Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2015 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrTessellator.h"
      9 
     10 #include "GrDefaultGeoProcFactory.h"
     11 #include "GrPathUtils.h"
     12 #include "GrVertexWriter.h"
     13 
     14 #include "SkArenaAlloc.h"
     15 #include "SkGeometry.h"
     16 #include "SkPath.h"
     17 #include "SkPointPriv.h"
     18 #include "SkTDPQueue.h"
     19 
     20 #include <algorithm>
     21 #include <cstdio>
     22 #include <utility>
     23 
     24 /*
     25  * There are six stages to the basic algorithm:
     26  *
     27  * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
     28  * 2) Build a mesh of edges connecting the vertices (build_edges()).
     29  * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
     30  * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
     31  * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
     32  * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
     33  *
     34  * For screenspace antialiasing, the algorithm is modified as follows:
     35  *
     36  * Run steps 1-5 above to produce polygons.
     37  * 5b) Apply fill rules to extract boundary contours from the polygons (extract_boundaries()).
     38  * 5c) Simplify boundaries to remove "pointy" vertices that cause inversions (simplify_boundary()).
     39  * 5d) Displace edges by half a pixel inward and outward along their normals. Intersect to find
     40  *     new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a new
     41  *     antialiased mesh from those vertices (stroke_boundary()).
     42  * Run steps 3-6 above on the new mesh, and produce antialiased triangles.
     43  *
     44  * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
     45  * of vertices (and the necessity of inserting new vertices on intersection).
     46  *
     47  * Stages (4) and (5) use an active edge list -- a list of all edges for which the
     48  * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
     49  * left-to-right based on the point where both edges are active (when both top vertices
     50  * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
     51  * (shared), it's sorted based on the last point where both edges are active, so the
     52  * "upper" bottom vertex.
     53  *
     54  * The most complex step is the simplification (4). It's based on the Bentley-Ottman
     55  * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
     56  * not exact and may violate the mesh topology or active edge list ordering. We
     57  * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
     58  * points. This occurs in two ways:
     59  *
     60  * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
     61  *    neighbouring edges at the top or bottom vertex. This is handled by merging the
     62  *    edges (merge_collinear_edges()).
     63  * B) Intersections may cause an edge to violate the left-to-right ordering of the
     64  *    active edge list. This is handled by detecting potential violations and rewinding
     65  *    the active edge list to the vertex before they occur (rewind() during merging,
     66  *    rewind_if_necessary() during splitting).
     67  *
     68  * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
     69  * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
     70  * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
     71  * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
     72  * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
     73  * insertions and removals was greater than the cost of infrequent O(N) lookups with the
     74  * linked list implementation. With the latter, all removals are O(1), and most insertions
     75  * are O(1), since we know the adjacent edge in the active edge list based on the topology.
     76  * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
     77  * frequent. There may be other data structures worth investigating, however.
     78  *
     79  * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
     80  * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
     81  * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
     82  * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
     83  * that the "left" and "right" orientation in the code remains correct (edges to the left are
     84  * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
     85  * degrees counterclockwise, rather that transposing.
     86  */
     87 
     88 #define LOGGING_ENABLED 0
     89 
     90 #if LOGGING_ENABLED
     91 #define LOG printf
     92 #else
     93 #define LOG(...)
     94 #endif
     95 
     96 namespace {
     97 
     98 const int kArenaChunkSize = 16 * 1024;
     99 const float kCosMiterAngle = 0.97f; // Corresponds to an angle of ~14 degrees.
    100 
    101 struct Vertex;
    102 struct Edge;
    103 struct Event;
    104 struct Poly;
    105 
    106 template <class T, T* T::*Prev, T* T::*Next>
    107 void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
    108     t->*Prev = prev;
    109     t->*Next = next;
    110     if (prev) {
    111         prev->*Next = t;
    112     } else if (head) {
    113         *head = t;
    114     }
    115     if (next) {
    116         next->*Prev = t;
    117     } else if (tail) {
    118         *tail = t;
    119     }
    120 }
    121 
    122 template <class T, T* T::*Prev, T* T::*Next>
    123 void list_remove(T* t, T** head, T** tail) {
    124     if (t->*Prev) {
    125         t->*Prev->*Next = t->*Next;
    126     } else if (head) {
    127         *head = t->*Next;
    128     }
    129     if (t->*Next) {
    130         t->*Next->*Prev = t->*Prev;
    131     } else if (tail) {
    132         *tail = t->*Prev;
    133     }
    134     t->*Prev = t->*Next = nullptr;
    135 }
    136 
    137 /**
    138  * Vertices are used in three ways: first, the path contours are converted into a
    139  * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
    140  * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
    141  * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
    142  * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
    143  * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
    144  * an individual Vertex from the path mesh may belong to multiple
    145  * MonotonePolys, so the original Vertices cannot be re-used.
    146  */
    147 
    148 struct Vertex {
    149   Vertex(const SkPoint& point, uint8_t alpha)
    150     : fPoint(point), fPrev(nullptr), fNext(nullptr)
    151     , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
    152     , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
    153     , fLeftEnclosingEdge(nullptr), fRightEnclosingEdge(nullptr)
    154     , fPartner(nullptr)
    155     , fAlpha(alpha)
    156 #if LOGGING_ENABLED
    157     , fID (-1.0f)
    158 #endif
    159     {}
    160     SkPoint fPoint;               // Vertex position
    161     Vertex* fPrev;                // Linked list of contours, then Y-sorted vertices.
    162     Vertex* fNext;                // "
    163     Edge*   fFirstEdgeAbove;      // Linked list of edges above this vertex.
    164     Edge*   fLastEdgeAbove;       // "
    165     Edge*   fFirstEdgeBelow;      // Linked list of edges below this vertex.
    166     Edge*   fLastEdgeBelow;       // "
    167     Edge*   fLeftEnclosingEdge;   // Nearest edge in the AEL left of this vertex.
    168     Edge*   fRightEnclosingEdge;  // Nearest edge in the AEL right of this vertex.
    169     Vertex* fPartner;             // Corresponding inner or outer vertex (for AA).
    170     uint8_t fAlpha;
    171 #if LOGGING_ENABLED
    172     float   fID;                  // Identifier used for logging.
    173 #endif
    174 };
    175 
    176 /***************************************************************************************/
    177 
    178 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
    179 
    180 bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
    181     return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
    182 }
    183 
    184 bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
    185     return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
    186 }
    187 
    188 struct Comparator {
    189     enum class Direction { kVertical, kHorizontal };
    190     Comparator(Direction direction) : fDirection(direction) {}
    191     bool sweep_lt(const SkPoint& a, const SkPoint& b) const {
    192         return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
    193     }
    194     Direction fDirection;
    195 };
    196 
    197 inline void* emit_vertex(Vertex* v, bool emitCoverage, void* data) {
    198     GrVertexWriter verts{data};
    199     verts.write(v->fPoint);
    200 
    201     if (emitCoverage) {
    202         verts.write(GrNormalizeByteToFloat(v->fAlpha));
    203     }
    204 
    205     return verts.fPtr;
    206 }
    207 
    208 void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, bool emitCoverage, void* data) {
    209     LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
    210     LOG("              %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
    211     LOG("              %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
    212 #if TESSELLATOR_WIREFRAME
    213     data = emit_vertex(v0, emitCoverage, data);
    214     data = emit_vertex(v1, emitCoverage, data);
    215     data = emit_vertex(v1, emitCoverage, data);
    216     data = emit_vertex(v2, emitCoverage, data);
    217     data = emit_vertex(v2, emitCoverage, data);
    218     data = emit_vertex(v0, emitCoverage, data);
    219 #else
    220     data = emit_vertex(v0, emitCoverage, data);
    221     data = emit_vertex(v1, emitCoverage, data);
    222     data = emit_vertex(v2, emitCoverage, data);
    223 #endif
    224     return data;
    225 }
    226 
    227 struct VertexList {
    228     VertexList() : fHead(nullptr), fTail(nullptr) {}
    229     VertexList(Vertex* head, Vertex* tail) : fHead(head), fTail(tail) {}
    230     Vertex* fHead;
    231     Vertex* fTail;
    232     void insert(Vertex* v, Vertex* prev, Vertex* next) {
    233         list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
    234     }
    235     void append(Vertex* v) {
    236         insert(v, fTail, nullptr);
    237     }
    238     void append(const VertexList& list) {
    239         if (!list.fHead) {
    240             return;
    241         }
    242         if (fTail) {
    243             fTail->fNext = list.fHead;
    244             list.fHead->fPrev = fTail;
    245         } else {
    246             fHead = list.fHead;
    247         }
    248         fTail = list.fTail;
    249     }
    250     void prepend(Vertex* v) {
    251         insert(v, nullptr, fHead);
    252     }
    253     void remove(Vertex* v) {
    254         list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
    255     }
    256     void close() {
    257         if (fHead && fTail) {
    258             fTail->fNext = fHead;
    259             fHead->fPrev = fTail;
    260         }
    261     }
    262 };
    263 
    264 // Round to nearest quarter-pixel. This is used for screenspace tessellation.
    265 
    266 inline void round(SkPoint* p) {
    267     p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
    268     p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
    269 }
    270 
    271 inline SkScalar double_to_clamped_scalar(double d) {
    272     return SkDoubleToScalar(std::min((double) SK_ScalarMax, std::max(d, (double) -SK_ScalarMax)));
    273 }
    274 
    275 // A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line.
    276 struct Line {
    277     Line(double a, double b, double c) : fA(a), fB(b), fC(c) {}
    278     Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {}
    279     Line(const SkPoint& p, const SkPoint& q)
    280         : fA(static_cast<double>(q.fY) - p.fY)      // a = dY
    281         , fB(static_cast<double>(p.fX) - q.fX)      // b = -dX
    282         , fC(static_cast<double>(p.fY) * q.fX -     // c = cross(q, p)
    283              static_cast<double>(p.fX) * q.fY) {}
    284     double dist(const SkPoint& p) const {
    285         return fA * p.fX + fB * p.fY + fC;
    286     }
    287     Line operator*(double v) const {
    288         return Line(fA * v, fB * v, fC * v);
    289     }
    290     double magSq() const {
    291         return fA * fA + fB * fB;
    292     }
    293     void normalize() {
    294         double len = sqrt(this->magSq());
    295         if (len == 0.0) {
    296             return;
    297         }
    298         double scale = 1.0f / len;
    299         fA *= scale;
    300         fB *= scale;
    301         fC *= scale;
    302     }
    303     bool nearParallel(const Line& o) const {
    304         return fabs(o.fA - fA) < 0.00001 && fabs(o.fB - fB) < 0.00001;
    305     }
    306 
    307     // Compute the intersection of two (infinite) Lines.
    308     bool intersect(const Line& other, SkPoint* point) const {
    309         double denom = fA * other.fB - fB * other.fA;
    310         if (denom == 0.0) {
    311             return false;
    312         }
    313         double scale = 1.0 / denom;
    314         point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale);
    315         point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale);
    316         round(point);
    317         return true;
    318     }
    319     double fA, fB, fC;
    320 };
    321 
    322 /**
    323  * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
    324  * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
    325  * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
    326  * point). For speed, that case is only tested by the callers that require it (e.g.,
    327  * rewind_if_necessary()). Edges also handle checking for intersection with other edges.
    328  * Currently, this converts the edges to the parametric form, in order to avoid doing a division
    329  * until an intersection has been confirmed. This is slightly slower in the "found" case, but
    330  * a lot faster in the "not found" case.
    331  *
    332  * The coefficients of the line equation stored in double precision to avoid catastrphic
    333  * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
    334  * correct in float, since it's a polynomial of degree 2. The intersect() function, being
    335  * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
    336  * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
    337  * this file).
    338  */
    339 
    340 struct Edge {
    341     enum class Type { kInner, kOuter, kConnector };
    342     Edge(Vertex* top, Vertex* bottom, int winding, Type type)
    343         : fWinding(winding)
    344         , fTop(top)
    345         , fBottom(bottom)
    346         , fType(type)
    347         , fLeft(nullptr)
    348         , fRight(nullptr)
    349         , fPrevEdgeAbove(nullptr)
    350         , fNextEdgeAbove(nullptr)
    351         , fPrevEdgeBelow(nullptr)
    352         , fNextEdgeBelow(nullptr)
    353         , fLeftPoly(nullptr)
    354         , fRightPoly(nullptr)
    355         , fEvent(nullptr)
    356         , fLeftPolyPrev(nullptr)
    357         , fLeftPolyNext(nullptr)
    358         , fRightPolyPrev(nullptr)
    359         , fRightPolyNext(nullptr)
    360         , fOverlap(false)
    361         , fUsedInLeftPoly(false)
    362         , fUsedInRightPoly(false)
    363         , fLine(top, bottom) {
    364         }
    365     int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
    366     Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
    367     Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
    368     Type     fType;
    369     Edge*    fLeft;             // The linked list of edges in the active edge list.
    370     Edge*    fRight;            // "
    371     Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
    372     Edge*    fNextEdgeAbove;    // "
    373     Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
    374     Edge*    fNextEdgeBelow;    // "
    375     Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
    376     Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
    377     Event*   fEvent;
    378     Edge*    fLeftPolyPrev;
    379     Edge*    fLeftPolyNext;
    380     Edge*    fRightPolyPrev;
    381     Edge*    fRightPolyNext;
    382     bool     fOverlap;          // True if there's an overlap region adjacent to this edge.
    383     bool     fUsedInLeftPoly;
    384     bool     fUsedInRightPoly;
    385     Line     fLine;
    386     double dist(const SkPoint& p) const {
    387         return fLine.dist(p);
    388     }
    389     bool isRightOf(Vertex* v) const {
    390         return fLine.dist(v->fPoint) < 0.0;
    391     }
    392     bool isLeftOf(Vertex* v) const {
    393         return fLine.dist(v->fPoint) > 0.0;
    394     }
    395     void recompute() {
    396         fLine = Line(fTop, fBottom);
    397     }
    398     bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) const {
    399         LOG("intersecting %g -> %g with %g -> %g\n",
    400                fTop->fID, fBottom->fID,
    401                other.fTop->fID, other.fBottom->fID);
    402         if (fTop == other.fTop || fBottom == other.fBottom) {
    403             return false;
    404         }
    405         double denom = fLine.fA * other.fLine.fB - fLine.fB * other.fLine.fA;
    406         if (denom == 0.0) {
    407             return false;
    408         }
    409         double dx = static_cast<double>(other.fTop->fPoint.fX) - fTop->fPoint.fX;
    410         double dy = static_cast<double>(other.fTop->fPoint.fY) - fTop->fPoint.fY;
    411         double sNumer = dy * other.fLine.fB + dx * other.fLine.fA;
    412         double tNumer = dy * fLine.fB + dx * fLine.fA;
    413         // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
    414         // This saves us doing the divide below unless absolutely necessary.
    415         if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
    416                         : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
    417             return false;
    418         }
    419         double s = sNumer / denom;
    420         SkASSERT(s >= 0.0 && s <= 1.0);
    421         p->fX = SkDoubleToScalar(fTop->fPoint.fX - s * fLine.fB);
    422         p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fLine.fA);
    423         if (alpha) {
    424             if (fType == Type::kConnector) {
    425                 *alpha = (1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha;
    426             } else if (other.fType == Type::kConnector) {
    427                 double t = tNumer / denom;
    428                 *alpha = (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha;
    429             } else if (fType == Type::kOuter && other.fType == Type::kOuter) {
    430                 *alpha = 0;
    431             } else {
    432                 *alpha = 255;
    433             }
    434         }
    435         return true;
    436     }
    437 };
    438 
    439 struct EdgeList {
    440     EdgeList() : fHead(nullptr), fTail(nullptr) {}
    441     Edge* fHead;
    442     Edge* fTail;
    443     void insert(Edge* edge, Edge* prev, Edge* next) {
    444         list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
    445     }
    446     void append(Edge* e) {
    447         insert(e, fTail, nullptr);
    448     }
    449     void remove(Edge* edge) {
    450         list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
    451     }
    452     void removeAll() {
    453         while (fHead) {
    454             this->remove(fHead);
    455         }
    456     }
    457     void close() {
    458         if (fHead && fTail) {
    459             fTail->fRight = fHead;
    460             fHead->fLeft = fTail;
    461         }
    462     }
    463     bool contains(Edge* edge) const {
    464         return edge->fLeft || edge->fRight || fHead == edge;
    465     }
    466 };
    467 
    468 struct Event {
    469     Event(Edge* edge, bool isOuterBoundary, const SkPoint& point, uint8_t alpha)
    470       : fEdge(edge), fIsOuterBoundary(isOuterBoundary), fPoint(point), fAlpha(alpha)
    471       , fPrev(nullptr), fNext(nullptr) {
    472     }
    473     Edge* fEdge;
    474     bool  fIsOuterBoundary;
    475     SkPoint fPoint;
    476     uint8_t fAlpha;
    477     Event* fPrev;
    478     Event* fNext;
    479     void apply(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc);
    480 };
    481 
    482 bool compare(Event* const& e1, Event* const& e2) {
    483     return e1->fAlpha > e2->fAlpha;
    484 }
    485 
    486 struct EventList : public SkTDPQueue<Event*, &compare> {};
    487 
    488 void create_event(Edge* e, bool isOuterBoundary, EventList* events, SkArenaAlloc& alloc) {
    489     Edge bisector1(e->fTop, e->fTop->fPartner, 1, Edge::Type::kConnector);
    490     Edge bisector2(e->fBottom, e->fBottom->fPartner, 1, Edge::Type::kConnector);
    491     SkPoint p;
    492     uint8_t alpha;
    493     if (bisector1.intersect(bisector2, &p, &alpha)) {
    494         LOG("found overlap edge %g -> %g, will collapse to %g,%g alpha %d\n",
    495             e->fTop->fID, e->fBottom->fID, p.fX, p.fY, alpha);
    496         e->fEvent = alloc.make<Event>(e, isOuterBoundary, p, alpha);
    497         events->insert(e->fEvent);
    498     }
    499 }
    500 
    501 /***************************************************************************************/
    502 
    503 struct Poly {
    504     Poly(Vertex* v, int winding)
    505         : fFirstVertex(v)
    506         , fWinding(winding)
    507         , fHead(nullptr)
    508         , fTail(nullptr)
    509         , fNext(nullptr)
    510         , fPartner(nullptr)
    511         , fCount(0)
    512     {
    513 #if LOGGING_ENABLED
    514         static int gID = 0;
    515         fID = gID++;
    516         LOG("*** created Poly %d\n", fID);
    517 #endif
    518     }
    519     typedef enum { kLeft_Side, kRight_Side } Side;
    520     struct MonotonePoly {
    521         MonotonePoly(Edge* edge, Side side)
    522             : fSide(side)
    523             , fFirstEdge(nullptr)
    524             , fLastEdge(nullptr)
    525             , fPrev(nullptr)
    526             , fNext(nullptr) {
    527             this->addEdge(edge);
    528         }
    529         Side          fSide;
    530         Edge*         fFirstEdge;
    531         Edge*         fLastEdge;
    532         MonotonePoly* fPrev;
    533         MonotonePoly* fNext;
    534         void addEdge(Edge* edge) {
    535             if (fSide == kRight_Side) {
    536                 SkASSERT(!edge->fUsedInRightPoly);
    537                 list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
    538                     edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
    539                 edge->fUsedInRightPoly = true;
    540             } else {
    541                 SkASSERT(!edge->fUsedInLeftPoly);
    542                 list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
    543                     edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
    544                 edge->fUsedInLeftPoly = true;
    545             }
    546         }
    547 
    548         void* emit(bool emitCoverage, void* data) {
    549             Edge* e = fFirstEdge;
    550             VertexList vertices;
    551             vertices.append(e->fTop);
    552             int count = 1;
    553             while (e != nullptr) {
    554                 if (kRight_Side == fSide) {
    555                     vertices.append(e->fBottom);
    556                     e = e->fRightPolyNext;
    557                 } else {
    558                     vertices.prepend(e->fBottom);
    559                     e = e->fLeftPolyNext;
    560                 }
    561                 count++;
    562             }
    563             Vertex* first = vertices.fHead;
    564             Vertex* v = first->fNext;
    565             while (v != vertices.fTail) {
    566                 SkASSERT(v && v->fPrev && v->fNext);
    567                 Vertex* prev = v->fPrev;
    568                 Vertex* curr = v;
    569                 Vertex* next = v->fNext;
    570                 if (count == 3) {
    571                     return emit_triangle(prev, curr, next, emitCoverage, data);
    572                 }
    573                 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
    574                 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
    575                 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
    576                 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
    577                 if (ax * by - ay * bx >= 0.0) {
    578                     data = emit_triangle(prev, curr, next, emitCoverage, data);
    579                     v->fPrev->fNext = v->fNext;
    580                     v->fNext->fPrev = v->fPrev;
    581                     count--;
    582                     if (v->fPrev == first) {
    583                         v = v->fNext;
    584                     } else {
    585                         v = v->fPrev;
    586                     }
    587                 } else {
    588                     v = v->fNext;
    589                 }
    590             }
    591             return data;
    592         }
    593     };
    594     Poly* addEdge(Edge* e, Side side, SkArenaAlloc& alloc) {
    595         LOG("addEdge (%g -> %g) to poly %d, %s side\n",
    596                e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
    597         Poly* partner = fPartner;
    598         Poly* poly = this;
    599         if (side == kRight_Side) {
    600             if (e->fUsedInRightPoly) {
    601                 return this;
    602             }
    603         } else {
    604             if (e->fUsedInLeftPoly) {
    605                 return this;
    606             }
    607         }
    608         if (partner) {
    609             fPartner = partner->fPartner = nullptr;
    610         }
    611         if (!fTail) {
    612             fHead = fTail = alloc.make<MonotonePoly>(e, side);
    613             fCount += 2;
    614         } else if (e->fBottom == fTail->fLastEdge->fBottom) {
    615             return poly;
    616         } else if (side == fTail->fSide) {
    617             fTail->addEdge(e);
    618             fCount++;
    619         } else {
    620             e = alloc.make<Edge>(fTail->fLastEdge->fBottom, e->fBottom, 1, Edge::Type::kInner);
    621             fTail->addEdge(e);
    622             fCount++;
    623             if (partner) {
    624                 partner->addEdge(e, side, alloc);
    625                 poly = partner;
    626             } else {
    627                 MonotonePoly* m = alloc.make<MonotonePoly>(e, side);
    628                 m->fPrev = fTail;
    629                 fTail->fNext = m;
    630                 fTail = m;
    631             }
    632         }
    633         return poly;
    634     }
    635     void* emit(bool emitCoverage, void *data) {
    636         if (fCount < 3) {
    637             return data;
    638         }
    639         LOG("emit() %d, size %d\n", fID, fCount);
    640         for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
    641             data = m->emit(emitCoverage, data);
    642         }
    643         return data;
    644     }
    645     Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; }
    646     Vertex* fFirstVertex;
    647     int fWinding;
    648     MonotonePoly* fHead;
    649     MonotonePoly* fTail;
    650     Poly* fNext;
    651     Poly* fPartner;
    652     int fCount;
    653 #if LOGGING_ENABLED
    654     int fID;
    655 #endif
    656 };
    657 
    658 /***************************************************************************************/
    659 
    660 bool coincident(const SkPoint& a, const SkPoint& b) {
    661     return a == b;
    662 }
    663 
    664 Poly* new_poly(Poly** head, Vertex* v, int winding, SkArenaAlloc& alloc) {
    665     Poly* poly = alloc.make<Poly>(v, winding);
    666     poly->fNext = *head;
    667     *head = poly;
    668     return poly;
    669 }
    670 
    671 void append_point_to_contour(const SkPoint& p, VertexList* contour, SkArenaAlloc& alloc) {
    672     Vertex* v = alloc.make<Vertex>(p, 255);
    673 #if LOGGING_ENABLED
    674     static float gID = 0.0f;
    675     v->fID = gID++;
    676 #endif
    677     contour->append(v);
    678 }
    679 
    680 SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) {
    681     SkQuadCoeff quad(pts);
    682     SkPoint p0 = to_point(quad.eval(t - 0.5f * u));
    683     SkPoint mid = to_point(quad.eval(t));
    684     SkPoint p1 = to_point(quad.eval(t + 0.5f * u));
    685     if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) {
    686         return 0;
    687     }
    688     return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1);
    689 }
    690 
    691 void append_quadratic_to_contour(const SkPoint pts[3], SkScalar toleranceSqd, VertexList* contour,
    692                                  SkArenaAlloc& alloc) {
    693     SkQuadCoeff quad(pts);
    694     Sk2s aa = quad.fA * quad.fA;
    695     SkScalar denom = 2.0f * (aa[0] + aa[1]);
    696     Sk2s ab = quad.fA * quad.fB;
    697     SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f;
    698     int nPoints = 1;
    699     SkScalar u = 1.0f;
    700     // Test possible subdivision values only at the point of maximum curvature.
    701     // If it passes the flatness metric there, it'll pass everywhere.
    702     while (nPoints < GrPathUtils::kMaxPointsPerCurve) {
    703         u = 1.0f / nPoints;
    704         if (quad_error_at(pts, t, u) < toleranceSqd) {
    705             break;
    706         }
    707         nPoints++;
    708     }
    709     for (int j = 1; j <= nPoints; j++) {
    710         append_point_to_contour(to_point(quad.eval(j * u)), contour, alloc);
    711     }
    712 }
    713 
    714 void generate_cubic_points(const SkPoint& p0,
    715                            const SkPoint& p1,
    716                            const SkPoint& p2,
    717                            const SkPoint& p3,
    718                            SkScalar tolSqd,
    719                            VertexList* contour,
    720                            int pointsLeft,
    721                            SkArenaAlloc& alloc) {
    722     SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3);
    723     SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3);
    724     if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
    725         !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
    726         append_point_to_contour(p3, contour, alloc);
    727         return;
    728     }
    729     const SkPoint q[] = {
    730         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    731         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    732         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
    733     };
    734     const SkPoint r[] = {
    735         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
    736         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
    737     };
    738     const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
    739     pointsLeft >>= 1;
    740     generate_cubic_points(p0, q[0], r[0], s, tolSqd, contour, pointsLeft, alloc);
    741     generate_cubic_points(s, r[1], q[2], p3, tolSqd, contour, pointsLeft, alloc);
    742 }
    743 
    744 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
    745 
    746 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
    747                       VertexList* contours, SkArenaAlloc& alloc, bool *isLinear) {
    748     SkScalar toleranceSqd = tolerance * tolerance;
    749 
    750     SkPoint pts[4];
    751     *isLinear = true;
    752     VertexList* contour = contours;
    753     SkPath::Iter iter(path, false);
    754     if (path.isInverseFillType()) {
    755         SkPoint quad[4];
    756         clipBounds.toQuad(quad);
    757         for (int i = 3; i >= 0; i--) {
    758             append_point_to_contour(quad[i], contours, alloc);
    759         }
    760         contour++;
    761     }
    762     SkAutoConicToQuads converter;
    763     SkPath::Verb verb;
    764     while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
    765         switch (verb) {
    766             case SkPath::kConic_Verb: {
    767                 SkScalar weight = iter.conicWeight();
    768                 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
    769                 for (int i = 0; i < converter.countQuads(); ++i) {
    770                     append_quadratic_to_contour(quadPts, toleranceSqd, contour, alloc);
    771                     quadPts += 2;
    772                 }
    773                 *isLinear = false;
    774                 break;
    775             }
    776             case SkPath::kMove_Verb:
    777                 if (contour->fHead) {
    778                     contour++;
    779                 }
    780                 append_point_to_contour(pts[0], contour, alloc);
    781                 break;
    782             case SkPath::kLine_Verb: {
    783                 append_point_to_contour(pts[1], contour, alloc);
    784                 break;
    785             }
    786             case SkPath::kQuad_Verb: {
    787                 append_quadratic_to_contour(pts, toleranceSqd, contour, alloc);
    788                 *isLinear = false;
    789                 break;
    790             }
    791             case SkPath::kCubic_Verb: {
    792                 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
    793                 generate_cubic_points(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour,
    794                                       pointsLeft, alloc);
    795                 *isLinear = false;
    796                 break;
    797             }
    798             case SkPath::kClose_Verb:
    799             case SkPath::kDone_Verb:
    800                 break;
    801         }
    802     }
    803 }
    804 
    805 inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
    806     switch (fillType) {
    807         case SkPath::kWinding_FillType:
    808             return winding != 0;
    809         case SkPath::kEvenOdd_FillType:
    810             return (winding & 1) != 0;
    811         case SkPath::kInverseWinding_FillType:
    812             return winding == 1;
    813         case SkPath::kInverseEvenOdd_FillType:
    814             return (winding & 1) == 1;
    815         default:
    816             SkASSERT(false);
    817             return false;
    818     }
    819 }
    820 
    821 inline bool apply_fill_type(SkPath::FillType fillType, Poly* poly) {
    822     return poly && apply_fill_type(fillType, poly->fWinding);
    823 }
    824 
    825 Edge* new_edge(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc) {
    826     int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
    827     Vertex* top = winding < 0 ? next : prev;
    828     Vertex* bottom = winding < 0 ? prev : next;
    829     return alloc.make<Edge>(top, bottom, winding, type);
    830 }
    831 
    832 void remove_edge(Edge* edge, EdgeList* edges) {
    833     LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
    834     SkASSERT(edges->contains(edge));
    835     edges->remove(edge);
    836 }
    837 
    838 void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
    839     LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
    840     SkASSERT(!edges->contains(edge));
    841     Edge* next = prev ? prev->fRight : edges->fHead;
    842     edges->insert(edge, prev, next);
    843 }
    844 
    845 void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
    846     if (v->fFirstEdgeAbove && v->fLastEdgeAbove) {
    847         *left = v->fFirstEdgeAbove->fLeft;
    848         *right = v->fLastEdgeAbove->fRight;
    849         return;
    850     }
    851     Edge* next = nullptr;
    852     Edge* prev;
    853     for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
    854         if (prev->isLeftOf(v)) {
    855             break;
    856         }
    857         next = prev;
    858     }
    859     *left = prev;
    860     *right = next;
    861 }
    862 
    863 void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
    864     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
    865         c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
    866         return;
    867     }
    868     LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
    869     Edge* prev = nullptr;
    870     Edge* next;
    871     for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
    872         if (next->isRightOf(edge->fTop)) {
    873             break;
    874         }
    875         prev = next;
    876     }
    877     list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
    878         edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
    879 }
    880 
    881 void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
    882     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
    883         c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
    884         return;
    885     }
    886     LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
    887     Edge* prev = nullptr;
    888     Edge* next;
    889     for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
    890         if (next->isRightOf(edge->fBottom)) {
    891             break;
    892         }
    893         prev = next;
    894     }
    895     list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
    896         edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
    897 }
    898 
    899 void remove_edge_above(Edge* edge) {
    900     SkASSERT(edge->fTop && edge->fBottom);
    901     LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
    902         edge->fBottom->fID);
    903     list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
    904         edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
    905 }
    906 
    907 void remove_edge_below(Edge* edge) {
    908     SkASSERT(edge->fTop && edge->fBottom);
    909     LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
    910         edge->fTop->fID);
    911     list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
    912         edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
    913 }
    914 
    915 void disconnect(Edge* edge)
    916 {
    917     remove_edge_above(edge);
    918     remove_edge_below(edge);
    919 }
    920 
    921 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Vertex** current, Comparator& c);
    922 
    923 void rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, Comparator& c) {
    924     if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) {
    925         return;
    926     }
    927     Vertex* v = *current;
    928     LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID);
    929     while (v != dst) {
    930         v = v->fPrev;
    931         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
    932             remove_edge(e, activeEdges);
    933         }
    934         Edge* leftEdge = v->fLeftEnclosingEdge;
    935         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
    936             insert_edge(e, leftEdge, activeEdges);
    937             leftEdge = e;
    938         }
    939     }
    940     *current = v;
    941 }
    942 
    943 void rewind_if_necessary(Edge* edge, EdgeList* activeEdges, Vertex** current, Comparator& c) {
    944     if (!activeEdges || !current) {
    945         return;
    946     }
    947     Vertex* top = edge->fTop;
    948     Vertex* bottom = edge->fBottom;
    949     if (edge->fLeft) {
    950         Vertex* leftTop = edge->fLeft->fTop;
    951         Vertex* leftBottom = edge->fLeft->fBottom;
    952         if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(top)) {
    953             rewind(activeEdges, current, leftTop, c);
    954         } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(leftTop)) {
    955             rewind(activeEdges, current, top, c);
    956         } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
    957                    !edge->fLeft->isLeftOf(bottom)) {
    958             rewind(activeEdges, current, leftTop, c);
    959         } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
    960             rewind(activeEdges, current, top, c);
    961         }
    962     }
    963     if (edge->fRight) {
    964         Vertex* rightTop = edge->fRight->fTop;
    965         Vertex* rightBottom = edge->fRight->fBottom;
    966         if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(top)) {
    967             rewind(activeEdges, current, rightTop, c);
    968         } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(rightTop)) {
    969             rewind(activeEdges, current, top, c);
    970         } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
    971                    !edge->fRight->isRightOf(bottom)) {
    972             rewind(activeEdges, current, rightTop, c);
    973         } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
    974                    !edge->isLeftOf(rightBottom)) {
    975             rewind(activeEdges, current, top, c);
    976         }
    977     }
    978 }
    979 
    980 void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, Comparator& c) {
    981     remove_edge_below(edge);
    982     edge->fTop = v;
    983     edge->recompute();
    984     insert_edge_below(edge, v, c);
    985     rewind_if_necessary(edge, activeEdges, current, c);
    986     merge_collinear_edges(edge, activeEdges, current, c);
    987 }
    988 
    989 void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, Comparator& c) {
    990     remove_edge_above(edge);
    991     edge->fBottom = v;
    992     edge->recompute();
    993     insert_edge_above(edge, v, c);
    994     rewind_if_necessary(edge, activeEdges, current, c);
    995     merge_collinear_edges(edge, activeEdges, current, c);
    996 }
    997 
    998 void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current,
    999                        Comparator& c) {
   1000     if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
   1001         LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
   1002             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
   1003             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
   1004         rewind(activeEdges, current, edge->fTop, c);
   1005         other->fWinding += edge->fWinding;
   1006         disconnect(edge);
   1007         edge->fTop = edge->fBottom = nullptr;
   1008     } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
   1009         rewind(activeEdges, current, edge->fTop, c);
   1010         other->fWinding += edge->fWinding;
   1011         set_bottom(edge, other->fTop, activeEdges, current, c);
   1012     } else {
   1013         rewind(activeEdges, current, other->fTop, c);
   1014         edge->fWinding += other->fWinding;
   1015         set_bottom(other, edge->fTop, activeEdges, current, c);
   1016     }
   1017 }
   1018 
   1019 void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current,
   1020                        Comparator& c) {
   1021     if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
   1022         LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
   1023             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
   1024             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
   1025         rewind(activeEdges, current, edge->fTop, c);
   1026         other->fWinding += edge->fWinding;
   1027         disconnect(edge);
   1028         edge->fTop = edge->fBottom = nullptr;
   1029     } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
   1030         rewind(activeEdges, current, other->fTop, c);
   1031         edge->fWinding += other->fWinding;
   1032         set_top(other, edge->fBottom, activeEdges, current, c);
   1033     } else {
   1034         rewind(activeEdges, current, edge->fTop, c);
   1035         other->fWinding += edge->fWinding;
   1036         set_top(edge, other->fBottom, activeEdges, current, c);
   1037     }
   1038 }
   1039 
   1040 bool top_collinear(Edge* left, Edge* right) {
   1041     if (!left || !right) {
   1042         return false;
   1043     }
   1044     return left->fTop->fPoint == right->fTop->fPoint ||
   1045            !left->isLeftOf(right->fTop) || !right->isRightOf(left->fTop);
   1046 }
   1047 
   1048 bool bottom_collinear(Edge* left, Edge* right) {
   1049     if (!left || !right) {
   1050         return false;
   1051     }
   1052     return left->fBottom->fPoint == right->fBottom->fPoint ||
   1053            !left->isLeftOf(right->fBottom) || !right->isRightOf(left->fBottom);
   1054 }
   1055 
   1056 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Vertex** current, Comparator& c) {
   1057     for (;;) {
   1058         if (top_collinear(edge->fPrevEdgeAbove, edge)) {
   1059             merge_edges_above(edge->fPrevEdgeAbove, edge, activeEdges, current, c);
   1060         } else if (top_collinear(edge, edge->fNextEdgeAbove)) {
   1061             merge_edges_above(edge->fNextEdgeAbove, edge, activeEdges, current, c);
   1062         } else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) {
   1063             merge_edges_below(edge->fPrevEdgeBelow, edge, activeEdges, current, c);
   1064         } else if (bottom_collinear(edge, edge->fNextEdgeBelow)) {
   1065             merge_edges_below(edge->fNextEdgeBelow, edge, activeEdges, current, c);
   1066         } else {
   1067             break;
   1068         }
   1069     }
   1070     SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge));
   1071     SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove));
   1072     SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge));
   1073     SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow));
   1074 }
   1075 
   1076 bool split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, Comparator& c,
   1077                 SkArenaAlloc& alloc) {
   1078     if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) {
   1079         return false;
   1080     }
   1081     LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
   1082         edge->fTop->fID, edge->fBottom->fID,
   1083         v->fID, v->fPoint.fX, v->fPoint.fY);
   1084     Vertex* top;
   1085     Vertex* bottom;
   1086     int winding = edge->fWinding;
   1087     if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
   1088         top = v;
   1089         bottom = edge->fTop;
   1090         set_top(edge, v, activeEdges, current, c);
   1091     } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
   1092         top = edge->fBottom;
   1093         bottom = v;
   1094         set_bottom(edge, v, activeEdges, current, c);
   1095     } else {
   1096         top = v;
   1097         bottom = edge->fBottom;
   1098         set_bottom(edge, v, activeEdges, current, c);
   1099     }
   1100     Edge* newEdge = alloc.make<Edge>(top, bottom, winding, edge->fType);
   1101     insert_edge_below(newEdge, top, c);
   1102     insert_edge_above(newEdge, bottom, c);
   1103     merge_collinear_edges(newEdge, activeEdges, current, c);
   1104     return true;
   1105 }
   1106 
   1107 bool intersect_edge_pair(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, Comparator& c, SkArenaAlloc& alloc) {
   1108     if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) {
   1109         return false;
   1110     }
   1111     if (left->fTop == right->fTop || left->fBottom == right->fBottom) {
   1112         return false;
   1113     }
   1114     if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
   1115         if (!left->isLeftOf(right->fTop)) {
   1116             rewind(activeEdges, current, right->fTop, c);
   1117             return split_edge(left, right->fTop, activeEdges, current, c, alloc);
   1118         }
   1119     } else {
   1120         if (!right->isRightOf(left->fTop)) {
   1121             rewind(activeEdges, current, left->fTop, c);
   1122             return split_edge(right, left->fTop, activeEdges, current, c, alloc);
   1123         }
   1124     }
   1125     if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
   1126         if (!left->isLeftOf(right->fBottom)) {
   1127             rewind(activeEdges, current, right->fBottom, c);
   1128             return split_edge(left, right->fBottom, activeEdges, current, c, alloc);
   1129         }
   1130     } else {
   1131         if (!right->isRightOf(left->fBottom)) {
   1132             rewind(activeEdges, current, left->fBottom, c);
   1133             return split_edge(right, left->fBottom, activeEdges, current, c, alloc);
   1134         }
   1135     }
   1136     return false;
   1137 }
   1138 
   1139 Edge* connect(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc,
   1140               int winding_scale = 1) {
   1141     if (!prev || !next || prev->fPoint == next->fPoint) {
   1142         return nullptr;
   1143     }
   1144     Edge* edge = new_edge(prev, next, type, c, alloc);
   1145     insert_edge_below(edge, edge->fTop, c);
   1146     insert_edge_above(edge, edge->fBottom, c);
   1147     edge->fWinding *= winding_scale;
   1148     merge_collinear_edges(edge, nullptr, nullptr, c);
   1149     return edge;
   1150 }
   1151 
   1152 void merge_vertices(Vertex* src, Vertex* dst, VertexList* mesh, Comparator& c,
   1153                     SkArenaAlloc& alloc) {
   1154     LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
   1155         src->fID, dst->fID);
   1156     dst->fAlpha = SkTMax(src->fAlpha, dst->fAlpha);
   1157     if (src->fPartner) {
   1158         src->fPartner->fPartner = dst;
   1159     }
   1160     while (Edge* edge = src->fFirstEdgeAbove) {
   1161         set_bottom(edge, dst, nullptr, nullptr, c);
   1162     }
   1163     while (Edge* edge = src->fFirstEdgeBelow) {
   1164         set_top(edge, dst, nullptr, nullptr, c);
   1165     }
   1166     mesh->remove(src);
   1167 }
   1168 
   1169 Vertex* create_sorted_vertex(const SkPoint& p, uint8_t alpha, VertexList* mesh,
   1170                              Vertex* reference, Comparator& c, SkArenaAlloc& alloc) {
   1171     Vertex* prevV = reference;
   1172     while (prevV && c.sweep_lt(p, prevV->fPoint)) {
   1173         prevV = prevV->fPrev;
   1174     }
   1175     Vertex* nextV = prevV ? prevV->fNext : mesh->fHead;
   1176     while (nextV && c.sweep_lt(nextV->fPoint, p)) {
   1177         prevV = nextV;
   1178         nextV = nextV->fNext;
   1179     }
   1180     Vertex* v;
   1181     if (prevV && coincident(prevV->fPoint, p)) {
   1182         v = prevV;
   1183     } else if (nextV && coincident(nextV->fPoint, p)) {
   1184         v = nextV;
   1185     } else {
   1186         v = alloc.make<Vertex>(p, alpha);
   1187 #if LOGGING_ENABLED
   1188         if (!prevV) {
   1189             v->fID = mesh->fHead->fID - 1.0f;
   1190         } else if (!nextV) {
   1191             v->fID = mesh->fTail->fID + 1.0f;
   1192         } else {
   1193             v->fID = (prevV->fID + nextV->fID) * 0.5f;
   1194         }
   1195 #endif
   1196         mesh->insert(v, prevV, nextV);
   1197     }
   1198     return v;
   1199 }
   1200 
   1201 // If an edge's top and bottom points differ only by 1/2 machine epsilon in the primary
   1202 // sort criterion, it may not be possible to split correctly, since there is no point which is
   1203 // below the top and above the bottom. This function detects that case.
   1204 bool nearly_flat(Comparator& c, Edge* edge) {
   1205     SkPoint diff = edge->fBottom->fPoint - edge->fTop->fPoint;
   1206     float primaryDiff = c.fDirection == Comparator::Direction::kHorizontal ? diff.fX : diff.fY;
   1207     return fabs(primaryDiff) < std::numeric_limits<float>::epsilon() && primaryDiff != 0.0f;
   1208 }
   1209 
   1210 SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, Comparator& c) {
   1211     if (c.sweep_lt(p, min)) {
   1212         return min;
   1213     } else if (c.sweep_lt(max, p)) {
   1214         return max;
   1215     } else {
   1216         return p;
   1217     }
   1218 }
   1219 
   1220 bool check_for_intersection(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current,
   1221                             VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
   1222     if (!left || !right) {
   1223         return false;
   1224     }
   1225     SkPoint p;
   1226     uint8_t alpha;
   1227     if (left->intersect(*right, &p, &alpha) && p.isFinite()) {
   1228         Vertex* v;
   1229         LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
   1230         Vertex* top = *current;
   1231         // If the intersection point is above the current vertex, rewind to the vertex above the
   1232         // intersection.
   1233         while (top && c.sweep_lt(p, top->fPoint)) {
   1234             top = top->fPrev;
   1235         }
   1236         if (!nearly_flat(c, left)) {
   1237             p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c);
   1238         }
   1239         if (!nearly_flat(c, right)) {
   1240             p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c);
   1241         }
   1242         if (p == left->fTop->fPoint) {
   1243             v = left->fTop;
   1244         } else if (p == left->fBottom->fPoint) {
   1245             v = left->fBottom;
   1246         } else if (p == right->fTop->fPoint) {
   1247             v = right->fTop;
   1248         } else if (p == right->fBottom->fPoint) {
   1249             v = right->fBottom;
   1250         } else {
   1251             v = create_sorted_vertex(p, alpha, mesh, top, c, alloc);
   1252             if (left->fTop->fPartner) {
   1253                 Line line1 = left->fLine;
   1254                 Line line2 = right->fLine;
   1255                 int dir = left->fType == Edge::Type::kOuter ? -1 : 1;
   1256                 line1.fC += sqrt(left->fLine.magSq()) * (left->fWinding > 0 ? 1 : -1) * dir;
   1257                 line2.fC += sqrt(right->fLine.magSq()) * (right->fWinding > 0 ? 1 : -1) * dir;
   1258                 SkPoint p;
   1259                 if (line1.intersect(line2, &p)) {
   1260                     LOG("synthesizing partner (%g,%g) for intersection vertex %g\n",
   1261                         p.fX, p.fY, v->fID);
   1262                     v->fPartner = alloc.make<Vertex>(p, 255 - v->fAlpha);
   1263                 }
   1264             }
   1265         }
   1266         rewind(activeEdges, current, top ? top : v, c);
   1267         split_edge(left, v, activeEdges, current, c, alloc);
   1268         split_edge(right, v, activeEdges, current, c, alloc);
   1269         v->fAlpha = SkTMax(v->fAlpha, alpha);
   1270         return true;
   1271     }
   1272     return intersect_edge_pair(left, right, activeEdges, current, c, alloc);
   1273 }
   1274 
   1275 void sanitize_contours(VertexList* contours, int contourCnt, bool approximate) {
   1276     for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
   1277         SkASSERT(contour->fHead);
   1278         Vertex* prev = contour->fTail;
   1279         if (approximate) {
   1280             round(&prev->fPoint);
   1281         }
   1282         for (Vertex* v = contour->fHead; v;) {
   1283             if (approximate) {
   1284                 round(&v->fPoint);
   1285             }
   1286             Vertex* next = v->fNext;
   1287             Vertex* nextWrap = next ? next : contour->fHead;
   1288             if (coincident(prev->fPoint, v->fPoint)) {
   1289                 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
   1290                 contour->remove(v);
   1291             } else if (!v->fPoint.isFinite()) {
   1292                 LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY);
   1293                 contour->remove(v);
   1294             } else if (Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) {
   1295                 LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY);
   1296                 contour->remove(v);
   1297             } else {
   1298                 prev = v;
   1299             }
   1300             v = next;
   1301         }
   1302     }
   1303 }
   1304 
   1305 bool merge_coincident_vertices(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
   1306     if (!mesh->fHead) {
   1307         return false;
   1308     }
   1309     bool merged = false;
   1310     for (Vertex* v = mesh->fHead->fNext; v;) {
   1311         Vertex* next = v->fNext;
   1312         if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
   1313             v->fPoint = v->fPrev->fPoint;
   1314         }
   1315         if (coincident(v->fPrev->fPoint, v->fPoint)) {
   1316             merge_vertices(v, v->fPrev, mesh, c, alloc);
   1317             merged = true;
   1318         }
   1319         v = next;
   1320     }
   1321     return merged;
   1322 }
   1323 
   1324 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
   1325 
   1326 void build_edges(VertexList* contours, int contourCnt, VertexList* mesh, Comparator& c,
   1327                  SkArenaAlloc& alloc) {
   1328     for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
   1329         Vertex* prev = contour->fTail;
   1330         for (Vertex* v = contour->fHead; v;) {
   1331             Vertex* next = v->fNext;
   1332             connect(prev, v, Edge::Type::kInner, c, alloc);
   1333             mesh->append(v);
   1334             prev = v;
   1335             v = next;
   1336         }
   1337     }
   1338 }
   1339 
   1340 void connect_partners(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
   1341     for (Vertex* outer = mesh->fHead; outer; outer = outer->fNext) {
   1342         if (Vertex* inner = outer->fPartner) {
   1343             if ((inner->fPrev || inner->fNext) && (outer->fPrev || outer->fNext)) {
   1344                 // Connector edges get zero winding, since they're only structural (i.e., to ensure
   1345                 // no 0-0-0 alpha triangles are produced), and shouldn't affect the poly winding
   1346                 // number.
   1347                 connect(outer, inner, Edge::Type::kConnector, c, alloc, 0);
   1348                 inner->fPartner = outer->fPartner = nullptr;
   1349             }
   1350         }
   1351     }
   1352 }
   1353 
   1354 template <CompareFunc sweep_lt>
   1355 void sorted_merge(VertexList* front, VertexList* back, VertexList* result) {
   1356     Vertex* a = front->fHead;
   1357     Vertex* b = back->fHead;
   1358     while (a && b) {
   1359         if (sweep_lt(a->fPoint, b->fPoint)) {
   1360             front->remove(a);
   1361             result->append(a);
   1362             a = front->fHead;
   1363         } else {
   1364             back->remove(b);
   1365             result->append(b);
   1366             b = back->fHead;
   1367         }
   1368     }
   1369     result->append(*front);
   1370     result->append(*back);
   1371 }
   1372 
   1373 void sorted_merge(VertexList* front, VertexList* back, VertexList* result, Comparator& c) {
   1374     if (c.fDirection == Comparator::Direction::kHorizontal) {
   1375         sorted_merge<sweep_lt_horiz>(front, back, result);
   1376     } else {
   1377         sorted_merge<sweep_lt_vert>(front, back, result);
   1378     }
   1379 #if LOGGING_ENABLED
   1380     float id = 0.0f;
   1381     for (Vertex* v = result->fHead; v; v = v->fNext) {
   1382         v->fID = id++;
   1383     }
   1384 #endif
   1385 }
   1386 
   1387 // Stage 3: sort the vertices by increasing sweep direction.
   1388 
   1389 template <CompareFunc sweep_lt>
   1390 void merge_sort(VertexList* vertices) {
   1391     Vertex* slow = vertices->fHead;
   1392     if (!slow) {
   1393         return;
   1394     }
   1395     Vertex* fast = slow->fNext;
   1396     if (!fast) {
   1397         return;
   1398     }
   1399     do {
   1400         fast = fast->fNext;
   1401         if (fast) {
   1402             fast = fast->fNext;
   1403             slow = slow->fNext;
   1404         }
   1405     } while (fast);
   1406     VertexList front(vertices->fHead, slow);
   1407     VertexList back(slow->fNext, vertices->fTail);
   1408     front.fTail->fNext = back.fHead->fPrev = nullptr;
   1409 
   1410     merge_sort<sweep_lt>(&front);
   1411     merge_sort<sweep_lt>(&back);
   1412 
   1413     vertices->fHead = vertices->fTail = nullptr;
   1414     sorted_merge<sweep_lt>(&front, &back, vertices);
   1415 }
   1416 
   1417 void dump_mesh(const VertexList& mesh) {
   1418 #if LOGGING_ENABLED
   1419     for (Vertex* v = mesh.fHead; v; v = v->fNext) {
   1420         LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
   1421         if (Vertex* p = v->fPartner) {
   1422             LOG(", partner %g (%g, %g) alpha %d\n", p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha);
   1423         } else {
   1424             LOG(", null partner\n");
   1425         }
   1426         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
   1427             LOG("  edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
   1428         }
   1429         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
   1430             LOG("  edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
   1431         }
   1432     }
   1433 #endif
   1434 }
   1435 
   1436 #ifdef SK_DEBUG
   1437 void validate_edge_pair(Edge* left, Edge* right, Comparator& c) {
   1438     if (!left || !right) {
   1439         return;
   1440     }
   1441     if (left->fTop == right->fTop) {
   1442         SkASSERT(left->isLeftOf(right->fBottom));
   1443         SkASSERT(right->isRightOf(left->fBottom));
   1444     } else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
   1445         SkASSERT(left->isLeftOf(right->fTop));
   1446     } else {
   1447         SkASSERT(right->isRightOf(left->fTop));
   1448     }
   1449     if (left->fBottom == right->fBottom) {
   1450         SkASSERT(left->isLeftOf(right->fTop));
   1451         SkASSERT(right->isRightOf(left->fTop));
   1452     } else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
   1453         SkASSERT(left->isLeftOf(right->fBottom));
   1454     } else {
   1455         SkASSERT(right->isRightOf(left->fBottom));
   1456     }
   1457 }
   1458 
   1459 void validate_edge_list(EdgeList* edges, Comparator& c) {
   1460     Edge* left = edges->fHead;
   1461     if (!left) {
   1462         return;
   1463     }
   1464     for (Edge* right = left->fRight; right; right = right->fRight) {
   1465         validate_edge_pair(left, right, c);
   1466         left = right;
   1467     }
   1468 }
   1469 #endif
   1470 
   1471 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
   1472 
   1473 bool simplify(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
   1474     LOG("simplifying complex polygons\n");
   1475     EdgeList activeEdges;
   1476     bool found = false;
   1477     for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
   1478         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
   1479             continue;
   1480         }
   1481         Edge* leftEnclosingEdge;
   1482         Edge* rightEnclosingEdge;
   1483         bool restartChecks;
   1484         do {
   1485             LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
   1486             restartChecks = false;
   1487             find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
   1488             v->fLeftEnclosingEdge = leftEnclosingEdge;
   1489             v->fRightEnclosingEdge = rightEnclosingEdge;
   1490             if (v->fFirstEdgeBelow) {
   1491                 for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
   1492                     if (check_for_intersection(leftEnclosingEdge, edge, &activeEdges, &v, mesh, c,
   1493                                                alloc)) {
   1494                         restartChecks = true;
   1495                         break;
   1496                     }
   1497                     if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, &v, mesh, c,
   1498                                                alloc)) {
   1499                         restartChecks = true;
   1500                         break;
   1501                     }
   1502                 }
   1503             } else {
   1504                 if (check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
   1505                                            &activeEdges, &v, mesh, c, alloc)) {
   1506                     restartChecks = true;
   1507                 }
   1508 
   1509             }
   1510             found = found || restartChecks;
   1511         } while (restartChecks);
   1512 #ifdef SK_DEBUG
   1513         validate_edge_list(&activeEdges, c);
   1514 #endif
   1515         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
   1516             remove_edge(e, &activeEdges);
   1517         }
   1518         Edge* leftEdge = leftEnclosingEdge;
   1519         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
   1520             insert_edge(e, leftEdge, &activeEdges);
   1521             leftEdge = e;
   1522         }
   1523     }
   1524     SkASSERT(!activeEdges.fHead && !activeEdges.fTail);
   1525     return found;
   1526 }
   1527 
   1528 // Stage 5: Tessellate the simplified mesh into monotone polygons.
   1529 
   1530 Poly* tessellate(const VertexList& vertices, SkArenaAlloc& alloc) {
   1531     LOG("\ntessellating simple polygons\n");
   1532     EdgeList activeEdges;
   1533     Poly* polys = nullptr;
   1534     for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
   1535         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
   1536             continue;
   1537         }
   1538 #if LOGGING_ENABLED
   1539         LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
   1540 #endif
   1541         Edge* leftEnclosingEdge;
   1542         Edge* rightEnclosingEdge;
   1543         find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
   1544         Poly* leftPoly;
   1545         Poly* rightPoly;
   1546         if (v->fFirstEdgeAbove) {
   1547             leftPoly = v->fFirstEdgeAbove->fLeftPoly;
   1548             rightPoly = v->fLastEdgeAbove->fRightPoly;
   1549         } else {
   1550             leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
   1551             rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
   1552         }
   1553 #if LOGGING_ENABLED
   1554         LOG("edges above:\n");
   1555         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
   1556             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
   1557                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
   1558         }
   1559         LOG("edges below:\n");
   1560         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
   1561             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
   1562                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
   1563         }
   1564 #endif
   1565         if (v->fFirstEdgeAbove) {
   1566             if (leftPoly) {
   1567                 leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, Poly::kRight_Side, alloc);
   1568             }
   1569             if (rightPoly) {
   1570                 rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, Poly::kLeft_Side, alloc);
   1571             }
   1572             for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
   1573                 Edge* rightEdge = e->fNextEdgeAbove;
   1574                 remove_edge(e, &activeEdges);
   1575                 if (e->fRightPoly) {
   1576                     e->fRightPoly->addEdge(e, Poly::kLeft_Side, alloc);
   1577                 }
   1578                 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
   1579                     rightEdge->fLeftPoly->addEdge(e, Poly::kRight_Side, alloc);
   1580                 }
   1581             }
   1582             remove_edge(v->fLastEdgeAbove, &activeEdges);
   1583             if (!v->fFirstEdgeBelow) {
   1584                 if (leftPoly && rightPoly && leftPoly != rightPoly) {
   1585                     SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
   1586                     rightPoly->fPartner = leftPoly;
   1587                     leftPoly->fPartner = rightPoly;
   1588                 }
   1589             }
   1590         }
   1591         if (v->fFirstEdgeBelow) {
   1592             if (!v->fFirstEdgeAbove) {
   1593                 if (leftPoly && rightPoly) {
   1594                     if (leftPoly == rightPoly) {
   1595                         if (leftPoly->fTail && leftPoly->fTail->fSide == Poly::kLeft_Side) {
   1596                             leftPoly = new_poly(&polys, leftPoly->lastVertex(),
   1597                                                  leftPoly->fWinding, alloc);
   1598                             leftEnclosingEdge->fRightPoly = leftPoly;
   1599                         } else {
   1600                             rightPoly = new_poly(&polys, rightPoly->lastVertex(),
   1601                                                  rightPoly->fWinding, alloc);
   1602                             rightEnclosingEdge->fLeftPoly = rightPoly;
   1603                         }
   1604                     }
   1605                     Edge* join = alloc.make<Edge>(leftPoly->lastVertex(), v, 1, Edge::Type::kInner);
   1606                     leftPoly = leftPoly->addEdge(join, Poly::kRight_Side, alloc);
   1607                     rightPoly = rightPoly->addEdge(join, Poly::kLeft_Side, alloc);
   1608                 }
   1609             }
   1610             Edge* leftEdge = v->fFirstEdgeBelow;
   1611             leftEdge->fLeftPoly = leftPoly;
   1612             insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
   1613             for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
   1614                  rightEdge = rightEdge->fNextEdgeBelow) {
   1615                 insert_edge(rightEdge, leftEdge, &activeEdges);
   1616                 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
   1617                 winding += leftEdge->fWinding;
   1618                 if (winding != 0) {
   1619                     Poly* poly = new_poly(&polys, v, winding, alloc);
   1620                     leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
   1621                 }
   1622                 leftEdge = rightEdge;
   1623             }
   1624             v->fLastEdgeBelow->fRightPoly = rightPoly;
   1625         }
   1626 #if LOGGING_ENABLED
   1627         LOG("\nactive edges:\n");
   1628         for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
   1629             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
   1630                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
   1631         }
   1632 #endif
   1633     }
   1634     return polys;
   1635 }
   1636 
   1637 void remove_non_boundary_edges(const VertexList& mesh, SkPath::FillType fillType,
   1638                                SkArenaAlloc& alloc) {
   1639     LOG("removing non-boundary edges\n");
   1640     EdgeList activeEdges;
   1641     for (Vertex* v = mesh.fHead; v != nullptr; v = v->fNext) {
   1642         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
   1643             continue;
   1644         }
   1645         Edge* leftEnclosingEdge;
   1646         Edge* rightEnclosingEdge;
   1647         find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
   1648         bool prevFilled = leftEnclosingEdge &&
   1649                           apply_fill_type(fillType, leftEnclosingEdge->fWinding);
   1650         for (Edge* e = v->fFirstEdgeAbove; e;) {
   1651             Edge* next = e->fNextEdgeAbove;
   1652             remove_edge(e, &activeEdges);
   1653             bool filled = apply_fill_type(fillType, e->fWinding);
   1654             if (filled == prevFilled) {
   1655                 disconnect(e);
   1656             }
   1657             prevFilled = filled;
   1658             e = next;
   1659         }
   1660         Edge* prev = leftEnclosingEdge;
   1661         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
   1662             if (prev) {
   1663                 e->fWinding += prev->fWinding;
   1664             }
   1665             insert_edge(e, prev, &activeEdges);
   1666             prev = e;
   1667         }
   1668     }
   1669 }
   1670 
   1671 // Note: this is the normal to the edge, but not necessarily unit length.
   1672 void get_edge_normal(const Edge* e, SkVector* normal) {
   1673     normal->set(SkDoubleToScalar(e->fLine.fA),
   1674                 SkDoubleToScalar(e->fLine.fB));
   1675 }
   1676 
   1677 void reconnect(Edge* edge, Vertex* src, Vertex* dst, Comparator& c) {
   1678     disconnect(edge);
   1679     if (src == edge->fTop) {
   1680         edge->fTop = dst;
   1681     } else {
   1682         SkASSERT(src == edge->fBottom);
   1683         edge->fBottom = dst;
   1684     }
   1685     if (edge->fEvent) {
   1686         edge->fEvent->fEdge = nullptr;
   1687     }
   1688     if (edge->fTop == edge->fBottom) {
   1689         return;
   1690     }
   1691     if (c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
   1692         using std::swap;
   1693         swap(edge->fTop, edge->fBottom);
   1694         edge->fWinding *= -1;
   1695     }
   1696     edge->recompute();
   1697     insert_edge_below(edge, edge->fTop, c);
   1698     insert_edge_above(edge, edge->fBottom, c);
   1699     merge_collinear_edges(edge, nullptr, nullptr, c);
   1700 }
   1701 
   1702 // Stage 5c: detect and remove "pointy" vertices whose edge normals point in opposite directions
   1703 // and whose adjacent vertices are less than a quarter pixel from an edge. These are guaranteed to
   1704 // invert on stroking.
   1705 
   1706 void simplify_boundary(EdgeList* boundary, Comparator& c, SkArenaAlloc& alloc) {
   1707     Edge* prevEdge = boundary->fTail;
   1708     SkVector prevNormal;
   1709     get_edge_normal(prevEdge, &prevNormal);
   1710     for (Edge* e = boundary->fHead; e != nullptr;) {
   1711         Vertex* prev = prevEdge->fWinding == 1 ? prevEdge->fTop : prevEdge->fBottom;
   1712         Vertex* next = e->fWinding == 1 ? e->fBottom : e->fTop;
   1713         double distPrev = e->dist(prev->fPoint);
   1714         double distNext = prevEdge->dist(next->fPoint);
   1715         SkVector normal;
   1716         get_edge_normal(e, &normal);
   1717         constexpr double kQuarterPixelSq = 0.25f * 0.25f;
   1718         if (prev != next && prevNormal.dot(normal) < 0.0 &&
   1719             (distPrev * distPrev <= kQuarterPixelSq || distNext * distNext <= kQuarterPixelSq)) {
   1720             Edge* join = new_edge(prev, next, Edge::Type::kInner, c, alloc);
   1721             if (prev->fPoint != next->fPoint) {
   1722                 join->fLine.normalize();
   1723                 join->fLine = join->fLine * join->fWinding;
   1724             }
   1725             insert_edge(join, e, boundary);
   1726             remove_edge(prevEdge, boundary);
   1727             remove_edge(e, boundary);
   1728             if (join->fLeft && join->fRight) {
   1729                 prevEdge = join->fLeft;
   1730                 e = join;
   1731             } else {
   1732                 prevEdge = boundary->fTail;
   1733                 e = boundary->fHead; // join->fLeft ? join->fLeft : join;
   1734             }
   1735             get_edge_normal(prevEdge, &prevNormal);
   1736         } else {
   1737             prevEdge = e;
   1738             prevNormal = normal;
   1739             e = e->fRight;
   1740         }
   1741     }
   1742 }
   1743 
   1744 void reconnect_all_overlap_edges(Vertex* src, Vertex* dst, Edge* current, Comparator& c) {
   1745     if (src->fPartner) {
   1746         src->fPartner->fPartner = dst;
   1747     }
   1748     for (Edge* e = src->fFirstEdgeAbove; e; ) {
   1749         Edge* next = e->fNextEdgeAbove;
   1750         if (e->fOverlap && e != current) {
   1751             reconnect(e, src, dst, c);
   1752         }
   1753         e = next;
   1754     }
   1755     for (Edge* e = src->fFirstEdgeBelow; e; ) {
   1756         Edge* next = e->fNextEdgeBelow;
   1757         if (e->fOverlap && e != current) {
   1758             reconnect(e, src, dst, c);
   1759         }
   1760         e = next;
   1761     }
   1762 }
   1763 
   1764 void Event::apply(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
   1765     if (!fEdge || !fEdge->fTop || !fEdge->fBottom) {
   1766         return;
   1767     }
   1768     Vertex* top = fEdge->fTop;
   1769     Vertex* bottom = fEdge->fBottom;
   1770     Vertex* dest = create_sorted_vertex(fPoint, fAlpha, mesh, fEdge->fTop, c, alloc);
   1771     LOG("collapsing edge %g -> %g to %g (%g, %g) alpha %d\n",
   1772         top->fID, bottom->fID, dest->fID, fPoint.fX, fPoint.fY, fAlpha);
   1773     reconnect_all_overlap_edges(top, dest, fEdge, c);
   1774     reconnect_all_overlap_edges(bottom, dest, fEdge, c);
   1775 
   1776     // Since the destination has multiple partners, give it none.
   1777     dest->fPartner = nullptr;
   1778 
   1779     // Disconnect all collapsed edges except outer boundaries.
   1780     // Those are required to preserve shape coverage and winding correctness.
   1781     if (!fIsOuterBoundary) {
   1782         disconnect(fEdge);
   1783     } else {
   1784         LOG("edge %g -> %g is outer boundary; not disconnecting.\n",
   1785             fEdge->fTop->fID, fEdge->fBottom->fID);
   1786         fEdge->fWinding = fEdge->fWinding >= 0 ? 1 : -1;
   1787     }
   1788 
   1789     // If top still has some connected edges, set its partner to dest.
   1790     top->fPartner = top->fFirstEdgeAbove || top->fFirstEdgeBelow ? dest : nullptr;
   1791 
   1792     // If bottom still has some connected edges, set its partner to dest.
   1793     bottom->fPartner = bottom->fFirstEdgeAbove || bottom->fFirstEdgeBelow ? dest : nullptr;
   1794 }
   1795 
   1796 bool is_overlap_edge(Edge* e) {
   1797     if (e->fType == Edge::Type::kOuter) {
   1798         return e->fWinding != 0 && e->fWinding != 1;
   1799     } else if (e->fType == Edge::Type::kInner) {
   1800         return e->fWinding != 0 && e->fWinding != -2;
   1801     } else {
   1802         return false;
   1803     }
   1804 }
   1805 
   1806 // This is a stripped-down version of tessellate() which computes edges which
   1807 // join two filled regions, which represent overlap regions, and collapses them.
   1808 bool collapse_overlap_regions(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
   1809     LOG("\nfinding overlap regions\n");
   1810     EdgeList activeEdges;
   1811     EventList events;
   1812     for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
   1813         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
   1814             continue;
   1815         }
   1816         Edge* leftEnclosingEdge;
   1817         Edge* rightEnclosingEdge;
   1818         find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
   1819         for (Edge* e = v->fLastEdgeAbove; e; e = e->fPrevEdgeAbove) {
   1820             Edge* prev = e->fPrevEdgeAbove ? e->fPrevEdgeAbove : leftEnclosingEdge;
   1821             remove_edge(e, &activeEdges);
   1822             if (prev) {
   1823                 e->fWinding -= prev->fWinding;
   1824             }
   1825         }
   1826         Edge* prev = leftEnclosingEdge;
   1827         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
   1828             if (prev) {
   1829                 e->fWinding += prev->fWinding;
   1830                 e->fOverlap = e->fOverlap || is_overlap_edge(prev);
   1831             }
   1832             e->fOverlap = e->fOverlap || is_overlap_edge(e);
   1833             if (e->fOverlap) {
   1834                 // If this edge borders a zero-winding area, it's a boundary; don't disconnect it.
   1835                 bool isOuterBoundary = e->fType == Edge::Type::kOuter &&
   1836                                        (!prev || prev->fWinding == 0 || e->fWinding == 0);
   1837                 create_event(e, isOuterBoundary, &events, alloc);
   1838             }
   1839             insert_edge(e, prev, &activeEdges);
   1840             prev = e;
   1841         }
   1842     }
   1843     LOG("\ncollapsing overlap regions\n");
   1844     if (events.count() == 0) {
   1845         return false;
   1846     }
   1847     while (events.count() > 0) {
   1848         Event* event = events.peek();
   1849         events.pop();
   1850         event->apply(mesh, c, alloc);
   1851     }
   1852     return true;
   1853 }
   1854 
   1855 bool inversion(Vertex* prev, Vertex* next, Edge* origEdge, Comparator& c) {
   1856     if (!prev || !next) {
   1857         return true;
   1858     }
   1859     int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
   1860     return winding != origEdge->fWinding;
   1861 }
   1862 
   1863 // Stage 5d: Displace edges by half a pixel inward and outward along their normals. Intersect to
   1864 // find new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a
   1865 // new antialiased mesh from those vertices.
   1866 
   1867 void stroke_boundary(EdgeList* boundary, VertexList* innerMesh, VertexList* outerMesh,
   1868                      Comparator& c, SkArenaAlloc& alloc) {
   1869     LOG("\nstroking boundary\n");
   1870     // A boundary with fewer than 3 edges is degenerate.
   1871     if (!boundary->fHead || !boundary->fHead->fRight || !boundary->fHead->fRight->fRight) {
   1872         return;
   1873     }
   1874     Edge* prevEdge = boundary->fTail;
   1875     Vertex* prevV = prevEdge->fWinding > 0 ? prevEdge->fTop : prevEdge->fBottom;
   1876     SkVector prevNormal;
   1877     get_edge_normal(prevEdge, &prevNormal);
   1878     double radius = 0.5;
   1879     Line prevInner(prevEdge->fLine);
   1880     prevInner.fC -= radius;
   1881     Line prevOuter(prevEdge->fLine);
   1882     prevOuter.fC += radius;
   1883     VertexList innerVertices;
   1884     VertexList outerVertices;
   1885     bool innerInversion = true;
   1886     bool outerInversion = true;
   1887     for (Edge* e = boundary->fHead; e != nullptr; e = e->fRight) {
   1888         Vertex* v = e->fWinding > 0 ? e->fTop : e->fBottom;
   1889         SkVector normal;
   1890         get_edge_normal(e, &normal);
   1891         Line inner(e->fLine);
   1892         inner.fC -= radius;
   1893         Line outer(e->fLine);
   1894         outer.fC += radius;
   1895         SkPoint innerPoint, outerPoint;
   1896         LOG("stroking vertex %g (%g, %g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
   1897         if (!prevEdge->fLine.nearParallel(e->fLine) && prevInner.intersect(inner, &innerPoint) &&
   1898             prevOuter.intersect(outer, &outerPoint)) {
   1899             float cosAngle = normal.dot(prevNormal);
   1900             if (cosAngle < -kCosMiterAngle) {
   1901                 Vertex* nextV = e->fWinding > 0 ? e->fBottom : e->fTop;
   1902 
   1903                 // This is a pointy vertex whose angle is smaller than the threshold; miter it.
   1904                 Line bisector(innerPoint, outerPoint);
   1905                 Line tangent(v->fPoint, v->fPoint + SkPoint::Make(bisector.fA, bisector.fB));
   1906                 if (tangent.fA == 0 && tangent.fB == 0) {
   1907                     continue;
   1908                 }
   1909                 tangent.normalize();
   1910                 Line innerTangent(tangent);
   1911                 Line outerTangent(tangent);
   1912                 innerTangent.fC -= 0.5;
   1913                 outerTangent.fC += 0.5;
   1914                 SkPoint innerPoint1, innerPoint2, outerPoint1, outerPoint2;
   1915                 if (prevNormal.cross(normal) > 0) {
   1916                     // Miter inner points
   1917                     if (!innerTangent.intersect(prevInner, &innerPoint1) ||
   1918                         !innerTangent.intersect(inner, &innerPoint2) ||
   1919                         !outerTangent.intersect(bisector, &outerPoint)) {
   1920                         continue;
   1921                     }
   1922                     Line prevTangent(prevV->fPoint,
   1923                                      prevV->fPoint + SkVector::Make(prevOuter.fA, prevOuter.fB));
   1924                     Line nextTangent(nextV->fPoint,
   1925                                      nextV->fPoint + SkVector::Make(outer.fA, outer.fB));
   1926                     if (prevTangent.dist(outerPoint) > 0) {
   1927                         bisector.intersect(prevTangent, &outerPoint);
   1928                     }
   1929                     if (nextTangent.dist(outerPoint) < 0) {
   1930                         bisector.intersect(nextTangent, &outerPoint);
   1931                     }
   1932                     outerPoint1 = outerPoint2 = outerPoint;
   1933                 } else {
   1934                     // Miter outer points
   1935                     if (!outerTangent.intersect(prevOuter, &outerPoint1) ||
   1936                         !outerTangent.intersect(outer, &outerPoint2)) {
   1937                         continue;
   1938                     }
   1939                     Line prevTangent(prevV->fPoint,
   1940                                      prevV->fPoint + SkVector::Make(prevInner.fA, prevInner.fB));
   1941                     Line nextTangent(nextV->fPoint,
   1942                                      nextV->fPoint + SkVector::Make(inner.fA, inner.fB));
   1943                     if (prevTangent.dist(innerPoint) > 0) {
   1944                         bisector.intersect(prevTangent, &innerPoint);
   1945                     }
   1946                     if (nextTangent.dist(innerPoint) < 0) {
   1947                         bisector.intersect(nextTangent, &innerPoint);
   1948                     }
   1949                     innerPoint1 = innerPoint2 = innerPoint;
   1950                 }
   1951                 if (!innerPoint1.isFinite() || !innerPoint2.isFinite() ||
   1952                     !outerPoint1.isFinite() || !outerPoint2.isFinite()) {
   1953                     continue;
   1954                 }
   1955                 LOG("inner (%g, %g), (%g, %g), ",
   1956                     innerPoint1.fX, innerPoint1.fY, innerPoint2.fX, innerPoint2.fY);
   1957                 LOG("outer (%g, %g), (%g, %g)\n",
   1958                     outerPoint1.fX, outerPoint1.fY, outerPoint2.fX, outerPoint2.fY);
   1959                 Vertex* innerVertex1 = alloc.make<Vertex>(innerPoint1, 255);
   1960                 Vertex* innerVertex2 = alloc.make<Vertex>(innerPoint2, 255);
   1961                 Vertex* outerVertex1 = alloc.make<Vertex>(outerPoint1, 0);
   1962                 Vertex* outerVertex2 = alloc.make<Vertex>(outerPoint2, 0);
   1963                 innerVertex1->fPartner = outerVertex1;
   1964                 innerVertex2->fPartner = outerVertex2;
   1965                 outerVertex1->fPartner = innerVertex1;
   1966                 outerVertex2->fPartner = innerVertex2;
   1967                 if (!inversion(innerVertices.fTail, innerVertex1, prevEdge, c)) {
   1968                     innerInversion = false;
   1969                 }
   1970                 if (!inversion(outerVertices.fTail, outerVertex1, prevEdge, c)) {
   1971                     outerInversion = false;
   1972                 }
   1973                 innerVertices.append(innerVertex1);
   1974                 innerVertices.append(innerVertex2);
   1975                 outerVertices.append(outerVertex1);
   1976                 outerVertices.append(outerVertex2);
   1977             } else {
   1978                 LOG("inner (%g, %g), ", innerPoint.fX, innerPoint.fY);
   1979                 LOG("outer (%g, %g)\n", outerPoint.fX, outerPoint.fY);
   1980                 Vertex* innerVertex = alloc.make<Vertex>(innerPoint, 255);
   1981                 Vertex* outerVertex = alloc.make<Vertex>(outerPoint, 0);
   1982                 innerVertex->fPartner = outerVertex;
   1983                 outerVertex->fPartner = innerVertex;
   1984                 if (!inversion(innerVertices.fTail, innerVertex, prevEdge, c)) {
   1985                     innerInversion = false;
   1986                 }
   1987                 if (!inversion(outerVertices.fTail, outerVertex, prevEdge, c)) {
   1988                     outerInversion = false;
   1989                 }
   1990                 innerVertices.append(innerVertex);
   1991                 outerVertices.append(outerVertex);
   1992             }
   1993         }
   1994         prevInner = inner;
   1995         prevOuter = outer;
   1996         prevV = v;
   1997         prevEdge = e;
   1998         prevNormal = normal;
   1999     }
   2000     if (!inversion(innerVertices.fTail, innerVertices.fHead, prevEdge, c)) {
   2001         innerInversion = false;
   2002     }
   2003     if (!inversion(outerVertices.fTail, outerVertices.fHead, prevEdge, c)) {
   2004         outerInversion = false;
   2005     }
   2006     // Outer edges get 1 winding, and inner edges get -2 winding. This ensures that the interior
   2007     // is always filled (1 + -2 = -1 for normal cases, 1 + 2 = 3 for thin features where the
   2008     // interior inverts).
   2009     // For total inversion cases, the shape has now reversed handedness, so invert the winding
   2010     // so it will be detected during collapse_overlap_regions().
   2011     int innerWinding = innerInversion ? 2 : -2;
   2012     int outerWinding = outerInversion ? -1 : 1;
   2013     for (Vertex* v = innerVertices.fHead; v && v->fNext; v = v->fNext) {
   2014         connect(v, v->fNext, Edge::Type::kInner, c, alloc, innerWinding);
   2015     }
   2016     connect(innerVertices.fTail, innerVertices.fHead, Edge::Type::kInner, c, alloc, innerWinding);
   2017     for (Vertex* v = outerVertices.fHead; v && v->fNext; v = v->fNext) {
   2018         connect(v, v->fNext, Edge::Type::kOuter, c, alloc, outerWinding);
   2019     }
   2020     connect(outerVertices.fTail, outerVertices.fHead, Edge::Type::kOuter, c, alloc, outerWinding);
   2021     innerMesh->append(innerVertices);
   2022     outerMesh->append(outerVertices);
   2023 }
   2024 
   2025 void extract_boundary(EdgeList* boundary, Edge* e, SkPath::FillType fillType, SkArenaAlloc& alloc) {
   2026     LOG("\nextracting boundary\n");
   2027     bool down = apply_fill_type(fillType, e->fWinding);
   2028     while (e) {
   2029         e->fWinding = down ? 1 : -1;
   2030         Edge* next;
   2031         e->fLine.normalize();
   2032         e->fLine = e->fLine * e->fWinding;
   2033         boundary->append(e);
   2034         if (down) {
   2035             // Find outgoing edge, in clockwise order.
   2036             if ((next = e->fNextEdgeAbove)) {
   2037                 down = false;
   2038             } else if ((next = e->fBottom->fLastEdgeBelow)) {
   2039                 down = true;
   2040             } else if ((next = e->fPrevEdgeAbove)) {
   2041                 down = false;
   2042             }
   2043         } else {
   2044             // Find outgoing edge, in counter-clockwise order.
   2045             if ((next = e->fPrevEdgeBelow)) {
   2046                 down = true;
   2047             } else if ((next = e->fTop->fFirstEdgeAbove)) {
   2048                 down = false;
   2049             } else if ((next = e->fNextEdgeBelow)) {
   2050                 down = true;
   2051             }
   2052         }
   2053         disconnect(e);
   2054         e = next;
   2055     }
   2056 }
   2057 
   2058 // Stage 5b: Extract boundaries from mesh, simplify and stroke them into a new mesh.
   2059 
   2060 void extract_boundaries(const VertexList& inMesh, VertexList* innerVertices,
   2061                         VertexList* outerVertices, SkPath::FillType fillType,
   2062                         Comparator& c, SkArenaAlloc& alloc) {
   2063     remove_non_boundary_edges(inMesh, fillType, alloc);
   2064     for (Vertex* v = inMesh.fHead; v; v = v->fNext) {
   2065         while (v->fFirstEdgeBelow) {
   2066             EdgeList boundary;
   2067             extract_boundary(&boundary, v->fFirstEdgeBelow, fillType, alloc);
   2068             simplify_boundary(&boundary, c, alloc);
   2069             stroke_boundary(&boundary, innerVertices, outerVertices, c, alloc);
   2070         }
   2071     }
   2072 }
   2073 
   2074 // This is a driver function that calls stages 2-5 in turn.
   2075 
   2076 void contours_to_mesh(VertexList* contours, int contourCnt, bool antialias,
   2077                       VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
   2078 #if LOGGING_ENABLED
   2079     for (int i = 0; i < contourCnt; ++i) {
   2080         Vertex* v = contours[i].fHead;
   2081         SkASSERT(v);
   2082         LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
   2083         for (v = v->fNext; v; v = v->fNext) {
   2084             LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
   2085         }
   2086     }
   2087 #endif
   2088     sanitize_contours(contours, contourCnt, antialias);
   2089     build_edges(contours, contourCnt, mesh, c, alloc);
   2090 }
   2091 
   2092 void sort_mesh(VertexList* vertices, Comparator& c, SkArenaAlloc& alloc) {
   2093     if (!vertices || !vertices->fHead) {
   2094         return;
   2095     }
   2096 
   2097     // Sort vertices in Y (secondarily in X).
   2098     if (c.fDirection == Comparator::Direction::kHorizontal) {
   2099         merge_sort<sweep_lt_horiz>(vertices);
   2100     } else {
   2101         merge_sort<sweep_lt_vert>(vertices);
   2102     }
   2103 #if LOGGING_ENABLED
   2104     for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
   2105         static float gID = 0.0f;
   2106         v->fID = gID++;
   2107     }
   2108 #endif
   2109 }
   2110 
   2111 Poly* contours_to_polys(VertexList* contours, int contourCnt, SkPath::FillType fillType,
   2112                         const SkRect& pathBounds, bool antialias, VertexList* outerMesh,
   2113                         SkArenaAlloc& alloc) {
   2114     Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
   2115                                                           : Comparator::Direction::kVertical);
   2116     VertexList mesh;
   2117     contours_to_mesh(contours, contourCnt, antialias, &mesh, c, alloc);
   2118     sort_mesh(&mesh, c, alloc);
   2119     merge_coincident_vertices(&mesh, c, alloc);
   2120     simplify(&mesh, c, alloc);
   2121     if (antialias) {
   2122         VertexList innerMesh;
   2123         extract_boundaries(mesh, &innerMesh, outerMesh, fillType, c, alloc);
   2124         sort_mesh(&innerMesh, c, alloc);
   2125         sort_mesh(outerMesh, c, alloc);
   2126         merge_coincident_vertices(&innerMesh, c, alloc);
   2127         bool was_complex = merge_coincident_vertices(outerMesh, c, alloc);
   2128         was_complex = simplify(&innerMesh, c, alloc) || was_complex;
   2129         was_complex = simplify(outerMesh, c, alloc) || was_complex;
   2130         LOG("\ninner mesh before:\n");
   2131         dump_mesh(innerMesh);
   2132         LOG("\nouter mesh before:\n");
   2133         dump_mesh(*outerMesh);
   2134         was_complex = collapse_overlap_regions(&innerMesh, c, alloc) || was_complex;
   2135         was_complex = collapse_overlap_regions(outerMesh, c, alloc) || was_complex;
   2136         if (was_complex) {
   2137             LOG("found complex mesh; taking slow path\n");
   2138             VertexList aaMesh;
   2139             LOG("\ninner mesh after:\n");
   2140             dump_mesh(innerMesh);
   2141             LOG("\nouter mesh after:\n");
   2142             dump_mesh(*outerMesh);
   2143             connect_partners(outerMesh, c, alloc);
   2144             connect_partners(&innerMesh, c, alloc);
   2145             sorted_merge(&innerMesh, outerMesh, &aaMesh, c);
   2146             merge_coincident_vertices(&aaMesh, c, alloc);
   2147             simplify(&aaMesh, c, alloc);
   2148             dump_mesh(aaMesh);
   2149             outerMesh->fHead = outerMesh->fTail = nullptr;
   2150             return tessellate(aaMesh, alloc);
   2151         } else {
   2152             LOG("no complex polygons; taking fast path\n");
   2153             return tessellate(innerMesh, alloc);
   2154         }
   2155     } else {
   2156         return tessellate(mesh, alloc);
   2157     }
   2158 }
   2159 
   2160 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
   2161 void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, bool emitCoverage, void* data) {
   2162     for (Poly* poly = polys; poly; poly = poly->fNext) {
   2163         if (apply_fill_type(fillType, poly)) {
   2164             data = poly->emit(emitCoverage, data);
   2165         }
   2166     }
   2167     return data;
   2168 }
   2169 
   2170 Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
   2171                     int contourCnt, SkArenaAlloc& alloc, bool antialias, bool* isLinear,
   2172                     VertexList* outerMesh) {
   2173     SkPath::FillType fillType = path.getFillType();
   2174     if (SkPath::IsInverseFillType(fillType)) {
   2175         contourCnt++;
   2176     }
   2177     std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]);
   2178 
   2179     path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
   2180     return contours_to_polys(contours.get(), contourCnt, path.getFillType(), path.getBounds(),
   2181                              antialias, outerMesh, alloc);
   2182 }
   2183 
   2184 int get_contour_count(const SkPath& path, SkScalar tolerance) {
   2185     int contourCnt;
   2186     int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tolerance);
   2187     if (maxPts <= 0) {
   2188         return 0;
   2189     }
   2190     return contourCnt;
   2191 }
   2192 
   2193 int64_t count_points(Poly* polys, SkPath::FillType fillType) {
   2194     int64_t count = 0;
   2195     for (Poly* poly = polys; poly; poly = poly->fNext) {
   2196         if (apply_fill_type(fillType, poly) && poly->fCount >= 3) {
   2197             count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
   2198         }
   2199     }
   2200     return count;
   2201 }
   2202 
   2203 int64_t count_outer_mesh_points(const VertexList& outerMesh) {
   2204     int64_t count = 0;
   2205     for (Vertex* v = outerMesh.fHead; v; v = v->fNext) {
   2206         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
   2207             count += TESSELLATOR_WIREFRAME ? 12 : 6;
   2208         }
   2209     }
   2210     return count;
   2211 }
   2212 
   2213 void* outer_mesh_to_triangles(const VertexList& outerMesh, bool emitCoverage, void* data) {
   2214     for (Vertex* v = outerMesh.fHead; v; v = v->fNext) {
   2215         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
   2216             Vertex* v0 = e->fTop;
   2217             Vertex* v1 = e->fBottom;
   2218             Vertex* v2 = e->fBottom->fPartner;
   2219             Vertex* v3 = e->fTop->fPartner;
   2220             data = emit_triangle(v0, v1, v2, emitCoverage, data);
   2221             data = emit_triangle(v0, v2, v3, emitCoverage, data);
   2222         }
   2223     }
   2224     return data;
   2225 }
   2226 
   2227 } // namespace
   2228 
   2229 namespace GrTessellator {
   2230 
   2231 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
   2232 
   2233 int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
   2234                     VertexAllocator* vertexAllocator, bool antialias, bool* isLinear) {
   2235     int contourCnt = get_contour_count(path, tolerance);
   2236     if (contourCnt <= 0) {
   2237         *isLinear = true;
   2238         return 0;
   2239     }
   2240     SkArenaAlloc alloc(kArenaChunkSize);
   2241     VertexList outerMesh;
   2242     Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, antialias,
   2243                                 isLinear, &outerMesh);
   2244     SkPath::FillType fillType = antialias ? SkPath::kWinding_FillType : path.getFillType();
   2245     int64_t count64 = count_points(polys, fillType);
   2246     if (antialias) {
   2247         count64 += count_outer_mesh_points(outerMesh);
   2248     }
   2249     if (0 == count64 || count64 > SK_MaxS32) {
   2250         return 0;
   2251     }
   2252     int count = count64;
   2253 
   2254     void* verts = vertexAllocator->lock(count);
   2255     if (!verts) {
   2256         SkDebugf("Could not allocate vertices\n");
   2257         return 0;
   2258     }
   2259 
   2260     LOG("emitting %d verts\n", count);
   2261     void* end = polys_to_triangles(polys, fillType, antialias, verts);
   2262     end = outer_mesh_to_triangles(outerMesh, true, end);
   2263 
   2264     int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
   2265                                        / vertexAllocator->stride());
   2266     SkASSERT(actualCount <= count);
   2267     vertexAllocator->unlock(actualCount);
   2268     return actualCount;
   2269 }
   2270 
   2271 int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
   2272                    GrTessellator::WindingVertex** verts) {
   2273     int contourCnt = get_contour_count(path, tolerance);
   2274     if (contourCnt <= 0) {
   2275         *verts = nullptr;
   2276         return 0;
   2277     }
   2278     SkArenaAlloc alloc(kArenaChunkSize);
   2279     bool isLinear;
   2280     Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, false, &isLinear,
   2281                                 nullptr);
   2282     SkPath::FillType fillType = path.getFillType();
   2283     int64_t count64 = count_points(polys, fillType);
   2284     if (0 == count64 || count64 > SK_MaxS32) {
   2285         *verts = nullptr;
   2286         return 0;
   2287     }
   2288     int count = count64;
   2289 
   2290     *verts = new GrTessellator::WindingVertex[count];
   2291     GrTessellator::WindingVertex* vertsEnd = *verts;
   2292     SkPoint* points = new SkPoint[count];
   2293     SkPoint* pointsEnd = points;
   2294     for (Poly* poly = polys; poly; poly = poly->fNext) {
   2295         if (apply_fill_type(fillType, poly)) {
   2296             SkPoint* start = pointsEnd;
   2297             pointsEnd = static_cast<SkPoint*>(poly->emit(false, pointsEnd));
   2298             while (start != pointsEnd) {
   2299                 vertsEnd->fPos = *start;
   2300                 vertsEnd->fWinding = poly->fWinding;
   2301                 ++start;
   2302                 ++vertsEnd;
   2303             }
   2304         }
   2305     }
   2306     int actualCount = static_cast<int>(vertsEnd - *verts);
   2307     SkASSERT(actualCount <= count);
   2308     SkASSERT(pointsEnd - points == actualCount);
   2309     delete[] points;
   2310     return actualCount;
   2311 }
   2312 
   2313 } // namespace
   2314