1 tutorial_tests = """ 2 Let's try a simple generator: 3 4 >>> def f(): 5 ... yield 1 6 ... yield 2 7 8 >>> for i in f(): 9 ... print i 10 1 11 2 12 >>> g = f() 13 >>> g.next() 14 1 15 >>> g.next() 16 2 17 18 "Falling off the end" stops the generator: 19 20 >>> g.next() 21 Traceback (most recent call last): 22 File "<stdin>", line 1, in ? 23 File "<stdin>", line 2, in g 24 StopIteration 25 26 "return" also stops the generator: 27 28 >>> def f(): 29 ... yield 1 30 ... return 31 ... yield 2 # never reached 32 ... 33 >>> g = f() 34 >>> g.next() 35 1 36 >>> g.next() 37 Traceback (most recent call last): 38 File "<stdin>", line 1, in ? 39 File "<stdin>", line 3, in f 40 StopIteration 41 >>> g.next() # once stopped, can't be resumed 42 Traceback (most recent call last): 43 File "<stdin>", line 1, in ? 44 StopIteration 45 46 "raise StopIteration" stops the generator too: 47 48 >>> def f(): 49 ... yield 1 50 ... raise StopIteration 51 ... yield 2 # never reached 52 ... 53 >>> g = f() 54 >>> g.next() 55 1 56 >>> g.next() 57 Traceback (most recent call last): 58 File "<stdin>", line 1, in ? 59 StopIteration 60 >>> g.next() 61 Traceback (most recent call last): 62 File "<stdin>", line 1, in ? 63 StopIteration 64 65 However, they are not exactly equivalent: 66 67 >>> def g1(): 68 ... try: 69 ... return 70 ... except: 71 ... yield 1 72 ... 73 >>> list(g1()) 74 [] 75 76 >>> def g2(): 77 ... try: 78 ... raise StopIteration 79 ... except: 80 ... yield 42 81 >>> print list(g2()) 82 [42] 83 84 This may be surprising at first: 85 86 >>> def g3(): 87 ... try: 88 ... return 89 ... finally: 90 ... yield 1 91 ... 92 >>> list(g3()) 93 [1] 94 95 Let's create an alternate range() function implemented as a generator: 96 97 >>> def yrange(n): 98 ... for i in range(n): 99 ... yield i 100 ... 101 >>> list(yrange(5)) 102 [0, 1, 2, 3, 4] 103 104 Generators always return to the most recent caller: 105 106 >>> def creator(): 107 ... r = yrange(5) 108 ... print "creator", r.next() 109 ... return r 110 ... 111 >>> def caller(): 112 ... r = creator() 113 ... for i in r: 114 ... print "caller", i 115 ... 116 >>> caller() 117 creator 0 118 caller 1 119 caller 2 120 caller 3 121 caller 4 122 123 Generators can call other generators: 124 125 >>> def zrange(n): 126 ... for i in yrange(n): 127 ... yield i 128 ... 129 >>> list(zrange(5)) 130 [0, 1, 2, 3, 4] 131 132 """ 133 134 # The examples from PEP 255. 135 136 pep_tests = """ 137 138 Specification: Yield 139 140 Restriction: A generator cannot be resumed while it is actively 141 running: 142 143 >>> def g(): 144 ... i = me.next() 145 ... yield i 146 >>> me = g() 147 >>> me.next() 148 Traceback (most recent call last): 149 ... 150 File "<string>", line 2, in g 151 ValueError: generator already executing 152 153 Specification: Return 154 155 Note that return isn't always equivalent to raising StopIteration: the 156 difference lies in how enclosing try/except constructs are treated. 157 For example, 158 159 >>> def f1(): 160 ... try: 161 ... return 162 ... except: 163 ... yield 1 164 >>> print list(f1()) 165 [] 166 167 because, as in any function, return simply exits, but 168 169 >>> def f2(): 170 ... try: 171 ... raise StopIteration 172 ... except: 173 ... yield 42 174 >>> print list(f2()) 175 [42] 176 177 because StopIteration is captured by a bare "except", as is any 178 exception. 179 180 Specification: Generators and Exception Propagation 181 182 >>> def f(): 183 ... return 1//0 184 >>> def g(): 185 ... yield f() # the zero division exception propagates 186 ... yield 42 # and we'll never get here 187 >>> k = g() 188 >>> k.next() 189 Traceback (most recent call last): 190 File "<stdin>", line 1, in ? 191 File "<stdin>", line 2, in g 192 File "<stdin>", line 2, in f 193 ZeroDivisionError: integer division or modulo by zero 194 >>> k.next() # and the generator cannot be resumed 195 Traceback (most recent call last): 196 File "<stdin>", line 1, in ? 197 StopIteration 198 >>> 199 200 Specification: Try/Except/Finally 201 202 >>> def f(): 203 ... try: 204 ... yield 1 205 ... try: 206 ... yield 2 207 ... 1//0 208 ... yield 3 # never get here 209 ... except ZeroDivisionError: 210 ... yield 4 211 ... yield 5 212 ... raise 213 ... except: 214 ... yield 6 215 ... yield 7 # the "raise" above stops this 216 ... except: 217 ... yield 8 218 ... yield 9 219 ... try: 220 ... x = 12 221 ... finally: 222 ... yield 10 223 ... yield 11 224 >>> print list(f()) 225 [1, 2, 4, 5, 8, 9, 10, 11] 226 >>> 227 228 Guido's binary tree example. 229 230 >>> # A binary tree class. 231 >>> class Tree: 232 ... 233 ... def __init__(self, label, left=None, right=None): 234 ... self.label = label 235 ... self.left = left 236 ... self.right = right 237 ... 238 ... def __repr__(self, level=0, indent=" "): 239 ... s = level*indent + repr(self.label) 240 ... if self.left: 241 ... s = s + "\\n" + self.left.__repr__(level+1, indent) 242 ... if self.right: 243 ... s = s + "\\n" + self.right.__repr__(level+1, indent) 244 ... return s 245 ... 246 ... def __iter__(self): 247 ... return inorder(self) 248 249 >>> # Create a Tree from a list. 250 >>> def tree(list): 251 ... n = len(list) 252 ... if n == 0: 253 ... return [] 254 ... i = n // 2 255 ... return Tree(list[i], tree(list[:i]), tree(list[i+1:])) 256 257 >>> # Show it off: create a tree. 258 >>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ") 259 260 >>> # A recursive generator that generates Tree labels in in-order. 261 >>> def inorder(t): 262 ... if t: 263 ... for x in inorder(t.left): 264 ... yield x 265 ... yield t.label 266 ... for x in inorder(t.right): 267 ... yield x 268 269 >>> # Show it off: create a tree. 270 >>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ") 271 >>> # Print the nodes of the tree in in-order. 272 >>> for x in t: 273 ... print x, 274 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 275 276 >>> # A non-recursive generator. 277 >>> def inorder(node): 278 ... stack = [] 279 ... while node: 280 ... while node.left: 281 ... stack.append(node) 282 ... node = node.left 283 ... yield node.label 284 ... while not node.right: 285 ... try: 286 ... node = stack.pop() 287 ... except IndexError: 288 ... return 289 ... yield node.label 290 ... node = node.right 291 292 >>> # Exercise the non-recursive generator. 293 >>> for x in t: 294 ... print x, 295 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 296 297 """ 298 299 # Examples from Iterator-List and Python-Dev and c.l.py. 300 301 email_tests = """ 302 303 The difference between yielding None and returning it. 304 305 >>> def g(): 306 ... for i in range(3): 307 ... yield None 308 ... yield None 309 ... return 310 >>> list(g()) 311 [None, None, None, None] 312 313 Ensure that explicitly raising StopIteration acts like any other exception 314 in try/except, not like a return. 315 316 >>> def g(): 317 ... yield 1 318 ... try: 319 ... raise StopIteration 320 ... except: 321 ... yield 2 322 ... yield 3 323 >>> list(g()) 324 [1, 2, 3] 325 326 Next one was posted to c.l.py. 327 328 >>> def gcomb(x, k): 329 ... "Generate all combinations of k elements from list x." 330 ... 331 ... if k > len(x): 332 ... return 333 ... if k == 0: 334 ... yield [] 335 ... else: 336 ... first, rest = x[0], x[1:] 337 ... # A combination does or doesn't contain first. 338 ... # If it does, the remainder is a k-1 comb of rest. 339 ... for c in gcomb(rest, k-1): 340 ... c.insert(0, first) 341 ... yield c 342 ... # If it doesn't contain first, it's a k comb of rest. 343 ... for c in gcomb(rest, k): 344 ... yield c 345 346 >>> seq = range(1, 5) 347 >>> for k in range(len(seq) + 2): 348 ... print "%d-combs of %s:" % (k, seq) 349 ... for c in gcomb(seq, k): 350 ... print " ", c 351 0-combs of [1, 2, 3, 4]: 352 [] 353 1-combs of [1, 2, 3, 4]: 354 [1] 355 [2] 356 [3] 357 [4] 358 2-combs of [1, 2, 3, 4]: 359 [1, 2] 360 [1, 3] 361 [1, 4] 362 [2, 3] 363 [2, 4] 364 [3, 4] 365 3-combs of [1, 2, 3, 4]: 366 [1, 2, 3] 367 [1, 2, 4] 368 [1, 3, 4] 369 [2, 3, 4] 370 4-combs of [1, 2, 3, 4]: 371 [1, 2, 3, 4] 372 5-combs of [1, 2, 3, 4]: 373 374 From the Iterators list, about the types of these things. 375 376 >>> def g(): 377 ... yield 1 378 ... 379 >>> type(g) 380 <type 'function'> 381 >>> i = g() 382 >>> type(i) 383 <type 'generator'> 384 >>> [s for s in dir(i) if not s.startswith('_')] 385 ['close', 'gi_code', 'gi_frame', 'gi_running', 'next', 'send', 'throw'] 386 >>> from test.test_support import HAVE_DOCSTRINGS 387 >>> print(i.next.__doc__ if HAVE_DOCSTRINGS else 'x.next() -> the next value, or raise StopIteration') 388 x.next() -> the next value, or raise StopIteration 389 >>> iter(i) is i 390 True 391 >>> import types 392 >>> isinstance(i, types.GeneratorType) 393 True 394 395 And more, added later. 396 397 >>> i.gi_running 398 0 399 >>> type(i.gi_frame) 400 <type 'frame'> 401 >>> i.gi_running = 42 402 Traceback (most recent call last): 403 ... 404 TypeError: readonly attribute 405 >>> def g(): 406 ... yield me.gi_running 407 >>> me = g() 408 >>> me.gi_running 409 0 410 >>> me.next() 411 1 412 >>> me.gi_running 413 0 414 415 A clever union-find implementation from c.l.py, due to David Eppstein. 416 Sent: Friday, June 29, 2001 12:16 PM 417 To: python-list (at] python.org 418 Subject: Re: PEP 255: Simple Generators 419 420 >>> class disjointSet: 421 ... def __init__(self, name): 422 ... self.name = name 423 ... self.parent = None 424 ... self.generator = self.generate() 425 ... 426 ... def generate(self): 427 ... while not self.parent: 428 ... yield self 429 ... for x in self.parent.generator: 430 ... yield x 431 ... 432 ... def find(self): 433 ... return self.generator.next() 434 ... 435 ... def union(self, parent): 436 ... if self.parent: 437 ... raise ValueError("Sorry, I'm not a root!") 438 ... self.parent = parent 439 ... 440 ... def __str__(self): 441 ... return self.name 442 443 >>> names = "ABCDEFGHIJKLM" 444 >>> sets = [disjointSet(name) for name in names] 445 >>> roots = sets[:] 446 447 >>> import random 448 >>> gen = random.WichmannHill(42) 449 >>> while 1: 450 ... for s in sets: 451 ... print "%s->%s" % (s, s.find()), 452 ... print 453 ... if len(roots) > 1: 454 ... s1 = gen.choice(roots) 455 ... roots.remove(s1) 456 ... s2 = gen.choice(roots) 457 ... s1.union(s2) 458 ... print "merged", s1, "into", s2 459 ... else: 460 ... break 461 A->A B->B C->C D->D E->E F->F G->G H->H I->I J->J K->K L->L M->M 462 merged D into G 463 A->A B->B C->C D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M 464 merged C into F 465 A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M 466 merged L into A 467 A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->A M->M 468 merged H into E 469 A->A B->B C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M 470 merged B into E 471 A->A B->E C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M 472 merged J into G 473 A->A B->E C->F D->G E->E F->F G->G H->E I->I J->G K->K L->A M->M 474 merged E into G 475 A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->M 476 merged M into G 477 A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->G 478 merged I into K 479 A->A B->G C->F D->G E->G F->F G->G H->G I->K J->G K->K L->A M->G 480 merged K into A 481 A->A B->G C->F D->G E->G F->F G->G H->G I->A J->G K->A L->A M->G 482 merged F into A 483 A->A B->G C->A D->G E->G F->A G->G H->G I->A J->G K->A L->A M->G 484 merged A into G 485 A->G B->G C->G D->G E->G F->G G->G H->G I->G J->G K->G L->G M->G 486 487 """ 488 # Emacs turd ' 489 490 # Fun tests (for sufficiently warped notions of "fun"). 491 492 fun_tests = """ 493 494 Build up to a recursive Sieve of Eratosthenes generator. 495 496 >>> def firstn(g, n): 497 ... return [g.next() for i in range(n)] 498 499 >>> def intsfrom(i): 500 ... while 1: 501 ... yield i 502 ... i += 1 503 504 >>> firstn(intsfrom(5), 7) 505 [5, 6, 7, 8, 9, 10, 11] 506 507 >>> def exclude_multiples(n, ints): 508 ... for i in ints: 509 ... if i % n: 510 ... yield i 511 512 >>> firstn(exclude_multiples(3, intsfrom(1)), 6) 513 [1, 2, 4, 5, 7, 8] 514 515 >>> def sieve(ints): 516 ... prime = ints.next() 517 ... yield prime 518 ... not_divisible_by_prime = exclude_multiples(prime, ints) 519 ... for p in sieve(not_divisible_by_prime): 520 ... yield p 521 522 >>> primes = sieve(intsfrom(2)) 523 >>> firstn(primes, 20) 524 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71] 525 526 527 Another famous problem: generate all integers of the form 528 2**i * 3**j * 5**k 529 in increasing order, where i,j,k >= 0. Trickier than it may look at first! 530 Try writing it without generators, and correctly, and without generating 531 3 internal results for each result output. 532 533 >>> def times(n, g): 534 ... for i in g: 535 ... yield n * i 536 >>> firstn(times(10, intsfrom(1)), 10) 537 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] 538 539 >>> def merge(g, h): 540 ... ng = g.next() 541 ... nh = h.next() 542 ... while 1: 543 ... if ng < nh: 544 ... yield ng 545 ... ng = g.next() 546 ... elif ng > nh: 547 ... yield nh 548 ... nh = h.next() 549 ... else: 550 ... yield ng 551 ... ng = g.next() 552 ... nh = h.next() 553 554 The following works, but is doing a whale of a lot of redundant work -- 555 it's not clear how to get the internal uses of m235 to share a single 556 generator. Note that me_times2 (etc) each need to see every element in the 557 result sequence. So this is an example where lazy lists are more natural 558 (you can look at the head of a lazy list any number of times). 559 560 >>> def m235(): 561 ... yield 1 562 ... me_times2 = times(2, m235()) 563 ... me_times3 = times(3, m235()) 564 ... me_times5 = times(5, m235()) 565 ... for i in merge(merge(me_times2, 566 ... me_times3), 567 ... me_times5): 568 ... yield i 569 570 Don't print "too many" of these -- the implementation above is extremely 571 inefficient: each call of m235() leads to 3 recursive calls, and in 572 turn each of those 3 more, and so on, and so on, until we've descended 573 enough levels to satisfy the print stmts. Very odd: when I printed 5 574 lines of results below, this managed to screw up Win98's malloc in "the 575 usual" way, i.e. the heap grew over 4Mb so Win98 started fragmenting 576 address space, and it *looked* like a very slow leak. 577 578 >>> result = m235() 579 >>> for i in range(3): 580 ... print firstn(result, 15) 581 [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24] 582 [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80] 583 [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192] 584 585 Heh. Here's one way to get a shared list, complete with an excruciating 586 namespace renaming trick. The *pretty* part is that the times() and merge() 587 functions can be reused as-is, because they only assume their stream 588 arguments are iterable -- a LazyList is the same as a generator to times(). 589 590 >>> class LazyList: 591 ... def __init__(self, g): 592 ... self.sofar = [] 593 ... self.fetch = g.next 594 ... 595 ... def __getitem__(self, i): 596 ... sofar, fetch = self.sofar, self.fetch 597 ... while i >= len(sofar): 598 ... sofar.append(fetch()) 599 ... return sofar[i] 600 601 >>> def m235(): 602 ... yield 1 603 ... # Gack: m235 below actually refers to a LazyList. 604 ... me_times2 = times(2, m235) 605 ... me_times3 = times(3, m235) 606 ... me_times5 = times(5, m235) 607 ... for i in merge(merge(me_times2, 608 ... me_times3), 609 ... me_times5): 610 ... yield i 611 612 Print as many of these as you like -- *this* implementation is memory- 613 efficient. 614 615 >>> m235 = LazyList(m235()) 616 >>> for i in range(5): 617 ... print [m235[j] for j in range(15*i, 15*(i+1))] 618 [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24] 619 [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80] 620 [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192] 621 [200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384] 622 [400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675] 623 624 Ye olde Fibonacci generator, LazyList style. 625 626 >>> def fibgen(a, b): 627 ... 628 ... def sum(g, h): 629 ... while 1: 630 ... yield g.next() + h.next() 631 ... 632 ... def tail(g): 633 ... g.next() # throw first away 634 ... for x in g: 635 ... yield x 636 ... 637 ... yield a 638 ... yield b 639 ... for s in sum(iter(fib), 640 ... tail(iter(fib))): 641 ... yield s 642 643 >>> fib = LazyList(fibgen(1, 2)) 644 >>> firstn(iter(fib), 17) 645 [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584] 646 647 648 Running after your tail with itertools.tee (new in version 2.4) 649 650 The algorithms "m235" (Hamming) and Fibonacci presented above are both 651 examples of a whole family of FP (functional programming) algorithms 652 where a function produces and returns a list while the production algorithm 653 suppose the list as already produced by recursively calling itself. 654 For these algorithms to work, they must: 655 656 - produce at least a first element without presupposing the existence of 657 the rest of the list 658 - produce their elements in a lazy manner 659 660 To work efficiently, the beginning of the list must not be recomputed over 661 and over again. This is ensured in most FP languages as a built-in feature. 662 In python, we have to explicitly maintain a list of already computed results 663 and abandon genuine recursivity. 664 665 This is what had been attempted above with the LazyList class. One problem 666 with that class is that it keeps a list of all of the generated results and 667 therefore continually grows. This partially defeats the goal of the generator 668 concept, viz. produce the results only as needed instead of producing them 669 all and thereby wasting memory. 670 671 Thanks to itertools.tee, it is now clear "how to get the internal uses of 672 m235 to share a single generator". 673 674 >>> from itertools import tee 675 >>> def m235(): 676 ... def _m235(): 677 ... yield 1 678 ... for n in merge(times(2, m2), 679 ... merge(times(3, m3), 680 ... times(5, m5))): 681 ... yield n 682 ... m1 = _m235() 683 ... m2, m3, m5, mRes = tee(m1, 4) 684 ... return mRes 685 686 >>> it = m235() 687 >>> for i in range(5): 688 ... print firstn(it, 15) 689 [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24] 690 [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80] 691 [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192] 692 [200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384] 693 [400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675] 694 695 The "tee" function does just what we want. It internally keeps a generated 696 result for as long as it has not been "consumed" from all of the duplicated 697 iterators, whereupon it is deleted. You can therefore print the hamming 698 sequence during hours without increasing memory usage, or very little. 699 700 The beauty of it is that recursive running-after-their-tail FP algorithms 701 are quite straightforwardly expressed with this Python idiom. 702 703 Ye olde Fibonacci generator, tee style. 704 705 >>> def fib(): 706 ... 707 ... def _isum(g, h): 708 ... while 1: 709 ... yield g.next() + h.next() 710 ... 711 ... def _fib(): 712 ... yield 1 713 ... yield 2 714 ... fibTail.next() # throw first away 715 ... for res in _isum(fibHead, fibTail): 716 ... yield res 717 ... 718 ... realfib = _fib() 719 ... fibHead, fibTail, fibRes = tee(realfib, 3) 720 ... return fibRes 721 722 >>> firstn(fib(), 17) 723 [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584] 724 725 """ 726 727 # syntax_tests mostly provokes SyntaxErrors. Also fiddling with #if 0 728 # hackery. 729 730 syntax_tests = """ 731 732 >>> def f(): 733 ... return 22 734 ... yield 1 735 Traceback (most recent call last): 736 .. 737 SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[0]>, line 3) 738 739 >>> def f(): 740 ... yield 1 741 ... return 22 742 Traceback (most recent call last): 743 .. 744 SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[1]>, line 3) 745 746 "return None" is not the same as "return" in a generator: 747 748 >>> def f(): 749 ... yield 1 750 ... return None 751 Traceback (most recent call last): 752 .. 753 SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[2]>, line 3) 754 755 These are fine: 756 757 >>> def f(): 758 ... yield 1 759 ... return 760 761 >>> def f(): 762 ... try: 763 ... yield 1 764 ... finally: 765 ... pass 766 767 >>> def f(): 768 ... try: 769 ... try: 770 ... 1//0 771 ... except ZeroDivisionError: 772 ... yield 666 773 ... except: 774 ... pass 775 ... finally: 776 ... pass 777 778 >>> def f(): 779 ... try: 780 ... try: 781 ... yield 12 782 ... 1//0 783 ... except ZeroDivisionError: 784 ... yield 666 785 ... except: 786 ... try: 787 ... x = 12 788 ... finally: 789 ... yield 12 790 ... except: 791 ... return 792 >>> list(f()) 793 [12, 666] 794 795 >>> def f(): 796 ... yield 797 >>> type(f()) 798 <type 'generator'> 799 800 801 >>> def f(): 802 ... if 0: 803 ... yield 804 >>> type(f()) 805 <type 'generator'> 806 807 808 >>> def f(): 809 ... if 0: 810 ... yield 1 811 >>> type(f()) 812 <type 'generator'> 813 814 >>> def f(): 815 ... if "": 816 ... yield None 817 >>> type(f()) 818 <type 'generator'> 819 820 >>> def f(): 821 ... return 822 ... try: 823 ... if x==4: 824 ... pass 825 ... elif 0: 826 ... try: 827 ... 1//0 828 ... except SyntaxError: 829 ... pass 830 ... else: 831 ... if 0: 832 ... while 12: 833 ... x += 1 834 ... yield 2 # don't blink 835 ... f(a, b, c, d, e) 836 ... else: 837 ... pass 838 ... except: 839 ... x = 1 840 ... return 841 >>> type(f()) 842 <type 'generator'> 843 844 >>> def f(): 845 ... if 0: 846 ... def g(): 847 ... yield 1 848 ... 849 >>> type(f()) 850 <type 'NoneType'> 851 852 >>> def f(): 853 ... if 0: 854 ... class C: 855 ... def __init__(self): 856 ... yield 1 857 ... def f(self): 858 ... yield 2 859 >>> type(f()) 860 <type 'NoneType'> 861 862 >>> def f(): 863 ... if 0: 864 ... return 865 ... if 0: 866 ... yield 2 867 >>> type(f()) 868 <type 'generator'> 869 870 871 >>> def f(): 872 ... if 0: 873 ... lambda x: x # shouldn't trigger here 874 ... return # or here 875 ... def f(i): 876 ... return 2*i # or here 877 ... if 0: 878 ... return 3 # but *this* sucks (line 8) 879 ... if 0: 880 ... yield 2 # because it's a generator (line 10) 881 Traceback (most recent call last): 882 SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[24]>, line 10) 883 884 This one caused a crash (see SF bug 567538): 885 886 >>> def f(): 887 ... for i in range(3): 888 ... try: 889 ... continue 890 ... finally: 891 ... yield i 892 ... 893 >>> g = f() 894 >>> print g.next() 895 0 896 >>> print g.next() 897 1 898 >>> print g.next() 899 2 900 >>> print g.next() 901 Traceback (most recent call last): 902 StopIteration 903 904 905 Test the gi_code attribute 906 907 >>> def f(): 908 ... yield 5 909 ... 910 >>> g = f() 911 >>> g.gi_code is f.func_code 912 True 913 >>> g.next() 914 5 915 >>> g.next() 916 Traceback (most recent call last): 917 StopIteration 918 >>> g.gi_code is f.func_code 919 True 920 921 922 Test the __name__ attribute and the repr() 923 924 >>> def f(): 925 ... yield 5 926 ... 927 >>> g = f() 928 >>> g.__name__ 929 'f' 930 >>> repr(g) # doctest: +ELLIPSIS 931 '<generator object f at ...>' 932 933 Lambdas shouldn't have their usual return behavior. 934 935 >>> x = lambda: (yield 1) 936 >>> list(x()) 937 [1] 938 939 >>> x = lambda: ((yield 1), (yield 2)) 940 >>> list(x()) 941 [1, 2] 942 """ 943 944 # conjoin is a simple backtracking generator, named in honor of Icon's 945 # "conjunction" control structure. Pass a list of no-argument functions 946 # that return iterable objects. Easiest to explain by example: assume the 947 # function list [x, y, z] is passed. Then conjoin acts like: 948 # 949 # def g(): 950 # values = [None] * 3 951 # for values[0] in x(): 952 # for values[1] in y(): 953 # for values[2] in z(): 954 # yield values 955 # 956 # So some 3-lists of values *may* be generated, each time we successfully 957 # get into the innermost loop. If an iterator fails (is exhausted) before 958 # then, it "backtracks" to get the next value from the nearest enclosing 959 # iterator (the one "to the left"), and starts all over again at the next 960 # slot (pumps a fresh iterator). Of course this is most useful when the 961 # iterators have side-effects, so that which values *can* be generated at 962 # each slot depend on the values iterated at previous slots. 963 964 def simple_conjoin(gs): 965 966 values = [None] * len(gs) 967 968 def gen(i): 969 if i >= len(gs): 970 yield values 971 else: 972 for values[i] in gs[i](): 973 for x in gen(i+1): 974 yield x 975 976 for x in gen(0): 977 yield x 978 979 # That works fine, but recursing a level and checking i against len(gs) for 980 # each item produced is inefficient. By doing manual loop unrolling across 981 # generator boundaries, it's possible to eliminate most of that overhead. 982 # This isn't worth the bother *in general* for generators, but conjoin() is 983 # a core building block for some CPU-intensive generator applications. 984 985 def conjoin(gs): 986 987 n = len(gs) 988 values = [None] * n 989 990 # Do one loop nest at time recursively, until the # of loop nests 991 # remaining is divisible by 3. 992 993 def gen(i): 994 if i >= n: 995 yield values 996 997 elif (n-i) % 3: 998 ip1 = i+1 999 for values[i] in gs[i](): 1000 for x in gen(ip1): 1001 yield x 1002 1003 else: 1004 for x in _gen3(i): 1005 yield x 1006 1007 # Do three loop nests at a time, recursing only if at least three more 1008 # remain. Don't call directly: this is an internal optimization for 1009 # gen's use. 1010 1011 def _gen3(i): 1012 assert i < n and (n-i) % 3 == 0 1013 ip1, ip2, ip3 = i+1, i+2, i+3 1014 g, g1, g2 = gs[i : ip3] 1015 1016 if ip3 >= n: 1017 # These are the last three, so we can yield values directly. 1018 for values[i] in g(): 1019 for values[ip1] in g1(): 1020 for values[ip2] in g2(): 1021 yield values 1022 1023 else: 1024 # At least 6 loop nests remain; peel off 3 and recurse for the 1025 # rest. 1026 for values[i] in g(): 1027 for values[ip1] in g1(): 1028 for values[ip2] in g2(): 1029 for x in _gen3(ip3): 1030 yield x 1031 1032 for x in gen(0): 1033 yield x 1034 1035 # And one more approach: For backtracking apps like the Knight's Tour 1036 # solver below, the number of backtracking levels can be enormous (one 1037 # level per square, for the Knight's Tour, so that e.g. a 100x100 board 1038 # needs 10,000 levels). In such cases Python is likely to run out of 1039 # stack space due to recursion. So here's a recursion-free version of 1040 # conjoin too. 1041 # NOTE WELL: This allows large problems to be solved with only trivial 1042 # demands on stack space. Without explicitly resumable generators, this is 1043 # much harder to achieve. OTOH, this is much slower (up to a factor of 2) 1044 # than the fancy unrolled recursive conjoin. 1045 1046 def flat_conjoin(gs): # rename to conjoin to run tests with this instead 1047 n = len(gs) 1048 values = [None] * n 1049 iters = [None] * n 1050 _StopIteration = StopIteration # make local because caught a *lot* 1051 i = 0 1052 while 1: 1053 # Descend. 1054 try: 1055 while i < n: 1056 it = iters[i] = gs[i]().next 1057 values[i] = it() 1058 i += 1 1059 except _StopIteration: 1060 pass 1061 else: 1062 assert i == n 1063 yield values 1064 1065 # Backtrack until an older iterator can be resumed. 1066 i -= 1 1067 while i >= 0: 1068 try: 1069 values[i] = iters[i]() 1070 # Success! Start fresh at next level. 1071 i += 1 1072 break 1073 except _StopIteration: 1074 # Continue backtracking. 1075 i -= 1 1076 else: 1077 assert i < 0 1078 break 1079 1080 # A conjoin-based N-Queens solver. 1081 1082 class Queens: 1083 def __init__(self, n): 1084 self.n = n 1085 rangen = range(n) 1086 1087 # Assign a unique int to each column and diagonal. 1088 # columns: n of those, range(n). 1089 # NW-SE diagonals: 2n-1 of these, i-j unique and invariant along 1090 # each, smallest i-j is 0-(n-1) = 1-n, so add n-1 to shift to 0- 1091 # based. 1092 # NE-SW diagonals: 2n-1 of these, i+j unique and invariant along 1093 # each, smallest i+j is 0, largest is 2n-2. 1094 1095 # For each square, compute a bit vector of the columns and 1096 # diagonals it covers, and for each row compute a function that 1097 # generates the possibilities for the columns in that row. 1098 self.rowgenerators = [] 1099 for i in rangen: 1100 rowuses = [(1L << j) | # column ordinal 1101 (1L << (n + i-j + n-1)) | # NW-SE ordinal 1102 (1L << (n + 2*n-1 + i+j)) # NE-SW ordinal 1103 for j in rangen] 1104 1105 def rowgen(rowuses=rowuses): 1106 for j in rangen: 1107 uses = rowuses[j] 1108 if uses & self.used == 0: 1109 self.used |= uses 1110 yield j 1111 self.used &= ~uses 1112 1113 self.rowgenerators.append(rowgen) 1114 1115 # Generate solutions. 1116 def solve(self): 1117 self.used = 0 1118 for row2col in conjoin(self.rowgenerators): 1119 yield row2col 1120 1121 def printsolution(self, row2col): 1122 n = self.n 1123 assert n == len(row2col) 1124 sep = "+" + "-+" * n 1125 print sep 1126 for i in range(n): 1127 squares = [" " for j in range(n)] 1128 squares[row2col[i]] = "Q" 1129 print "|" + "|".join(squares) + "|" 1130 print sep 1131 1132 # A conjoin-based Knight's Tour solver. This is pretty sophisticated 1133 # (e.g., when used with flat_conjoin above, and passing hard=1 to the 1134 # constructor, a 200x200 Knight's Tour was found quickly -- note that we're 1135 # creating 10s of thousands of generators then!), and is lengthy. 1136 1137 class Knights: 1138 def __init__(self, m, n, hard=0): 1139 self.m, self.n = m, n 1140 1141 # solve() will set up succs[i] to be a list of square #i's 1142 # successors. 1143 succs = self.succs = [] 1144 1145 # Remove i0 from each of its successor's successor lists, i.e. 1146 # successors can't go back to i0 again. Return 0 if we can 1147 # detect this makes a solution impossible, else return 1. 1148 1149 def remove_from_successors(i0, len=len): 1150 # If we remove all exits from a free square, we're dead: 1151 # even if we move to it next, we can't leave it again. 1152 # If we create a square with one exit, we must visit it next; 1153 # else somebody else will have to visit it, and since there's 1154 # only one adjacent, there won't be a way to leave it again. 1155 # Finelly, if we create more than one free square with a 1156 # single exit, we can only move to one of them next, leaving 1157 # the other one a dead end. 1158 ne0 = ne1 = 0 1159 for i in succs[i0]: 1160 s = succs[i] 1161 s.remove(i0) 1162 e = len(s) 1163 if e == 0: 1164 ne0 += 1 1165 elif e == 1: 1166 ne1 += 1 1167 return ne0 == 0 and ne1 < 2 1168 1169 # Put i0 back in each of its successor's successor lists. 1170 1171 def add_to_successors(i0): 1172 for i in succs[i0]: 1173 succs[i].append(i0) 1174 1175 # Generate the first move. 1176 def first(): 1177 if m < 1 or n < 1: 1178 return 1179 1180 # Since we're looking for a cycle, it doesn't matter where we 1181 # start. Starting in a corner makes the 2nd move easy. 1182 corner = self.coords2index(0, 0) 1183 remove_from_successors(corner) 1184 self.lastij = corner 1185 yield corner 1186 add_to_successors(corner) 1187 1188 # Generate the second moves. 1189 def second(): 1190 corner = self.coords2index(0, 0) 1191 assert self.lastij == corner # i.e., we started in the corner 1192 if m < 3 or n < 3: 1193 return 1194 assert len(succs[corner]) == 2 1195 assert self.coords2index(1, 2) in succs[corner] 1196 assert self.coords2index(2, 1) in succs[corner] 1197 # Only two choices. Whichever we pick, the other must be the 1198 # square picked on move m*n, as it's the only way to get back 1199 # to (0, 0). Save its index in self.final so that moves before 1200 # the last know it must be kept free. 1201 for i, j in (1, 2), (2, 1): 1202 this = self.coords2index(i, j) 1203 final = self.coords2index(3-i, 3-j) 1204 self.final = final 1205 1206 remove_from_successors(this) 1207 succs[final].append(corner) 1208 self.lastij = this 1209 yield this 1210 succs[final].remove(corner) 1211 add_to_successors(this) 1212 1213 # Generate moves 3 thru m*n-1. 1214 def advance(len=len): 1215 # If some successor has only one exit, must take it. 1216 # Else favor successors with fewer exits. 1217 candidates = [] 1218 for i in succs[self.lastij]: 1219 e = len(succs[i]) 1220 assert e > 0, "else remove_from_successors() pruning flawed" 1221 if e == 1: 1222 candidates = [(e, i)] 1223 break 1224 candidates.append((e, i)) 1225 else: 1226 candidates.sort() 1227 1228 for e, i in candidates: 1229 if i != self.final: 1230 if remove_from_successors(i): 1231 self.lastij = i 1232 yield i 1233 add_to_successors(i) 1234 1235 # Generate moves 3 thru m*n-1. Alternative version using a 1236 # stronger (but more expensive) heuristic to order successors. 1237 # Since the # of backtracking levels is m*n, a poor move early on 1238 # can take eons to undo. Smallest square board for which this 1239 # matters a lot is 52x52. 1240 def advance_hard(vmid=(m-1)/2.0, hmid=(n-1)/2.0, len=len): 1241 # If some successor has only one exit, must take it. 1242 # Else favor successors with fewer exits. 1243 # Break ties via max distance from board centerpoint (favor 1244 # corners and edges whenever possible). 1245 candidates = [] 1246 for i in succs[self.lastij]: 1247 e = len(succs[i]) 1248 assert e > 0, "else remove_from_successors() pruning flawed" 1249 if e == 1: 1250 candidates = [(e, 0, i)] 1251 break 1252 i1, j1 = self.index2coords(i) 1253 d = (i1 - vmid)**2 + (j1 - hmid)**2 1254 candidates.append((e, -d, i)) 1255 else: 1256 candidates.sort() 1257 1258 for e, d, i in candidates: 1259 if i != self.final: 1260 if remove_from_successors(i): 1261 self.lastij = i 1262 yield i 1263 add_to_successors(i) 1264 1265 # Generate the last move. 1266 def last(): 1267 assert self.final in succs[self.lastij] 1268 yield self.final 1269 1270 if m*n < 4: 1271 self.squaregenerators = [first] 1272 else: 1273 self.squaregenerators = [first, second] + \ 1274 [hard and advance_hard or advance] * (m*n - 3) + \ 1275 [last] 1276 1277 def coords2index(self, i, j): 1278 assert 0 <= i < self.m 1279 assert 0 <= j < self.n 1280 return i * self.n + j 1281 1282 def index2coords(self, index): 1283 assert 0 <= index < self.m * self.n 1284 return divmod(index, self.n) 1285 1286 def _init_board(self): 1287 succs = self.succs 1288 del succs[:] 1289 m, n = self.m, self.n 1290 c2i = self.coords2index 1291 1292 offsets = [( 1, 2), ( 2, 1), ( 2, -1), ( 1, -2), 1293 (-1, -2), (-2, -1), (-2, 1), (-1, 2)] 1294 rangen = range(n) 1295 for i in range(m): 1296 for j in rangen: 1297 s = [c2i(i+io, j+jo) for io, jo in offsets 1298 if 0 <= i+io < m and 1299 0 <= j+jo < n] 1300 succs.append(s) 1301 1302 # Generate solutions. 1303 def solve(self): 1304 self._init_board() 1305 for x in conjoin(self.squaregenerators): 1306 yield x 1307 1308 def printsolution(self, x): 1309 m, n = self.m, self.n 1310 assert len(x) == m*n 1311 w = len(str(m*n)) 1312 format = "%" + str(w) + "d" 1313 1314 squares = [[None] * n for i in range(m)] 1315 k = 1 1316 for i in x: 1317 i1, j1 = self.index2coords(i) 1318 squares[i1][j1] = format % k 1319 k += 1 1320 1321 sep = "+" + ("-" * w + "+") * n 1322 print sep 1323 for i in range(m): 1324 row = squares[i] 1325 print "|" + "|".join(row) + "|" 1326 print sep 1327 1328 conjoin_tests = """ 1329 1330 Generate the 3-bit binary numbers in order. This illustrates dumbest- 1331 possible use of conjoin, just to generate the full cross-product. 1332 1333 >>> for c in conjoin([lambda: iter((0, 1))] * 3): 1334 ... print c 1335 [0, 0, 0] 1336 [0, 0, 1] 1337 [0, 1, 0] 1338 [0, 1, 1] 1339 [1, 0, 0] 1340 [1, 0, 1] 1341 [1, 1, 0] 1342 [1, 1, 1] 1343 1344 For efficiency in typical backtracking apps, conjoin() yields the same list 1345 object each time. So if you want to save away a full account of its 1346 generated sequence, you need to copy its results. 1347 1348 >>> def gencopy(iterator): 1349 ... for x in iterator: 1350 ... yield x[:] 1351 1352 >>> for n in range(10): 1353 ... all = list(gencopy(conjoin([lambda: iter((0, 1))] * n))) 1354 ... print n, len(all), all[0] == [0] * n, all[-1] == [1] * n 1355 0 1 True True 1356 1 2 True True 1357 2 4 True True 1358 3 8 True True 1359 4 16 True True 1360 5 32 True True 1361 6 64 True True 1362 7 128 True True 1363 8 256 True True 1364 9 512 True True 1365 1366 And run an 8-queens solver. 1367 1368 >>> q = Queens(8) 1369 >>> LIMIT = 2 1370 >>> count = 0 1371 >>> for row2col in q.solve(): 1372 ... count += 1 1373 ... if count <= LIMIT: 1374 ... print "Solution", count 1375 ... q.printsolution(row2col) 1376 Solution 1 1377 +-+-+-+-+-+-+-+-+ 1378 |Q| | | | | | | | 1379 +-+-+-+-+-+-+-+-+ 1380 | | | | |Q| | | | 1381 +-+-+-+-+-+-+-+-+ 1382 | | | | | | | |Q| 1383 +-+-+-+-+-+-+-+-+ 1384 | | | | | |Q| | | 1385 +-+-+-+-+-+-+-+-+ 1386 | | |Q| | | | | | 1387 +-+-+-+-+-+-+-+-+ 1388 | | | | | | |Q| | 1389 +-+-+-+-+-+-+-+-+ 1390 | |Q| | | | | | | 1391 +-+-+-+-+-+-+-+-+ 1392 | | | |Q| | | | | 1393 +-+-+-+-+-+-+-+-+ 1394 Solution 2 1395 +-+-+-+-+-+-+-+-+ 1396 |Q| | | | | | | | 1397 +-+-+-+-+-+-+-+-+ 1398 | | | | | |Q| | | 1399 +-+-+-+-+-+-+-+-+ 1400 | | | | | | | |Q| 1401 +-+-+-+-+-+-+-+-+ 1402 | | |Q| | | | | | 1403 +-+-+-+-+-+-+-+-+ 1404 | | | | | | |Q| | 1405 +-+-+-+-+-+-+-+-+ 1406 | | | |Q| | | | | 1407 +-+-+-+-+-+-+-+-+ 1408 | |Q| | | | | | | 1409 +-+-+-+-+-+-+-+-+ 1410 | | | | |Q| | | | 1411 +-+-+-+-+-+-+-+-+ 1412 1413 >>> print count, "solutions in all." 1414 92 solutions in all. 1415 1416 And run a Knight's Tour on a 10x10 board. Note that there are about 1417 20,000 solutions even on a 6x6 board, so don't dare run this to exhaustion. 1418 1419 >>> k = Knights(10, 10) 1420 >>> LIMIT = 2 1421 >>> count = 0 1422 >>> for x in k.solve(): 1423 ... count += 1 1424 ... if count <= LIMIT: 1425 ... print "Solution", count 1426 ... k.printsolution(x) 1427 ... else: 1428 ... break 1429 Solution 1 1430 +---+---+---+---+---+---+---+---+---+---+ 1431 | 1| 58| 27| 34| 3| 40| 29| 10| 5| 8| 1432 +---+---+---+---+---+---+---+---+---+---+ 1433 | 26| 35| 2| 57| 28| 33| 4| 7| 30| 11| 1434 +---+---+---+---+---+---+---+---+---+---+ 1435 | 59|100| 73| 36| 41| 56| 39| 32| 9| 6| 1436 +---+---+---+---+---+---+---+---+---+---+ 1437 | 74| 25| 60| 55| 72| 37| 42| 49| 12| 31| 1438 +---+---+---+---+---+---+---+---+---+---+ 1439 | 61| 86| 99| 76| 63| 52| 47| 38| 43| 50| 1440 +---+---+---+---+---+---+---+---+---+---+ 1441 | 24| 75| 62| 85| 54| 71| 64| 51| 48| 13| 1442 +---+---+---+---+---+---+---+---+---+---+ 1443 | 87| 98| 91| 80| 77| 84| 53| 46| 65| 44| 1444 +---+---+---+---+---+---+---+---+---+---+ 1445 | 90| 23| 88| 95| 70| 79| 68| 83| 14| 17| 1446 +---+---+---+---+---+---+---+---+---+---+ 1447 | 97| 92| 21| 78| 81| 94| 19| 16| 45| 66| 1448 +---+---+---+---+---+---+---+---+---+---+ 1449 | 22| 89| 96| 93| 20| 69| 82| 67| 18| 15| 1450 +---+---+---+---+---+---+---+---+---+---+ 1451 Solution 2 1452 +---+---+---+---+---+---+---+---+---+---+ 1453 | 1| 58| 27| 34| 3| 40| 29| 10| 5| 8| 1454 +---+---+---+---+---+---+---+---+---+---+ 1455 | 26| 35| 2| 57| 28| 33| 4| 7| 30| 11| 1456 +---+---+---+---+---+---+---+---+---+---+ 1457 | 59|100| 73| 36| 41| 56| 39| 32| 9| 6| 1458 +---+---+---+---+---+---+---+---+---+---+ 1459 | 74| 25| 60| 55| 72| 37| 42| 49| 12| 31| 1460 +---+---+---+---+---+---+---+---+---+---+ 1461 | 61| 86| 99| 76| 63| 52| 47| 38| 43| 50| 1462 +---+---+---+---+---+---+---+---+---+---+ 1463 | 24| 75| 62| 85| 54| 71| 64| 51| 48| 13| 1464 +---+---+---+---+---+---+---+---+---+---+ 1465 | 87| 98| 89| 80| 77| 84| 53| 46| 65| 44| 1466 +---+---+---+---+---+---+---+---+---+---+ 1467 | 90| 23| 92| 95| 70| 79| 68| 83| 14| 17| 1468 +---+---+---+---+---+---+---+---+---+---+ 1469 | 97| 88| 21| 78| 81| 94| 19| 16| 45| 66| 1470 +---+---+---+---+---+---+---+---+---+---+ 1471 | 22| 91| 96| 93| 20| 69| 82| 67| 18| 15| 1472 +---+---+---+---+---+---+---+---+---+---+ 1473 """ 1474 1475 weakref_tests = """\ 1476 Generators are weakly referencable: 1477 1478 >>> import weakref 1479 >>> def gen(): 1480 ... yield 'foo!' 1481 ... 1482 >>> wr = weakref.ref(gen) 1483 >>> wr() is gen 1484 True 1485 >>> p = weakref.proxy(gen) 1486 1487 Generator-iterators are weakly referencable as well: 1488 1489 >>> gi = gen() 1490 >>> wr = weakref.ref(gi) 1491 >>> wr() is gi 1492 True 1493 >>> p = weakref.proxy(gi) 1494 >>> list(p) 1495 ['foo!'] 1496 1497 """ 1498 1499 coroutine_tests = """\ 1500 Sending a value into a started generator: 1501 1502 >>> def f(): 1503 ... print (yield 1) 1504 ... yield 2 1505 >>> g = f() 1506 >>> g.next() 1507 1 1508 >>> g.send(42) 1509 42 1510 2 1511 1512 Sending a value into a new generator produces a TypeError: 1513 1514 >>> f().send("foo") 1515 Traceback (most recent call last): 1516 ... 1517 TypeError: can't send non-None value to a just-started generator 1518 1519 1520 Yield by itself yields None: 1521 1522 >>> def f(): yield 1523 >>> list(f()) 1524 [None] 1525 1526 1527 Yield is allowed only in the outermost iterable in generator expression: 1528 1529 >>> def f(): list(i for i in [(yield 26)]) 1530 >>> type(f()) 1531 <type 'generator'> 1532 1533 1534 A yield expression with augmented assignment. 1535 1536 >>> def coroutine(seq): 1537 ... count = 0 1538 ... while count < 200: 1539 ... count += yield 1540 ... seq.append(count) 1541 >>> seq = [] 1542 >>> c = coroutine(seq) 1543 >>> c.next() 1544 >>> print seq 1545 [] 1546 >>> c.send(10) 1547 >>> print seq 1548 [10] 1549 >>> c.send(10) 1550 >>> print seq 1551 [10, 20] 1552 >>> c.send(10) 1553 >>> print seq 1554 [10, 20, 30] 1555 1556 1557 Check some syntax errors for yield expressions: 1558 1559 >>> f=lambda: (yield 1),(yield 2) 1560 Traceback (most recent call last): 1561 ... 1562 File "<doctest test.test_generators.__test__.coroutine[21]>", line 1 1563 SyntaxError: 'yield' outside function 1564 1565 >>> def f(): return lambda x=(yield): 1 1566 Traceback (most recent call last): 1567 ... 1568 SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.coroutine[21]>, line 1) 1569 1570 >>> def f(): x = yield = y 1571 Traceback (most recent call last): 1572 ... 1573 File "<doctest test.test_generators.__test__.coroutine[23]>", line 1 1574 SyntaxError: assignment to yield expression not possible 1575 1576 >>> def f(): (yield bar) = y 1577 Traceback (most recent call last): 1578 ... 1579 File "<doctest test.test_generators.__test__.coroutine[24]>", line 1 1580 SyntaxError: can't assign to yield expression 1581 1582 >>> def f(): (yield bar) += y 1583 Traceback (most recent call last): 1584 ... 1585 File "<doctest test.test_generators.__test__.coroutine[25]>", line 1 1586 SyntaxError: can't assign to yield expression 1587 1588 1589 Now check some throw() conditions: 1590 1591 >>> def f(): 1592 ... while True: 1593 ... try: 1594 ... print (yield) 1595 ... except ValueError,v: 1596 ... print "caught ValueError (%s)" % (v), 1597 >>> import sys 1598 >>> g = f() 1599 >>> g.next() 1600 1601 >>> g.throw(ValueError) # type only 1602 caught ValueError () 1603 1604 >>> g.throw(ValueError("xyz")) # value only 1605 caught ValueError (xyz) 1606 1607 >>> g.throw(ValueError, ValueError(1)) # value+matching type 1608 caught ValueError (1) 1609 1610 >>> g.throw(ValueError, TypeError(1)) # mismatched type, rewrapped 1611 caught ValueError (1) 1612 1613 >>> g.throw(ValueError, ValueError(1), None) # explicit None traceback 1614 caught ValueError (1) 1615 1616 >>> g.throw(ValueError(1), "foo") # bad args 1617 Traceback (most recent call last): 1618 ... 1619 TypeError: instance exception may not have a separate value 1620 1621 >>> g.throw(ValueError, "foo", 23) # bad args 1622 Traceback (most recent call last): 1623 ... 1624 TypeError: throw() third argument must be a traceback object 1625 1626 >>> def throw(g,exc): 1627 ... try: 1628 ... raise exc 1629 ... except: 1630 ... g.throw(*sys.exc_info()) 1631 >>> throw(g,ValueError) # do it with traceback included 1632 caught ValueError () 1633 1634 >>> g.send(1) 1635 1 1636 1637 >>> throw(g,TypeError) # terminate the generator 1638 Traceback (most recent call last): 1639 ... 1640 TypeError 1641 1642 >>> print g.gi_frame 1643 None 1644 1645 >>> g.send(2) 1646 Traceback (most recent call last): 1647 ... 1648 StopIteration 1649 1650 >>> g.throw(ValueError,6) # throw on closed generator 1651 Traceback (most recent call last): 1652 ... 1653 ValueError: 6 1654 1655 >>> f().throw(ValueError,7) # throw on just-opened generator 1656 Traceback (most recent call last): 1657 ... 1658 ValueError: 7 1659 1660 >>> f().throw("abc") # throw on just-opened generator 1661 Traceback (most recent call last): 1662 ... 1663 TypeError: exceptions must be classes, or instances, not str 1664 1665 Now let's try closing a generator: 1666 1667 >>> def f(): 1668 ... try: yield 1669 ... except GeneratorExit: 1670 ... print "exiting" 1671 1672 >>> g = f() 1673 >>> g.next() 1674 >>> g.close() 1675 exiting 1676 >>> g.close() # should be no-op now 1677 1678 >>> f().close() # close on just-opened generator should be fine 1679 1680 >>> def f(): yield # an even simpler generator 1681 >>> f().close() # close before opening 1682 >>> g = f() 1683 >>> g.next() 1684 >>> g.close() # close normally 1685 1686 And finalization: 1687 1688 >>> def f(): 1689 ... try: yield 1690 ... finally: 1691 ... print "exiting" 1692 1693 >>> g = f() 1694 >>> g.next() 1695 >>> del g 1696 exiting 1697 1698 >>> class context(object): 1699 ... def __enter__(self): pass 1700 ... def __exit__(self, *args): print 'exiting' 1701 >>> def f(): 1702 ... with context(): 1703 ... yield 1704 >>> g = f() 1705 >>> g.next() 1706 >>> del g 1707 exiting 1708 1709 1710 GeneratorExit is not caught by except Exception: 1711 1712 >>> def f(): 1713 ... try: yield 1714 ... except Exception: print 'except' 1715 ... finally: print 'finally' 1716 1717 >>> g = f() 1718 >>> g.next() 1719 >>> del g 1720 finally 1721 1722 1723 Now let's try some ill-behaved generators: 1724 1725 >>> def f(): 1726 ... try: yield 1727 ... except GeneratorExit: 1728 ... yield "foo!" 1729 >>> g = f() 1730 >>> g.next() 1731 >>> g.close() 1732 Traceback (most recent call last): 1733 ... 1734 RuntimeError: generator ignored GeneratorExit 1735 >>> g.close() 1736 1737 1738 Our ill-behaved code should be invoked during GC: 1739 1740 >>> import sys, StringIO 1741 >>> old, sys.stderr = sys.stderr, StringIO.StringIO() 1742 >>> g = f() 1743 >>> g.next() 1744 >>> del g 1745 >>> sys.stderr.getvalue().startswith( 1746 ... "Exception RuntimeError: 'generator ignored GeneratorExit' in " 1747 ... ) 1748 True 1749 >>> sys.stderr = old 1750 1751 1752 And errors thrown during closing should propagate: 1753 1754 >>> def f(): 1755 ... try: yield 1756 ... except GeneratorExit: 1757 ... raise TypeError("fie!") 1758 >>> g = f() 1759 >>> g.next() 1760 >>> g.close() 1761 Traceback (most recent call last): 1762 ... 1763 TypeError: fie! 1764 1765 1766 Ensure that various yield expression constructs make their 1767 enclosing function a generator: 1768 1769 >>> def f(): x += yield 1770 >>> type(f()) 1771 <type 'generator'> 1772 1773 >>> def f(): x = yield 1774 >>> type(f()) 1775 <type 'generator'> 1776 1777 >>> def f(): lambda x=(yield): 1 1778 >>> type(f()) 1779 <type 'generator'> 1780 1781 >>> def f(): x=(i for i in (yield) if i) 1782 >>> type(f()) 1783 <type 'generator'> 1784 1785 >>> def f(d): d[(yield "a")] = d[(yield "b")] = 27 1786 >>> data = [1,2] 1787 >>> g = f(data) 1788 >>> type(g) 1789 <type 'generator'> 1790 >>> g.send(None) 1791 'a' 1792 >>> data 1793 [1, 2] 1794 >>> g.send(0) 1795 'b' 1796 >>> data 1797 [27, 2] 1798 >>> try: g.send(1) 1799 ... except StopIteration: pass 1800 >>> data 1801 [27, 27] 1802 1803 """ 1804 1805 refleaks_tests = """ 1806 Prior to adding cycle-GC support to itertools.tee, this code would leak 1807 references. We add it to the standard suite so the routine refleak-tests 1808 would trigger if it starts being uncleanable again. 1809 1810 >>> import itertools 1811 >>> def leak(): 1812 ... class gen: 1813 ... def __iter__(self): 1814 ... return self 1815 ... def next(self): 1816 ... return self.item 1817 ... g = gen() 1818 ... head, tail = itertools.tee(g) 1819 ... g.item = head 1820 ... return head 1821 >>> it = leak() 1822 1823 Make sure to also test the involvement of the tee-internal teedataobject, 1824 which stores returned items. 1825 1826 >>> item = it.next() 1827 1828 1829 1830 This test leaked at one point due to generator finalization/destruction. 1831 It was copied from Lib/test/leakers/test_generator_cycle.py before the file 1832 was removed. 1833 1834 >>> def leak(): 1835 ... def gen(): 1836 ... while True: 1837 ... yield g 1838 ... g = gen() 1839 1840 >>> leak() 1841 1842 1843 1844 This test isn't really generator related, but rather exception-in-cleanup 1845 related. The coroutine tests (above) just happen to cause an exception in 1846 the generator's __del__ (tp_del) method. We can also test for this 1847 explicitly, without generators. We do have to redirect stderr to avoid 1848 printing warnings and to doublecheck that we actually tested what we wanted 1849 to test. 1850 1851 >>> import sys, StringIO 1852 >>> old = sys.stderr 1853 >>> try: 1854 ... sys.stderr = StringIO.StringIO() 1855 ... class Leaker: 1856 ... def __del__(self): 1857 ... raise RuntimeError 1858 ... 1859 ... l = Leaker() 1860 ... del l 1861 ... err = sys.stderr.getvalue().strip() 1862 ... err.startswith( 1863 ... "Exception RuntimeError: RuntimeError() in <" 1864 ... ) 1865 ... err.endswith("> ignored") 1866 ... len(err.splitlines()) 1867 ... finally: 1868 ... sys.stderr = old 1869 True 1870 True 1871 1 1872 1873 1874 1875 These refleak tests should perhaps be in a testfile of their own, 1876 test_generators just happened to be the test that drew these out. 1877 1878 """ 1879 1880 __test__ = {"tut": tutorial_tests, 1881 "pep": pep_tests, 1882 "email": email_tests, 1883 "fun": fun_tests, 1884 "syntax": syntax_tests, 1885 "conjoin": conjoin_tests, 1886 "weakref": weakref_tests, 1887 "coroutine": coroutine_tests, 1888 "refleaks": refleaks_tests, 1889 } 1890 1891 # Magic test name that regrtest.py invokes *after* importing this module. 1892 # This worms around a bootstrap problem. 1893 # Note that doctest and regrtest both look in sys.argv for a "-v" argument, 1894 # so this works as expected in both ways of running regrtest. 1895 def test_main(verbose=None): 1896 from test import test_support, test_generators 1897 test_support.run_doctest(test_generators, verbose) 1898 1899 # This part isn't needed for regrtest, but for running the test directly. 1900 if __name__ == "__main__": 1901 test_main(1) 1902