Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkPathOpsCubic_DEFINED
      9 #define SkPathOpsCubic_DEFINED
     10 
     11 #include "SkArenaAlloc.h"
     12 #include "SkPath.h"
     13 #include "SkPathOpsTCurve.h"
     14 
     15 struct SkDCubicPair;
     16 
     17 struct SkDCubic {
     18     static const int kPointCount = 4;
     19     static const int kPointLast = kPointCount - 1;
     20     static const int kMaxIntersections = 9;
     21 
     22     enum SearchAxis {
     23         kXAxis,
     24         kYAxis
     25     };
     26 
     27     bool collapsed() const {
     28         return fPts[0].approximatelyEqual(fPts[1]) && fPts[0].approximatelyEqual(fPts[2])
     29                 && fPts[0].approximatelyEqual(fPts[3]);
     30     }
     31 
     32     bool controlsInside() const {
     33         SkDVector v01 = fPts[0] - fPts[1];
     34         SkDVector v02 = fPts[0] - fPts[2];
     35         SkDVector v03 = fPts[0] - fPts[3];
     36         SkDVector v13 = fPts[1] - fPts[3];
     37         SkDVector v23 = fPts[2] - fPts[3];
     38         return v03.dot(v01) > 0 && v03.dot(v02) > 0 && v03.dot(v13) > 0 && v03.dot(v23) > 0;
     39     }
     40 
     41     static bool IsConic() { return false; }
     42 
     43     const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
     44     SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
     45 
     46     void align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const;
     47     double binarySearch(double min, double max, double axisIntercept, SearchAxis xAxis) const;
     48     double calcPrecision() const;
     49     SkDCubicPair chopAt(double t) const;
     50     static void Coefficients(const double* cubic, double* A, double* B, double* C, double* D);
     51     static int ComplexBreak(const SkPoint pts[4], SkScalar* t);
     52     int convexHull(char order[kPointCount]) const;
     53 
     54     void debugInit() {
     55         sk_bzero(fPts, sizeof(fPts));
     56     }
     57 
     58     void debugSet(const SkDPoint* pts);
     59 
     60     void dump() const;  // callable from the debugger when the implementation code is linked in
     61     void dumpID(int id) const;
     62     void dumpInner() const;
     63     SkDVector dxdyAtT(double t) const;
     64     bool endsAreExtremaInXOrY() const;
     65     static int FindExtrema(const double src[], double tValue[2]);
     66     int findInflections(double tValues[2]) const;
     67 
     68     static int FindInflections(const SkPoint a[kPointCount], double tValues[2]) {
     69         SkDCubic cubic;
     70         return cubic.set(a).findInflections(tValues);
     71     }
     72 
     73     int findMaxCurvature(double tValues[]) const;
     74 
     75 #ifdef SK_DEBUG
     76     SkOpGlobalState* globalState() const { return fDebugGlobalState; }
     77 #endif
     78 
     79     bool hullIntersects(const SkDCubic& c2, bool* isLinear) const;
     80     bool hullIntersects(const SkDConic& c, bool* isLinear) const;
     81     bool hullIntersects(const SkDQuad& c2, bool* isLinear) const;
     82     bool hullIntersects(const SkDPoint* pts, int ptCount, bool* isLinear) const;
     83     bool isLinear(int startIndex, int endIndex) const;
     84     static int maxIntersections() { return kMaxIntersections; }
     85     bool monotonicInX() const;
     86     bool monotonicInY() const;
     87     void otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const;
     88     static int pointCount() { return kPointCount; }
     89     static int pointLast() { return kPointLast; }
     90     SkDPoint ptAtT(double t) const;
     91     static int RootsReal(double A, double B, double C, double D, double t[3]);
     92     static int RootsValidT(const double A, const double B, const double C, double D, double s[3]);
     93 
     94     int searchRoots(double extremes[6], int extrema, double axisIntercept,
     95                     SearchAxis xAxis, double* validRoots) const;
     96 
     97     bool toFloatPoints(SkPoint* ) const;
     98     /**
     99      *  Return the number of valid roots (0 < root < 1) for this cubic intersecting the
    100      *  specified horizontal line.
    101      */
    102     int horizontalIntersect(double yIntercept, double roots[3]) const;
    103     /**
    104      *  Return the number of valid roots (0 < root < 1) for this cubic intersecting the
    105      *  specified vertical line.
    106      */
    107     int verticalIntersect(double xIntercept, double roots[3]) const;
    108 
    109 // add debug only global pointer so asserts can be skipped by fuzzers
    110     const SkDCubic& set(const SkPoint pts[kPointCount]
    111             SkDEBUGPARAMS(SkOpGlobalState* state = nullptr)) {
    112         fPts[0] = pts[0];
    113         fPts[1] = pts[1];
    114         fPts[2] = pts[2];
    115         fPts[3] = pts[3];
    116         SkDEBUGCODE(fDebugGlobalState = state);
    117         return *this;
    118     }
    119 
    120     SkDCubic subDivide(double t1, double t2) const;
    121     void subDivide(double t1, double t2, SkDCubic* c) const { *c = this->subDivide(t1, t2); }
    122 
    123     static SkDCubic SubDivide(const SkPoint a[kPointCount], double t1, double t2) {
    124         SkDCubic cubic;
    125         return cubic.set(a).subDivide(t1, t2);
    126     }
    127 
    128     void subDivide(const SkDPoint& a, const SkDPoint& d, double t1, double t2, SkDPoint p[2]) const;
    129 
    130     static void SubDivide(const SkPoint pts[kPointCount], const SkDPoint& a, const SkDPoint& d, double t1,
    131                           double t2, SkDPoint p[2]) {
    132         SkDCubic cubic;
    133         cubic.set(pts).subDivide(a, d, t1, t2, p);
    134     }
    135 
    136     double top(const SkDCubic& dCurve, double startT, double endT, SkDPoint*topPt) const;
    137     SkDQuad toQuad() const;
    138 
    139     static const int gPrecisionUnit;
    140     SkDPoint fPts[kPointCount];
    141     SkDEBUGCODE(SkOpGlobalState* fDebugGlobalState);
    142 };
    143 
    144 /* Given the set [0, 1, 2, 3], and two of the four members, compute an XOR mask
    145    that computes the other two. Note that:
    146 
    147    one ^ two == 3 for (0, 3), (1, 2)
    148    one ^ two <  3 for (0, 1), (0, 2), (1, 3), (2, 3)
    149    3 - (one ^ two) is either 0, 1, or 2
    150    1 >> (3 - (one ^ two)) is either 0 or 1
    151 thus:
    152    returned == 2 for (0, 3), (1, 2)
    153    returned == 3 for (0, 1), (0, 2), (1, 3), (2, 3)
    154 given that:
    155    (0, 3) ^ 2 -> (2, 1)  (1, 2) ^ 2 -> (3, 0)
    156    (0, 1) ^ 3 -> (3, 2)  (0, 2) ^ 3 -> (3, 1)  (1, 3) ^ 3 -> (2, 0)  (2, 3) ^ 3 -> (1, 0)
    157 */
    158 inline int other_two(int one, int two) {
    159     return 1 >> (3 - (one ^ two)) ^ 3;
    160 }
    161 
    162 struct SkDCubicPair {
    163     const SkDCubic first() const {
    164 #ifdef SK_DEBUG
    165         SkDCubic result;
    166         result.debugSet(&pts[0]);
    167         return result;
    168 #else
    169         return (const SkDCubic&) pts[0];
    170 #endif
    171     }
    172     const SkDCubic second() const {
    173 #ifdef SK_DEBUG
    174         SkDCubic result;
    175         result.debugSet(&pts[3]);
    176         return result;
    177 #else
    178         return (const SkDCubic&) pts[3];
    179 #endif
    180     }
    181     SkDPoint pts[7];
    182 };
    183 
    184 class SkTCubic : public SkTCurve {
    185 public:
    186     SkDCubic fCubic;
    187 
    188     SkTCubic() {}
    189 
    190     SkTCubic(const SkDCubic& c)
    191         : fCubic(c) {
    192     }
    193 
    194     ~SkTCubic() override {}
    195 
    196     const SkDPoint& operator[](int n) const override { return fCubic[n]; }
    197     SkDPoint& operator[](int n) override { return fCubic[n]; }
    198 
    199     bool collapsed() const override { return fCubic.collapsed(); }
    200     bool controlsInside() const override { return fCubic.controlsInside(); }
    201     void debugInit() override { return fCubic.debugInit(); }
    202 #if DEBUG_T_SECT
    203     void dumpID(int id) const override { return fCubic.dumpID(id); }
    204 #endif
    205     SkDVector dxdyAtT(double t) const override { return fCubic.dxdyAtT(t); }
    206 #ifdef SK_DEBUG
    207     SkOpGlobalState* globalState() const override { return fCubic.globalState(); }
    208 #endif
    209     bool hullIntersects(const SkDQuad& quad, bool* isLinear) const override;
    210     bool hullIntersects(const SkDConic& conic, bool* isLinear) const override;
    211 
    212     bool hullIntersects(const SkDCubic& cubic, bool* isLinear) const override {
    213         return cubic.hullIntersects(fCubic, isLinear);
    214     }
    215 
    216     bool hullIntersects(const SkTCurve& curve, bool* isLinear) const override {
    217         return curve.hullIntersects(fCubic, isLinear);
    218     }
    219 
    220     int intersectRay(SkIntersections* i, const SkDLine& line) const override;
    221     bool IsConic() const override { return false; }
    222     SkTCurve* make(SkArenaAlloc& heap) const override { return heap.make<SkTCubic>(); }
    223 
    224     int maxIntersections() const override { return SkDCubic::kMaxIntersections; }
    225 
    226     void otherPts(int oddMan, const SkDPoint* endPt[2]) const override {
    227         fCubic.otherPts(oddMan, endPt);
    228     }
    229 
    230     int pointCount() const override { return SkDCubic::kPointCount; }
    231     int pointLast() const override { return SkDCubic::kPointLast; }
    232     SkDPoint ptAtT(double t) const override { return fCubic.ptAtT(t); }
    233     void setBounds(SkDRect* ) const override;
    234 
    235     void subDivide(double t1, double t2, SkTCurve* curve) const override {
    236         ((SkTCubic*) curve)->fCubic = fCubic.subDivide(t1, t2);
    237     }
    238 };
    239 
    240 #endif
    241