (Removal is delayed in case optimization has disturbed the pattern,
    741 // such that multiple loads feed the same swap, etc.)
    742 void PPCVSXSwapRemoval::markSwapsForRemoval() {
    743 
    744   DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
    745 
    746   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
    747 
    748     if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
    749       int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
    750 
    751       if (!SwapVector[Repr].WebRejected) {
    752         MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
    753         unsigned DefReg = MI->getOperand(0).getReg();
    754 
    755         for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
    756           int UseIdx = SwapMap[&UseMI];
    757           SwapVector[UseIdx].WillRemove = 1;
    758 
    759           DEBUG(dbgs() << "Marking swap fed by load for removal: ");
    760           DEBUG(UseMI.dump());
    761         }
    762       }
    763 
    764     } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
    765       int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
    766 
    767       if (!SwapVector[Repr].WebRejected) {
    768         MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
    769         unsigned UseReg = MI->getOperand(0).getReg();
    770         MachineInstr *DefMI = MRI->getVRegDef(UseReg);
    771         int DefIdx = SwapMap[DefMI];
    772         SwapVector[DefIdx].WillRemove = 1;
    773 
    774         DEBUG(dbgs() << "Marking swap feeding store for removal: ");
    775         DEBUG(DefMI->dump());
    776       }
    777 
    778     } else if (SwapVector[EntryIdx].IsSwappable &&
    779                SwapVector[EntryIdx].SpecialHandling != 0) {
    780       int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
    781 
    782       if (!SwapVector[Repr].WebRejected)
    783         handleSpecialSwappables(EntryIdx);
    784     }
    785   }
    786 }
    787 
    788 // Create an xxswapd instruction and insert it prior to the given point.
    789 // MI is used to determine basic block and debug loc information.
    790 // FIXME: When inserting a swap, we should check whether SrcReg is
    791 // defined by another swap:  SrcReg = XXPERMDI Reg, Reg, 2;  If so,
    792 // then instead we should generate a copy from Reg to DstReg.
    793 void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI,
    794                                    MachineBasicBlock::iterator InsertPoint,
    795                                    unsigned DstReg, unsigned SrcReg) {
    796   BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
    797           TII->get(PPC::XXPERMDI), DstReg)
    798     .addReg(SrcReg)
    799     .addReg(SrcReg)
    800     .addImm(2);
    801 }
    802 
    803 // The identified swap entry requires special handling to allow its
    804 // containing computation to be optimized.  Perform that handling
    805 // here.
    806 // FIXME: Additional opportunities will be phased in with subsequent
    807 // patches.
    808 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) {
    809   switch (SwapVector[EntryIdx].SpecialHandling) {
    810 
    811   default:
    812     llvm_unreachable("Unexpected special handling type");
    813 
    814   // For splats based on an index into a vector, add N/2 modulo N
    815   // to the index, where N is the number of vector elements.
    816   case SHValues::SH_SPLAT: {
    817     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
    818     unsigned NElts;
    819 
    820     DEBUG(dbgs() << "Changing splat: ");
    821     DEBUG(MI->dump());
    822 
    823     switch (MI->getOpcode()) {
    824     default:
    825       llvm_unreachable("Unexpected splat opcode");
    826     case PPC::VSPLTB: NElts = 16; break;
    827     case PPC::VSPLTH: NElts = 8;  break;
    828     case PPC::VSPLTW:
    829     case PPC::XXSPLTW: NElts = 4;  break;
    830     }
    831 
    832     unsigned EltNo;
    833     if (MI->getOpcode() == PPC::XXSPLTW)
    834       EltNo = MI->getOperand(2).getImm();
    835     else
    836       EltNo = MI->getOperand(1).getImm();
    837 
    838     EltNo = (EltNo + NElts / 2) % NElts;
    839     if (MI->getOpcode() == PPC::XXSPLTW)
    840       MI->getOperand(2).setImm(EltNo);
    841     else
    842       MI->getOperand(1).setImm(EltNo);
    843 
    844     DEBUG(dbgs() << "  Into: ");
    845     DEBUG(MI->dump());
    846     break;
    847   }
    848 
    849   // For an XXPERMDI that isn't handled otherwise, we need to
    850   // reverse the order of the operands.  If the selector operand
    851   // has a value of 0 or 3, we need to change it to 3 or 0,
    852   // respectively.  Otherwise we should leave it alone.  (This
    853   // is equivalent to reversing the two bits of the selector
    854   // operand and complementing the result.)
    855   case SHValues::SH_XXPERMDI: {
    856     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
    857 
    858     DEBUG(dbgs() << "Changing XXPERMDI: ");
    859     DEBUG(MI->dump());
    860 
    861     unsigned Selector = MI->getOperand(3).getImm();
    862     if (Selector == 0 || Selector == 3)
    863       Selector = 3 - Selector;
    864     MI->getOperand(3).setImm(Selector);
    865 
    866     unsigned Reg1 = MI->getOperand(1).getReg();
    867     unsigned Reg2 = MI->getOperand(2).getReg();
    868     MI->getOperand(1).setReg(Reg2);
    869     MI->getOperand(2).setReg(Reg1);
    870 
    871     DEBUG(dbgs() << "  Into: ");
    872     DEBUG(MI->dump());
    873     break;
    874   }
    875 
    876   // For a copy from a scalar floating-point register to a vector
    877   // register, removing swaps will leave the copied value in the
    878   // wrong lane.  Insert a swap following the copy to fix this.
    879   case SHValues::SH_COPYWIDEN: {
    880     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
    881 
    882     DEBUG(dbgs() << "Changing SUBREG_TO_REG: ");
    883     DEBUG(MI->dump());
    884 
    885     unsigned DstReg = MI->getOperand(0).getReg();
    886     const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
    887     unsigned NewVReg = MRI->createVirtualRegister(DstRC);
    888 
    889     MI->getOperand(0).setReg(NewVReg);
    890     DEBUG(dbgs() << "  Into: ");
    891     DEBUG(MI->dump());
    892 
    893     auto InsertPoint = ++MachineBasicBlock::iterator(MI);
    894 
    895     // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG
    896     // is copying to a VRRC, we need to be careful to avoid a register
    897     // assignment problem.  In this case we must copy from VRRC to VSRC
    898     // prior to the swap, and from VSRC to VRRC following the swap.
    899     // Coalescing will usually remove all this mess.
    900     if (DstRC == &PPC::VRRCRegClass) {
    901       unsigned VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
    902       unsigned VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
    903 
    904       BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
    905               TII->get(PPC::COPY), VSRCTmp1)
    906         .addReg(NewVReg);
    907       DEBUG(std::prev(InsertPoint)->dump());
    908 
    909       insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1);
    910       DEBUG(std::prev(InsertPoint)->dump());
    911 
    912       BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
    913               TII->get(PPC::COPY), DstReg)
    914         .addReg(VSRCTmp2);
    915       DEBUG(std::prev(InsertPoint)->dump());
    916 
    917     } else {
    918       insertSwap(MI, InsertPoint, DstReg, NewVReg);
    919       DEBUG(std::prev(InsertPoint)->dump());
    920     }
    921     break;
    922   }
    923   }
    924 }
    925 
    926 // Walk the swap vector and replace each entry marked for removal with
    927 // a copy operation.
    928 bool PPCVSXSwapRemoval::removeSwaps() {
    929 
    930   DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
    931 
    932   bool Changed = false;
    933 
    934   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
    935     if (SwapVector[EntryIdx].WillRemove) {
    936       Changed = true;
    937       MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
    938       MachineBasicBlock *MBB = MI->getParent();
    939       BuildMI(*MBB, MI, MI->getDebugLoc(),
    940               TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
    941         .addOperand(MI->getOperand(1));
    942 
    943       DEBUG(dbgs() << format("Replaced %d with copy: ",
    944                              SwapVector[EntryIdx].VSEId));
    945       DEBUG(MI->dump());
    946 
    947       MI->eraseFromParent();
    948     }
    949   }
    950 
    951   return Changed;
    952 }
    953 
    954 // For debug purposes, dump the contents of the swap vector.
    955 void PPCVSXSwapRemoval::dumpSwapVector() {
    956 
    957   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
    958 
    959     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
    960     int ID = SwapVector[EntryIdx].VSEId;
    961 
    962     DEBUG(dbgs() << format("%6d", ID));
    963     DEBUG(dbgs() << format("%6d", EC->getLeaderValue(ID)));
    964     DEBUG(dbgs() << format(" BB#%3d", MI->getParent()->getNumber()));
    965     DEBUG(dbgs() << format("  %14s  ", TII->getName(MI->getOpcode())));
    966 
    967     if (SwapVector[EntryIdx].IsLoad)
    968       DEBUG(dbgs() << "load ");
    969     if (SwapVector[EntryIdx].IsStore)
    970       DEBUG(dbgs() << "store ");
    971     if (SwapVector[EntryIdx].IsSwap)
    972       DEBUG(dbgs() << "swap ");
    973     if (SwapVector[EntryIdx].MentionsPhysVR)
    974       DEBUG(dbgs() << "physreg ");
    975     if (SwapVector[EntryIdx].MentionsPartialVR)
    976       DEBUG(dbgs() << "partialreg ");
    977 
    978     if (SwapVector[EntryIdx].IsSwappable) {
    979       DEBUG(dbgs() << "swappable ");
    980       switch(SwapVector[EntryIdx].SpecialHandling) {
    981       default:
    982         DEBUG(dbgs() << "special:**unknown**");
    983         break;
    984       case SH_NONE:
    985         break;
    986       case SH_EXTRACT:
    987         DEBUG(dbgs() << "special:extract ");
    988         break;
    989       case SH_INSERT:
    990         DEBUG(dbgs() << "special:insert ");
    991         break;
    992       case SH_NOSWAP_LD:
    993         DEBUG(dbgs() << "special:load ");
    994         break;
    995       case SH_NOSWAP_ST:
    996         DEBUG(dbgs() << "special:store ");
    997         break;
    998       case SH_SPLAT:
    999         DEBUG(dbgs() << "special:splat ");
   1000         break;
   1001       case SH_XXPERMDI:
   1002         DEBUG(dbgs() << "special:xxpermdi ");
   1003         break;
   1004       case SH_COPYWIDEN:
   1005         DEBUG(dbgs() << "special:copywiden ");
   1006         break;
   1007       }
   1008     }
   1009 
   1010     if (SwapVector[EntryIdx].WebRejected)
   1011       DEBUG(dbgs() << "rejected ");
   1012     if (SwapVector[EntryIdx].WillRemove)
   1013       DEBUG(dbgs() << "remove ");
   1014 
   1015     DEBUG(dbgs() << "\n");
   1016 
   1017     // For no-asserts builds.
   1018     (void)MI;
   1019     (void)ID;
   1020   }
   1021 
   1022   DEBUG(dbgs() << "\n");
   1023 }
   1024 
   1025 } // end default namespace
   1026 
   1027 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE,
   1028                       "PowerPC VSX Swap Removal", false, false)
   1029 INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE,
   1030                     "PowerPC VSX Swap Removal", false, false)
   1031 
   1032 char PPCVSXSwapRemoval::ID = 0;
   1033 FunctionPass*
   1034 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }
   1035