1 /* 2 * Copyright 2017 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "GrCCCubicShader.h" 9 10 #include "glsl/GrGLSLFragmentShaderBuilder.h" 11 #include "glsl/GrGLSLProgramBuilder.h" 12 #include "glsl/GrGLSLVertexGeoBuilder.h" 13 14 using Shader = GrCCCoverageProcessor::Shader; 15 16 void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, 17 const char* wind, const char** /*outHull4*/) const { 18 // Find the cubic's power basis coefficients. 19 s->codeAppendf("float2x4 C = float4x4(-1, 3, -3, 1, " 20 " 3, -6, 3, 0, " 21 "-3, 3, 0, 0, " 22 " 1, 0, 0, 0) * transpose(%s);", pts); 23 24 // Find the cubic's inflection function. 25 s->codeAppend ("float D3 = +determinant(float2x2(C[0].yz, C[1].yz));"); 26 s->codeAppend ("float D2 = -determinant(float2x2(C[0].xz, C[1].xz));"); 27 s->codeAppend ("float D1 = +determinant(float2x2(C));"); 28 29 // Shift the exponents in D so the largest magnitude falls somewhere in 1..2. This protects us 30 // from overflow while solving for roots and KLM functionals. 31 s->codeAppend ("float Dmax = max(max(abs(D1), abs(D2)), abs(D3));"); 32 s->codeAppend ("float norm;"); 33 if (s->getProgramBuilder()->shaderCaps()->fpManipulationSupport()) { 34 s->codeAppend ("int exp;"); 35 s->codeAppend ("frexp(Dmax, exp);"); 36 s->codeAppend ("norm = ldexp(1, 1 - exp);"); 37 } else { 38 s->codeAppend ("norm = 1/Dmax;"); // Dmax will not be 0 because we cull line cubics on CPU. 39 } 40 s->codeAppend ("D3 *= norm;"); 41 s->codeAppend ("D2 *= norm;"); 42 s->codeAppend ("D1 *= norm;"); 43 44 // Calculate the KLM matrix. 45 s->declareGlobal(fKLMMatrix); 46 s->codeAppend ("float discr = 3*D2*D2 - 4*D1*D3;"); 47 s->codeAppend ("float x = discr >= 0 ? 3 : 1;"); 48 s->codeAppend ("float q = sqrt(x * abs(discr));"); 49 s->codeAppend ("q = x*D2 + (D2 >= 0 ? q : -q);"); 50 51 s->codeAppend ("float2 l, m;"); 52 s->codeAppend ("l.ts = float2(q, 2*x * D1);"); 53 s->codeAppend ("m.ts = float2(2, q) * (discr >= 0 ? float2(D3, 1) " 54 ": float2(D2*D2 - D3*D1, D1));"); 55 56 s->codeAppend ("float4 K;"); 57 s->codeAppend ("float4 lm = l.sstt * m.stst;"); 58 s->codeAppend ("K = float4(0, lm.x, -lm.y - lm.z, lm.w);"); 59 60 s->codeAppend ("float4 L, M;"); 61 s->codeAppend ("lm.yz += 2*lm.zy;"); 62 s->codeAppend ("L = float4(-1,x,-x,1) * l.sstt * (discr >= 0 ? l.ssst * l.sttt : lm);"); 63 s->codeAppend ("M = float4(-1,x,-x,1) * m.sstt * (discr >= 0 ? m.ssst * m.sttt : lm.xzyw);"); 64 65 s->codeAppend ("int middlerow = abs(D2) > abs(D1) ? 2 : 1;"); 66 s->codeAppend ("float3x3 CI = inverse(float3x3(C[0][0], C[0][middlerow], C[0][3], " 67 "C[1][0], C[1][middlerow], C[1][3], " 68 " 0, 0, 1));"); 69 s->codeAppendf("%s = CI * float3x3(K[0], K[middlerow], K[3], " 70 "L[0], L[middlerow], L[3], " 71 "M[0], M[middlerow], M[3]);", fKLMMatrix.c_str()); 72 73 // Evaluate the cubic at T=.5 for a mid-ish point. 74 s->codeAppendf("float2 midpoint = %s * float4(.125, .375, .375, .125);", pts); 75 76 // Orient the KLM matrix so L & M are both positive on the side of the curve we wish to fill. 77 s->codeAppendf("float2 orientation = sign(float3(midpoint, 1) * float2x3(%s[1], %s[2]));", 78 fKLMMatrix.c_str(), fKLMMatrix.c_str()); 79 s->codeAppendf("%s *= float3x3(orientation[0] * orientation[1], 0, 0, " 80 "0, orientation[0], 0, " 81 "0, 0, orientation[1]);", fKLMMatrix.c_str()); 82 83 // Determine the amount of additional coverage to subtract out for the flat edge (P3 -> P0). 84 s->declareGlobal(fEdgeDistanceEquation); 85 s->codeAppendf("int edgeidx0 = %s > 0 ? 3 : 0;", wind); 86 s->codeAppendf("float2 edgept0 = %s[edgeidx0];", pts); 87 s->codeAppendf("float2 edgept1 = %s[3 - edgeidx0];", pts); 88 Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str()); 89 } 90 91 void GrCCCubicShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, 92 GrGLSLVarying::Scope scope, SkString* code, 93 const char* position, const char* coverage, 94 const char* cornerCoverage) { 95 fKLM_fEdge.reset(kFloat4_GrSLType, scope); 96 varyingHandler->addVarying("klm_and_edge", &fKLM_fEdge); 97 code->appendf("float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str()); 98 // We give L & M both the same sign as wind, in order to pass this value to the fragment shader. 99 // (Cubics are pre-chopped such that L & M do not change sign within any individual segment.) 100 code->appendf("%s.xyz = klm * float3(1, %s, %s);", 101 OutName(fKLM_fEdge), coverage, coverage); // coverage == wind on curves. 102 code->appendf("%s.w = dot(float3(%s, 1), %s);", // Flat edge opposite the curve. 103 OutName(fKLM_fEdge), position, fEdgeDistanceEquation.c_str()); 104 105 fGradMatrix.reset(kFloat4_GrSLType, scope); 106 varyingHandler->addVarying("grad_matrix", &fGradMatrix); 107 code->appendf("%s.xy = 2*bloat * 3 * klm[0] * %s[0].xy;", 108 OutName(fGradMatrix), fKLMMatrix.c_str()); 109 code->appendf("%s.zw = -2*bloat * (klm[1] * %s[2].xy + klm[2] * %s[1].xy);", 110 OutName(fGradMatrix), fKLMMatrix.c_str(), fKLMMatrix.c_str()); 111 112 if (cornerCoverage) { 113 code->appendf("half hull_coverage; {"); 114 this->calcHullCoverage(code, OutName(fKLM_fEdge), OutName(fGradMatrix), "hull_coverage"); 115 code->appendf("}"); 116 fCornerCoverage.reset(kHalf2_GrSLType, scope); 117 varyingHandler->addVarying("corner_coverage", &fCornerCoverage); 118 code->appendf("%s = half2(hull_coverage, 1) * %s;", 119 OutName(fCornerCoverage), cornerCoverage); 120 } 121 } 122 123 void GrCCCubicShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f, 124 const char* outputCoverage) const { 125 this->calcHullCoverage(&AccessCodeString(f), fKLM_fEdge.fsIn(), fGradMatrix.fsIn(), 126 outputCoverage); 127 128 // Wind is the sign of both L and/or M. Take the sign of whichever has the larger magnitude. 129 // (In reality, either would be fine because we chop cubics with more than a half pixel of 130 // padding around the L & M lines, so neither should approach zero.) 131 f->codeAppend ("half wind = sign(l + m);"); 132 f->codeAppendf("%s *= wind;", outputCoverage); 133 134 if (fCornerCoverage.fsIn()) { 135 f->codeAppendf("%s = %s.x * %s.y + %s;", // Attenuated corner coverage. 136 outputCoverage, fCornerCoverage.fsIn(), fCornerCoverage.fsIn(), 137 outputCoverage); 138 } 139 } 140 141 void GrCCCubicShader::calcHullCoverage(SkString* code, const char* klmAndEdge, 142 const char* gradMatrix, const char* outputCoverage) const { 143 code->appendf("float k = %s.x, l = %s.y, m = %s.z;", klmAndEdge, klmAndEdge, klmAndEdge); 144 code->append ("float f = k*k*k - l*m;"); 145 code->appendf("float2 grad = %s.xy * k + %s.zw;", gradMatrix, gradMatrix); 146 code->append ("float fwidth = abs(grad.x) + abs(grad.y);"); 147 code->appendf("%s = min(0.5 - f/fwidth, 1);", outputCoverage); // Curve coverage. 148 code->appendf("half d = min(%s.w, 0);", klmAndEdge); // Flat edge opposite the curve. 149 code->appendf("%s = max(%s + d, 0);", outputCoverage, outputCoverage); // Total hull coverage. 150 } 151