Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveVariables analysis pass.  For each machine
     11 // instruction in the function, this pass calculates the set of registers that
     12 // are immediately dead after the instruction (i.e., the instruction calculates
     13 // the value, but it is never used) and the set of registers that are used by
     14 // the instruction, but are never used after the instruction (i.e., they are
     15 // killed).
     16 //
     17 // This class computes live variables using a sparse implementation based on
     18 // the machine code SSA form.  This class computes live variable information for
     19 // each virtual and _register allocatable_ physical register in a function.  It
     20 // uses the dominance properties of SSA form to efficiently compute live
     21 // variables for virtual registers, and assumes that physical registers are only
     22 // live within a single basic block (allowing it to do a single local analysis
     23 // to resolve physical register lifetimes in each basic block).  If a physical
     24 // register is not register allocatable, it is not tracked.  This is useful for
     25 // things like the stack pointer and condition codes.
     26 //
     27 //===----------------------------------------------------------------------===//
     28 
     29 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
     30 #define LLVM_CODEGEN_LIVEVARIABLES_H
     31 
     32 #include "llvm/CodeGen/MachineBasicBlock.h"
     33 #include "llvm/CodeGen/MachineFunctionPass.h"
     34 #include "llvm/CodeGen/MachineInstr.h"
     35 #include "llvm/Target/TargetRegisterInfo.h"
     36 #include "llvm/ADT/BitVector.h"
     37 #include "llvm/ADT/DenseMap.h"
     38 #include "llvm/ADT/IndexedMap.h"
     39 #include "llvm/ADT/SmallSet.h"
     40 #include "llvm/ADT/SmallVector.h"
     41 #include "llvm/ADT/SparseBitVector.h"
     42 
     43 namespace llvm {
     44 
     45 class MachineRegisterInfo;
     46 class TargetRegisterInfo;
     47 
     48 class LiveVariables : public MachineFunctionPass {
     49 public:
     50   static char ID; // Pass identification, replacement for typeid
     51   LiveVariables() : MachineFunctionPass(ID) {
     52     initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
     53   }
     54 
     55   /// VarInfo - This represents the regions where a virtual register is live in
     56   /// the program.  We represent this with three different pieces of
     57   /// information: the set of blocks in which the instruction is live
     58   /// throughout, the set of blocks in which the instruction is actually used,
     59   /// and the set of non-phi instructions that are the last users of the value.
     60   ///
     61   /// In the common case where a value is defined and killed in the same block,
     62   /// There is one killing instruction, and AliveBlocks is empty.
     63   ///
     64   /// Otherwise, the value is live out of the block.  If the value is live
     65   /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
     66   /// where the liveness range ends are not included in AliveBlocks, instead
     67   /// being captured by the Kills set.  In these blocks, the value is live into
     68   /// the block (unless the value is defined and killed in the same block) and
     69   /// lives until the specified instruction.  Note that there cannot ever be a
     70   /// value whose Kills set contains two instructions from the same basic block.
     71   ///
     72   /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
     73   /// value in one of its predecessor blocks, it is not listed in the kills set,
     74   /// but does include the predecessor block in the AliveBlocks set (unless that
     75   /// block also defines the value).  This leads to the (perfectly sensical)
     76   /// situation where a value is defined in a block, and the last use is a phi
     77   /// node in the successor.  In this case, AliveBlocks is empty (the value is
     78   /// not live across any  blocks) and Kills is empty (phi nodes are not
     79   /// included). This is sensical because the value must be live to the end of
     80   /// the block, but is not live in any successor blocks.
     81   struct VarInfo {
     82     /// AliveBlocks - Set of blocks in which this value is alive completely
     83     /// through.  This is a bit set which uses the basic block number as an
     84     /// index.
     85     ///
     86     SparseBitVector<> AliveBlocks;
     87 
     88     /// NumUses - Number of uses of this register across the entire function.
     89     ///
     90     unsigned NumUses;
     91 
     92     /// Kills - List of MachineInstruction's which are the last use of this
     93     /// virtual register (kill it) in their basic block.
     94     ///
     95     std::vector<MachineInstr*> Kills;
     96 
     97     VarInfo() : NumUses(0) {}
     98 
     99     /// removeKill - Delete a kill corresponding to the specified
    100     /// machine instruction. Returns true if there was a kill
    101     /// corresponding to this instruction, false otherwise.
    102     bool removeKill(MachineInstr *MI) {
    103       std::vector<MachineInstr*>::iterator
    104         I = std::find(Kills.begin(), Kills.end(), MI);
    105       if (I == Kills.end())
    106         return false;
    107       Kills.erase(I);
    108       return true;
    109     }
    110 
    111     /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
    112     MachineInstr *findKill(const MachineBasicBlock *MBB) const;
    113 
    114     /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
    115     /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
    116     /// MBB, it is not considered live in.
    117     bool isLiveIn(const MachineBasicBlock &MBB,
    118                   unsigned Reg,
    119                   MachineRegisterInfo &MRI);
    120 
    121     void dump() const;
    122   };
    123 
    124 private:
    125   /// VirtRegInfo - This list is a mapping from virtual register number to
    126   /// variable information.
    127   ///
    128   IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
    129 
    130   /// PHIJoins - list of virtual registers that are PHI joins. These registers
    131   /// may have multiple definitions, and they require special handling when
    132   /// building live intervals.
    133   SparseBitVector<> PHIJoins;
    134 
    135   /// ReservedRegisters - This vector keeps track of which registers
    136   /// are reserved register which are not allocatable by the target machine.
    137   /// We can not track liveness for values that are in this set.
    138   ///
    139   BitVector ReservedRegisters;
    140 
    141 private:   // Intermediate data structures
    142   MachineFunction *MF;
    143 
    144   MachineRegisterInfo* MRI;
    145 
    146   const TargetRegisterInfo *TRI;
    147 
    148   // PhysRegInfo - Keep track of which instruction was the last def of a
    149   // physical register. This is a purely local property, because all physical
    150   // register references are presumed dead across basic blocks.
    151   MachineInstr **PhysRegDef;
    152 
    153   // PhysRegInfo - Keep track of which instruction was the last use of a
    154   // physical register. This is a purely local property, because all physical
    155   // register references are presumed dead across basic blocks.
    156   MachineInstr **PhysRegUse;
    157 
    158   SmallVector<unsigned, 4> *PHIVarInfo;
    159 
    160   // DistanceMap - Keep track the distance of a MI from the start of the
    161   // current basic block.
    162   DenseMap<MachineInstr*, unsigned> DistanceMap;
    163 
    164   /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
    165   /// uses. Pay special attention to the sub-register uses which may come below
    166   /// the last use of the whole register.
    167   bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
    168 
    169   void HandlePhysRegUse(unsigned Reg, MachineInstr *MI);
    170   void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
    171                         SmallVector<unsigned, 4> &Defs);
    172   void UpdatePhysRegDefs(MachineInstr *MI, SmallVector<unsigned, 4> &Defs);
    173 
    174   /// FindLastRefOrPartRef - Return the last reference or partial reference of
    175   /// the specified register.
    176   MachineInstr *FindLastRefOrPartRef(unsigned Reg);
    177 
    178   /// FindLastPartialDef - Return the last partial def of the specified
    179   /// register. Also returns the sub-registers that're defined by the
    180   /// instruction.
    181   MachineInstr *FindLastPartialDef(unsigned Reg,
    182                                    SmallSet<unsigned,4> &PartDefRegs);
    183 
    184   /// analyzePHINodes - Gather information about the PHI nodes in here. In
    185   /// particular, we want to map the variable information of a virtual
    186   /// register which is used in a PHI node. We map that to the BB the vreg
    187   /// is coming from.
    188   void analyzePHINodes(const MachineFunction& Fn);
    189 public:
    190 
    191   virtual bool runOnMachineFunction(MachineFunction &MF);
    192 
    193   /// RegisterDefIsDead - Return true if the specified instruction defines the
    194   /// specified register, but that definition is dead.
    195   bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const;
    196 
    197   //===--------------------------------------------------------------------===//
    198   //  API to update live variable information
    199 
    200   /// replaceKillInstruction - Update register kill info by replacing a kill
    201   /// instruction with a new one.
    202   void replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
    203                               MachineInstr *NewMI);
    204 
    205   /// addVirtualRegisterKilled - Add information about the fact that the
    206   /// specified register is killed after being used by the specified
    207   /// instruction. If AddIfNotFound is true, add a implicit operand if it's
    208   /// not found.
    209   void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
    210                                 bool AddIfNotFound = false) {
    211     if (MI->addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
    212       getVarInfo(IncomingReg).Kills.push_back(MI);
    213   }
    214 
    215   /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
    216   /// register from the live variable information. Returns true if the
    217   /// variable was marked as killed by the specified instruction,
    218   /// false otherwise.
    219   bool removeVirtualRegisterKilled(unsigned reg, MachineInstr *MI) {
    220     if (!getVarInfo(reg).removeKill(MI))
    221       return false;
    222 
    223     bool Removed = false;
    224     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    225       MachineOperand &MO = MI->getOperand(i);
    226       if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
    227         MO.setIsKill(false);
    228         Removed = true;
    229         break;
    230       }
    231     }
    232 
    233     assert(Removed && "Register is not used by this instruction!");
    234     (void)Removed;
    235     return true;
    236   }
    237 
    238   /// removeVirtualRegistersKilled - Remove all killed info for the specified
    239   /// instruction.
    240   void removeVirtualRegistersKilled(MachineInstr *MI);
    241 
    242   /// addVirtualRegisterDead - Add information about the fact that the specified
    243   /// register is dead after being used by the specified instruction. If
    244   /// AddIfNotFound is true, add a implicit operand if it's not found.
    245   void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI,
    246                               bool AddIfNotFound = false) {
    247     if (MI->addRegisterDead(IncomingReg, TRI, AddIfNotFound))
    248       getVarInfo(IncomingReg).Kills.push_back(MI);
    249   }
    250 
    251   /// removeVirtualRegisterDead - Remove the specified kill of the virtual
    252   /// register from the live variable information. Returns true if the
    253   /// variable was marked dead at the specified instruction, false
    254   /// otherwise.
    255   bool removeVirtualRegisterDead(unsigned reg, MachineInstr *MI) {
    256     if (!getVarInfo(reg).removeKill(MI))
    257       return false;
    258 
    259     bool Removed = false;
    260     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    261       MachineOperand &MO = MI->getOperand(i);
    262       if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
    263         MO.setIsDead(false);
    264         Removed = true;
    265         break;
    266       }
    267     }
    268     assert(Removed && "Register is not defined by this instruction!");
    269     (void)Removed;
    270     return true;
    271   }
    272 
    273   void getAnalysisUsage(AnalysisUsage &AU) const;
    274 
    275   virtual void releaseMemory() {
    276     VirtRegInfo.clear();
    277   }
    278 
    279   /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
    280   /// register.
    281   VarInfo &getVarInfo(unsigned RegIdx);
    282 
    283   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
    284                                MachineBasicBlock *BB);
    285   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
    286                                MachineBasicBlock *BB,
    287                                std::vector<MachineBasicBlock*> &WorkList);
    288   void HandleVirtRegDef(unsigned reg, MachineInstr *MI);
    289   void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
    290                         MachineInstr *MI);
    291 
    292   bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
    293     return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
    294   }
    295 
    296   /// isLiveOut - Determine if Reg is live out from MBB, when not considering
    297   /// PHI nodes. This means that Reg is either killed by a successor block or
    298   /// passed through one.
    299   bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
    300 
    301   /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
    302   /// variables that are live out of DomBB and live into SuccBB will be marked
    303   /// as passing live through BB. This method assumes that the machine code is
    304   /// still in SSA form.
    305   void addNewBlock(MachineBasicBlock *BB,
    306                    MachineBasicBlock *DomBB,
    307                    MachineBasicBlock *SuccBB);
    308 
    309   /// isPHIJoin - Return true if Reg is a phi join register.
    310   bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
    311 
    312   /// setPHIJoin - Mark Reg as a phi join register.
    313   void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
    314 };
    315 
    316 } // End llvm namespace
    317 
    318 #endif
    319