Home | History | Annotate | Download | only in Analysis
      1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the TypeBasedAliasAnalysis pass, which implements
     11 // metadata-based TBAA.
     12 //
     13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
     14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
     15 // a type system of a higher level language. This can be used to implement
     16 // typical C/C++ TBAA, but it can also be used to implement custom alias
     17 // analysis behavior for other languages.
     18 //
     19 // We now support two types of metadata format: scalar TBAA and struct-path
     20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
     21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
     22 // can be dropped.
     23 //
     24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
     25 // three fields, e.g.:
     26 //   !0 = !{ !"an example type tree" }
     27 //   !1 = !{ !"int", !0 }
     28 //   !2 = !{ !"float", !0 }
     29 //   !3 = !{ !"const float", !2, i64 1 }
     30 //
     31 // The first field is an identity field. It can be any value, usually
     32 // an MDString, which uniquely identifies the type. The most important
     33 // name in the tree is the name of the root node. Two trees with
     34 // different root node names are entirely disjoint, even if they
     35 // have leaves with common names.
     36 //
     37 // The second field identifies the type's parent node in the tree, or
     38 // is null or omitted for a root node. A type is considered to alias
     39 // all of its descendants and all of its ancestors in the tree. Also,
     40 // a type is considered to alias all types in other trees, so that
     41 // bitcode produced from multiple front-ends is handled conservatively.
     42 //
     43 // If the third field is present, it's an integer which if equal to 1
     44 // indicates that the type is "constant" (meaning pointsToConstantMemory
     45 // should return true; see
     46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
     47 //
     48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
     49 // "!tbaa" are called path tag nodes.
     50 //
     51 // The path tag node has 4 fields with the last field being optional.
     52 //
     53 // The first field is the base type node, it can be a struct type node
     54 // or a scalar type node. The second field is the access type node, it
     55 // must be a scalar type node. The third field is the offset into the base type.
     56 // The last field has the same meaning as the last field of our scalar TBAA:
     57 // it's an integer which if equal to 1 indicates that the access is "constant".
     58 //
     59 // The struct type node has a name and a list of pairs, one pair for each member
     60 // of the struct. The first element of each pair is a type node (a struct type
     61 // node or a scalar type node), specifying the type of the member, the second
     62 // element of each pair is the offset of the member.
     63 //
     64 // Given an example
     65 // typedef struct {
     66 //   short s;
     67 // } A;
     68 // typedef struct {
     69 //   uint16_t s;
     70 //   A a;
     71 // } B;
     72 //
     73 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
     74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
     75 // type short) and the offset is 4.
     76 //
     77 // !0 = !{!"Simple C/C++ TBAA"}
     78 // !1 = !{!"omnipotent char", !0} // Scalar type node
     79 // !2 = !{!"short", !1}           // Scalar type node
     80 // !3 = !{!"A", !2, i64 0}        // Struct type node
     81 // !4 = !{!"B", !2, i64 0, !3, i64 4}
     82 //                                                           // Struct type node
     83 // !5 = !{!4, !2, i64 4}          // Path tag node
     84 //
     85 // The struct type nodes and the scalar type nodes form a type DAG.
     86 //         Root (!0)
     87 //         char (!1)  -- edge to Root
     88 //         short (!2) -- edge to char
     89 //         A (!3) -- edge with offset 0 to short
     90 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
     91 //
     92 // To check if two tags (tagX and tagY) can alias, we start from the base type
     93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
     94 // the offset until we reach the base type of tagY or until we reach the Root
     95 // node.
     96 // If we reach the base type of tagY, compare the adjusted offset with
     97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
     98 // otherwise.
     99 // If we reach the Root node, perform the above starting from base type of tagY
    100 // to see if we reach base type of tagX.
    101 //
    102 // If they have different roots, they're part of different potentially
    103 // unrelated type systems, so we return Alias to be conservative.
    104 // If neither node is an ancestor of the other and they have the same root,
    105 // then we say NoAlias.
    106 //
    107 //===----------------------------------------------------------------------===//
    108 
    109 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
    110 #include "llvm/ADT/SetVector.h"
    111 #include "llvm/Analysis/AliasAnalysis.h"
    112 #include "llvm/Analysis/MemoryLocation.h"
    113 #include "llvm/IR/Constants.h"
    114 #include "llvm/IR/DerivedTypes.h"
    115 #include "llvm/IR/Instruction.h"
    116 #include "llvm/IR/LLVMContext.h"
    117 #include "llvm/IR/Metadata.h"
    118 #include "llvm/Pass.h"
    119 #include "llvm/Support/Casting.h"
    120 #include "llvm/Support/CommandLine.h"
    121 #include "llvm/Support/ErrorHandling.h"
    122 #include <cassert>
    123 #include <cstdint>
    124 
    125 using namespace llvm;
    126 
    127 // A handy option for disabling TBAA functionality. The same effect can also be
    128 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
    129 // more convenient.
    130 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);
    131 
    132 namespace {
    133 
    134 /// isNewFormatTypeNode - Return true iff the given type node is in the new
    135 /// size-aware format.
    136 static bool isNewFormatTypeNode(const MDNode *N) {
    137   if (N->getNumOperands() < 3)
    138     return false;
    139   // In the old format the first operand is a string.
    140   if (!isa<MDNode>(N->getOperand(0)))
    141     return false;
    142   return true;
    143 }
    144 
    145 /// This is a simple wrapper around an MDNode which provides a higher-level
    146 /// interface by hiding the details of how alias analysis information is encoded
    147 /// in its operands.
    148 template<typename MDNodeTy>
    149 class TBAANodeImpl {
    150   MDNodeTy *Node = nullptr;
    151 
    152 public:
    153   TBAANodeImpl() = default;
    154   explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
    155 
    156   /// getNode - Get the MDNode for this TBAANode.
    157   MDNodeTy *getNode() const { return Node; }
    158 
    159   /// isNewFormat - Return true iff the wrapped type node is in the new
    160   /// size-aware format.
    161   bool isNewFormat() const { return isNewFormatTypeNode(Node); }
    162 
    163   /// getParent - Get this TBAANode's Alias tree parent.
    164   TBAANodeImpl<MDNodeTy> getParent() const {
    165     if (isNewFormat())
    166       return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));
    167 
    168     if (Node->getNumOperands() < 2)
    169       return TBAANodeImpl<MDNodeTy>();
    170     MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
    171     if (!P)
    172       return TBAANodeImpl<MDNodeTy>();
    173     // Ok, this node has a valid parent. Return it.
    174     return TBAANodeImpl<MDNodeTy>(P);
    175   }
    176 
    177   /// Test if this TBAANode represents a type for objects which are
    178   /// not modified (by any means) in the context where this
    179   /// AliasAnalysis is relevant.
    180   bool isTypeImmutable() const {
    181     if (Node->getNumOperands() < 3)
    182       return false;
    183     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
    184     if (!CI)
    185       return false;
    186     return CI->getValue()[0];
    187   }
    188 };
    189 
    190 /// \name Specializations of \c TBAANodeImpl for const and non const qualified
    191 /// \c MDNode.
    192 /// @{
    193 using TBAANode = TBAANodeImpl<const MDNode>;
    194 using MutableTBAANode = TBAANodeImpl<MDNode>;
    195 /// @}
    196 
    197 /// This is a simple wrapper around an MDNode which provides a
    198 /// higher-level interface by hiding the details of how alias analysis
    199 /// information is encoded in its operands.
    200 template<typename MDNodeTy>
    201 class TBAAStructTagNodeImpl {
    202   /// This node should be created with createTBAAAccessTag().
    203   MDNodeTy *Node;
    204 
    205 public:
    206   explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
    207 
    208   /// Get the MDNode for this TBAAStructTagNode.
    209   MDNodeTy *getNode() const { return Node; }
    210 
    211   /// isNewFormat - Return true iff the wrapped access tag is in the new
    212   /// size-aware format.
    213   bool isNewFormat() const {
    214     if (Node->getNumOperands() < 4)
    215       return false;
    216     if (MDNodeTy *AccessType = getAccessType())
    217       if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
    218         return false;
    219     return true;
    220   }
    221 
    222   MDNodeTy *getBaseType() const {
    223     return dyn_cast_or_null<MDNode>(Node->getOperand(0));
    224   }
    225 
    226   MDNodeTy *getAccessType() const {
    227     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
    228   }
    229 
    230   uint64_t getOffset() const {
    231     return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
    232   }
    233 
    234   uint64_t getSize() const {
    235     if (!isNewFormat())
    236       return UINT64_MAX;
    237     return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
    238   }
    239 
    240   /// Test if this TBAAStructTagNode represents a type for objects
    241   /// which are not modified (by any means) in the context where this
    242   /// AliasAnalysis is relevant.
    243   bool isTypeImmutable() const {
    244     unsigned OpNo = isNewFormat() ? 4 : 3;
    245     if (Node->getNumOperands() < OpNo + 1)
    246       return false;
    247     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
    248     if (!CI)
    249       return false;
    250     return CI->getValue()[0];
    251   }
    252 };
    253 
    254 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
    255 /// qualified \c MDNods.
    256 /// @{
    257 using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
    258 using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
    259 /// @}
    260 
    261 /// This is a simple wrapper around an MDNode which provides a
    262 /// higher-level interface by hiding the details of how alias analysis
    263 /// information is encoded in its operands.
    264 class TBAAStructTypeNode {
    265   /// This node should be created with createTBAATypeNode().
    266   const MDNode *Node = nullptr;
    267 
    268 public:
    269   TBAAStructTypeNode() = default;
    270   explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
    271 
    272   /// Get the MDNode for this TBAAStructTypeNode.
    273   const MDNode *getNode() const { return Node; }
    274 
    275   /// isNewFormat - Return true iff the wrapped type node is in the new
    276   /// size-aware format.
    277   bool isNewFormat() const { return isNewFormatTypeNode(Node); }
    278 
    279   bool operator==(const TBAAStructTypeNode &Other) const {
    280     return getNode() == Other.getNode();
    281   }
    282 
    283   /// getId - Return type identifier.
    284   Metadata *getId() const {
    285     return Node->getOperand(isNewFormat() ? 2 : 0);
    286   }
    287 
    288   unsigned getNumFields() const {
    289     unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
    290     unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
    291     return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
    292   }
    293 
    294   TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
    295     unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
    296     unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
    297     unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
    298     auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
    299     return TBAAStructTypeNode(TypeNode);
    300   }
    301 
    302   /// Get this TBAAStructTypeNode's field in the type DAG with
    303   /// given offset. Update the offset to be relative to the field type.
    304   TBAAStructTypeNode getField(uint64_t &Offset) const {
    305     bool NewFormat = isNewFormat();
    306     if (NewFormat) {
    307       // New-format root and scalar type nodes have no fields.
    308       if (Node->getNumOperands() < 6)
    309         return TBAAStructTypeNode();
    310     } else {
    311       // Parent can be omitted for the root node.
    312       if (Node->getNumOperands() < 2)
    313         return TBAAStructTypeNode();
    314 
    315       // Fast path for a scalar type node and a struct type node with a single
    316       // field.
    317       if (Node->getNumOperands() <= 3) {
    318         uint64_t Cur = Node->getNumOperands() == 2
    319                            ? 0
    320                            : mdconst::extract<ConstantInt>(Node->getOperand(2))
    321                                  ->getZExtValue();
    322         Offset -= Cur;
    323         MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
    324         if (!P)
    325           return TBAAStructTypeNode();
    326         return TBAAStructTypeNode(P);
    327       }
    328     }
    329 
    330     // Assume the offsets are in order. We return the previous field if
    331     // the current offset is bigger than the given offset.
    332     unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
    333     unsigned NumOpsPerField = NewFormat ? 3 : 2;
    334     unsigned TheIdx = 0;
    335     for (unsigned Idx = FirstFieldOpNo; Idx < Node->getNumOperands();
    336          Idx += NumOpsPerField) {
    337       uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
    338                          ->getZExtValue();
    339       if (Cur > Offset) {
    340         assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
    341                "TBAAStructTypeNode::getField should have an offset match!");
    342         TheIdx = Idx - NumOpsPerField;
    343         break;
    344       }
    345     }
    346     // Move along the last field.
    347     if (TheIdx == 0)
    348       TheIdx = Node->getNumOperands() - NumOpsPerField;
    349     uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
    350                        ->getZExtValue();
    351     Offset -= Cur;
    352     MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
    353     if (!P)
    354       return TBAAStructTypeNode();
    355     return TBAAStructTypeNode(P);
    356   }
    357 };
    358 
    359 } // end anonymous namespace
    360 
    361 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
    362 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
    363 /// format.
    364 static bool isStructPathTBAA(const MDNode *MD) {
    365   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
    366   // a TBAA tag.
    367   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
    368 }
    369 
    370 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
    371                                      const MemoryLocation &LocB) {
    372   if (!EnableTBAA)
    373     return AAResultBase::alias(LocA, LocB);
    374 
    375   // If accesses may alias, chain to the next AliasAnalysis.
    376   if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
    377     return AAResultBase::alias(LocA, LocB);
    378 
    379   // Otherwise return a definitive result.
    380   return NoAlias;
    381 }
    382 
    383 bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
    384                                                bool OrLocal) {
    385   if (!EnableTBAA)
    386     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    387 
    388   const MDNode *M = Loc.AATags.TBAA;
    389   if (!M)
    390     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    391 
    392   // If this is an "immutable" type, we can assume the pointer is pointing
    393   // to constant memory.
    394   if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
    395       (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
    396     return true;
    397 
    398   return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    399 }
    400 
    401 FunctionModRefBehavior
    402 TypeBasedAAResult::getModRefBehavior(ImmutableCallSite CS) {
    403   if (!EnableTBAA)
    404     return AAResultBase::getModRefBehavior(CS);
    405 
    406   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
    407 
    408   // If this is an "immutable" type, we can assume the call doesn't write
    409   // to memory.
    410   if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    411     if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
    412         (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
    413       Min = FMRB_OnlyReadsMemory;
    414 
    415   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
    416 }
    417 
    418 FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
    419   // Functions don't have metadata. Just chain to the next implementation.
    420   return AAResultBase::getModRefBehavior(F);
    421 }
    422 
    423 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS,
    424                                             const MemoryLocation &Loc) {
    425   if (!EnableTBAA)
    426     return AAResultBase::getModRefInfo(CS, Loc);
    427 
    428   if (const MDNode *L = Loc.AATags.TBAA)
    429     if (const MDNode *M =
    430             CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    431       if (!Aliases(L, M))
    432         return ModRefInfo::NoModRef;
    433 
    434   return AAResultBase::getModRefInfo(CS, Loc);
    435 }
    436 
    437 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS1,
    438                                             ImmutableCallSite CS2) {
    439   if (!EnableTBAA)
    440     return AAResultBase::getModRefInfo(CS1, CS2);
    441 
    442   if (const MDNode *M1 =
    443           CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    444     if (const MDNode *M2 =
    445             CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    446       if (!Aliases(M1, M2))
    447         return ModRefInfo::NoModRef;
    448 
    449   return AAResultBase::getModRefInfo(CS1, CS2);
    450 }
    451 
    452 bool MDNode::isTBAAVtableAccess() const {
    453   if (!isStructPathTBAA(this)) {
    454     if (getNumOperands() < 1)
    455       return false;
    456     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
    457       if (Tag1->getString() == "vtable pointer")
    458         return true;
    459     }
    460     return false;
    461   }
    462 
    463   // For struct-path aware TBAA, we use the access type of the tag.
    464   TBAAStructTagNode Tag(this);
    465   TBAAStructTypeNode AccessType(Tag.getAccessType());
    466   if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
    467     if (Id->getString() == "vtable pointer")
    468       return true;
    469   return false;
    470 }
    471 
    472 static bool matchAccessTags(const MDNode *A, const MDNode *B,
    473                             const MDNode **GenericTag = nullptr);
    474 
    475 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
    476   const MDNode *GenericTag;
    477   matchAccessTags(A, B, &GenericTag);
    478   return const_cast<MDNode*>(GenericTag);
    479 }
    480 
    481 static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
    482   if (!A || !B)
    483     return nullptr;
    484 
    485   if (A == B)
    486     return A;
    487 
    488   SmallSetVector<const MDNode *, 4> PathA;
    489   TBAANode TA(A);
    490   while (TA.getNode()) {
    491     if (PathA.count(TA.getNode()))
    492       report_fatal_error("Cycle found in TBAA metadata.");
    493     PathA.insert(TA.getNode());
    494     TA = TA.getParent();
    495   }
    496 
    497   SmallSetVector<const MDNode *, 4> PathB;
    498   TBAANode TB(B);
    499   while (TB.getNode()) {
    500     if (PathB.count(TB.getNode()))
    501       report_fatal_error("Cycle found in TBAA metadata.");
    502     PathB.insert(TB.getNode());
    503     TB = TB.getParent();
    504   }
    505 
    506   int IA = PathA.size() - 1;
    507   int IB = PathB.size() - 1;
    508 
    509   const MDNode *Ret = nullptr;
    510   while (IA >= 0 && IB >= 0) {
    511     if (PathA[IA] == PathB[IB])
    512       Ret = PathA[IA];
    513     else
    514       break;
    515     --IA;
    516     --IB;
    517   }
    518 
    519   return Ret;
    520 }
    521 
    522 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
    523   if (Merge)
    524     N.TBAA =
    525         MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
    526   else
    527     N.TBAA = getMetadata(LLVMContext::MD_tbaa);
    528 
    529   if (Merge)
    530     N.Scope = MDNode::getMostGenericAliasScope(
    531         N.Scope, getMetadata(LLVMContext::MD_alias_scope));
    532   else
    533     N.Scope = getMetadata(LLVMContext::MD_alias_scope);
    534 
    535   if (Merge)
    536     N.NoAlias =
    537         MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
    538   else
    539     N.NoAlias = getMetadata(LLVMContext::MD_noalias);
    540 }
    541 
    542 static const MDNode *createAccessTag(const MDNode *AccessType) {
    543   // If there is no access type or the access type is the root node, then
    544   // we don't have any useful access tag to return.
    545   if (!AccessType || AccessType->getNumOperands() < 2)
    546     return nullptr;
    547 
    548   Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
    549   auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
    550 
    551   if (TBAAStructTypeNode(AccessType).isNewFormat()) {
    552     // TODO: Take access ranges into account when matching access tags and
    553     // fix this code to generate actual access sizes for generic tags.
    554     uint64_t AccessSize = UINT64_MAX;
    555     auto *SizeNode =
    556         ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
    557     Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
    558                        const_cast<MDNode*>(AccessType),
    559                        OffsetNode, SizeNode};
    560     return MDNode::get(AccessType->getContext(), Ops);
    561   }
    562 
    563   Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
    564                      const_cast<MDNode*>(AccessType),
    565                      OffsetNode};
    566   return MDNode::get(AccessType->getContext(), Ops);
    567 }
    568 
    569 static bool hasField(TBAAStructTypeNode BaseType,
    570                      TBAAStructTypeNode FieldType) {
    571   for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
    572     TBAAStructTypeNode T = BaseType.getFieldType(I);
    573     if (T == FieldType || hasField(T, FieldType))
    574       return true;
    575   }
    576   return false;
    577 }
    578 
    579 /// Return true if for two given accesses, one of the accessed objects may be a
    580 /// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
    581 /// describe the accesses to the base object and the subobject respectively.
    582 /// \p CommonType must be the metadata node describing the common type of the
    583 /// accessed objects. On return, \p MayAlias is set to true iff these accesses
    584 /// may alias and \p Generic, if not null, points to the most generic access
    585 /// tag for the given two.
    586 static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
    587                                      TBAAStructTagNode SubobjectTag,
    588                                      const MDNode *CommonType,
    589                                      const MDNode **GenericTag,
    590                                      bool &MayAlias) {
    591   // If the base object is of the least common type, then this may be an access
    592   // to its subobject.
    593   if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
    594       BaseTag.getAccessType() == CommonType) {
    595     if (GenericTag)
    596       *GenericTag = createAccessTag(CommonType);
    597     MayAlias = true;
    598     return true;
    599   }
    600 
    601   // If the access to the base object is through a field of the subobject's
    602   // type, then this may be an access to that field. To check for that we start
    603   // from the base type, follow the edge with the correct offset in the type DAG
    604   // and adjust the offset until we reach the field type or until we reach the
    605   // access type.
    606   bool NewFormat = BaseTag.isNewFormat();
    607   TBAAStructTypeNode BaseType(BaseTag.getBaseType());
    608   uint64_t OffsetInBase = BaseTag.getOffset();
    609 
    610   for (;;) {
    611     // In the old format there is no distinction between fields and parent
    612     // types, so in this case we consider all nodes up to the root.
    613     if (!BaseType.getNode()) {
    614       assert(!NewFormat && "Did not see access type in access path!");
    615       break;
    616     }
    617 
    618     if (BaseType.getNode() == SubobjectTag.getBaseType()) {
    619       bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
    620       if (GenericTag) {
    621         *GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
    622                                          createAccessTag(CommonType);
    623       }
    624       MayAlias = SameMemberAccess;
    625       return true;
    626     }
    627 
    628     // With new-format nodes we stop at the access type.
    629     if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
    630       break;
    631 
    632     // Follow the edge with the correct offset. Offset will be adjusted to
    633     // be relative to the field type.
    634     BaseType = BaseType.getField(OffsetInBase);
    635   }
    636 
    637   // If the base object has a direct or indirect field of the subobject's type,
    638   // then this may be an access to that field. We need this to check now that
    639   // we support aggregates as access types.
    640   if (NewFormat) {
    641     // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
    642     TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
    643     if (hasField(BaseType, FieldType)) {
    644       if (GenericTag)
    645         *GenericTag = createAccessTag(CommonType);
    646       MayAlias = true;
    647       return true;
    648     }
    649   }
    650 
    651   return false;
    652 }
    653 
    654 /// matchTags - Return true if the given couple of accesses are allowed to
    655 /// overlap. If \arg GenericTag is not null, then on return it points to the
    656 /// most generic access descriptor for the given two.
    657 static bool matchAccessTags(const MDNode *A, const MDNode *B,
    658                             const MDNode **GenericTag) {
    659   if (A == B) {
    660     if (GenericTag)
    661       *GenericTag = A;
    662     return true;
    663   }
    664 
    665   // Accesses with no TBAA information may alias with any other accesses.
    666   if (!A || !B) {
    667     if (GenericTag)
    668       *GenericTag = nullptr;
    669     return true;
    670   }
    671 
    672   // Verify that both input nodes are struct-path aware.  Auto-upgrade should
    673   // have taken care of this.
    674   assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
    675   assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
    676 
    677   TBAAStructTagNode TagA(A), TagB(B);
    678   const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
    679                                                 TagB.getAccessType());
    680 
    681   // If the final access types have different roots, they're part of different
    682   // potentially unrelated type systems, so we must be conservative.
    683   if (!CommonType) {
    684     if (GenericTag)
    685       *GenericTag = nullptr;
    686     return true;
    687   }
    688 
    689   // If one of the accessed objects may be a subobject of the other, then such
    690   // accesses may alias.
    691   bool MayAlias;
    692   if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
    693                                CommonType, GenericTag, MayAlias) ||
    694       mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
    695                                CommonType, GenericTag, MayAlias))
    696     return MayAlias;
    697 
    698   // Otherwise, we've proved there's no alias.
    699   if (GenericTag)
    700     *GenericTag = createAccessTag(CommonType);
    701   return false;
    702 }
    703 
    704 /// Aliases - Test whether the access represented by tag A may alias the
    705 /// access represented by tag B.
    706 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
    707   return matchAccessTags(A, B);
    708 }
    709 
    710 AnalysisKey TypeBasedAA::Key;
    711 
    712 TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
    713   return TypeBasedAAResult();
    714 }
    715 
    716 char TypeBasedAAWrapperPass::ID = 0;
    717 INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
    718                 false, true)
    719 
    720 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
    721   return new TypeBasedAAWrapperPass();
    722 }
    723 
    724 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
    725   initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
    726 }
    727 
    728 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
    729   Result.reset(new TypeBasedAAResult());
    730   return false;
    731 }
    732 
    733 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
    734   Result.reset();
    735   return false;
    736 }
    737 
    738 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
    739   AU.setPreservesAll();
    740 }
    741