Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the MachineRegisterInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
     15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
     16 
     17 #include "llvm/Target/TargetRegisterInfo.h"
     18 #include "llvm/ADT/BitVector.h"
     19 #include "llvm/ADT/IndexedMap.h"
     20 #include <vector>
     21 
     22 namespace llvm {
     23 
     24 /// MachineRegisterInfo - Keep track of information for virtual and physical
     25 /// registers, including vreg register classes, use/def chains for registers,
     26 /// etc.
     27 class MachineRegisterInfo {
     28   const TargetRegisterInfo *const TRI;
     29 
     30   /// IsSSA - True when the machine function is in SSA form and virtual
     31   /// registers have a single def.
     32   bool IsSSA;
     33 
     34   /// VRegInfo - Information we keep for each virtual register.
     35   ///
     36   /// Each element in this list contains the register class of the vreg and the
     37   /// start of the use/def list for the register.
     38   IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
     39              VirtReg2IndexFunctor> VRegInfo;
     40 
     41   /// RegAllocHints - This vector records register allocation hints for virtual
     42   /// registers. For each virtual register, it keeps a register and hint type
     43   /// pair making up the allocation hint. Hint type is target specific except
     44   /// for the value 0 which means the second value of the pair is the preferred
     45   /// register for allocation. For example, if the hint is <0, 1024>, it means
     46   /// the allocator should prefer the physical register allocated to the virtual
     47   /// register of the hint.
     48   IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
     49 
     50   /// PhysRegUseDefLists - This is an array of the head of the use/def list for
     51   /// physical registers.
     52   MachineOperand **PhysRegUseDefLists;
     53 
     54   /// UsedPhysRegs - This is a bit vector that is computed and set by the
     55   /// register allocator, and must be kept up to date by passes that run after
     56   /// register allocation (though most don't modify this).  This is used
     57   /// so that the code generator knows which callee save registers to save and
     58   /// for other target specific uses.
     59   BitVector UsedPhysRegs;
     60 
     61   /// LiveIns/LiveOuts - Keep track of the physical registers that are
     62   /// livein/liveout of the function.  Live in values are typically arguments in
     63   /// registers, live out values are typically return values in registers.
     64   /// LiveIn values are allowed to have virtual registers associated with them,
     65   /// stored in the second element.
     66   std::vector<std::pair<unsigned, unsigned> > LiveIns;
     67   std::vector<unsigned> LiveOuts;
     68 
     69   MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
     70   void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
     71 public:
     72   explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
     73   ~MachineRegisterInfo();
     74 
     75   //===--------------------------------------------------------------------===//
     76   // Function State
     77   //===--------------------------------------------------------------------===//
     78 
     79   // isSSA - Returns true when the machine function is in SSA form. Early
     80   // passes require the machine function to be in SSA form where every virtual
     81   // register has a single defining instruction.
     82   //
     83   // The TwoAddressInstructionPass and PHIElimination passes take the machine
     84   // function out of SSA form when they introduce multiple defs per virtual
     85   // register.
     86   bool isSSA() const { return IsSSA; }
     87 
     88   // leaveSSA - Indicates that the machine function is no longer in SSA form.
     89   void leaveSSA() { IsSSA = false; }
     90 
     91   //===--------------------------------------------------------------------===//
     92   // Register Info
     93   //===--------------------------------------------------------------------===//
     94 
     95   /// reg_begin/reg_end - Provide iteration support to walk over all definitions
     96   /// and uses of a register within the MachineFunction that corresponds to this
     97   /// MachineRegisterInfo object.
     98   template<bool Uses, bool Defs, bool SkipDebug>
     99   class defusechain_iterator;
    100 
    101   /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
    102   /// register.
    103   typedef defusechain_iterator<true,true,false> reg_iterator;
    104   reg_iterator reg_begin(unsigned RegNo) const {
    105     return reg_iterator(getRegUseDefListHead(RegNo));
    106   }
    107   static reg_iterator reg_end() { return reg_iterator(0); }
    108 
    109   /// reg_empty - Return true if there are no instructions using or defining the
    110   /// specified register (it may be live-in).
    111   bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
    112 
    113   /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
    114   /// of the specified register, skipping those marked as Debug.
    115   typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
    116   reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
    117     return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
    118   }
    119   static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
    120 
    121   /// reg_nodbg_empty - Return true if the only instructions using or defining
    122   /// Reg are Debug instructions.
    123   bool reg_nodbg_empty(unsigned RegNo) const {
    124     return reg_nodbg_begin(RegNo) == reg_nodbg_end();
    125   }
    126 
    127   /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
    128   typedef defusechain_iterator<false,true,false> def_iterator;
    129   def_iterator def_begin(unsigned RegNo) const {
    130     return def_iterator(getRegUseDefListHead(RegNo));
    131   }
    132   static def_iterator def_end() { return def_iterator(0); }
    133 
    134   /// def_empty - Return true if there are no instructions defining the
    135   /// specified register (it may be live-in).
    136   bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
    137 
    138   /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
    139   typedef defusechain_iterator<true,false,false> use_iterator;
    140   use_iterator use_begin(unsigned RegNo) const {
    141     return use_iterator(getRegUseDefListHead(RegNo));
    142   }
    143   static use_iterator use_end() { return use_iterator(0); }
    144 
    145   /// use_empty - Return true if there are no instructions using the specified
    146   /// register.
    147   bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
    148 
    149   /// hasOneUse - Return true if there is exactly one instruction using the
    150   /// specified register.
    151   bool hasOneUse(unsigned RegNo) const;
    152 
    153   /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
    154   /// specified register, skipping those marked as Debug.
    155   typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
    156   use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
    157     return use_nodbg_iterator(getRegUseDefListHead(RegNo));
    158   }
    159   static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
    160 
    161   /// use_nodbg_empty - Return true if there are no non-Debug instructions
    162   /// using the specified register.
    163   bool use_nodbg_empty(unsigned RegNo) const {
    164     return use_nodbg_begin(RegNo) == use_nodbg_end();
    165   }
    166 
    167   /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
    168   /// instruction using the specified register.
    169   bool hasOneNonDBGUse(unsigned RegNo) const;
    170 
    171   /// replaceRegWith - Replace all instances of FromReg with ToReg in the
    172   /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
    173   /// except that it also changes any definitions of the register as well.
    174   void replaceRegWith(unsigned FromReg, unsigned ToReg);
    175 
    176   /// getRegUseDefListHead - Return the head pointer for the register use/def
    177   /// list for the specified virtual or physical register.
    178   MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
    179     if (TargetRegisterInfo::isVirtualRegister(RegNo))
    180       return VRegInfo[RegNo].second;
    181     return PhysRegUseDefLists[RegNo];
    182   }
    183 
    184   MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
    185     if (TargetRegisterInfo::isVirtualRegister(RegNo))
    186       return VRegInfo[RegNo].second;
    187     return PhysRegUseDefLists[RegNo];
    188   }
    189 
    190   /// getVRegDef - Return the machine instr that defines the specified virtual
    191   /// register or null if none is found.  This assumes that the code is in SSA
    192   /// form, so there should only be one definition.
    193   MachineInstr *getVRegDef(unsigned Reg) const;
    194 
    195   /// clearKillFlags - Iterate over all the uses of the given register and
    196   /// clear the kill flag from the MachineOperand. This function is used by
    197   /// optimization passes which extend register lifetimes and need only
    198   /// preserve conservative kill flag information.
    199   void clearKillFlags(unsigned Reg) const;
    200 
    201 #ifndef NDEBUG
    202   void dumpUses(unsigned RegNo) const;
    203 #endif
    204 
    205   //===--------------------------------------------------------------------===//
    206   // Virtual Register Info
    207   //===--------------------------------------------------------------------===//
    208 
    209   /// getRegClass - Return the register class of the specified virtual register.
    210   ///
    211   const TargetRegisterClass *getRegClass(unsigned Reg) const {
    212     return VRegInfo[Reg].first;
    213   }
    214 
    215   /// setRegClass - Set the register class of the specified virtual register.
    216   ///
    217   void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
    218 
    219   /// constrainRegClass - Constrain the register class of the specified virtual
    220   /// register to be a common subclass of RC and the current register class,
    221   /// but only if the new class has at least MinNumRegs registers.  Return the
    222   /// new register class, or NULL if no such class exists.
    223   /// This should only be used when the constraint is known to be trivial, like
    224   /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
    225   ///
    226   const TargetRegisterClass *constrainRegClass(unsigned Reg,
    227                                                const TargetRegisterClass *RC,
    228                                                unsigned MinNumRegs = 0);
    229 
    230   /// recomputeRegClass - Try to find a legal super-class of Reg's register
    231   /// class that still satisfies the constraints from the instructions using
    232   /// Reg.  Returns true if Reg was upgraded.
    233   ///
    234   /// This method can be used after constraints have been removed from a
    235   /// virtual register, for example after removing instructions or splitting
    236   /// the live range.
    237   ///
    238   bool recomputeRegClass(unsigned Reg, const TargetMachine&);
    239 
    240   /// createVirtualRegister - Create and return a new virtual register in the
    241   /// function with the specified register class.
    242   ///
    243   unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
    244 
    245   /// getNumVirtRegs - Return the number of virtual registers created.
    246   ///
    247   unsigned getNumVirtRegs() const { return VRegInfo.size(); }
    248 
    249   /// setRegAllocationHint - Specify a register allocation hint for the
    250   /// specified virtual register.
    251   void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
    252     RegAllocHints[Reg].first  = Type;
    253     RegAllocHints[Reg].second = PrefReg;
    254   }
    255 
    256   /// getRegAllocationHint - Return the register allocation hint for the
    257   /// specified virtual register.
    258   std::pair<unsigned, unsigned>
    259   getRegAllocationHint(unsigned Reg) const {
    260     return RegAllocHints[Reg];
    261   }
    262 
    263   /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
    264   /// standard simple hint (Type == 0) is not set.
    265   unsigned getSimpleHint(unsigned Reg) const {
    266     std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
    267     return Hint.first ? 0 : Hint.second;
    268   }
    269 
    270 
    271   //===--------------------------------------------------------------------===//
    272   // Physical Register Use Info
    273   //===--------------------------------------------------------------------===//
    274 
    275   /// isPhysRegUsed - Return true if the specified register is used in this
    276   /// function.  This only works after register allocation.
    277   bool isPhysRegUsed(unsigned Reg) const { return UsedPhysRegs[Reg]; }
    278 
    279   /// setPhysRegUsed - Mark the specified register used in this function.
    280   /// This should only be called during and after register allocation.
    281   void setPhysRegUsed(unsigned Reg) { UsedPhysRegs[Reg] = true; }
    282 
    283   /// addPhysRegsUsed - Mark the specified registers used in this function.
    284   /// This should only be called during and after register allocation.
    285   void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
    286 
    287   /// setPhysRegUnused - Mark the specified register unused in this function.
    288   /// This should only be called during and after register allocation.
    289   void setPhysRegUnused(unsigned Reg) { UsedPhysRegs[Reg] = false; }
    290 
    291   /// closePhysRegsUsed - Expand UsedPhysRegs to its transitive closure over
    292   /// subregisters. That means that if R is used, so are all subregisters.
    293   void closePhysRegsUsed(const TargetRegisterInfo&);
    294 
    295   //===--------------------------------------------------------------------===//
    296   // LiveIn/LiveOut Management
    297   //===--------------------------------------------------------------------===//
    298 
    299   /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
    300   /// is an error to add the same register to the same set more than once.
    301   void addLiveIn(unsigned Reg, unsigned vreg = 0) {
    302     LiveIns.push_back(std::make_pair(Reg, vreg));
    303   }
    304   void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
    305 
    306   // Iteration support for live in/out sets.  These sets are kept in sorted
    307   // order by their register number.
    308   typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
    309   livein_iterator;
    310   typedef std::vector<unsigned>::const_iterator liveout_iterator;
    311   livein_iterator livein_begin() const { return LiveIns.begin(); }
    312   livein_iterator livein_end()   const { return LiveIns.end(); }
    313   bool            livein_empty() const { return LiveIns.empty(); }
    314   liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
    315   liveout_iterator liveout_end()   const { return LiveOuts.end(); }
    316   bool             liveout_empty() const { return LiveOuts.empty(); }
    317 
    318   bool isLiveIn(unsigned Reg) const;
    319   bool isLiveOut(unsigned Reg) const;
    320 
    321   /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
    322   /// corresponding live-in physical register.
    323   unsigned getLiveInPhysReg(unsigned VReg) const;
    324 
    325   /// getLiveInVirtReg - If PReg is a live-in physical register, return the
    326   /// corresponding live-in physical register.
    327   unsigned getLiveInVirtReg(unsigned PReg) const;
    328 
    329   /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
    330   /// into the given entry block.
    331   void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
    332                         const TargetRegisterInfo &TRI,
    333                         const TargetInstrInfo &TII);
    334 
    335 private:
    336   void HandleVRegListReallocation();
    337 
    338 public:
    339   /// defusechain_iterator - This class provides iterator support for machine
    340   /// operands in the function that use or define a specific register.  If
    341   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
    342   /// returns defs.  If neither are true then you are silly and it always
    343   /// returns end().  If SkipDebug is true it skips uses marked Debug
    344   /// when incrementing.
    345   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
    346   class defusechain_iterator
    347     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
    348     MachineOperand *Op;
    349     explicit defusechain_iterator(MachineOperand *op) : Op(op) {
    350       // If the first node isn't one we're interested in, advance to one that
    351       // we are interested in.
    352       if (op) {
    353         if ((!ReturnUses && op->isUse()) ||
    354             (!ReturnDefs && op->isDef()) ||
    355             (SkipDebug && op->isDebug()))
    356           ++*this;
    357       }
    358     }
    359     friend class MachineRegisterInfo;
    360   public:
    361     typedef std::iterator<std::forward_iterator_tag,
    362                           MachineInstr, ptrdiff_t>::reference reference;
    363     typedef std::iterator<std::forward_iterator_tag,
    364                           MachineInstr, ptrdiff_t>::pointer pointer;
    365 
    366     defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
    367     defusechain_iterator() : Op(0) {}
    368 
    369     bool operator==(const defusechain_iterator &x) const {
    370       return Op == x.Op;
    371     }
    372     bool operator!=(const defusechain_iterator &x) const {
    373       return !operator==(x);
    374     }
    375 
    376     /// atEnd - return true if this iterator is equal to reg_end() on the value.
    377     bool atEnd() const { return Op == 0; }
    378 
    379     // Iterator traversal: forward iteration only
    380     defusechain_iterator &operator++() {          // Preincrement
    381       assert(Op && "Cannot increment end iterator!");
    382       Op = Op->getNextOperandForReg();
    383 
    384       // If this is an operand we don't care about, skip it.
    385       while (Op && ((!ReturnUses && Op->isUse()) ||
    386                     (!ReturnDefs && Op->isDef()) ||
    387                     (SkipDebug && Op->isDebug())))
    388         Op = Op->getNextOperandForReg();
    389 
    390       return *this;
    391     }
    392     defusechain_iterator operator++(int) {        // Postincrement
    393       defusechain_iterator tmp = *this; ++*this; return tmp;
    394     }
    395 
    396     /// skipInstruction - move forward until reaching a different instruction.
    397     /// Return the skipped instruction that is no longer pointed to, or NULL if
    398     /// already pointing to end().
    399     MachineInstr *skipInstruction() {
    400       if (!Op) return 0;
    401       MachineInstr *MI = Op->getParent();
    402       do ++*this;
    403       while (Op && Op->getParent() == MI);
    404       return MI;
    405     }
    406 
    407     MachineOperand &getOperand() const {
    408       assert(Op && "Cannot dereference end iterator!");
    409       return *Op;
    410     }
    411 
    412     /// getOperandNo - Return the operand # of this MachineOperand in its
    413     /// MachineInstr.
    414     unsigned getOperandNo() const {
    415       assert(Op && "Cannot dereference end iterator!");
    416       return Op - &Op->getParent()->getOperand(0);
    417     }
    418 
    419     // Retrieve a reference to the current operand.
    420     MachineInstr &operator*() const {
    421       assert(Op && "Cannot dereference end iterator!");
    422       return *Op->getParent();
    423     }
    424 
    425     MachineInstr *operator->() const {
    426       assert(Op && "Cannot dereference end iterator!");
    427       return Op->getParent();
    428     }
    429   };
    430 
    431 };
    432 
    433 } // End llvm namespace
    434 
    435 #endif
    436