Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkMatrix44_DEFINED
      9 #define SkMatrix44_DEFINED
     10 
     11 #include "SkMatrix.h"
     12 #include "SkScalar.h"
     13 
     14 #include <atomic>
     15 #include <cstring>
     16 
     17 #ifdef SK_MSCALAR_IS_DOUBLE
     18 #ifdef SK_MSCALAR_IS_FLOAT
     19     #error "can't define MSCALAR both as DOUBLE and FLOAT"
     20 #endif
     21     typedef double SkMScalar;
     22 
     23     static inline double SkFloatToMScalar(float x) {
     24         return static_cast<double>(x);
     25     }
     26     static inline float SkMScalarToFloat(double x) {
     27         return static_cast<float>(x);
     28     }
     29     static inline double SkDoubleToMScalar(double x) {
     30         return x;
     31     }
     32     static inline double SkMScalarToDouble(double x) {
     33         return x;
     34     }
     35     static inline double SkMScalarAbs(double x) {
     36         return fabs(x);
     37     }
     38     static const SkMScalar SK_MScalarPI = 3.141592653589793;
     39 
     40     #define SkMScalarFloor(x)           sk_double_floor(x)
     41     #define SkMScalarCeil(x)            sk_double_ceil(x)
     42     #define SkMScalarRound(x)           sk_double_round(x)
     43 
     44     #define SkMScalarFloorToInt(x)      sk_double_floor2int(x)
     45     #define SkMScalarCeilToInt(x)       sk_double_ceil2int(x)
     46     #define SkMScalarRoundToInt(x)      sk_double_round2int(x)
     47 
     48 
     49 #elif defined SK_MSCALAR_IS_FLOAT
     50 #ifdef SK_MSCALAR_IS_DOUBLE
     51     #error "can't define MSCALAR both as DOUBLE and FLOAT"
     52 #endif
     53     typedef float SkMScalar;
     54 
     55     static inline float SkFloatToMScalar(float x) {
     56         return x;
     57     }
     58     static inline float SkMScalarToFloat(float x) {
     59         return x;
     60     }
     61     static inline float SkDoubleToMScalar(double x) {
     62         return sk_double_to_float(x);
     63     }
     64     static inline double SkMScalarToDouble(float x) {
     65         return static_cast<double>(x);
     66     }
     67     static inline float SkMScalarAbs(float x) {
     68         return sk_float_abs(x);
     69     }
     70     static const SkMScalar SK_MScalarPI = 3.14159265f;
     71 
     72     #define SkMScalarFloor(x)           sk_float_floor(x)
     73     #define SkMScalarCeil(x)            sk_float_ceil(x)
     74     #define SkMScalarRound(x)           sk_float_round(x)
     75 
     76     #define SkMScalarFloorToInt(x)      sk_float_floor2int(x)
     77     #define SkMScalarCeilToInt(x)       sk_float_ceil2int(x)
     78     #define SkMScalarRoundToInt(x)      sk_float_round2int(x)
     79 
     80 #endif
     81 
     82 #define SkIntToMScalar(n)       static_cast<SkMScalar>(n)
     83 
     84 #define SkMScalarToScalar(x)    SkMScalarToFloat(x)
     85 #define SkScalarToMScalar(x)    SkFloatToMScalar(x)
     86 
     87 static const SkMScalar SK_MScalar1 = 1;
     88 
     89 ///////////////////////////////////////////////////////////////////////////////
     90 
     91 struct SkVector4 {
     92     SkScalar fData[4];
     93 
     94     SkVector4() {
     95         this->set(0, 0, 0, 1);
     96     }
     97     SkVector4(const SkVector4& src) {
     98         memcpy(fData, src.fData, sizeof(fData));
     99     }
    100     SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
    101         fData[0] = x;
    102         fData[1] = y;
    103         fData[2] = z;
    104         fData[3] = w;
    105     }
    106 
    107     SkVector4& operator=(const SkVector4& src) {
    108         memcpy(fData, src.fData, sizeof(fData));
    109         return *this;
    110     }
    111 
    112     bool operator==(const SkVector4& v) {
    113         return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
    114                fData[2] == v.fData[2] && fData[3] == v.fData[3];
    115     }
    116     bool operator!=(const SkVector4& v) {
    117         return !(*this == v);
    118     }
    119     bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
    120         return fData[0] == x && fData[1] == y &&
    121                fData[2] == z && fData[3] == w;
    122     }
    123 
    124     void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
    125         fData[0] = x;
    126         fData[1] = y;
    127         fData[2] = z;
    128         fData[3] = w;
    129     }
    130 };
    131 
    132 /** \class SkMatrix44
    133 
    134     The SkMatrix44 class holds a 4x4 matrix.
    135 
    136     SkMatrix44 is not thread safe unless you've first called SkMatrix44::getType().
    137 */
    138 class SK_API SkMatrix44 {
    139 public:
    140 
    141     enum Uninitialized_Constructor {
    142         kUninitialized_Constructor
    143     };
    144     enum Identity_Constructor {
    145         kIdentity_Constructor
    146     };
    147 
    148     SkMatrix44(Uninitialized_Constructor) {}  // ironically, cannot be constexpr
    149 
    150     constexpr SkMatrix44(Identity_Constructor)
    151         : fMat{{ 1, 0, 0, 0, },
    152                { 0, 1, 0, 0, },
    153                { 0, 0, 1, 0, },
    154                { 0, 0, 0, 1, }}
    155         , fTypeMask(kIdentity_Mask)
    156     {}
    157 
    158     constexpr SkMatrix44() : SkMatrix44{kIdentity_Constructor} {}
    159 
    160     SkMatrix44(const SkMatrix44& src) {
    161         memcpy(fMat, src.fMat, sizeof(fMat));
    162         fTypeMask.store(src.fTypeMask, std::memory_order_relaxed);
    163     }
    164 
    165     SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
    166         this->setConcat(a, b);
    167     }
    168 
    169     SkMatrix44& operator=(const SkMatrix44& src) {
    170         if (&src != this) {
    171             memcpy(fMat, src.fMat, sizeof(fMat));
    172             fTypeMask.store(src.fTypeMask, std::memory_order_relaxed);
    173         }
    174         return *this;
    175     }
    176 
    177     bool operator==(const SkMatrix44& other) const;
    178     bool operator!=(const SkMatrix44& other) const {
    179         return !(other == *this);
    180     }
    181 
    182     /* When converting from SkMatrix44 to SkMatrix, the third row and
    183      * column is dropped.  When converting from SkMatrix to SkMatrix44
    184      * the third row and column remain as identity:
    185      * [ a b c ]      [ a b 0 c ]
    186      * [ d e f ]  ->  [ d e 0 f ]
    187      * [ g h i ]      [ 0 0 1 0 ]
    188      *                [ g h 0 i ]
    189      */
    190     SkMatrix44(const SkMatrix&);
    191     SkMatrix44& operator=(const SkMatrix& src);
    192     operator SkMatrix() const;
    193 
    194     /**
    195      *  Return a reference to a const identity matrix
    196      */
    197     static const SkMatrix44& I();
    198 
    199     enum TypeMask {
    200         kIdentity_Mask      = 0,
    201         kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
    202         kScale_Mask         = 0x02,  //!< set if the matrix has any scale != 1
    203         kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
    204         kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
    205     };
    206 
    207     /**
    208      *  Returns a bitfield describing the transformations the matrix may
    209      *  perform. The bitfield is computed conservatively, so it may include
    210      *  false positives. For example, when kPerspective_Mask is true, all
    211      *  other bits may be set to true even in the case of a pure perspective
    212      *  transform.
    213      */
    214     inline TypeMask getType() const {
    215         if (fTypeMask.load(std::memory_order_relaxed) & kUnknown_Mask) {
    216             fTypeMask.store(this->computeTypeMask(), std::memory_order_relaxed);
    217         }
    218         SkASSERT(!(fTypeMask & kUnknown_Mask));
    219         return (TypeMask)fTypeMask.load(std::memory_order_relaxed);
    220     }
    221 
    222     /**
    223      *  Return true if the matrix is identity.
    224      */
    225     inline bool isIdentity() const {
    226         return kIdentity_Mask == this->getType();
    227     }
    228 
    229     /**
    230      *  Return true if the matrix contains translate or is identity.
    231      */
    232     inline bool isTranslate() const {
    233         return !(this->getType() & ~kTranslate_Mask);
    234     }
    235 
    236     /**
    237      *  Return true if the matrix only contains scale or translate or is identity.
    238      */
    239     inline bool isScaleTranslate() const {
    240         return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
    241     }
    242 
    243     /**
    244      *  Returns true if the matrix only contains scale or is identity.
    245      */
    246     inline bool isScale() const {
    247             return !(this->getType() & ~kScale_Mask);
    248     }
    249 
    250     inline bool hasPerspective() const {
    251         return SkToBool(this->getType() & kPerspective_Mask);
    252     }
    253 
    254     void setIdentity();
    255     inline void reset() { this->setIdentity();}
    256 
    257     /**
    258      *  get a value from the matrix. The row,col parameters work as follows:
    259      *  (0, 0)  scale-x
    260      *  (0, 3)  translate-x
    261      *  (3, 0)  perspective-x
    262      */
    263     inline SkMScalar get(int row, int col) const {
    264         SkASSERT((unsigned)row <= 3);
    265         SkASSERT((unsigned)col <= 3);
    266         return fMat[col][row];
    267     }
    268 
    269     /**
    270      *  set a value in the matrix. The row,col parameters work as follows:
    271      *  (0, 0)  scale-x
    272      *  (0, 3)  translate-x
    273      *  (3, 0)  perspective-x
    274      */
    275     inline void set(int row, int col, SkMScalar value) {
    276         SkASSERT((unsigned)row <= 3);
    277         SkASSERT((unsigned)col <= 3);
    278         fMat[col][row] = value;
    279         this->dirtyTypeMask();
    280     }
    281 
    282     inline double getDouble(int row, int col) const {
    283         return SkMScalarToDouble(this->get(row, col));
    284     }
    285     inline void setDouble(int row, int col, double value) {
    286         this->set(row, col, SkDoubleToMScalar(value));
    287     }
    288     inline float getFloat(int row, int col) const {
    289         return SkMScalarToFloat(this->get(row, col));
    290     }
    291     inline void setFloat(int row, int col, float value) {
    292         this->set(row, col, SkFloatToMScalar(value));
    293     }
    294 
    295     /** These methods allow one to efficiently read matrix entries into an
    296      *  array. The given array must have room for exactly 16 entries. Whenever
    297      *  possible, they will try to use memcpy rather than an entry-by-entry
    298      *  copy.
    299      *
    300      *  Col major indicates that consecutive elements of columns will be stored
    301      *  contiguously in memory.  Row major indicates that consecutive elements
    302      *  of rows will be stored contiguously in memory.
    303      */
    304     void asColMajorf(float[]) const;
    305     void asColMajord(double[]) const;
    306     void asRowMajorf(float[]) const;
    307     void asRowMajord(double[]) const;
    308 
    309     /** These methods allow one to efficiently set all matrix entries from an
    310      *  array. The given array must have room for exactly 16 entries. Whenever
    311      *  possible, they will try to use memcpy rather than an entry-by-entry
    312      *  copy.
    313      *
    314      *  Col major indicates that input memory will be treated as if consecutive
    315      *  elements of columns are stored contiguously in memory.  Row major
    316      *  indicates that input memory will be treated as if consecutive elements
    317      *  of rows are stored contiguously in memory.
    318      */
    319     void setColMajorf(const float[]);
    320     void setColMajord(const double[]);
    321     void setRowMajorf(const float[]);
    322     void setRowMajord(const double[]);
    323 
    324 #ifdef SK_MSCALAR_IS_FLOAT
    325     void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
    326     void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
    327 #else
    328     void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
    329     void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
    330 #endif
    331 
    332     /* This sets the top-left of the matrix and clears the translation and
    333      * perspective components (with [3][3] set to 1).  m_ij is interpreted
    334      * as the matrix entry at row = i, col = j. */
    335     void set3x3(SkMScalar m_00, SkMScalar m_10, SkMScalar m_20,
    336                 SkMScalar m_01, SkMScalar m_11, SkMScalar m_21,
    337                 SkMScalar m_02, SkMScalar m_12, SkMScalar m_22);
    338     void set3x3RowMajorf(const float[]);
    339 
    340     void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
    341     void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
    342     void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
    343 
    344     void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
    345     void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
    346     void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
    347 
    348     inline void setScale(SkMScalar scale) {
    349         this->setScale(scale, scale, scale);
    350     }
    351     inline void preScale(SkMScalar scale) {
    352         this->preScale(scale, scale, scale);
    353     }
    354     inline void postScale(SkMScalar scale) {
    355         this->postScale(scale, scale, scale);
    356     }
    357 
    358     void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
    359                                SkMScalar degrees) {
    360         this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
    361     }
    362 
    363     /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
    364         it will be automatically resized.
    365      */
    366     void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
    367                         SkMScalar radians);
    368     /** Rotate about the vector [x,y,z]. Does not check the length of the
    369         vector, assuming it is unit-length.
    370      */
    371     void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
    372                             SkMScalar radians);
    373 
    374     void setConcat(const SkMatrix44& a, const SkMatrix44& b);
    375     inline void preConcat(const SkMatrix44& m) {
    376         this->setConcat(*this, m);
    377     }
    378     inline void postConcat(const SkMatrix44& m) {
    379         this->setConcat(m, *this);
    380     }
    381 
    382     friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
    383         return SkMatrix44(a, b);
    384     }
    385 
    386     /** If this is invertible, return that in inverse and return true. If it is
    387         not invertible, return false and leave the inverse parameter in an
    388         unspecified state.
    389      */
    390     bool invert(SkMatrix44* inverse) const;
    391 
    392     /** Transpose this matrix in place. */
    393     void transpose();
    394 
    395     /** Apply the matrix to the src vector, returning the new vector in dst.
    396         It is legal for src and dst to point to the same memory.
    397      */
    398     void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
    399     inline void mapScalars(SkScalar vec[4]) const {
    400         this->mapScalars(vec, vec);
    401     }
    402 
    403 #ifdef SK_MSCALAR_IS_DOUBLE
    404     void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
    405 #elif defined SK_MSCALAR_IS_FLOAT
    406     inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
    407         this->mapScalars(src, dst);
    408     }
    409 #endif
    410     inline void mapMScalars(SkMScalar vec[4]) const {
    411         this->mapMScalars(vec, vec);
    412     }
    413 
    414     friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
    415         SkVector4 dst;
    416         m.mapScalars(src.fData, dst.fData);
    417         return dst;
    418     }
    419 
    420     /**
    421      *  map an array of [x, y, 0, 1] through the matrix, returning an array
    422      *  of [x', y', z', w'].
    423      *
    424      *  @param src2     array of [x, y] pairs, with implied z=0 and w=1
    425      *  @param count    number of [x, y] pairs in src2
    426      *  @param dst4     array of [x', y', z', w'] quads as the output.
    427      */
    428     void map2(const float src2[], int count, float dst4[]) const;
    429     void map2(const double src2[], int count, double dst4[]) const;
    430 
    431     /** Returns true if transformating an axis-aligned square in 2d by this matrix
    432         will produce another 2d axis-aligned square; typically means the matrix
    433         is a scale with perhaps a 90-degree rotation. A 3d rotation through 90
    434         degrees into a perpendicular plane collapses a square to a line, but
    435         is still considered to be axis-aligned.
    436 
    437         By default, tolerates very slight error due to float imprecisions;
    438         a 90-degree rotation can still end up with 10^-17 of
    439         "non-axis-aligned" result.
    440      */
    441     bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const;
    442 
    443     void dump() const;
    444 
    445     double determinant() const;
    446 
    447 private:
    448     /* This is indexed by [col][row]. */
    449     SkMScalar                       fMat[4][4];
    450     mutable std::atomic<unsigned>   fTypeMask;
    451 
    452     static constexpr int kUnknown_Mask = 0x80;
    453 
    454     static constexpr int kAllPublic_Masks = 0xF;
    455 
    456     void as3x4RowMajorf(float[]) const;
    457     void set3x4RowMajorf(const float[]);
    458 
    459     SkMScalar transX() const { return fMat[3][0]; }
    460     SkMScalar transY() const { return fMat[3][1]; }
    461     SkMScalar transZ() const { return fMat[3][2]; }
    462 
    463     SkMScalar scaleX() const { return fMat[0][0]; }
    464     SkMScalar scaleY() const { return fMat[1][1]; }
    465     SkMScalar scaleZ() const { return fMat[2][2]; }
    466 
    467     SkMScalar perspX() const { return fMat[0][3]; }
    468     SkMScalar perspY() const { return fMat[1][3]; }
    469     SkMScalar perspZ() const { return fMat[2][3]; }
    470 
    471     int computeTypeMask() const;
    472 
    473     inline void dirtyTypeMask() {
    474         fTypeMask.store(kUnknown_Mask, std::memory_order_relaxed);
    475     }
    476 
    477     inline void setTypeMask(int mask) {
    478         SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
    479         fTypeMask.store(mask, std::memory_order_relaxed);
    480     }
    481 
    482     /**
    483      *  Does not take the time to 'compute' the typemask. Only returns true if
    484      *  we already know that this matrix is identity.
    485      */
    486     inline bool isTriviallyIdentity() const {
    487         return 0 == fTypeMask.load(std::memory_order_relaxed);
    488     }
    489 
    490     inline const SkMScalar* values() const { return &fMat[0][0]; }
    491 
    492     friend class SkColorSpace;
    493 };
    494 
    495 #endif
    496