Home | History | Annotate | Download | only in Writer
      1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the ValueEnumerator class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ValueEnumerator.h"
     15 #include "llvm/ADT/DenseMap.h"
     16 #include "llvm/ADT/SmallVector.h"
     17 #include "llvm/Config/llvm-config.h"
     18 #include "llvm/IR/Argument.h"
     19 #include "llvm/IR/Attributes.h"
     20 #include "llvm/IR/BasicBlock.h"
     21 #include "llvm/IR/Constant.h"
     22 #include "llvm/IR/DebugInfoMetadata.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/Function.h"
     25 #include "llvm/IR/GlobalAlias.h"
     26 #include "llvm/IR/GlobalIFunc.h"
     27 #include "llvm/IR/GlobalObject.h"
     28 #include "llvm/IR/GlobalValue.h"
     29 #include "llvm/IR/GlobalVariable.h"
     30 #include "llvm/IR/Instruction.h"
     31 #include "llvm/IR/Instructions.h"
     32 #include "llvm/IR/Metadata.h"
     33 #include "llvm/IR/Module.h"
     34 #include "llvm/IR/Type.h"
     35 #include "llvm/IR/Use.h"
     36 #include "llvm/IR/UseListOrder.h"
     37 #include "llvm/IR/User.h"
     38 #include "llvm/IR/Value.h"
     39 #include "llvm/IR/ValueSymbolTable.h"
     40 #include "llvm/Support/Casting.h"
     41 #include "llvm/Support/Compiler.h"
     42 #include "llvm/Support/Debug.h"
     43 #include "llvm/Support/MathExtras.h"
     44 #include "llvm/Support/raw_ostream.h"
     45 #include <algorithm>
     46 #include <cassert>
     47 #include <cstddef>
     48 #include <iterator>
     49 #include <tuple>
     50 #include <utility>
     51 #include <vector>
     52 
     53 using namespace llvm;
     54 
     55 namespace {
     56 
     57 struct OrderMap {
     58   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
     59   unsigned LastGlobalConstantID = 0;
     60   unsigned LastGlobalValueID = 0;
     61 
     62   OrderMap() = default;
     63 
     64   bool isGlobalConstant(unsigned ID) const {
     65     return ID <= LastGlobalConstantID;
     66   }
     67 
     68   bool isGlobalValue(unsigned ID) const {
     69     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
     70   }
     71 
     72   unsigned size() const { return IDs.size(); }
     73   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
     74 
     75   std::pair<unsigned, bool> lookup(const Value *V) const {
     76     return IDs.lookup(V);
     77   }
     78 
     79   void index(const Value *V) {
     80     // Explicitly sequence get-size and insert-value operations to avoid UB.
     81     unsigned ID = IDs.size() + 1;
     82     IDs[V].first = ID;
     83   }
     84 };
     85 
     86 } // end anonymous namespace
     87 
     88 static void orderValue(const Value *V, OrderMap &OM) {
     89   if (OM.lookup(V).first)
     90     return;
     91 
     92   if (const Constant *C = dyn_cast<Constant>(V))
     93     if (C->getNumOperands() && !isa<GlobalValue>(C))
     94       for (const Value *Op : C->operands())
     95         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
     96           orderValue(Op, OM);
     97 
     98   // Note: we cannot cache this lookup above, since inserting into the map
     99   // changes the map's size, and thus affects the other IDs.
    100   OM.index(V);
    101 }
    102 
    103 static OrderMap orderModule(const Module &M) {
    104   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
    105   // and ValueEnumerator::incorporateFunction().
    106   OrderMap OM;
    107 
    108   // In the reader, initializers of GlobalValues are set *after* all the
    109   // globals have been read.  Rather than awkwardly modeling this behaviour
    110   // directly in predictValueUseListOrderImpl(), just assign IDs to
    111   // initializers of GlobalValues before GlobalValues themselves to model this
    112   // implicitly.
    113   for (const GlobalVariable &G : M.globals())
    114     if (G.hasInitializer())
    115       if (!isa<GlobalValue>(G.getInitializer()))
    116         orderValue(G.getInitializer(), OM);
    117   for (const GlobalAlias &A : M.aliases())
    118     if (!isa<GlobalValue>(A.getAliasee()))
    119       orderValue(A.getAliasee(), OM);
    120   for (const GlobalIFunc &I : M.ifuncs())
    121     if (!isa<GlobalValue>(I.getResolver()))
    122       orderValue(I.getResolver(), OM);
    123   for (const Function &F : M) {
    124     for (const Use &U : F.operands())
    125       if (!isa<GlobalValue>(U.get()))
    126         orderValue(U.get(), OM);
    127   }
    128   OM.LastGlobalConstantID = OM.size();
    129 
    130   // Initializers of GlobalValues are processed in
    131   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
    132   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
    133   // by giving IDs in reverse order.
    134   //
    135   // Since GlobalValues never reference each other directly (just through
    136   // initializers), their relative IDs only matter for determining order of
    137   // uses in their initializers.
    138   for (const Function &F : M)
    139     orderValue(&F, OM);
    140   for (const GlobalAlias &A : M.aliases())
    141     orderValue(&A, OM);
    142   for (const GlobalIFunc &I : M.ifuncs())
    143     orderValue(&I, OM);
    144   for (const GlobalVariable &G : M.globals())
    145     orderValue(&G, OM);
    146   OM.LastGlobalValueID = OM.size();
    147 
    148   for (const Function &F : M) {
    149     if (F.isDeclaration())
    150       continue;
    151     // Here we need to match the union of ValueEnumerator::incorporateFunction()
    152     // and WriteFunction().  Basic blocks are implicitly declared before
    153     // anything else (by declaring their size).
    154     for (const BasicBlock &BB : F)
    155       orderValue(&BB, OM);
    156     for (const Argument &A : F.args())
    157       orderValue(&A, OM);
    158     for (const BasicBlock &BB : F)
    159       for (const Instruction &I : BB)
    160         for (const Value *Op : I.operands())
    161           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
    162               isa<InlineAsm>(*Op))
    163             orderValue(Op, OM);
    164     for (const BasicBlock &BB : F)
    165       for (const Instruction &I : BB)
    166         orderValue(&I, OM);
    167   }
    168   return OM;
    169 }
    170 
    171 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
    172                                          unsigned ID, const OrderMap &OM,
    173                                          UseListOrderStack &Stack) {
    174   // Predict use-list order for this one.
    175   using Entry = std::pair<const Use *, unsigned>;
    176   SmallVector<Entry, 64> List;
    177   for (const Use &U : V->uses())
    178     // Check if this user will be serialized.
    179     if (OM.lookup(U.getUser()).first)
    180       List.push_back(std::make_pair(&U, List.size()));
    181 
    182   if (List.size() < 2)
    183     // We may have lost some users.
    184     return;
    185 
    186   bool IsGlobalValue = OM.isGlobalValue(ID);
    187   llvm::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
    188     const Use *LU = L.first;
    189     const Use *RU = R.first;
    190     if (LU == RU)
    191       return false;
    192 
    193     auto LID = OM.lookup(LU->getUser()).first;
    194     auto RID = OM.lookup(RU->getUser()).first;
    195 
    196     // Global values are processed in reverse order.
    197     //
    198     // Moreover, initializers of GlobalValues are set *after* all the globals
    199     // have been read (despite having earlier IDs).  Rather than awkwardly
    200     // modeling this behaviour here, orderModule() has assigned IDs to
    201     // initializers of GlobalValues before GlobalValues themselves.
    202     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
    203       return LID < RID;
    204 
    205     // If ID is 4, then expect: 7 6 5 1 2 3.
    206     if (LID < RID) {
    207       if (RID <= ID)
    208         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
    209           return true;
    210       return false;
    211     }
    212     if (RID < LID) {
    213       if (LID <= ID)
    214         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
    215           return false;
    216       return true;
    217     }
    218 
    219     // LID and RID are equal, so we have different operands of the same user.
    220     // Assume operands are added in order for all instructions.
    221     if (LID <= ID)
    222       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
    223         return LU->getOperandNo() < RU->getOperandNo();
    224     return LU->getOperandNo() > RU->getOperandNo();
    225   });
    226 
    227   if (std::is_sorted(
    228           List.begin(), List.end(),
    229           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
    230     // Order is already correct.
    231     return;
    232 
    233   // Store the shuffle.
    234   Stack.emplace_back(V, F, List.size());
    235   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
    236   for (size_t I = 0, E = List.size(); I != E; ++I)
    237     Stack.back().Shuffle[I] = List[I].second;
    238 }
    239 
    240 static void predictValueUseListOrder(const Value *V, const Function *F,
    241                                      OrderMap &OM, UseListOrderStack &Stack) {
    242   auto &IDPair = OM[V];
    243   assert(IDPair.first && "Unmapped value");
    244   if (IDPair.second)
    245     // Already predicted.
    246     return;
    247 
    248   // Do the actual prediction.
    249   IDPair.second = true;
    250   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
    251     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
    252 
    253   // Recursive descent into constants.
    254   if (const Constant *C = dyn_cast<Constant>(V))
    255     if (C->getNumOperands()) // Visit GlobalValues.
    256       for (const Value *Op : C->operands())
    257         if (isa<Constant>(Op)) // Visit GlobalValues.
    258           predictValueUseListOrder(Op, F, OM, Stack);
    259 }
    260 
    261 static UseListOrderStack predictUseListOrder(const Module &M) {
    262   OrderMap OM = orderModule(M);
    263 
    264   // Use-list orders need to be serialized after all the users have been added
    265   // to a value, or else the shuffles will be incomplete.  Store them per
    266   // function in a stack.
    267   //
    268   // Aside from function order, the order of values doesn't matter much here.
    269   UseListOrderStack Stack;
    270 
    271   // We want to visit the functions backward now so we can list function-local
    272   // constants in the last Function they're used in.  Module-level constants
    273   // have already been visited above.
    274   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
    275     const Function &F = *I;
    276     if (F.isDeclaration())
    277       continue;
    278     for (const BasicBlock &BB : F)
    279       predictValueUseListOrder(&BB, &F, OM, Stack);
    280     for (const Argument &A : F.args())
    281       predictValueUseListOrder(&A, &F, OM, Stack);
    282     for (const BasicBlock &BB : F)
    283       for (const Instruction &I : BB)
    284         for (const Value *Op : I.operands())
    285           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
    286             predictValueUseListOrder(Op, &F, OM, Stack);
    287     for (const BasicBlock &BB : F)
    288       for (const Instruction &I : BB)
    289         predictValueUseListOrder(&I, &F, OM, Stack);
    290   }
    291 
    292   // Visit globals last, since the module-level use-list block will be seen
    293   // before the function bodies are processed.
    294   for (const GlobalVariable &G : M.globals())
    295     predictValueUseListOrder(&G, nullptr, OM, Stack);
    296   for (const Function &F : M)
    297     predictValueUseListOrder(&F, nullptr, OM, Stack);
    298   for (const GlobalAlias &A : M.aliases())
    299     predictValueUseListOrder(&A, nullptr, OM, Stack);
    300   for (const GlobalIFunc &I : M.ifuncs())
    301     predictValueUseListOrder(&I, nullptr, OM, Stack);
    302   for (const GlobalVariable &G : M.globals())
    303     if (G.hasInitializer())
    304       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
    305   for (const GlobalAlias &A : M.aliases())
    306     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
    307   for (const GlobalIFunc &I : M.ifuncs())
    308     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
    309   for (const Function &F : M) {
    310     for (const Use &U : F.operands())
    311       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
    312   }
    313 
    314   return Stack;
    315 }
    316 
    317 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
    318   return V.first->getType()->isIntOrIntVectorTy();
    319 }
    320 
    321 ValueEnumerator::ValueEnumerator(const Module &M,
    322                                  bool ShouldPreserveUseListOrder)
    323     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
    324   if (ShouldPreserveUseListOrder)
    325     UseListOrders = predictUseListOrder(M);
    326 
    327   // Enumerate the global variables.
    328   for (const GlobalVariable &GV : M.globals())
    329     EnumerateValue(&GV);
    330 
    331   // Enumerate the functions.
    332   for (const Function & F : M) {
    333     EnumerateValue(&F);
    334     EnumerateAttributes(F.getAttributes());
    335   }
    336 
    337   // Enumerate the aliases.
    338   for (const GlobalAlias &GA : M.aliases())
    339     EnumerateValue(&GA);
    340 
    341   // Enumerate the ifuncs.
    342   for (const GlobalIFunc &GIF : M.ifuncs())
    343     EnumerateValue(&GIF);
    344 
    345   // Remember what is the cutoff between globalvalue's and other constants.
    346   unsigned FirstConstant = Values.size();
    347 
    348   // Enumerate the global variable initializers and attributes.
    349   for (const GlobalVariable &GV : M.globals()) {
    350     if (GV.hasInitializer())
    351       EnumerateValue(GV.getInitializer());
    352     if (GV.hasAttributes())
    353       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
    354   }
    355 
    356   // Enumerate the aliasees.
    357   for (const GlobalAlias &GA : M.aliases())
    358     EnumerateValue(GA.getAliasee());
    359 
    360   // Enumerate the ifunc resolvers.
    361   for (const GlobalIFunc &GIF : M.ifuncs())
    362     EnumerateValue(GIF.getResolver());
    363 
    364   // Enumerate any optional Function data.
    365   for (const Function &F : M)
    366     for (const Use &U : F.operands())
    367       EnumerateValue(U.get());
    368 
    369   // Enumerate the metadata type.
    370   //
    371   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
    372   // only encodes the metadata type when it's used as a value.
    373   EnumerateType(Type::getMetadataTy(M.getContext()));
    374 
    375   // Insert constants and metadata that are named at module level into the slot
    376   // pool so that the module symbol table can refer to them...
    377   EnumerateValueSymbolTable(M.getValueSymbolTable());
    378   EnumerateNamedMetadata(M);
    379 
    380   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
    381   for (const GlobalVariable &GV : M.globals()) {
    382     MDs.clear();
    383     GV.getAllMetadata(MDs);
    384     for (const auto &I : MDs)
    385       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
    386       // to write metadata to the global variable's own metadata block
    387       // (PR28134).
    388       EnumerateMetadata(nullptr, I.second);
    389   }
    390 
    391   // Enumerate types used by function bodies and argument lists.
    392   for (const Function &F : M) {
    393     for (const Argument &A : F.args())
    394       EnumerateType(A.getType());
    395 
    396     // Enumerate metadata attached to this function.
    397     MDs.clear();
    398     F.getAllMetadata(MDs);
    399     for (const auto &I : MDs)
    400       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
    401 
    402     for (const BasicBlock &BB : F)
    403       for (const Instruction &I : BB) {
    404         for (const Use &Op : I.operands()) {
    405           auto *MD = dyn_cast<MetadataAsValue>(&Op);
    406           if (!MD) {
    407             EnumerateOperandType(Op);
    408             continue;
    409           }
    410 
    411           // Local metadata is enumerated during function-incorporation.
    412           if (isa<LocalAsMetadata>(MD->getMetadata()))
    413             continue;
    414 
    415           EnumerateMetadata(&F, MD->getMetadata());
    416         }
    417         EnumerateType(I.getType());
    418         if (const CallInst *CI = dyn_cast<CallInst>(&I))
    419           EnumerateAttributes(CI->getAttributes());
    420         else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
    421           EnumerateAttributes(II->getAttributes());
    422 
    423         // Enumerate metadata attached with this instruction.
    424         MDs.clear();
    425         I.getAllMetadataOtherThanDebugLoc(MDs);
    426         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
    427           EnumerateMetadata(&F, MDs[i].second);
    428 
    429         // Don't enumerate the location directly -- it has a special record
    430         // type -- but enumerate its operands.
    431         if (DILocation *L = I.getDebugLoc())
    432           for (const Metadata *Op : L->operands())
    433             EnumerateMetadata(&F, Op);
    434       }
    435   }
    436 
    437   // Optimize constant ordering.
    438   OptimizeConstants(FirstConstant, Values.size());
    439 
    440   // Organize metadata ordering.
    441   organizeMetadata();
    442 }
    443 
    444 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
    445   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
    446   assert(I != InstructionMap.end() && "Instruction is not mapped!");
    447   return I->second;
    448 }
    449 
    450 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
    451   unsigned ComdatID = Comdats.idFor(C);
    452   assert(ComdatID && "Comdat not found!");
    453   return ComdatID;
    454 }
    455 
    456 void ValueEnumerator::setInstructionID(const Instruction *I) {
    457   InstructionMap[I] = InstructionCount++;
    458 }
    459 
    460 unsigned ValueEnumerator::getValueID(const Value *V) const {
    461   if (auto *MD = dyn_cast<MetadataAsValue>(V))
    462     return getMetadataID(MD->getMetadata());
    463 
    464   ValueMapType::const_iterator I = ValueMap.find(V);
    465   assert(I != ValueMap.end() && "Value not in slotcalculator!");
    466   return I->second-1;
    467 }
    468 
    469 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    470 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
    471   print(dbgs(), ValueMap, "Default");
    472   dbgs() << '\n';
    473   print(dbgs(), MetadataMap, "MetaData");
    474   dbgs() << '\n';
    475 }
    476 #endif
    477 
    478 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
    479                             const char *Name) const {
    480   OS << "Map Name: " << Name << "\n";
    481   OS << "Size: " << Map.size() << "\n";
    482   for (ValueMapType::const_iterator I = Map.begin(),
    483          E = Map.end(); I != E; ++I) {
    484     const Value *V = I->first;
    485     if (V->hasName())
    486       OS << "Value: " << V->getName();
    487     else
    488       OS << "Value: [null]\n";
    489     V->print(errs());
    490     errs() << '\n';
    491 
    492     OS << " Uses(" << V->getNumUses() << "):";
    493     for (const Use &U : V->uses()) {
    494       if (&U != &*V->use_begin())
    495         OS << ",";
    496       if(U->hasName())
    497         OS << " " << U->getName();
    498       else
    499         OS << " [null]";
    500 
    501     }
    502     OS <<  "\n\n";
    503   }
    504 }
    505 
    506 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
    507                             const char *Name) const {
    508   OS << "Map Name: " << Name << "\n";
    509   OS << "Size: " << Map.size() << "\n";
    510   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
    511     const Metadata *MD = I->first;
    512     OS << "Metadata: slot = " << I->second.ID << "\n";
    513     OS << "Metadata: function = " << I->second.F << "\n";
    514     MD->print(OS);
    515     OS << "\n";
    516   }
    517 }
    518 
    519 /// OptimizeConstants - Reorder constant pool for denser encoding.
    520 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
    521   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
    522 
    523   if (ShouldPreserveUseListOrder)
    524     // Optimizing constants makes the use-list order difficult to predict.
    525     // Disable it for now when trying to preserve the order.
    526     return;
    527 
    528   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
    529                    [this](const std::pair<const Value *, unsigned> &LHS,
    530                           const std::pair<const Value *, unsigned> &RHS) {
    531     // Sort by plane.
    532     if (LHS.first->getType() != RHS.first->getType())
    533       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
    534     // Then by frequency.
    535     return LHS.second > RHS.second;
    536   });
    537 
    538   // Ensure that integer and vector of integer constants are at the start of the
    539   // constant pool.  This is important so that GEP structure indices come before
    540   // gep constant exprs.
    541   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
    542                         isIntOrIntVectorValue);
    543 
    544   // Rebuild the modified portion of ValueMap.
    545   for (; CstStart != CstEnd; ++CstStart)
    546     ValueMap[Values[CstStart].first] = CstStart+1;
    547 }
    548 
    549 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
    550 /// table into the values table.
    551 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
    552   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
    553        VI != VE; ++VI)
    554     EnumerateValue(VI->getValue());
    555 }
    556 
    557 /// Insert all of the values referenced by named metadata in the specified
    558 /// module.
    559 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
    560   for (const auto &I : M.named_metadata())
    561     EnumerateNamedMDNode(&I);
    562 }
    563 
    564 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
    565   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
    566     EnumerateMetadata(nullptr, MD->getOperand(i));
    567 }
    568 
    569 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
    570   return F ? getValueID(F) + 1 : 0;
    571 }
    572 
    573 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
    574   EnumerateMetadata(getMetadataFunctionID(F), MD);
    575 }
    576 
    577 void ValueEnumerator::EnumerateFunctionLocalMetadata(
    578     const Function &F, const LocalAsMetadata *Local) {
    579   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
    580 }
    581 
    582 void ValueEnumerator::dropFunctionFromMetadata(
    583     MetadataMapType::value_type &FirstMD) {
    584   SmallVector<const MDNode *, 64> Worklist;
    585   auto push = [&Worklist](MetadataMapType::value_type &MD) {
    586     auto &Entry = MD.second;
    587 
    588     // Nothing to do if this metadata isn't tagged.
    589     if (!Entry.F)
    590       return;
    591 
    592     // Drop the function tag.
    593     Entry.F = 0;
    594 
    595     // If this is has an ID and is an MDNode, then its operands have entries as
    596     // well.  We need to drop the function from them too.
    597     if (Entry.ID)
    598       if (auto *N = dyn_cast<MDNode>(MD.first))
    599         Worklist.push_back(N);
    600   };
    601   push(FirstMD);
    602   while (!Worklist.empty())
    603     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
    604       if (!Op)
    605         continue;
    606       auto MD = MetadataMap.find(Op);
    607       if (MD != MetadataMap.end())
    608         push(*MD);
    609     }
    610 }
    611 
    612 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
    613   // It's vital for reader efficiency that uniqued subgraphs are done in
    614   // post-order; it's expensive when their operands have forward references.
    615   // If a distinct node is referenced from a uniqued node, it'll be delayed
    616   // until the uniqued subgraph has been completely traversed.
    617   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
    618 
    619   // Start by enumerating MD, and then work through its transitive operands in
    620   // post-order.  This requires a depth-first search.
    621   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
    622   if (const MDNode *N = enumerateMetadataImpl(F, MD))
    623     Worklist.push_back(std::make_pair(N, N->op_begin()));
    624 
    625   while (!Worklist.empty()) {
    626     const MDNode *N = Worklist.back().first;
    627 
    628     // Enumerate operands until we hit a new node.  We need to traverse these
    629     // nodes' operands before visiting the rest of N's operands.
    630     MDNode::op_iterator I = std::find_if(
    631         Worklist.back().second, N->op_end(),
    632         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
    633     if (I != N->op_end()) {
    634       auto *Op = cast<MDNode>(*I);
    635       Worklist.back().second = ++I;
    636 
    637       // Delay traversing Op if it's a distinct node and N is uniqued.
    638       if (Op->isDistinct() && !N->isDistinct())
    639         DelayedDistinctNodes.push_back(Op);
    640       else
    641         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
    642       continue;
    643     }
    644 
    645     // All the operands have been visited.  Now assign an ID.
    646     Worklist.pop_back();
    647     MDs.push_back(N);
    648     MetadataMap[N].ID = MDs.size();
    649 
    650     // Flush out any delayed distinct nodes; these are all the distinct nodes
    651     // that are leaves in last uniqued subgraph.
    652     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
    653       for (const MDNode *N : DelayedDistinctNodes)
    654         Worklist.push_back(std::make_pair(N, N->op_begin()));
    655       DelayedDistinctNodes.clear();
    656     }
    657   }
    658 }
    659 
    660 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
    661   if (!MD)
    662     return nullptr;
    663 
    664   assert(
    665       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
    666       "Invalid metadata kind");
    667 
    668   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
    669   MDIndex &Entry = Insertion.first->second;
    670   if (!Insertion.second) {
    671     // Already mapped.  If F doesn't match the function tag, drop it.
    672     if (Entry.hasDifferentFunction(F))
    673       dropFunctionFromMetadata(*Insertion.first);
    674     return nullptr;
    675   }
    676 
    677   // Don't assign IDs to metadata nodes.
    678   if (auto *N = dyn_cast<MDNode>(MD))
    679     return N;
    680 
    681   // Save the metadata.
    682   MDs.push_back(MD);
    683   Entry.ID = MDs.size();
    684 
    685   // Enumerate the constant, if any.
    686   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
    687     EnumerateValue(C->getValue());
    688 
    689   return nullptr;
    690 }
    691 
    692 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
    693 /// information reachable from the metadata.
    694 void ValueEnumerator::EnumerateFunctionLocalMetadata(
    695     unsigned F, const LocalAsMetadata *Local) {
    696   assert(F && "Expected a function");
    697 
    698   // Check to see if it's already in!
    699   MDIndex &Index = MetadataMap[Local];
    700   if (Index.ID) {
    701     assert(Index.F == F && "Expected the same function");
    702     return;
    703   }
    704 
    705   MDs.push_back(Local);
    706   Index.F = F;
    707   Index.ID = MDs.size();
    708 
    709   EnumerateValue(Local->getValue());
    710 }
    711 
    712 static unsigned getMetadataTypeOrder(const Metadata *MD) {
    713   // Strings are emitted in bulk and must come first.
    714   if (isa<MDString>(MD))
    715     return 0;
    716 
    717   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
    718   // to the front since we can detect it.
    719   auto *N = dyn_cast<MDNode>(MD);
    720   if (!N)
    721     return 1;
    722 
    723   // The reader is fast forward references for distinct node operands, but slow
    724   // when uniqued operands are unresolved.
    725   return N->isDistinct() ? 2 : 3;
    726 }
    727 
    728 void ValueEnumerator::organizeMetadata() {
    729   assert(MetadataMap.size() == MDs.size() &&
    730          "Metadata map and vector out of sync");
    731 
    732   if (MDs.empty())
    733     return;
    734 
    735   // Copy out the index information from MetadataMap in order to choose a new
    736   // order.
    737   SmallVector<MDIndex, 64> Order;
    738   Order.reserve(MetadataMap.size());
    739   for (const Metadata *MD : MDs)
    740     Order.push_back(MetadataMap.lookup(MD));
    741 
    742   // Partition:
    743   //   - by function, then
    744   //   - by isa<MDString>
    745   // and then sort by the original/current ID.  Since the IDs are guaranteed to
    746   // be unique, the result of std::sort will be deterministic.  There's no need
    747   // for std::stable_sort.
    748   llvm::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) {
    749     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
    750            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
    751   });
    752 
    753   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
    754   // and fix up MetadataMap.
    755   std::vector<const Metadata *> OldMDs = std::move(MDs);
    756   MDs.reserve(OldMDs.size());
    757   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
    758     auto *MD = Order[I].get(OldMDs);
    759     MDs.push_back(MD);
    760     MetadataMap[MD].ID = I + 1;
    761     if (isa<MDString>(MD))
    762       ++NumMDStrings;
    763   }
    764 
    765   // Return early if there's nothing for the functions.
    766   if (MDs.size() == Order.size())
    767     return;
    768 
    769   // Build the function metadata ranges.
    770   MDRange R;
    771   FunctionMDs.reserve(OldMDs.size());
    772   unsigned PrevF = 0;
    773   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
    774        ++I) {
    775     unsigned F = Order[I].F;
    776     if (!PrevF) {
    777       PrevF = F;
    778     } else if (PrevF != F) {
    779       R.Last = FunctionMDs.size();
    780       std::swap(R, FunctionMDInfo[PrevF]);
    781       R.First = FunctionMDs.size();
    782 
    783       ID = MDs.size();
    784       PrevF = F;
    785     }
    786 
    787     auto *MD = Order[I].get(OldMDs);
    788     FunctionMDs.push_back(MD);
    789     MetadataMap[MD].ID = ++ID;
    790     if (isa<MDString>(MD))
    791       ++R.NumStrings;
    792   }
    793   R.Last = FunctionMDs.size();
    794   FunctionMDInfo[PrevF] = R;
    795 }
    796 
    797 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
    798   NumModuleMDs = MDs.size();
    799 
    800   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
    801   NumMDStrings = R.NumStrings;
    802   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
    803              FunctionMDs.begin() + R.Last);
    804 }
    805 
    806 void ValueEnumerator::EnumerateValue(const Value *V) {
    807   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
    808   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
    809 
    810   // Check to see if it's already in!
    811   unsigned &ValueID = ValueMap[V];
    812   if (ValueID) {
    813     // Increment use count.
    814     Values[ValueID-1].second++;
    815     return;
    816   }
    817 
    818   if (auto *GO = dyn_cast<GlobalObject>(V))
    819     if (const Comdat *C = GO->getComdat())
    820       Comdats.insert(C);
    821 
    822   // Enumerate the type of this value.
    823   EnumerateType(V->getType());
    824 
    825   if (const Constant *C = dyn_cast<Constant>(V)) {
    826     if (isa<GlobalValue>(C)) {
    827       // Initializers for globals are handled explicitly elsewhere.
    828     } else if (C->getNumOperands()) {
    829       // If a constant has operands, enumerate them.  This makes sure that if a
    830       // constant has uses (for example an array of const ints), that they are
    831       // inserted also.
    832 
    833       // We prefer to enumerate them with values before we enumerate the user
    834       // itself.  This makes it more likely that we can avoid forward references
    835       // in the reader.  We know that there can be no cycles in the constants
    836       // graph that don't go through a global variable.
    837       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
    838            I != E; ++I)
    839         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
    840           EnumerateValue(*I);
    841 
    842       // Finally, add the value.  Doing this could make the ValueID reference be
    843       // dangling, don't reuse it.
    844       Values.push_back(std::make_pair(V, 1U));
    845       ValueMap[V] = Values.size();
    846       return;
    847     }
    848   }
    849 
    850   // Add the value.
    851   Values.push_back(std::make_pair(V, 1U));
    852   ValueID = Values.size();
    853 }
    854 
    855 
    856 void ValueEnumerator::EnumerateType(Type *Ty) {
    857   unsigned *TypeID = &TypeMap[Ty];
    858 
    859   // We've already seen this type.
    860   if (*TypeID)
    861     return;
    862 
    863   // If it is a non-anonymous struct, mark the type as being visited so that we
    864   // don't recursively visit it.  This is safe because we allow forward
    865   // references of these in the bitcode reader.
    866   if (StructType *STy = dyn_cast<StructType>(Ty))
    867     if (!STy->isLiteral())
    868       *TypeID = ~0U;
    869 
    870   // Enumerate all of the subtypes before we enumerate this type.  This ensures
    871   // that the type will be enumerated in an order that can be directly built.
    872   for (Type *SubTy : Ty->subtypes())
    873     EnumerateType(SubTy);
    874 
    875   // Refresh the TypeID pointer in case the table rehashed.
    876   TypeID = &TypeMap[Ty];
    877 
    878   // Check to see if we got the pointer another way.  This can happen when
    879   // enumerating recursive types that hit the base case deeper than they start.
    880   //
    881   // If this is actually a struct that we are treating as forward ref'able,
    882   // then emit the definition now that all of its contents are available.
    883   if (*TypeID && *TypeID != ~0U)
    884     return;
    885 
    886   // Add this type now that its contents are all happily enumerated.
    887   Types.push_back(Ty);
    888 
    889   *TypeID = Types.size();
    890 }
    891 
    892 // Enumerate the types for the specified value.  If the value is a constant,
    893 // walk through it, enumerating the types of the constant.
    894 void ValueEnumerator::EnumerateOperandType(const Value *V) {
    895   EnumerateType(V->getType());
    896 
    897   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
    898 
    899   const Constant *C = dyn_cast<Constant>(V);
    900   if (!C)
    901     return;
    902 
    903   // If this constant is already enumerated, ignore it, we know its type must
    904   // be enumerated.
    905   if (ValueMap.count(C))
    906     return;
    907 
    908   // This constant may have operands, make sure to enumerate the types in
    909   // them.
    910   for (const Value *Op : C->operands()) {
    911     // Don't enumerate basic blocks here, this happens as operands to
    912     // blockaddress.
    913     if (isa<BasicBlock>(Op))
    914       continue;
    915 
    916     EnumerateOperandType(Op);
    917   }
    918 }
    919 
    920 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
    921   if (PAL.isEmpty()) return;  // null is always 0.
    922 
    923   // Do a lookup.
    924   unsigned &Entry = AttributeListMap[PAL];
    925   if (Entry == 0) {
    926     // Never saw this before, add it.
    927     AttributeLists.push_back(PAL);
    928     Entry = AttributeLists.size();
    929   }
    930 
    931   // Do lookups for all attribute groups.
    932   for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
    933     AttributeSet AS = PAL.getAttributes(i);
    934     if (!AS.hasAttributes())
    935       continue;
    936     IndexAndAttrSet Pair = {i, AS};
    937     unsigned &Entry = AttributeGroupMap[Pair];
    938     if (Entry == 0) {
    939       AttributeGroups.push_back(Pair);
    940       Entry = AttributeGroups.size();
    941     }
    942   }
    943 }
    944 
    945 void ValueEnumerator::incorporateFunction(const Function &F) {
    946   InstructionCount = 0;
    947   NumModuleValues = Values.size();
    948 
    949   // Add global metadata to the function block.  This doesn't include
    950   // LocalAsMetadata.
    951   incorporateFunctionMetadata(F);
    952 
    953   // Adding function arguments to the value table.
    954   for (const auto &I : F.args())
    955     EnumerateValue(&I);
    956 
    957   FirstFuncConstantID = Values.size();
    958 
    959   // Add all function-level constants to the value table.
    960   for (const BasicBlock &BB : F) {
    961     for (const Instruction &I : BB)
    962       for (const Use &OI : I.operands()) {
    963         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
    964           EnumerateValue(OI);
    965       }
    966     BasicBlocks.push_back(&BB);
    967     ValueMap[&BB] = BasicBlocks.size();
    968   }
    969 
    970   // Optimize the constant layout.
    971   OptimizeConstants(FirstFuncConstantID, Values.size());
    972 
    973   // Add the function's parameter attributes so they are available for use in
    974   // the function's instruction.
    975   EnumerateAttributes(F.getAttributes());
    976 
    977   FirstInstID = Values.size();
    978 
    979   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
    980   // Add all of the instructions.
    981   for (const BasicBlock &BB : F) {
    982     for (const Instruction &I : BB) {
    983       for (const Use &OI : I.operands()) {
    984         if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
    985           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
    986             // Enumerate metadata after the instructions they might refer to.
    987             FnLocalMDVector.push_back(Local);
    988       }
    989 
    990       if (!I.getType()->isVoidTy())
    991         EnumerateValue(&I);
    992     }
    993   }
    994 
    995   // Add all of the function-local metadata.
    996   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
    997     // At this point, every local values have been incorporated, we shouldn't
    998     // have a metadata operand that references a value that hasn't been seen.
    999     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
   1000            "Missing value for metadata operand");
   1001     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
   1002   }
   1003 }
   1004 
   1005 void ValueEnumerator::purgeFunction() {
   1006   /// Remove purged values from the ValueMap.
   1007   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
   1008     ValueMap.erase(Values[i].first);
   1009   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
   1010     MetadataMap.erase(MDs[i]);
   1011   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
   1012     ValueMap.erase(BasicBlocks[i]);
   1013 
   1014   Values.resize(NumModuleValues);
   1015   MDs.resize(NumModuleMDs);
   1016   BasicBlocks.clear();
   1017   NumMDStrings = 0;
   1018 }
   1019 
   1020 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
   1021                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
   1022   unsigned Counter = 0;
   1023   for (const BasicBlock &BB : *F)
   1024     IDMap[&BB] = ++Counter;
   1025 }
   1026 
   1027 /// getGlobalBasicBlockID - This returns the function-specific ID for the
   1028 /// specified basic block.  This is relatively expensive information, so it
   1029 /// should only be used by rare constructs such as address-of-label.
   1030 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
   1031   unsigned &Idx = GlobalBasicBlockIDs[BB];
   1032   if (Idx != 0)
   1033     return Idx-1;
   1034 
   1035   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
   1036   return getGlobalBasicBlockID(BB);
   1037 }
   1038 
   1039 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
   1040   return Log2_32_Ceil(getTypes().size() + 1);
   1041 }
   1042