Home | History | Annotate | Download | only in Analysis
      1 //===- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a CFL-based, summary-based alias analysis algorithm. It
     11 // differs from CFLSteensAliasAnalysis in its inclusion-based nature while
     12 // CFLSteensAliasAnalysis is unification-based. This pass has worse performance
     13 // than CFLSteensAliasAnalysis (the worst case complexity of
     14 // CFLAndersAliasAnalysis is cubic, while the worst case complexity of
     15 // CFLSteensAliasAnalysis is almost linear), but it is able to yield more
     16 // precise analysis result. The precision of this analysis is roughly the same
     17 // as that of an one level context-sensitive Andersen's algorithm.
     18 //
     19 // The algorithm used here is based on recursive state machine matching scheme
     20 // proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu
     21 // Rugina. The general idea is to extend the traditional transitive closure
     22 // algorithm to perform CFL matching along the way: instead of recording
     23 // "whether X is reachable from Y", we keep track of "whether X is reachable
     24 // from Y at state Z", where the "state" field indicates where we are in the CFL
     25 // matching process. To understand the matching better, it is advisable to have
     26 // the state machine shown in Figure 3 of the paper available when reading the
     27 // codes: all we do here is to selectively expand the transitive closure by
     28 // discarding edges that are not recognized by the state machine.
     29 //
     30 // There are two differences between our current implementation and the one
     31 // described in the paper:
     32 // - Our algorithm eagerly computes all alias pairs after the CFLGraph is built,
     33 // while in the paper the authors did the computation in a demand-driven
     34 // fashion. We did not implement the demand-driven algorithm due to the
     35 // additional coding complexity and higher memory profile, but if we found it
     36 // necessary we may switch to it eventually.
     37 // - In the paper the authors use a state machine that does not distinguish
     38 // value reads from value writes. For example, if Y is reachable from X at state
     39 // S3, it may be the case that X is written into Y, or it may be the case that
     40 // there's a third value Z that writes into both X and Y. To make that
     41 // distinction (which is crucial in building function summary as well as
     42 // retrieving mod-ref info), we choose to duplicate some of the states in the
     43 // paper's proposed state machine. The duplication does not change the set the
     44 // machine accepts. Given a pair of reachable values, it only provides more
     45 // detailed information on which value is being written into and which is being
     46 // read from.
     47 //
     48 //===----------------------------------------------------------------------===//
     49 
     50 // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
     51 // CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because
     52 // FunctionPasses are only allowed to inspect the Function that they're being
     53 // run on. Realistically, this likely isn't a problem until we allow
     54 // FunctionPasses to run concurrently.
     55 
     56 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
     57 #include "AliasAnalysisSummary.h"
     58 #include "CFLGraph.h"
     59 #include "llvm/ADT/DenseMap.h"
     60 #include "llvm/ADT/DenseMapInfo.h"
     61 #include "llvm/ADT/DenseSet.h"
     62 #include "llvm/ADT/None.h"
     63 #include "llvm/ADT/Optional.h"
     64 #include "llvm/ADT/STLExtras.h"
     65 #include "llvm/ADT/SmallVector.h"
     66 #include "llvm/ADT/iterator_range.h"
     67 #include "llvm/Analysis/AliasAnalysis.h"
     68 #include "llvm/Analysis/MemoryLocation.h"
     69 #include "llvm/IR/Argument.h"
     70 #include "llvm/IR/Function.h"
     71 #include "llvm/IR/PassManager.h"
     72 #include "llvm/IR/Type.h"
     73 #include "llvm/Pass.h"
     74 #include "llvm/Support/Casting.h"
     75 #include "llvm/Support/Compiler.h"
     76 #include "llvm/Support/Debug.h"
     77 #include "llvm/Support/raw_ostream.h"
     78 #include <algorithm>
     79 #include <bitset>
     80 #include <cassert>
     81 #include <cstddef>
     82 #include <cstdint>
     83 #include <functional>
     84 #include <utility>
     85 #include <vector>
     86 
     87 using namespace llvm;
     88 using namespace llvm::cflaa;
     89 
     90 #define DEBUG_TYPE "cfl-anders-aa"
     91 
     92 CFLAndersAAResult::CFLAndersAAResult(const TargetLibraryInfo &TLI) : TLI(TLI) {}
     93 CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult &&RHS)
     94     : AAResultBase(std::move(RHS)), TLI(RHS.TLI) {}
     95 CFLAndersAAResult::~CFLAndersAAResult() = default;
     96 
     97 namespace {
     98 
     99 enum class MatchState : uint8_t {
    100   // The following state represents S1 in the paper.
    101   FlowFromReadOnly = 0,
    102   // The following two states together represent S2 in the paper.
    103   // The 'NoReadWrite' suffix indicates that there exists an alias path that
    104   // does not contain assignment and reverse assignment edges.
    105   // The 'ReadOnly' suffix indicates that there exists an alias path that
    106   // contains reverse assignment edges only.
    107   FlowFromMemAliasNoReadWrite,
    108   FlowFromMemAliasReadOnly,
    109   // The following two states together represent S3 in the paper.
    110   // The 'WriteOnly' suffix indicates that there exists an alias path that
    111   // contains assignment edges only.
    112   // The 'ReadWrite' suffix indicates that there exists an alias path that
    113   // contains both assignment and reverse assignment edges. Note that if X and Y
    114   // are reachable at 'ReadWrite' state, it does NOT mean X is both read from
    115   // and written to Y. Instead, it means that a third value Z is written to both
    116   // X and Y.
    117   FlowToWriteOnly,
    118   FlowToReadWrite,
    119   // The following two states together represent S4 in the paper.
    120   FlowToMemAliasWriteOnly,
    121   FlowToMemAliasReadWrite,
    122 };
    123 
    124 using StateSet = std::bitset<7>;
    125 
    126 const unsigned ReadOnlyStateMask =
    127     (1U << static_cast<uint8_t>(MatchState::FlowFromReadOnly)) |
    128     (1U << static_cast<uint8_t>(MatchState::FlowFromMemAliasReadOnly));
    129 const unsigned WriteOnlyStateMask =
    130     (1U << static_cast<uint8_t>(MatchState::FlowToWriteOnly)) |
    131     (1U << static_cast<uint8_t>(MatchState::FlowToMemAliasWriteOnly));
    132 
    133 // A pair that consists of a value and an offset
    134 struct OffsetValue {
    135   const Value *Val;
    136   int64_t Offset;
    137 };
    138 
    139 bool operator==(OffsetValue LHS, OffsetValue RHS) {
    140   return LHS.Val == RHS.Val && LHS.Offset == RHS.Offset;
    141 }
    142 bool operator<(OffsetValue LHS, OffsetValue RHS) {
    143   return std::less<const Value *>()(LHS.Val, RHS.Val) ||
    144          (LHS.Val == RHS.Val && LHS.Offset < RHS.Offset);
    145 }
    146 
    147 // A pair that consists of an InstantiatedValue and an offset
    148 struct OffsetInstantiatedValue {
    149   InstantiatedValue IVal;
    150   int64_t Offset;
    151 };
    152 
    153 bool operator==(OffsetInstantiatedValue LHS, OffsetInstantiatedValue RHS) {
    154   return LHS.IVal == RHS.IVal && LHS.Offset == RHS.Offset;
    155 }
    156 
    157 // We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in
    158 // the paper) during the analysis.
    159 class ReachabilitySet {
    160   using ValueStateMap = DenseMap<InstantiatedValue, StateSet>;
    161   using ValueReachMap = DenseMap<InstantiatedValue, ValueStateMap>;
    162 
    163   ValueReachMap ReachMap;
    164 
    165 public:
    166   using const_valuestate_iterator = ValueStateMap::const_iterator;
    167   using const_value_iterator = ValueReachMap::const_iterator;
    168 
    169   // Insert edge 'From->To' at state 'State'
    170   bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) {
    171     assert(From != To);
    172     auto &States = ReachMap[To][From];
    173     auto Idx = static_cast<size_t>(State);
    174     if (!States.test(Idx)) {
    175       States.set(Idx);
    176       return true;
    177     }
    178     return false;
    179   }
    180 
    181   // Return the set of all ('From', 'State') pair for a given node 'To'
    182   iterator_range<const_valuestate_iterator>
    183   reachableValueAliases(InstantiatedValue V) const {
    184     auto Itr = ReachMap.find(V);
    185     if (Itr == ReachMap.end())
    186       return make_range<const_valuestate_iterator>(const_valuestate_iterator(),
    187                                                    const_valuestate_iterator());
    188     return make_range<const_valuestate_iterator>(Itr->second.begin(),
    189                                                  Itr->second.end());
    190   }
    191 
    192   iterator_range<const_value_iterator> value_mappings() const {
    193     return make_range<const_value_iterator>(ReachMap.begin(), ReachMap.end());
    194   }
    195 };
    196 
    197 // We use AliasMemSet to keep track of all memory aliases (the nonterminal "M"
    198 // in the paper) during the analysis.
    199 class AliasMemSet {
    200   using MemSet = DenseSet<InstantiatedValue>;
    201   using MemMapType = DenseMap<InstantiatedValue, MemSet>;
    202 
    203   MemMapType MemMap;
    204 
    205 public:
    206   using const_mem_iterator = MemSet::const_iterator;
    207 
    208   bool insert(InstantiatedValue LHS, InstantiatedValue RHS) {
    209     // Top-level values can never be memory aliases because one cannot take the
    210     // addresses of them
    211     assert(LHS.DerefLevel > 0 && RHS.DerefLevel > 0);
    212     return MemMap[LHS].insert(RHS).second;
    213   }
    214 
    215   const MemSet *getMemoryAliases(InstantiatedValue V) const {
    216     auto Itr = MemMap.find(V);
    217     if (Itr == MemMap.end())
    218       return nullptr;
    219     return &Itr->second;
    220   }
    221 };
    222 
    223 // We use AliasAttrMap to keep track of the AliasAttr of each node.
    224 class AliasAttrMap {
    225   using MapType = DenseMap<InstantiatedValue, AliasAttrs>;
    226 
    227   MapType AttrMap;
    228 
    229 public:
    230   using const_iterator = MapType::const_iterator;
    231 
    232   bool add(InstantiatedValue V, AliasAttrs Attr) {
    233     auto &OldAttr = AttrMap[V];
    234     auto NewAttr = OldAttr | Attr;
    235     if (OldAttr == NewAttr)
    236       return false;
    237     OldAttr = NewAttr;
    238     return true;
    239   }
    240 
    241   AliasAttrs getAttrs(InstantiatedValue V) const {
    242     AliasAttrs Attr;
    243     auto Itr = AttrMap.find(V);
    244     if (Itr != AttrMap.end())
    245       Attr = Itr->second;
    246     return Attr;
    247   }
    248 
    249   iterator_range<const_iterator> mappings() const {
    250     return make_range<const_iterator>(AttrMap.begin(), AttrMap.end());
    251   }
    252 };
    253 
    254 struct WorkListItem {
    255   InstantiatedValue From;
    256   InstantiatedValue To;
    257   MatchState State;
    258 };
    259 
    260 struct ValueSummary {
    261   struct Record {
    262     InterfaceValue IValue;
    263     unsigned DerefLevel;
    264   };
    265   SmallVector<Record, 4> FromRecords, ToRecords;
    266 };
    267 
    268 } // end anonymous namespace
    269 
    270 namespace llvm {
    271 
    272 // Specialize DenseMapInfo for OffsetValue.
    273 template <> struct DenseMapInfo<OffsetValue> {
    274   static OffsetValue getEmptyKey() {
    275     return OffsetValue{DenseMapInfo<const Value *>::getEmptyKey(),
    276                        DenseMapInfo<int64_t>::getEmptyKey()};
    277   }
    278 
    279   static OffsetValue getTombstoneKey() {
    280     return OffsetValue{DenseMapInfo<const Value *>::getTombstoneKey(),
    281                        DenseMapInfo<int64_t>::getEmptyKey()};
    282   }
    283 
    284   static unsigned getHashValue(const OffsetValue &OVal) {
    285     return DenseMapInfo<std::pair<const Value *, int64_t>>::getHashValue(
    286         std::make_pair(OVal.Val, OVal.Offset));
    287   }
    288 
    289   static bool isEqual(const OffsetValue &LHS, const OffsetValue &RHS) {
    290     return LHS == RHS;
    291   }
    292 };
    293 
    294 // Specialize DenseMapInfo for OffsetInstantiatedValue.
    295 template <> struct DenseMapInfo<OffsetInstantiatedValue> {
    296   static OffsetInstantiatedValue getEmptyKey() {
    297     return OffsetInstantiatedValue{
    298         DenseMapInfo<InstantiatedValue>::getEmptyKey(),
    299         DenseMapInfo<int64_t>::getEmptyKey()};
    300   }
    301 
    302   static OffsetInstantiatedValue getTombstoneKey() {
    303     return OffsetInstantiatedValue{
    304         DenseMapInfo<InstantiatedValue>::getTombstoneKey(),
    305         DenseMapInfo<int64_t>::getEmptyKey()};
    306   }
    307 
    308   static unsigned getHashValue(const OffsetInstantiatedValue &OVal) {
    309     return DenseMapInfo<std::pair<InstantiatedValue, int64_t>>::getHashValue(
    310         std::make_pair(OVal.IVal, OVal.Offset));
    311   }
    312 
    313   static bool isEqual(const OffsetInstantiatedValue &LHS,
    314                       const OffsetInstantiatedValue &RHS) {
    315     return LHS == RHS;
    316   }
    317 };
    318 
    319 } // end namespace llvm
    320 
    321 class CFLAndersAAResult::FunctionInfo {
    322   /// Map a value to other values that may alias it
    323   /// Since the alias relation is symmetric, to save some space we assume values
    324   /// are properly ordered: if a and b alias each other, and a < b, then b is in
    325   /// AliasMap[a] but not vice versa.
    326   DenseMap<const Value *, std::vector<OffsetValue>> AliasMap;
    327 
    328   /// Map a value to its corresponding AliasAttrs
    329   DenseMap<const Value *, AliasAttrs> AttrMap;
    330 
    331   /// Summary of externally visible effects.
    332   AliasSummary Summary;
    333 
    334   Optional<AliasAttrs> getAttrs(const Value *) const;
    335 
    336 public:
    337   FunctionInfo(const Function &, const SmallVectorImpl<Value *> &,
    338                const ReachabilitySet &, const AliasAttrMap &);
    339 
    340   bool mayAlias(const Value *, LocationSize, const Value *, LocationSize) const;
    341   const AliasSummary &getAliasSummary() const { return Summary; }
    342 };
    343 
    344 static bool hasReadOnlyState(StateSet Set) {
    345   return (Set & StateSet(ReadOnlyStateMask)).any();
    346 }
    347 
    348 static bool hasWriteOnlyState(StateSet Set) {
    349   return (Set & StateSet(WriteOnlyStateMask)).any();
    350 }
    351 
    352 static Optional<InterfaceValue>
    353 getInterfaceValue(InstantiatedValue IValue,
    354                   const SmallVectorImpl<Value *> &RetVals) {
    355   auto Val = IValue.Val;
    356 
    357   Optional<unsigned> Index;
    358   if (auto Arg = dyn_cast<Argument>(Val))
    359     Index = Arg->getArgNo() + 1;
    360   else if (is_contained(RetVals, Val))
    361     Index = 0;
    362 
    363   if (Index)
    364     return InterfaceValue{*Index, IValue.DerefLevel};
    365   return None;
    366 }
    367 
    368 static void populateAttrMap(DenseMap<const Value *, AliasAttrs> &AttrMap,
    369                             const AliasAttrMap &AMap) {
    370   for (const auto &Mapping : AMap.mappings()) {
    371     auto IVal = Mapping.first;
    372 
    373     // Insert IVal into the map
    374     auto &Attr = AttrMap[IVal.Val];
    375     // AttrMap only cares about top-level values
    376     if (IVal.DerefLevel == 0)
    377       Attr |= Mapping.second;
    378   }
    379 }
    380 
    381 static void
    382 populateAliasMap(DenseMap<const Value *, std::vector<OffsetValue>> &AliasMap,
    383                  const ReachabilitySet &ReachSet) {
    384   for (const auto &OuterMapping : ReachSet.value_mappings()) {
    385     // AliasMap only cares about top-level values
    386     if (OuterMapping.first.DerefLevel > 0)
    387       continue;
    388 
    389     auto Val = OuterMapping.first.Val;
    390     auto &AliasList = AliasMap[Val];
    391     for (const auto &InnerMapping : OuterMapping.second) {
    392       // Again, AliasMap only cares about top-level values
    393       if (InnerMapping.first.DerefLevel == 0)
    394         AliasList.push_back(OffsetValue{InnerMapping.first.Val, UnknownOffset});
    395     }
    396 
    397     // Sort AliasList for faster lookup
    398     llvm::sort(AliasList.begin(), AliasList.end());
    399   }
    400 }
    401 
    402 static void populateExternalRelations(
    403     SmallVectorImpl<ExternalRelation> &ExtRelations, const Function &Fn,
    404     const SmallVectorImpl<Value *> &RetVals, const ReachabilitySet &ReachSet) {
    405   // If a function only returns one of its argument X, then X will be both an
    406   // argument and a return value at the same time. This is an edge case that
    407   // needs special handling here.
    408   for (const auto &Arg : Fn.args()) {
    409     if (is_contained(RetVals, &Arg)) {
    410       auto ArgVal = InterfaceValue{Arg.getArgNo() + 1, 0};
    411       auto RetVal = InterfaceValue{0, 0};
    412       ExtRelations.push_back(ExternalRelation{ArgVal, RetVal, 0});
    413     }
    414   }
    415 
    416   // Below is the core summary construction logic.
    417   // A naive solution of adding only the value aliases that are parameters or
    418   // return values in ReachSet to the summary won't work: It is possible that a
    419   // parameter P is written into an intermediate value I, and the function
    420   // subsequently returns *I. In that case, *I is does not value alias anything
    421   // in ReachSet, and the naive solution will miss a summary edge from (P, 1) to
    422   // (I, 1).
    423   // To account for the aforementioned case, we need to check each non-parameter
    424   // and non-return value for the possibility of acting as an intermediate.
    425   // 'ValueMap' here records, for each value, which InterfaceValues read from or
    426   // write into it. If both the read list and the write list of a given value
    427   // are non-empty, we know that a particular value is an intermidate and we
    428   // need to add summary edges from the writes to the reads.
    429   DenseMap<Value *, ValueSummary> ValueMap;
    430   for (const auto &OuterMapping : ReachSet.value_mappings()) {
    431     if (auto Dst = getInterfaceValue(OuterMapping.first, RetVals)) {
    432       for (const auto &InnerMapping : OuterMapping.second) {
    433         // If Src is a param/return value, we get a same-level assignment.
    434         if (auto Src = getInterfaceValue(InnerMapping.first, RetVals)) {
    435           // This may happen if both Dst and Src are return values
    436           if (*Dst == *Src)
    437             continue;
    438 
    439           if (hasReadOnlyState(InnerMapping.second))
    440             ExtRelations.push_back(ExternalRelation{*Dst, *Src, UnknownOffset});
    441           // No need to check for WriteOnly state, since ReachSet is symmetric
    442         } else {
    443           // If Src is not a param/return, add it to ValueMap
    444           auto SrcIVal = InnerMapping.first;
    445           if (hasReadOnlyState(InnerMapping.second))
    446             ValueMap[SrcIVal.Val].FromRecords.push_back(
    447                 ValueSummary::Record{*Dst, SrcIVal.DerefLevel});
    448           if (hasWriteOnlyState(InnerMapping.second))
    449             ValueMap[SrcIVal.Val].ToRecords.push_back(
    450                 ValueSummary::Record{*Dst, SrcIVal.DerefLevel});
    451         }
    452       }
    453     }
    454   }
    455 
    456   for (const auto &Mapping : ValueMap) {
    457     for (const auto &FromRecord : Mapping.second.FromRecords) {
    458       for (const auto &ToRecord : Mapping.second.ToRecords) {
    459         auto ToLevel = ToRecord.DerefLevel;
    460         auto FromLevel = FromRecord.DerefLevel;
    461         // Same-level assignments should have already been processed by now
    462         if (ToLevel == FromLevel)
    463           continue;
    464 
    465         auto SrcIndex = FromRecord.IValue.Index;
    466         auto SrcLevel = FromRecord.IValue.DerefLevel;
    467         auto DstIndex = ToRecord.IValue.Index;
    468         auto DstLevel = ToRecord.IValue.DerefLevel;
    469         if (ToLevel > FromLevel)
    470           SrcLevel += ToLevel - FromLevel;
    471         else
    472           DstLevel += FromLevel - ToLevel;
    473 
    474         ExtRelations.push_back(ExternalRelation{
    475             InterfaceValue{SrcIndex, SrcLevel},
    476             InterfaceValue{DstIndex, DstLevel}, UnknownOffset});
    477       }
    478     }
    479   }
    480 
    481   // Remove duplicates in ExtRelations
    482   llvm::sort(ExtRelations.begin(), ExtRelations.end());
    483   ExtRelations.erase(std::unique(ExtRelations.begin(), ExtRelations.end()),
    484                      ExtRelations.end());
    485 }
    486 
    487 static void populateExternalAttributes(
    488     SmallVectorImpl<ExternalAttribute> &ExtAttributes, const Function &Fn,
    489     const SmallVectorImpl<Value *> &RetVals, const AliasAttrMap &AMap) {
    490   for (const auto &Mapping : AMap.mappings()) {
    491     if (auto IVal = getInterfaceValue(Mapping.first, RetVals)) {
    492       auto Attr = getExternallyVisibleAttrs(Mapping.second);
    493       if (Attr.any())
    494         ExtAttributes.push_back(ExternalAttribute{*IVal, Attr});
    495     }
    496   }
    497 }
    498 
    499 CFLAndersAAResult::FunctionInfo::FunctionInfo(
    500     const Function &Fn, const SmallVectorImpl<Value *> &RetVals,
    501     const ReachabilitySet &ReachSet, const AliasAttrMap &AMap) {
    502   populateAttrMap(AttrMap, AMap);
    503   populateExternalAttributes(Summary.RetParamAttributes, Fn, RetVals, AMap);
    504   populateAliasMap(AliasMap, ReachSet);
    505   populateExternalRelations(Summary.RetParamRelations, Fn, RetVals, ReachSet);
    506 }
    507 
    508 Optional<AliasAttrs>
    509 CFLAndersAAResult::FunctionInfo::getAttrs(const Value *V) const {
    510   assert(V != nullptr);
    511 
    512   auto Itr = AttrMap.find(V);
    513   if (Itr != AttrMap.end())
    514     return Itr->second;
    515   return None;
    516 }
    517 
    518 bool CFLAndersAAResult::FunctionInfo::mayAlias(const Value *LHS,
    519                                                LocationSize LHSSize,
    520                                                const Value *RHS,
    521                                                LocationSize RHSSize) const {
    522   assert(LHS && RHS);
    523 
    524   // Check if we've seen LHS and RHS before. Sometimes LHS or RHS can be created
    525   // after the analysis gets executed, and we want to be conservative in those
    526   // cases.
    527   auto MaybeAttrsA = getAttrs(LHS);
    528   auto MaybeAttrsB = getAttrs(RHS);
    529   if (!MaybeAttrsA || !MaybeAttrsB)
    530     return true;
    531 
    532   // Check AliasAttrs before AliasMap lookup since it's cheaper
    533   auto AttrsA = *MaybeAttrsA;
    534   auto AttrsB = *MaybeAttrsB;
    535   if (hasUnknownOrCallerAttr(AttrsA))
    536     return AttrsB.any();
    537   if (hasUnknownOrCallerAttr(AttrsB))
    538     return AttrsA.any();
    539   if (isGlobalOrArgAttr(AttrsA))
    540     return isGlobalOrArgAttr(AttrsB);
    541   if (isGlobalOrArgAttr(AttrsB))
    542     return isGlobalOrArgAttr(AttrsA);
    543 
    544   // At this point both LHS and RHS should point to locally allocated objects
    545 
    546   auto Itr = AliasMap.find(LHS);
    547   if (Itr != AliasMap.end()) {
    548 
    549     // Find out all (X, Offset) where X == RHS
    550     auto Comparator = [](OffsetValue LHS, OffsetValue RHS) {
    551       return std::less<const Value *>()(LHS.Val, RHS.Val);
    552     };
    553 #ifdef EXPENSIVE_CHECKS
    554     assert(std::is_sorted(Itr->second.begin(), Itr->second.end(), Comparator));
    555 #endif
    556     auto RangePair = std::equal_range(Itr->second.begin(), Itr->second.end(),
    557                                       OffsetValue{RHS, 0}, Comparator);
    558 
    559     if (RangePair.first != RangePair.second) {
    560       // Be conservative about UnknownSize
    561       if (LHSSize == MemoryLocation::UnknownSize ||
    562           RHSSize == MemoryLocation::UnknownSize)
    563         return true;
    564 
    565       for (const auto &OVal : make_range(RangePair)) {
    566         // Be conservative about UnknownOffset
    567         if (OVal.Offset == UnknownOffset)
    568           return true;
    569 
    570         // We know that LHS aliases (RHS + OVal.Offset) if the control flow
    571         // reaches here. The may-alias query essentially becomes integer
    572         // range-overlap queries over two ranges [OVal.Offset, OVal.Offset +
    573         // LHSSize) and [0, RHSSize).
    574 
    575         // Try to be conservative on super large offsets
    576         if (LLVM_UNLIKELY(LHSSize > INT64_MAX || RHSSize > INT64_MAX))
    577           return true;
    578 
    579         auto LHSStart = OVal.Offset;
    580         // FIXME: Do we need to guard against integer overflow?
    581         auto LHSEnd = OVal.Offset + static_cast<int64_t>(LHSSize);
    582         auto RHSStart = 0;
    583         auto RHSEnd = static_cast<int64_t>(RHSSize);
    584         if (LHSEnd > RHSStart && LHSStart < RHSEnd)
    585           return true;
    586       }
    587     }
    588   }
    589 
    590   return false;
    591 }
    592 
    593 static void propagate(InstantiatedValue From, InstantiatedValue To,
    594                       MatchState State, ReachabilitySet &ReachSet,
    595                       std::vector<WorkListItem> &WorkList) {
    596   if (From == To)
    597     return;
    598   if (ReachSet.insert(From, To, State))
    599     WorkList.push_back(WorkListItem{From, To, State});
    600 }
    601 
    602 static void initializeWorkList(std::vector<WorkListItem> &WorkList,
    603                                ReachabilitySet &ReachSet,
    604                                const CFLGraph &Graph) {
    605   for (const auto &Mapping : Graph.value_mappings()) {
    606     auto Val = Mapping.first;
    607     auto &ValueInfo = Mapping.second;
    608     assert(ValueInfo.getNumLevels() > 0);
    609 
    610     // Insert all immediate assignment neighbors to the worklist
    611     for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
    612       auto Src = InstantiatedValue{Val, I};
    613       // If there's an assignment edge from X to Y, it means Y is reachable from
    614       // X at S2 and X is reachable from Y at S1
    615       for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) {
    616         propagate(Edge.Other, Src, MatchState::FlowFromReadOnly, ReachSet,
    617                   WorkList);
    618         propagate(Src, Edge.Other, MatchState::FlowToWriteOnly, ReachSet,
    619                   WorkList);
    620       }
    621     }
    622   }
    623 }
    624 
    625 static Optional<InstantiatedValue> getNodeBelow(const CFLGraph &Graph,
    626                                                 InstantiatedValue V) {
    627   auto NodeBelow = InstantiatedValue{V.Val, V.DerefLevel + 1};
    628   if (Graph.getNode(NodeBelow))
    629     return NodeBelow;
    630   return None;
    631 }
    632 
    633 static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph,
    634                                 ReachabilitySet &ReachSet, AliasMemSet &MemSet,
    635                                 std::vector<WorkListItem> &WorkList) {
    636   auto FromNode = Item.From;
    637   auto ToNode = Item.To;
    638 
    639   auto NodeInfo = Graph.getNode(ToNode);
    640   assert(NodeInfo != nullptr);
    641 
    642   // TODO: propagate field offsets
    643 
    644   // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds
    645   // relations that are symmetric, we could actually cut the storage by half by
    646   // sorting FromNode and ToNode before insertion happens.
    647 
    648   // The newly added value alias pair may potentially generate more memory
    649   // alias pairs. Check for them here.
    650   auto FromNodeBelow = getNodeBelow(Graph, FromNode);
    651   auto ToNodeBelow = getNodeBelow(Graph, ToNode);
    652   if (FromNodeBelow && ToNodeBelow &&
    653       MemSet.insert(*FromNodeBelow, *ToNodeBelow)) {
    654     propagate(*FromNodeBelow, *ToNodeBelow,
    655               MatchState::FlowFromMemAliasNoReadWrite, ReachSet, WorkList);
    656     for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) {
    657       auto Src = Mapping.first;
    658       auto MemAliasPropagate = [&](MatchState FromState, MatchState ToState) {
    659         if (Mapping.second.test(static_cast<size_t>(FromState)))
    660           propagate(Src, *ToNodeBelow, ToState, ReachSet, WorkList);
    661       };
    662 
    663       MemAliasPropagate(MatchState::FlowFromReadOnly,
    664                         MatchState::FlowFromMemAliasReadOnly);
    665       MemAliasPropagate(MatchState::FlowToWriteOnly,
    666                         MatchState::FlowToMemAliasWriteOnly);
    667       MemAliasPropagate(MatchState::FlowToReadWrite,
    668                         MatchState::FlowToMemAliasReadWrite);
    669     }
    670   }
    671 
    672   // This is the core of the state machine walking algorithm. We expand ReachSet
    673   // based on which state we are at (which in turn dictates what edges we
    674   // should examine)
    675   // From a high-level point of view, the state machine here guarantees two
    676   // properties:
    677   // - If *X and *Y are memory aliases, then X and Y are value aliases
    678   // - If Y is an alias of X, then reverse assignment edges (if there is any)
    679   // should precede any assignment edges on the path from X to Y.
    680   auto NextAssignState = [&](MatchState State) {
    681     for (const auto &AssignEdge : NodeInfo->Edges)
    682       propagate(FromNode, AssignEdge.Other, State, ReachSet, WorkList);
    683   };
    684   auto NextRevAssignState = [&](MatchState State) {
    685     for (const auto &RevAssignEdge : NodeInfo->ReverseEdges)
    686       propagate(FromNode, RevAssignEdge.Other, State, ReachSet, WorkList);
    687   };
    688   auto NextMemState = [&](MatchState State) {
    689     if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) {
    690       for (const auto &MemAlias : *AliasSet)
    691         propagate(FromNode, MemAlias, State, ReachSet, WorkList);
    692     }
    693   };
    694 
    695   switch (Item.State) {
    696   case MatchState::FlowFromReadOnly:
    697     NextRevAssignState(MatchState::FlowFromReadOnly);
    698     NextAssignState(MatchState::FlowToReadWrite);
    699     NextMemState(MatchState::FlowFromMemAliasReadOnly);
    700     break;
    701 
    702   case MatchState::FlowFromMemAliasNoReadWrite:
    703     NextRevAssignState(MatchState::FlowFromReadOnly);
    704     NextAssignState(MatchState::FlowToWriteOnly);
    705     break;
    706 
    707   case MatchState::FlowFromMemAliasReadOnly:
    708     NextRevAssignState(MatchState::FlowFromReadOnly);
    709     NextAssignState(MatchState::FlowToReadWrite);
    710     break;
    711 
    712   case MatchState::FlowToWriteOnly:
    713     NextAssignState(MatchState::FlowToWriteOnly);
    714     NextMemState(MatchState::FlowToMemAliasWriteOnly);
    715     break;
    716 
    717   case MatchState::FlowToReadWrite:
    718     NextAssignState(MatchState::FlowToReadWrite);
    719     NextMemState(MatchState::FlowToMemAliasReadWrite);
    720     break;
    721 
    722   case MatchState::FlowToMemAliasWriteOnly:
    723     NextAssignState(MatchState::FlowToWriteOnly);
    724     break;
    725 
    726   case MatchState::FlowToMemAliasReadWrite:
    727     NextAssignState(MatchState::FlowToReadWrite);
    728     break;
    729   }
    730 }
    731 
    732 static AliasAttrMap buildAttrMap(const CFLGraph &Graph,
    733                                  const ReachabilitySet &ReachSet) {
    734   AliasAttrMap AttrMap;
    735   std::vector<InstantiatedValue> WorkList, NextList;
    736 
    737   // Initialize each node with its original AliasAttrs in CFLGraph
    738   for (const auto &Mapping : Graph.value_mappings()) {
    739     auto Val = Mapping.first;
    740     auto &ValueInfo = Mapping.second;
    741     for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
    742       auto Node = InstantiatedValue{Val, I};
    743       AttrMap.add(Node, ValueInfo.getNodeInfoAtLevel(I).Attr);
    744       WorkList.push_back(Node);
    745     }
    746   }
    747 
    748   while (!WorkList.empty()) {
    749     for (const auto &Dst : WorkList) {
    750       auto DstAttr = AttrMap.getAttrs(Dst);
    751       if (DstAttr.none())
    752         continue;
    753 
    754       // Propagate attr on the same level
    755       for (const auto &Mapping : ReachSet.reachableValueAliases(Dst)) {
    756         auto Src = Mapping.first;
    757         if (AttrMap.add(Src, DstAttr))
    758           NextList.push_back(Src);
    759       }
    760 
    761       // Propagate attr to the levels below
    762       auto DstBelow = getNodeBelow(Graph, Dst);
    763       while (DstBelow) {
    764         if (AttrMap.add(*DstBelow, DstAttr)) {
    765           NextList.push_back(*DstBelow);
    766           break;
    767         }
    768         DstBelow = getNodeBelow(Graph, *DstBelow);
    769       }
    770     }
    771     WorkList.swap(NextList);
    772     NextList.clear();
    773   }
    774 
    775   return AttrMap;
    776 }
    777 
    778 CFLAndersAAResult::FunctionInfo
    779 CFLAndersAAResult::buildInfoFrom(const Function &Fn) {
    780   CFLGraphBuilder<CFLAndersAAResult> GraphBuilder(
    781       *this, TLI,
    782       // Cast away the constness here due to GraphBuilder's API requirement
    783       const_cast<Function &>(Fn));
    784   auto &Graph = GraphBuilder.getCFLGraph();
    785 
    786   ReachabilitySet ReachSet;
    787   AliasMemSet MemSet;
    788 
    789   std::vector<WorkListItem> WorkList, NextList;
    790   initializeWorkList(WorkList, ReachSet, Graph);
    791   // TODO: make sure we don't stop before the fix point is reached
    792   while (!WorkList.empty()) {
    793     for (const auto &Item : WorkList)
    794       processWorkListItem(Item, Graph, ReachSet, MemSet, NextList);
    795 
    796     NextList.swap(WorkList);
    797     NextList.clear();
    798   }
    799 
    800   // Now that we have all the reachability info, propagate AliasAttrs according
    801   // to it
    802   auto IValueAttrMap = buildAttrMap(Graph, ReachSet);
    803 
    804   return FunctionInfo(Fn, GraphBuilder.getReturnValues(), ReachSet,
    805                       std::move(IValueAttrMap));
    806 }
    807 
    808 void CFLAndersAAResult::scan(const Function &Fn) {
    809   auto InsertPair = Cache.insert(std::make_pair(&Fn, Optional<FunctionInfo>()));
    810   (void)InsertPair;
    811   assert(InsertPair.second &&
    812          "Trying to scan a function that has already been cached");
    813 
    814   // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
    815   // may get evaluated after operator[], potentially triggering a DenseMap
    816   // resize and invalidating the reference returned by operator[]
    817   auto FunInfo = buildInfoFrom(Fn);
    818   Cache[&Fn] = std::move(FunInfo);
    819   Handles.emplace_front(const_cast<Function *>(&Fn), this);
    820 }
    821 
    822 void CFLAndersAAResult::evict(const Function *Fn) { Cache.erase(Fn); }
    823 
    824 const Optional<CFLAndersAAResult::FunctionInfo> &
    825 CFLAndersAAResult::ensureCached(const Function &Fn) {
    826   auto Iter = Cache.find(&Fn);
    827   if (Iter == Cache.end()) {
    828     scan(Fn);
    829     Iter = Cache.find(&Fn);
    830     assert(Iter != Cache.end());
    831     assert(Iter->second.hasValue());
    832   }
    833   return Iter->second;
    834 }
    835 
    836 const AliasSummary *CFLAndersAAResult::getAliasSummary(const Function &Fn) {
    837   auto &FunInfo = ensureCached(Fn);
    838   if (FunInfo.hasValue())
    839     return &FunInfo->getAliasSummary();
    840   else
    841     return nullptr;
    842 }
    843 
    844 AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA,
    845                                      const MemoryLocation &LocB) {
    846   auto *ValA = LocA.Ptr;
    847   auto *ValB = LocB.Ptr;
    848 
    849   if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
    850     return NoAlias;
    851 
    852   auto *Fn = parentFunctionOfValue(ValA);
    853   if (!Fn) {
    854     Fn = parentFunctionOfValue(ValB);
    855     if (!Fn) {
    856       // The only times this is known to happen are when globals + InlineAsm are
    857       // involved
    858       LLVM_DEBUG(
    859           dbgs()
    860           << "CFLAndersAA: could not extract parent function information.\n");
    861       return MayAlias;
    862     }
    863   } else {
    864     assert(!parentFunctionOfValue(ValB) || parentFunctionOfValue(ValB) == Fn);
    865   }
    866 
    867   assert(Fn != nullptr);
    868   auto &FunInfo = ensureCached(*Fn);
    869 
    870   // AliasMap lookup
    871   if (FunInfo->mayAlias(ValA, LocA.Size, ValB, LocB.Size))
    872     return MayAlias;
    873   return NoAlias;
    874 }
    875 
    876 AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA,
    877                                      const MemoryLocation &LocB) {
    878   if (LocA.Ptr == LocB.Ptr)
    879     return MustAlias;
    880 
    881   // Comparisons between global variables and other constants should be
    882   // handled by BasicAA.
    883   // CFLAndersAA may report NoAlias when comparing a GlobalValue and
    884   // ConstantExpr, but every query needs to have at least one Value tied to a
    885   // Function, and neither GlobalValues nor ConstantExprs are.
    886   if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr))
    887     return AAResultBase::alias(LocA, LocB);
    888 
    889   AliasResult QueryResult = query(LocA, LocB);
    890   if (QueryResult == MayAlias)
    891     return AAResultBase::alias(LocA, LocB);
    892 
    893   return QueryResult;
    894 }
    895 
    896 AnalysisKey CFLAndersAA::Key;
    897 
    898 CFLAndersAAResult CFLAndersAA::run(Function &F, FunctionAnalysisManager &AM) {
    899   return CFLAndersAAResult(AM.getResult<TargetLibraryAnalysis>(F));
    900 }
    901 
    902 char CFLAndersAAWrapperPass::ID = 0;
    903 INITIALIZE_PASS(CFLAndersAAWrapperPass, "cfl-anders-aa",
    904                 "Inclusion-Based CFL Alias Analysis", false, true)
    905 
    906 ImmutablePass *llvm::createCFLAndersAAWrapperPass() {
    907   return new CFLAndersAAWrapperPass();
    908 }
    909 
    910 CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID) {
    911   initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry());
    912 }
    913 
    914 void CFLAndersAAWrapperPass::initializePass() {
    915   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
    916   Result.reset(new CFLAndersAAResult(TLIWP.getTLI()));
    917 }
    918 
    919 void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
    920   AU.setPreservesAll();
    921   AU.addRequired<TargetLibraryInfoWrapperPass>();
    922 }
    923