Home | History | Annotate | Download | only in glsl
      1 /*
      2  * Copyright  2010 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     21  * DEALINGS IN THE SOFTWARE.
     22  */
     23 
     24 #include <string.h>
     25 #include "main/compiler.h"
     26 #include "ir.h"
     27 #include "compiler/glsl_types.h"
     28 #include "util/hash_table.h"
     29 
     30 ir_rvalue *
     31 ir_rvalue::clone(void *mem_ctx, struct hash_table *) const
     32 {
     33    /* The only possible instantiation is the generic error value. */
     34    return error_value(mem_ctx);
     35 }
     36 
     37 /**
     38  * Duplicate an IR variable
     39  */
     40 ir_variable *
     41 ir_variable::clone(void *mem_ctx, struct hash_table *ht) const
     42 {
     43    ir_variable *var = new(mem_ctx) ir_variable(this->type, this->name,
     44 					       (ir_variable_mode) this->data.mode);
     45 
     46    var->data.max_array_access = this->data.max_array_access;
     47    if (this->is_interface_instance()) {
     48       var->u.max_ifc_array_access =
     49          rzalloc_array(var, int, this->interface_type->length);
     50       memcpy(var->u.max_ifc_array_access, this->u.max_ifc_array_access,
     51              this->interface_type->length * sizeof(unsigned));
     52    }
     53 
     54    memcpy(&var->data, &this->data, sizeof(var->data));
     55 
     56    if (this->get_state_slots()) {
     57       ir_state_slot *s = var->allocate_state_slots(this->get_num_state_slots());
     58       memcpy(s, this->get_state_slots(),
     59              sizeof(s[0]) * var->get_num_state_slots());
     60    }
     61 
     62    if (this->constant_value)
     63       var->constant_value = this->constant_value->clone(mem_ctx, ht);
     64 
     65    if (this->constant_initializer)
     66       var->constant_initializer =
     67 	 this->constant_initializer->clone(mem_ctx, ht);
     68 
     69    var->interface_type = this->interface_type;
     70 
     71    if (ht)
     72       _mesa_hash_table_insert(ht, (void *)const_cast<ir_variable *>(this), var);
     73 
     74    return var;
     75 }
     76 
     77 ir_swizzle *
     78 ir_swizzle::clone(void *mem_ctx, struct hash_table *ht) const
     79 {
     80    return new(mem_ctx) ir_swizzle(this->val->clone(mem_ctx, ht), this->mask);
     81 }
     82 
     83 ir_return *
     84 ir_return::clone(void *mem_ctx, struct hash_table *ht) const
     85 {
     86    ir_rvalue *new_value = NULL;
     87 
     88    if (this->value)
     89       new_value = this->value->clone(mem_ctx, ht);
     90 
     91    return new(mem_ctx) ir_return(new_value);
     92 }
     93 
     94 ir_discard *
     95 ir_discard::clone(void *mem_ctx, struct hash_table *ht) const
     96 {
     97    ir_rvalue *new_condition = NULL;
     98 
     99    if (this->condition != NULL)
    100       new_condition = this->condition->clone(mem_ctx, ht);
    101 
    102    return new(mem_ctx) ir_discard(new_condition);
    103 }
    104 
    105 ir_loop_jump *
    106 ir_loop_jump::clone(void *mem_ctx, struct hash_table *ht) const
    107 {
    108    (void)ht;
    109 
    110    return new(mem_ctx) ir_loop_jump(this->mode);
    111 }
    112 
    113 ir_if *
    114 ir_if::clone(void *mem_ctx, struct hash_table *ht) const
    115 {
    116    ir_if *new_if = new(mem_ctx) ir_if(this->condition->clone(mem_ctx, ht));
    117 
    118    foreach_in_list(ir_instruction, ir, &this->then_instructions) {
    119       new_if->then_instructions.push_tail(ir->clone(mem_ctx, ht));
    120    }
    121 
    122    foreach_in_list(ir_instruction, ir, &this->else_instructions) {
    123       new_if->else_instructions.push_tail(ir->clone(mem_ctx, ht));
    124    }
    125 
    126    return new_if;
    127 }
    128 
    129 ir_loop *
    130 ir_loop::clone(void *mem_ctx, struct hash_table *ht) const
    131 {
    132    ir_loop *new_loop = new(mem_ctx) ir_loop();
    133 
    134    foreach_in_list(ir_instruction, ir, &this->body_instructions) {
    135       new_loop->body_instructions.push_tail(ir->clone(mem_ctx, ht));
    136    }
    137 
    138    return new_loop;
    139 }
    140 
    141 ir_call *
    142 ir_call::clone(void *mem_ctx, struct hash_table *ht) const
    143 {
    144    ir_dereference_variable *new_return_ref = NULL;
    145    if (this->return_deref != NULL)
    146       new_return_ref = this->return_deref->clone(mem_ctx, ht);
    147 
    148    exec_list new_parameters;
    149 
    150    foreach_in_list(ir_instruction, ir, &this->actual_parameters) {
    151       new_parameters.push_tail(ir->clone(mem_ctx, ht));
    152    }
    153 
    154    return new(mem_ctx) ir_call(this->callee, new_return_ref, &new_parameters);
    155 }
    156 
    157 ir_expression *
    158 ir_expression::clone(void *mem_ctx, struct hash_table *ht) const
    159 {
    160    ir_rvalue *op[ARRAY_SIZE(this->operands)] = { NULL, };
    161    unsigned int i;
    162 
    163    for (i = 0; i < num_operands; i++) {
    164       op[i] = this->operands[i]->clone(mem_ctx, ht);
    165    }
    166 
    167    return new(mem_ctx) ir_expression(this->operation, this->type,
    168 				     op[0], op[1], op[2], op[3]);
    169 }
    170 
    171 ir_dereference_variable *
    172 ir_dereference_variable::clone(void *mem_ctx, struct hash_table *ht) const
    173 {
    174    ir_variable *new_var;
    175 
    176    if (ht) {
    177       hash_entry *entry = _mesa_hash_table_search(ht, this->var);
    178       new_var = entry ? (ir_variable *) entry->data : this->var;
    179    } else {
    180       new_var = this->var;
    181    }
    182 
    183    return new(mem_ctx) ir_dereference_variable(new_var);
    184 }
    185 
    186 ir_dereference_array *
    187 ir_dereference_array::clone(void *mem_ctx, struct hash_table *ht) const
    188 {
    189    return new(mem_ctx) ir_dereference_array(this->array->clone(mem_ctx, ht),
    190 					    this->array_index->clone(mem_ctx,
    191 								     ht));
    192 }
    193 
    194 ir_dereference_record *
    195 ir_dereference_record::clone(void *mem_ctx, struct hash_table *ht) const
    196 {
    197    const char *field_name =
    198       this->record->type->fields.structure[this->field_idx].name;
    199    return new(mem_ctx) ir_dereference_record(this->record->clone(mem_ctx, ht),
    200                                              field_name);
    201 }
    202 
    203 ir_texture *
    204 ir_texture::clone(void *mem_ctx, struct hash_table *ht) const
    205 {
    206    ir_texture *new_tex = new(mem_ctx) ir_texture(this->op);
    207    new_tex->type = this->type;
    208 
    209    new_tex->sampler = this->sampler->clone(mem_ctx, ht);
    210    if (this->coordinate)
    211       new_tex->coordinate = this->coordinate->clone(mem_ctx, ht);
    212    if (this->projector)
    213       new_tex->projector = this->projector->clone(mem_ctx, ht);
    214    if (this->shadow_comparator) {
    215       new_tex->shadow_comparator = this->shadow_comparator->clone(mem_ctx, ht);
    216    }
    217 
    218    if (this->offset != NULL)
    219       new_tex->offset = this->offset->clone(mem_ctx, ht);
    220 
    221    switch (this->op) {
    222    case ir_tex:
    223    case ir_lod:
    224    case ir_query_levels:
    225    case ir_texture_samples:
    226    case ir_samples_identical:
    227       break;
    228    case ir_txb:
    229       new_tex->lod_info.bias = this->lod_info.bias->clone(mem_ctx, ht);
    230       break;
    231    case ir_txl:
    232    case ir_txf:
    233    case ir_txs:
    234       new_tex->lod_info.lod = this->lod_info.lod->clone(mem_ctx, ht);
    235       break;
    236    case ir_txf_ms:
    237       new_tex->lod_info.sample_index = this->lod_info.sample_index->clone(mem_ctx, ht);
    238       break;
    239    case ir_txd:
    240       new_tex->lod_info.grad.dPdx = this->lod_info.grad.dPdx->clone(mem_ctx, ht);
    241       new_tex->lod_info.grad.dPdy = this->lod_info.grad.dPdy->clone(mem_ctx, ht);
    242       break;
    243    case ir_tg4:
    244       new_tex->lod_info.component = this->lod_info.component->clone(mem_ctx, ht);
    245       break;
    246    }
    247 
    248    return new_tex;
    249 }
    250 
    251 ir_assignment *
    252 ir_assignment::clone(void *mem_ctx, struct hash_table *ht) const
    253 {
    254    ir_rvalue *new_condition = NULL;
    255 
    256    if (this->condition)
    257       new_condition = this->condition->clone(mem_ctx, ht);
    258 
    259    ir_assignment *cloned =
    260       new(mem_ctx) ir_assignment(this->lhs->clone(mem_ctx, ht),
    261                                  this->rhs->clone(mem_ctx, ht),
    262                                  new_condition);
    263    cloned->write_mask = this->write_mask;
    264    return cloned;
    265 }
    266 
    267 ir_function *
    268 ir_function::clone(void *mem_ctx, struct hash_table *ht) const
    269 {
    270    ir_function *copy = new(mem_ctx) ir_function(this->name);
    271 
    272    copy->is_subroutine = this->is_subroutine;
    273    copy->subroutine_index = this->subroutine_index;
    274    copy->num_subroutine_types = this->num_subroutine_types;
    275    copy->subroutine_types = ralloc_array(mem_ctx, const struct glsl_type *, copy->num_subroutine_types);
    276    for (int i = 0; i < copy->num_subroutine_types; i++)
    277      copy->subroutine_types[i] = this->subroutine_types[i];
    278 
    279    foreach_in_list(const ir_function_signature, sig, &this->signatures) {
    280       ir_function_signature *sig_copy = sig->clone(mem_ctx, ht);
    281       copy->add_signature(sig_copy);
    282 
    283       if (ht != NULL) {
    284          _mesa_hash_table_insert(ht,
    285                (void *)const_cast<ir_function_signature *>(sig), sig_copy);
    286       }
    287    }
    288 
    289    return copy;
    290 }
    291 
    292 ir_function_signature *
    293 ir_function_signature::clone(void *mem_ctx, struct hash_table *ht) const
    294 {
    295    ir_function_signature *copy = this->clone_prototype(mem_ctx, ht);
    296 
    297    copy->is_defined = this->is_defined;
    298 
    299    /* Clone the instruction list.
    300     */
    301    foreach_in_list(const ir_instruction, inst, &this->body) {
    302       ir_instruction *const inst_copy = inst->clone(mem_ctx, ht);
    303       copy->body.push_tail(inst_copy);
    304    }
    305 
    306    return copy;
    307 }
    308 
    309 ir_function_signature *
    310 ir_function_signature::clone_prototype(void *mem_ctx, struct hash_table *ht) const
    311 {
    312    ir_function_signature *copy =
    313       new(mem_ctx) ir_function_signature(this->return_type);
    314 
    315    copy->is_defined = false;
    316    copy->builtin_avail = this->builtin_avail;
    317    copy->origin = this;
    318 
    319    /* Clone the parameter list, but NOT the body.
    320     */
    321    foreach_in_list(const ir_variable, param, &this->parameters) {
    322       assert(const_cast<ir_variable *>(param)->as_variable() != NULL);
    323 
    324       ir_variable *const param_copy = param->clone(mem_ctx, ht);
    325       copy->parameters.push_tail(param_copy);
    326    }
    327 
    328    return copy;
    329 }
    330 
    331 ir_constant *
    332 ir_constant::clone(void *mem_ctx, struct hash_table *ht) const
    333 {
    334    (void)ht;
    335 
    336    switch (this->type->base_type) {
    337    case GLSL_TYPE_UINT:
    338    case GLSL_TYPE_INT:
    339    case GLSL_TYPE_FLOAT:
    340    case GLSL_TYPE_FLOAT16:
    341    case GLSL_TYPE_DOUBLE:
    342    case GLSL_TYPE_BOOL:
    343    case GLSL_TYPE_UINT64:
    344    case GLSL_TYPE_INT64:
    345    case GLSL_TYPE_UINT16:
    346    case GLSL_TYPE_INT16:
    347    case GLSL_TYPE_SAMPLER:
    348    case GLSL_TYPE_IMAGE:
    349       return new(mem_ctx) ir_constant(this->type, &this->value);
    350 
    351    case GLSL_TYPE_STRUCT:
    352    case GLSL_TYPE_ARRAY: {
    353       ir_constant *c = new(mem_ctx) ir_constant;
    354 
    355       c->type = this->type;
    356       c->const_elements = ralloc_array(c, ir_constant *, this->type->length);
    357       for (unsigned i = 0; i < this->type->length; i++) {
    358          c->const_elements[i] = this->const_elements[i]->clone(mem_ctx, NULL);
    359       }
    360       return c;
    361    }
    362 
    363    case GLSL_TYPE_ATOMIC_UINT:
    364    case GLSL_TYPE_VOID:
    365    case GLSL_TYPE_ERROR:
    366    case GLSL_TYPE_SUBROUTINE:
    367    case GLSL_TYPE_INTERFACE:
    368    case GLSL_TYPE_FUNCTION:
    369       assert(!"Should not get here.");
    370       break;
    371    }
    372 
    373    return NULL;
    374 }
    375 
    376 
    377 class fixup_ir_call_visitor : public ir_hierarchical_visitor {
    378 public:
    379    fixup_ir_call_visitor(struct hash_table *ht)
    380    {
    381       this->ht = ht;
    382    }
    383 
    384    virtual ir_visitor_status visit_enter(ir_call *ir)
    385    {
    386       /* Try to find the function signature referenced by the ir_call in the
    387        * table.  If it is found, replace it with the value from the table.
    388        */
    389       ir_function_signature *sig;
    390       hash_entry *entry = _mesa_hash_table_search(this->ht, ir->callee);
    391 
    392       if (entry != NULL) {
    393          sig = (ir_function_signature *) entry->data;
    394          ir->callee = sig;
    395       }
    396 
    397       /* Since this may be used before function call parameters are flattened,
    398        * the children also need to be processed.
    399        */
    400       return visit_continue;
    401    }
    402 
    403 private:
    404    struct hash_table *ht;
    405 };
    406 
    407 
    408 static void
    409 fixup_function_calls(struct hash_table *ht, exec_list *instructions)
    410 {
    411    fixup_ir_call_visitor v(ht);
    412    v.run(instructions);
    413 }
    414 
    415 
    416 void
    417 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in)
    418 {
    419    struct hash_table *ht =
    420          _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
    421 
    422    foreach_in_list(const ir_instruction, original, in) {
    423       ir_instruction *copy = original->clone(mem_ctx, ht);
    424 
    425       out->push_tail(copy);
    426    }
    427 
    428    /* Make a pass over the cloned tree to fix up ir_call nodes to point to the
    429     * cloned ir_function_signature nodes.  This cannot be done automatically
    430     * during cloning because the ir_call might be a forward reference (i.e.,
    431     * the function signature that it references may not have been cloned yet).
    432     */
    433    fixup_function_calls(ht, out);
    434 
    435    _mesa_hash_table_destroy(ht, NULL);
    436 }
    437