Home | History | Annotate | Download | only in CodeGen
      1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the machine instruction level if-conversion pass, which
     11 // tries to convert conditional branches into predicated instructions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "BranchFolding.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/ScopeExit.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/SparseSet.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/ADT/iterator_range.h"
     23 #include "llvm/CodeGen/LivePhysRegs.h"
     24 #include "llvm/CodeGen/MachineBasicBlock.h"
     25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     27 #include "llvm/CodeGen/MachineFunction.h"
     28 #include "llvm/CodeGen/MachineFunctionPass.h"
     29 #include "llvm/CodeGen/MachineInstr.h"
     30 #include "llvm/CodeGen/MachineInstrBuilder.h"
     31 #include "llvm/CodeGen/MachineModuleInfo.h"
     32 #include "llvm/CodeGen/MachineOperand.h"
     33 #include "llvm/CodeGen/MachineRegisterInfo.h"
     34 #include "llvm/CodeGen/TargetInstrInfo.h"
     35 #include "llvm/CodeGen/TargetLowering.h"
     36 #include "llvm/CodeGen/TargetRegisterInfo.h"
     37 #include "llvm/CodeGen/TargetSchedule.h"
     38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     39 #include "llvm/IR/DebugLoc.h"
     40 #include "llvm/MC/MCRegisterInfo.h"
     41 #include "llvm/Pass.h"
     42 #include "llvm/Support/BranchProbability.h"
     43 #include "llvm/Support/CommandLine.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/ErrorHandling.h"
     46 #include "llvm/Support/raw_ostream.h"
     47 #include <algorithm>
     48 #include <cassert>
     49 #include <functional>
     50 #include <iterator>
     51 #include <memory>
     52 #include <utility>
     53 #include <vector>
     54 
     55 using namespace llvm;
     56 
     57 #define DEBUG_TYPE "if-converter"
     58 
     59 // Hidden options for help debugging.
     60 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
     61 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
     62 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
     63 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
     64                                    cl::init(false), cl::Hidden);
     65 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
     66                                     cl::init(false), cl::Hidden);
     67 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
     68                                      cl::init(false), cl::Hidden);
     69 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
     70                                       cl::init(false), cl::Hidden);
     71 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
     72                                       cl::init(false), cl::Hidden);
     73 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
     74                                        cl::init(false), cl::Hidden);
     75 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
     76                                     cl::init(false), cl::Hidden);
     77 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
     78                                         cl::init(false), cl::Hidden);
     79 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
     80                                      cl::init(true), cl::Hidden);
     81 
     82 STATISTIC(NumSimple,       "Number of simple if-conversions performed");
     83 STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
     84 STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
     85 STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
     86 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
     87 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
     88 STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
     89 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
     90 STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
     91 STATISTIC(NumDupBBs,       "Number of duplicated blocks");
     92 STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");
     93 
     94 namespace {
     95 
     96   class IfConverter : public MachineFunctionPass {
     97     enum IfcvtKind {
     98       ICNotClassfied,  // BB data valid, but not classified.
     99       ICSimpleFalse,   // Same as ICSimple, but on the false path.
    100       ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
    101       ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
    102       ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
    103       ICTriangleFalse, // Same as ICTriangle, but on the false path.
    104       ICTriangle,      // BB is entry of a triangle sub-CFG.
    105       ICDiamond,       // BB is entry of a diamond sub-CFG.
    106       ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a
    107                        // common tail that can be shared.
    108     };
    109 
    110     /// One per MachineBasicBlock, this is used to cache the result
    111     /// if-conversion feasibility analysis. This includes results from
    112     /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
    113     /// classification, and common tail block of its successors (if it's a
    114     /// diamond shape), its size, whether it's predicable, and whether any
    115     /// instruction can clobber the 'would-be' predicate.
    116     ///
    117     /// IsDone          - True if BB is not to be considered for ifcvt.
    118     /// IsBeingAnalyzed - True if BB is currently being analyzed.
    119     /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
    120     /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
    121     /// IsBrAnalyzable  - True if analyzeBranch() returns false.
    122     /// HasFallThrough  - True if BB may fallthrough to the following BB.
    123     /// IsUnpredicable  - True if BB is known to be unpredicable.
    124     /// ClobbersPred    - True if BB could modify predicates (e.g. has
    125     ///                   cmp, call, etc.)
    126     /// NonPredSize     - Number of non-predicated instructions.
    127     /// ExtraCost       - Extra cost for multi-cycle instructions.
    128     /// ExtraCost2      - Some instructions are slower when predicated
    129     /// BB              - Corresponding MachineBasicBlock.
    130     /// TrueBB / FalseBB- See analyzeBranch().
    131     /// BrCond          - Conditions for end of block conditional branches.
    132     /// Predicate       - Predicate used in the BB.
    133     struct BBInfo {
    134       bool IsDone          : 1;
    135       bool IsBeingAnalyzed : 1;
    136       bool IsAnalyzed      : 1;
    137       bool IsEnqueued      : 1;
    138       bool IsBrAnalyzable  : 1;
    139       bool IsBrReversible  : 1;
    140       bool HasFallThrough  : 1;
    141       bool IsUnpredicable  : 1;
    142       bool CannotBeCopied  : 1;
    143       bool ClobbersPred    : 1;
    144       unsigned NonPredSize = 0;
    145       unsigned ExtraCost = 0;
    146       unsigned ExtraCost2 = 0;
    147       MachineBasicBlock *BB = nullptr;
    148       MachineBasicBlock *TrueBB = nullptr;
    149       MachineBasicBlock *FalseBB = nullptr;
    150       SmallVector<MachineOperand, 4> BrCond;
    151       SmallVector<MachineOperand, 4> Predicate;
    152 
    153       BBInfo() : IsDone(false), IsBeingAnalyzed(false),
    154                  IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
    155                  IsBrReversible(false), HasFallThrough(false),
    156                  IsUnpredicable(false), CannotBeCopied(false),
    157                  ClobbersPred(false) {}
    158     };
    159 
    160     /// Record information about pending if-conversions to attempt:
    161     /// BBI             - Corresponding BBInfo.
    162     /// Kind            - Type of block. See IfcvtKind.
    163     /// NeedSubsumption - True if the to-be-predicated BB has already been
    164     ///                   predicated.
    165     /// NumDups      - Number of instructions that would be duplicated due
    166     ///                   to this if-conversion. (For diamonds, the number of
    167     ///                   identical instructions at the beginnings of both
    168     ///                   paths).
    169     /// NumDups2     - For diamonds, the number of identical instructions
    170     ///                   at the ends of both paths.
    171     struct IfcvtToken {
    172       BBInfo &BBI;
    173       IfcvtKind Kind;
    174       unsigned NumDups;
    175       unsigned NumDups2;
    176       bool NeedSubsumption : 1;
    177       bool TClobbersPred : 1;
    178       bool FClobbersPred : 1;
    179 
    180       IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
    181                  bool tc = false, bool fc = false)
    182         : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
    183           TClobbersPred(tc), FClobbersPred(fc) {}
    184     };
    185 
    186     /// Results of if-conversion feasibility analysis indexed by basic block
    187     /// number.
    188     std::vector<BBInfo> BBAnalysis;
    189     TargetSchedModel SchedModel;
    190 
    191     const TargetLoweringBase *TLI;
    192     const TargetInstrInfo *TII;
    193     const TargetRegisterInfo *TRI;
    194     const MachineBranchProbabilityInfo *MBPI;
    195     MachineRegisterInfo *MRI;
    196 
    197     LivePhysRegs Redefs;
    198 
    199     bool PreRegAlloc;
    200     bool MadeChange;
    201     int FnNum = -1;
    202     std::function<bool(const MachineFunction &)> PredicateFtor;
    203 
    204   public:
    205     static char ID;
    206 
    207     IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
    208         : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
    209       initializeIfConverterPass(*PassRegistry::getPassRegistry());
    210     }
    211 
    212     void getAnalysisUsage(AnalysisUsage &AU) const override {
    213       AU.addRequired<MachineBlockFrequencyInfo>();
    214       AU.addRequired<MachineBranchProbabilityInfo>();
    215       MachineFunctionPass::getAnalysisUsage(AU);
    216     }
    217 
    218     bool runOnMachineFunction(MachineFunction &MF) override;
    219 
    220     MachineFunctionProperties getRequiredProperties() const override {
    221       return MachineFunctionProperties().set(
    222           MachineFunctionProperties::Property::NoVRegs);
    223     }
    224 
    225   private:
    226     bool reverseBranchCondition(BBInfo &BBI) const;
    227     bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
    228                      BranchProbability Prediction) const;
    229     bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
    230                        bool FalseBranch, unsigned &Dups,
    231                        BranchProbability Prediction) const;
    232     bool CountDuplicatedInstructions(
    233         MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
    234         MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
    235         unsigned &Dups1, unsigned &Dups2,
    236         MachineBasicBlock &TBB, MachineBasicBlock &FBB,
    237         bool SkipUnconditionalBranches) const;
    238     bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
    239                       unsigned &Dups1, unsigned &Dups2,
    240                       BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
    241     bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
    242                             unsigned &Dups1, unsigned &Dups2,
    243                             BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
    244     void AnalyzeBranches(BBInfo &BBI);
    245     void ScanInstructions(BBInfo &BBI,
    246                           MachineBasicBlock::iterator &Begin,
    247                           MachineBasicBlock::iterator &End,
    248                           bool BranchUnpredicable = false) const;
    249     bool RescanInstructions(
    250         MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
    251         MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
    252         BBInfo &TrueBBI, BBInfo &FalseBBI) const;
    253     void AnalyzeBlock(MachineBasicBlock &MBB,
    254                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
    255     bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
    256                              bool isTriangle = false, bool RevBranch = false,
    257                              bool hasCommonTail = false);
    258     void AnalyzeBlocks(MachineFunction &MF,
    259                        std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
    260     void InvalidatePreds(MachineBasicBlock &MBB);
    261     bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
    262     bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
    263     bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
    264                                 unsigned NumDups1, unsigned NumDups2,
    265                                 bool TClobbersPred, bool FClobbersPred,
    266                                 bool RemoveBranch, bool MergeAddEdges);
    267     bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
    268                           unsigned NumDups1, unsigned NumDups2,
    269                           bool TClobbers, bool FClobbers);
    270     bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
    271                               unsigned NumDups1, unsigned NumDups2,
    272                               bool TClobbers, bool FClobbers);
    273     void PredicateBlock(BBInfo &BBI,
    274                         MachineBasicBlock::iterator E,
    275                         SmallVectorImpl<MachineOperand> &Cond,
    276                         SmallSet<unsigned, 4> *LaterRedefs = nullptr);
    277     void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
    278                                SmallVectorImpl<MachineOperand> &Cond,
    279                                bool IgnoreBr = false);
    280     void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
    281 
    282     bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
    283                             unsigned Cycle, unsigned Extra,
    284                             BranchProbability Prediction) const {
    285       return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
    286                                                    Prediction);
    287     }
    288 
    289     bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
    290                             unsigned TCycle, unsigned TExtra,
    291                             MachineBasicBlock &FBB,
    292                             unsigned FCycle, unsigned FExtra,
    293                             BranchProbability Prediction) const {
    294       return TCycle > 0 && FCycle > 0 &&
    295         TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
    296                                  Prediction);
    297     }
    298 
    299     /// Returns true if Block ends without a terminator.
    300     bool blockAlwaysFallThrough(BBInfo &BBI) const {
    301       return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
    302     }
    303 
    304     /// Used to sort if-conversion candidates.
    305     static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
    306                               const std::unique_ptr<IfcvtToken> &C2) {
    307       int Incr1 = (C1->Kind == ICDiamond)
    308         ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
    309       int Incr2 = (C2->Kind == ICDiamond)
    310         ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
    311       if (Incr1 > Incr2)
    312         return true;
    313       else if (Incr1 == Incr2) {
    314         // Favors subsumption.
    315         if (!C1->NeedSubsumption && C2->NeedSubsumption)
    316           return true;
    317         else if (C1->NeedSubsumption == C2->NeedSubsumption) {
    318           // Favors diamond over triangle, etc.
    319           if ((unsigned)C1->Kind < (unsigned)C2->Kind)
    320             return true;
    321           else if (C1->Kind == C2->Kind)
    322             return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
    323         }
    324       }
    325       return false;
    326     }
    327   };
    328 
    329 } // end anonymous namespace
    330 
    331 char IfConverter::ID = 0;
    332 
    333 char &llvm::IfConverterID = IfConverter::ID;
    334 
    335 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
    336 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
    337 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
    338 
    339 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
    340   if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
    341     return false;
    342 
    343   const TargetSubtargetInfo &ST = MF.getSubtarget();
    344   TLI = ST.getTargetLowering();
    345   TII = ST.getInstrInfo();
    346   TRI = ST.getRegisterInfo();
    347   BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
    348   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
    349   MRI = &MF.getRegInfo();
    350   SchedModel.init(&ST);
    351 
    352   if (!TII) return false;
    353 
    354   PreRegAlloc = MRI->isSSA();
    355 
    356   bool BFChange = false;
    357   if (!PreRegAlloc) {
    358     // Tail merge tend to expose more if-conversion opportunities.
    359     BranchFolder BF(true, false, MBFI, *MBPI);
    360     BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
    361                                    getAnalysisIfAvailable<MachineModuleInfo>());
    362   }
    363 
    364   LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
    365                     << MF.getName() << "\'");
    366 
    367   if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
    368     LLVM_DEBUG(dbgs() << " skipped\n");
    369     return false;
    370   }
    371   LLVM_DEBUG(dbgs() << "\n");
    372 
    373   MF.RenumberBlocks();
    374   BBAnalysis.resize(MF.getNumBlockIDs());
    375 
    376   std::vector<std::unique_ptr<IfcvtToken>> Tokens;
    377   MadeChange = false;
    378   unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
    379     NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
    380   while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
    381     // Do an initial analysis for each basic block and find all the potential
    382     // candidates to perform if-conversion.
    383     bool Change = false;
    384     AnalyzeBlocks(MF, Tokens);
    385     while (!Tokens.empty()) {
    386       std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
    387       Tokens.pop_back();
    388       BBInfo &BBI = Token->BBI;
    389       IfcvtKind Kind = Token->Kind;
    390       unsigned NumDups = Token->NumDups;
    391       unsigned NumDups2 = Token->NumDups2;
    392 
    393       // If the block has been evicted out of the queue or it has already been
    394       // marked dead (due to it being predicated), then skip it.
    395       if (BBI.IsDone)
    396         BBI.IsEnqueued = false;
    397       if (!BBI.IsEnqueued)
    398         continue;
    399 
    400       BBI.IsEnqueued = false;
    401 
    402       bool RetVal = false;
    403       switch (Kind) {
    404       default: llvm_unreachable("Unexpected!");
    405       case ICSimple:
    406       case ICSimpleFalse: {
    407         bool isFalse = Kind == ICSimpleFalse;
    408         if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
    409         LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
    410                           << (Kind == ICSimpleFalse ? " false" : "")
    411                           << "): " << printMBBReference(*BBI.BB) << " ("
    412                           << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
    413                                                       : BBI.TrueBB->getNumber())
    414                           << ") ");
    415         RetVal = IfConvertSimple(BBI, Kind);
    416         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
    417         if (RetVal) {
    418           if (isFalse) ++NumSimpleFalse;
    419           else         ++NumSimple;
    420         }
    421        break;
    422       }
    423       case ICTriangle:
    424       case ICTriangleRev:
    425       case ICTriangleFalse:
    426       case ICTriangleFRev: {
    427         bool isFalse = Kind == ICTriangleFalse;
    428         bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
    429         if (DisableTriangle && !isFalse && !isRev) break;
    430         if (DisableTriangleR && !isFalse && isRev) break;
    431         if (DisableTriangleF && isFalse && !isRev) break;
    432         if (DisableTriangleFR && isFalse && isRev) break;
    433         LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
    434         if (isFalse)
    435           LLVM_DEBUG(dbgs() << " false");
    436         if (isRev)
    437           LLVM_DEBUG(dbgs() << " rev");
    438         LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
    439                           << " (T:" << BBI.TrueBB->getNumber()
    440                           << ",F:" << BBI.FalseBB->getNumber() << ") ");
    441         RetVal = IfConvertTriangle(BBI, Kind);
    442         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
    443         if (RetVal) {
    444           if (isFalse) {
    445             if (isRev) ++NumTriangleFRev;
    446             else       ++NumTriangleFalse;
    447           } else {
    448             if (isRev) ++NumTriangleRev;
    449             else       ++NumTriangle;
    450           }
    451         }
    452         break;
    453       }
    454       case ICDiamond:
    455         if (DisableDiamond) break;
    456         LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
    457                           << " (T:" << BBI.TrueBB->getNumber()
    458                           << ",F:" << BBI.FalseBB->getNumber() << ") ");
    459         RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
    460                                   Token->TClobbersPred,
    461                                   Token->FClobbersPred);
    462         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
    463         if (RetVal) ++NumDiamonds;
    464         break;
    465       case ICForkedDiamond:
    466         if (DisableForkedDiamond) break;
    467         LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
    468                           << printMBBReference(*BBI.BB)
    469                           << " (T:" << BBI.TrueBB->getNumber()
    470                           << ",F:" << BBI.FalseBB->getNumber() << ") ");
    471         RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
    472                                       Token->TClobbersPred,
    473                                       Token->FClobbersPred);
    474         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
    475         if (RetVal) ++NumForkedDiamonds;
    476         break;
    477       }
    478 
    479       if (RetVal && MRI->tracksLiveness())
    480         recomputeLivenessFlags(*BBI.BB);
    481 
    482       Change |= RetVal;
    483 
    484       NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
    485         NumTriangleFalse + NumTriangleFRev + NumDiamonds;
    486       if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
    487         break;
    488     }
    489 
    490     if (!Change)
    491       break;
    492     MadeChange |= Change;
    493   }
    494 
    495   Tokens.clear();
    496   BBAnalysis.clear();
    497 
    498   if (MadeChange && IfCvtBranchFold) {
    499     BranchFolder BF(false, false, MBFI, *MBPI);
    500     BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
    501                         getAnalysisIfAvailable<MachineModuleInfo>());
    502   }
    503 
    504   MadeChange |= BFChange;
    505   return MadeChange;
    506 }
    507 
    508 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
    509 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
    510                                          MachineBasicBlock *TrueBB) {
    511   for (MachineBasicBlock *SuccBB : BB->successors()) {
    512     if (SuccBB != TrueBB)
    513       return SuccBB;
    514   }
    515   return nullptr;
    516 }
    517 
    518 /// Reverse the condition of the end of the block branch. Swap block's 'true'
    519 /// and 'false' successors.
    520 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
    521   DebugLoc dl;  // FIXME: this is nowhere
    522   if (!TII->reverseBranchCondition(BBI.BrCond)) {
    523     TII->removeBranch(*BBI.BB);
    524     TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
    525     std::swap(BBI.TrueBB, BBI.FalseBB);
    526     return true;
    527   }
    528   return false;
    529 }
    530 
    531 /// Returns the next block in the function blocks ordering. If it is the end,
    532 /// returns NULL.
    533 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
    534   MachineFunction::iterator I = MBB.getIterator();
    535   MachineFunction::iterator E = MBB.getParent()->end();
    536   if (++I == E)
    537     return nullptr;
    538   return &*I;
    539 }
    540 
    541 /// Returns true if the 'true' block (along with its predecessor) forms a valid
    542 /// simple shape for ifcvt. It also returns the number of instructions that the
    543 /// ifcvt would need to duplicate if performed in Dups.
    544 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
    545                               BranchProbability Prediction) const {
    546   Dups = 0;
    547   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
    548     return false;
    549 
    550   if (TrueBBI.IsBrAnalyzable)
    551     return false;
    552 
    553   if (TrueBBI.BB->pred_size() > 1) {
    554     if (TrueBBI.CannotBeCopied ||
    555         !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
    556                                         Prediction))
    557       return false;
    558     Dups = TrueBBI.NonPredSize;
    559   }
    560 
    561   return true;
    562 }
    563 
    564 /// Returns true if the 'true' and 'false' blocks (along with their common
    565 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
    566 /// true, it checks if 'true' block's false branch branches to the 'false' block
    567 /// rather than the other way around. It also returns the number of instructions
    568 /// that the ifcvt would need to duplicate if performed in 'Dups'.
    569 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
    570                                 bool FalseBranch, unsigned &Dups,
    571                                 BranchProbability Prediction) const {
    572   Dups = 0;
    573   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
    574     return false;
    575 
    576   if (TrueBBI.BB->pred_size() > 1) {
    577     if (TrueBBI.CannotBeCopied)
    578       return false;
    579 
    580     unsigned Size = TrueBBI.NonPredSize;
    581     if (TrueBBI.IsBrAnalyzable) {
    582       if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
    583         // Ends with an unconditional branch. It will be removed.
    584         --Size;
    585       else {
    586         MachineBasicBlock *FExit = FalseBranch
    587           ? TrueBBI.TrueBB : TrueBBI.FalseBB;
    588         if (FExit)
    589           // Require a conditional branch
    590           ++Size;
    591       }
    592     }
    593     if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
    594       return false;
    595     Dups = Size;
    596   }
    597 
    598   MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
    599   if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
    600     MachineFunction::iterator I = TrueBBI.BB->getIterator();
    601     if (++I == TrueBBI.BB->getParent()->end())
    602       return false;
    603     TExit = &*I;
    604   }
    605   return TExit && TExit == FalseBBI.BB;
    606 }
    607 
    608 /// Count duplicated instructions and move the iterators to show where they
    609 /// are.
    610 /// @param TIB True Iterator Begin
    611 /// @param FIB False Iterator Begin
    612 /// These two iterators initially point to the first instruction of the two
    613 /// blocks, and finally point to the first non-shared instruction.
    614 /// @param TIE True Iterator End
    615 /// @param FIE False Iterator End
    616 /// These two iterators initially point to End() for the two blocks() and
    617 /// finally point to the first shared instruction in the tail.
    618 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
    619 /// two blocks.
    620 /// @param Dups1 count of duplicated instructions at the beginning of the 2
    621 /// blocks.
    622 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
    623 /// @param SkipUnconditionalBranches if true, Don't make sure that
    624 /// unconditional branches at the end of the blocks are the same. True is
    625 /// passed when the blocks are analyzable to allow for fallthrough to be
    626 /// handled.
    627 /// @return false if the shared portion prevents if conversion.
    628 bool IfConverter::CountDuplicatedInstructions(
    629     MachineBasicBlock::iterator &TIB,
    630     MachineBasicBlock::iterator &FIB,
    631     MachineBasicBlock::iterator &TIE,
    632     MachineBasicBlock::iterator &FIE,
    633     unsigned &Dups1, unsigned &Dups2,
    634     MachineBasicBlock &TBB, MachineBasicBlock &FBB,
    635     bool SkipUnconditionalBranches) const {
    636   while (TIB != TIE && FIB != FIE) {
    637     // Skip dbg_value instructions. These do not count.
    638     TIB = skipDebugInstructionsForward(TIB, TIE);
    639     FIB = skipDebugInstructionsForward(FIB, FIE);
    640     if (TIB == TIE || FIB == FIE)
    641       break;
    642     if (!TIB->isIdenticalTo(*FIB))
    643       break;
    644     // A pred-clobbering instruction in the shared portion prevents
    645     // if-conversion.
    646     std::vector<MachineOperand> PredDefs;
    647     if (TII->DefinesPredicate(*TIB, PredDefs))
    648       return false;
    649     // If we get all the way to the branch instructions, don't count them.
    650     if (!TIB->isBranch())
    651       ++Dups1;
    652     ++TIB;
    653     ++FIB;
    654   }
    655 
    656   // Check for already containing all of the block.
    657   if (TIB == TIE || FIB == FIE)
    658     return true;
    659   // Now, in preparation for counting duplicate instructions at the ends of the
    660   // blocks, switch to reverse_iterators. Note that getReverse() returns an
    661   // iterator that points to the same instruction, unlike std::reverse_iterator.
    662   // We have to do our own shifting so that we get the same range.
    663   MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
    664   MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
    665   const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
    666   const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
    667 
    668   if (!TBB.succ_empty() || !FBB.succ_empty()) {
    669     if (SkipUnconditionalBranches) {
    670       while (RTIE != RTIB && RTIE->isUnconditionalBranch())
    671         ++RTIE;
    672       while (RFIE != RFIB && RFIE->isUnconditionalBranch())
    673         ++RFIE;
    674     }
    675   }
    676 
    677   // Count duplicate instructions at the ends of the blocks.
    678   while (RTIE != RTIB && RFIE != RFIB) {
    679     // Skip dbg_value instructions. These do not count.
    680     // Note that these are reverse iterators going forward.
    681     RTIE = skipDebugInstructionsForward(RTIE, RTIB);
    682     RFIE = skipDebugInstructionsForward(RFIE, RFIB);
    683     if (RTIE == RTIB || RFIE == RFIB)
    684       break;
    685     if (!RTIE->isIdenticalTo(*RFIE))
    686       break;
    687     // We have to verify that any branch instructions are the same, and then we
    688     // don't count them toward the # of duplicate instructions.
    689     if (!RTIE->isBranch())
    690       ++Dups2;
    691     ++RTIE;
    692     ++RFIE;
    693   }
    694   TIE = std::next(RTIE.getReverse());
    695   FIE = std::next(RFIE.getReverse());
    696   return true;
    697 }
    698 
    699 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
    700 /// @param TIB - True Iterator Begin, points to first non-shared instruction
    701 /// @param FIB - False Iterator Begin, points to first non-shared instruction
    702 /// @param TIE - True Iterator End, points past last non-shared instruction
    703 /// @param FIE - False Iterator End, points past last non-shared instruction
    704 /// @param TrueBBI  - BBInfo to update for the true block.
    705 /// @param FalseBBI - BBInfo to update for the false block.
    706 /// @returns - false if either block cannot be predicated or if both blocks end
    707 ///   with a predicate-clobbering instruction.
    708 bool IfConverter::RescanInstructions(
    709     MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
    710     MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
    711     BBInfo &TrueBBI, BBInfo &FalseBBI) const {
    712   bool BranchUnpredicable = true;
    713   TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
    714   ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
    715   if (TrueBBI.IsUnpredicable)
    716     return false;
    717   ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
    718   if (FalseBBI.IsUnpredicable)
    719     return false;
    720   if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
    721     return false;
    722   return true;
    723 }
    724 
    725 #ifndef NDEBUG
    726 static void verifySameBranchInstructions(
    727     MachineBasicBlock *MBB1,
    728     MachineBasicBlock *MBB2) {
    729   const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
    730   const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
    731   MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
    732   MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
    733   while (E1 != B1 && E2 != B2) {
    734     skipDebugInstructionsForward(E1, B1);
    735     skipDebugInstructionsForward(E2, B2);
    736     if (E1 == B1 && E2 == B2)
    737       break;
    738 
    739     if (E1 == B1) {
    740       assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
    741       break;
    742     }
    743     if (E2 == B2) {
    744       assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
    745       break;
    746     }
    747 
    748     if (E1->isBranch() || E2->isBranch())
    749       assert(E1->isIdenticalTo(*E2) &&
    750              "Branch mis-match, branch instructions don't match.");
    751     else
    752       break;
    753     ++E1;
    754     ++E2;
    755   }
    756 }
    757 #endif
    758 
    759 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
    760 /// with their common predecessor) form a diamond if a common tail block is
    761 /// extracted.
    762 /// While not strictly a diamond, this pattern would form a diamond if
    763 /// tail-merging had merged the shared tails.
    764 ///           EBB
    765 ///         _/   \_
    766 ///         |     |
    767 ///        TBB   FBB
    768 ///        /  \ /   \
    769 ///  FalseBB TrueBB FalseBB
    770 /// Currently only handles analyzable branches.
    771 /// Specifically excludes actual diamonds to avoid overlap.
    772 bool IfConverter::ValidForkedDiamond(
    773     BBInfo &TrueBBI, BBInfo &FalseBBI,
    774     unsigned &Dups1, unsigned &Dups2,
    775     BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
    776   Dups1 = Dups2 = 0;
    777   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
    778       FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
    779     return false;
    780 
    781   if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
    782     return false;
    783   // Don't IfConvert blocks that can't be folded into their predecessor.
    784   if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
    785     return false;
    786 
    787   // This function is specifically looking for conditional tails, as
    788   // unconditional tails are already handled by the standard diamond case.
    789   if (TrueBBI.BrCond.size() == 0 ||
    790       FalseBBI.BrCond.size() == 0)
    791     return false;
    792 
    793   MachineBasicBlock *TT = TrueBBI.TrueBB;
    794   MachineBasicBlock *TF = TrueBBI.FalseBB;
    795   MachineBasicBlock *FT = FalseBBI.TrueBB;
    796   MachineBasicBlock *FF = FalseBBI.FalseBB;
    797 
    798   if (!TT)
    799     TT = getNextBlock(*TrueBBI.BB);
    800   if (!TF)
    801     TF = getNextBlock(*TrueBBI.BB);
    802   if (!FT)
    803     FT = getNextBlock(*FalseBBI.BB);
    804   if (!FF)
    805     FF = getNextBlock(*FalseBBI.BB);
    806 
    807   if (!TT || !TF)
    808     return false;
    809 
    810   // Check successors. If they don't match, bail.
    811   if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
    812     return false;
    813 
    814   bool FalseReversed = false;
    815   if (TF == FT && TT == FF) {
    816     // If the branches are opposing, but we can't reverse, don't do it.
    817     if (!FalseBBI.IsBrReversible)
    818       return false;
    819     FalseReversed = true;
    820     reverseBranchCondition(FalseBBI);
    821   }
    822   auto UnReverseOnExit = make_scope_exit([&]() {
    823     if (FalseReversed)
    824       reverseBranchCondition(FalseBBI);
    825   });
    826 
    827   // Count duplicate instructions at the beginning of the true and false blocks.
    828   MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
    829   MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
    830   MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
    831   MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
    832   if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
    833                                   *TrueBBI.BB, *FalseBBI.BB,
    834                                   /* SkipUnconditionalBranches */ true))
    835     return false;
    836 
    837   TrueBBICalc.BB = TrueBBI.BB;
    838   FalseBBICalc.BB = FalseBBI.BB;
    839   if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
    840     return false;
    841 
    842   // The size is used to decide whether to if-convert, and the shared portions
    843   // are subtracted off. Because of the subtraction, we just use the size that
    844   // was calculated by the original ScanInstructions, as it is correct.
    845   TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
    846   FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
    847   return true;
    848 }
    849 
    850 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
    851 /// with their common predecessor) forms a valid diamond shape for ifcvt.
    852 bool IfConverter::ValidDiamond(
    853     BBInfo &TrueBBI, BBInfo &FalseBBI,
    854     unsigned &Dups1, unsigned &Dups2,
    855     BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
    856   Dups1 = Dups2 = 0;
    857   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
    858       FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
    859     return false;
    860 
    861   MachineBasicBlock *TT = TrueBBI.TrueBB;
    862   MachineBasicBlock *FT = FalseBBI.TrueBB;
    863 
    864   if (!TT && blockAlwaysFallThrough(TrueBBI))
    865     TT = getNextBlock(*TrueBBI.BB);
    866   if (!FT && blockAlwaysFallThrough(FalseBBI))
    867     FT = getNextBlock(*FalseBBI.BB);
    868   if (TT != FT)
    869     return false;
    870   if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
    871     return false;
    872   if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
    873     return false;
    874 
    875   // FIXME: Allow true block to have an early exit?
    876   if (TrueBBI.FalseBB || FalseBBI.FalseBB)
    877     return false;
    878 
    879   // Count duplicate instructions at the beginning and end of the true and
    880   // false blocks.
    881   // Skip unconditional branches only if we are considering an analyzable
    882   // diamond. Otherwise the branches must be the same.
    883   bool SkipUnconditionalBranches =
    884       TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
    885   MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
    886   MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
    887   MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
    888   MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
    889   if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
    890                                   *TrueBBI.BB, *FalseBBI.BB,
    891                                   SkipUnconditionalBranches))
    892     return false;
    893 
    894   TrueBBICalc.BB = TrueBBI.BB;
    895   FalseBBICalc.BB = FalseBBI.BB;
    896   if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
    897     return false;
    898   // The size is used to decide whether to if-convert, and the shared portions
    899   // are subtracted off. Because of the subtraction, we just use the size that
    900   // was calculated by the original ScanInstructions, as it is correct.
    901   TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
    902   FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
    903   return true;
    904 }
    905 
    906 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
    907 /// the block is predicable.
    908 void IfConverter::AnalyzeBranches(BBInfo &BBI) {
    909   if (BBI.IsDone)
    910     return;
    911 
    912   BBI.TrueBB = BBI.FalseBB = nullptr;
    913   BBI.BrCond.clear();
    914   BBI.IsBrAnalyzable =
    915       !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
    916   SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
    917   BBI.IsBrReversible = (RevCond.size() == 0) ||
    918       !TII->reverseBranchCondition(RevCond);
    919   BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
    920 
    921   if (BBI.BrCond.size()) {
    922     // No false branch. This BB must end with a conditional branch and a
    923     // fallthrough.
    924     if (!BBI.FalseBB)
    925       BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
    926     if (!BBI.FalseBB) {
    927       // Malformed bcc? True and false blocks are the same?
    928       BBI.IsUnpredicable = true;
    929     }
    930   }
    931 }
    932 
    933 /// ScanInstructions - Scan all the instructions in the block to determine if
    934 /// the block is predicable. In most cases, that means all the instructions
    935 /// in the block are isPredicable(). Also checks if the block contains any
    936 /// instruction which can clobber a predicate (e.g. condition code register).
    937 /// If so, the block is not predicable unless it's the last instruction.
    938 void IfConverter::ScanInstructions(BBInfo &BBI,
    939                                    MachineBasicBlock::iterator &Begin,
    940                                    MachineBasicBlock::iterator &End,
    941                                    bool BranchUnpredicable) const {
    942   if (BBI.IsDone || BBI.IsUnpredicable)
    943     return;
    944 
    945   bool AlreadyPredicated = !BBI.Predicate.empty();
    946 
    947   BBI.NonPredSize = 0;
    948   BBI.ExtraCost = 0;
    949   BBI.ExtraCost2 = 0;
    950   BBI.ClobbersPred = false;
    951   for (MachineInstr &MI : make_range(Begin, End)) {
    952     if (MI.isDebugInstr())
    953       continue;
    954 
    955     // It's unsafe to duplicate convergent instructions in this context, so set
    956     // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
    957     // following CFG, which is subject to our "simple" transformation.
    958     //
    959     //    BB0     // if (c1) goto BB1; else goto BB2;
    960     //   /   \
    961     //  BB1   |
    962     //   |   BB2  // if (c2) goto TBB; else goto FBB;
    963     //   |   / |
    964     //   |  /  |
    965     //   TBB   |
    966     //    |    |
    967     //    |   FBB
    968     //    |
    969     //    exit
    970     //
    971     // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
    972     // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
    973     // TBB contains a convergent instruction.  This is safe iff doing so does
    974     // not add a control-flow dependency to the convergent instruction -- i.e.,
    975     // it's safe iff the set of control flows that leads us to the convergent
    976     // instruction does not get smaller after the transformation.
    977     //
    978     // Originally we executed TBB if c1 || c2.  After the transformation, there
    979     // are two copies of TBB's instructions.  We get to the first if c1, and we
    980     // get to the second if !c1 && c2.
    981     //
    982     // There are clearly fewer ways to satisfy the condition "c1" than
    983     // "c1 || c2".  Since we've shrunk the set of control flows which lead to
    984     // our convergent instruction, the transformation is unsafe.
    985     if (MI.isNotDuplicable() || MI.isConvergent())
    986       BBI.CannotBeCopied = true;
    987 
    988     bool isPredicated = TII->isPredicated(MI);
    989     bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
    990 
    991     if (BranchUnpredicable && MI.isBranch()) {
    992       BBI.IsUnpredicable = true;
    993       return;
    994     }
    995 
    996     // A conditional branch is not predicable, but it may be eliminated.
    997     if (isCondBr)
    998       continue;
    999 
   1000     if (!isPredicated) {
   1001       BBI.NonPredSize++;
   1002       unsigned ExtraPredCost = TII->getPredicationCost(MI);
   1003       unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
   1004       if (NumCycles > 1)
   1005         BBI.ExtraCost += NumCycles-1;
   1006       BBI.ExtraCost2 += ExtraPredCost;
   1007     } else if (!AlreadyPredicated) {
   1008       // FIXME: This instruction is already predicated before the
   1009       // if-conversion pass. It's probably something like a conditional move.
   1010       // Mark this block unpredicable for now.
   1011       BBI.IsUnpredicable = true;
   1012       return;
   1013     }
   1014 
   1015     if (BBI.ClobbersPred && !isPredicated) {
   1016       // Predicate modification instruction should end the block (except for
   1017       // already predicated instructions and end of block branches).
   1018       // Predicate may have been modified, the subsequent (currently)
   1019       // unpredicated instructions cannot be correctly predicated.
   1020       BBI.IsUnpredicable = true;
   1021       return;
   1022     }
   1023 
   1024     // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
   1025     // still potentially predicable.
   1026     std::vector<MachineOperand> PredDefs;
   1027     if (TII->DefinesPredicate(MI, PredDefs))
   1028       BBI.ClobbersPred = true;
   1029 
   1030     if (!TII->isPredicable(MI)) {
   1031       BBI.IsUnpredicable = true;
   1032       return;
   1033     }
   1034   }
   1035 }
   1036 
   1037 /// Determine if the block is a suitable candidate to be predicated by the
   1038 /// specified predicate.
   1039 /// @param BBI BBInfo for the block to check
   1040 /// @param Pred Predicate array for the branch that leads to BBI
   1041 /// @param isTriangle true if the Analysis is for a triangle
   1042 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
   1043 ///        case
   1044 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
   1045 ///        contains any instruction that would make the block unpredicable.
   1046 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
   1047                                       SmallVectorImpl<MachineOperand> &Pred,
   1048                                       bool isTriangle, bool RevBranch,
   1049                                       bool hasCommonTail) {
   1050   // If the block is dead or unpredicable, then it cannot be predicated.
   1051   // Two blocks may share a common unpredicable tail, but this doesn't prevent
   1052   // them from being if-converted. The non-shared portion is assumed to have
   1053   // been checked
   1054   if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
   1055     return false;
   1056 
   1057   // If it is already predicated but we couldn't analyze its terminator, the
   1058   // latter might fallthrough, but we can't determine where to.
   1059   // Conservatively avoid if-converting again.
   1060   if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
   1061     return false;
   1062 
   1063   // If it is already predicated, check if the new predicate subsumes
   1064   // its predicate.
   1065   if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
   1066     return false;
   1067 
   1068   if (!hasCommonTail && BBI.BrCond.size()) {
   1069     if (!isTriangle)
   1070       return false;
   1071 
   1072     // Test predicate subsumption.
   1073     SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
   1074     SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
   1075     if (RevBranch) {
   1076       if (TII->reverseBranchCondition(Cond))
   1077         return false;
   1078     }
   1079     if (TII->reverseBranchCondition(RevPred) ||
   1080         !TII->SubsumesPredicate(Cond, RevPred))
   1081       return false;
   1082   }
   1083 
   1084   return true;
   1085 }
   1086 
   1087 /// Analyze the structure of the sub-CFG starting from the specified block.
   1088 /// Record its successors and whether it looks like an if-conversion candidate.
   1089 void IfConverter::AnalyzeBlock(
   1090     MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
   1091   struct BBState {
   1092     BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
   1093     MachineBasicBlock *MBB;
   1094 
   1095     /// This flag is true if MBB's successors have been analyzed.
   1096     bool SuccsAnalyzed;
   1097   };
   1098 
   1099   // Push MBB to the stack.
   1100   SmallVector<BBState, 16> BBStack(1, MBB);
   1101 
   1102   while (!BBStack.empty()) {
   1103     BBState &State = BBStack.back();
   1104     MachineBasicBlock *BB = State.MBB;
   1105     BBInfo &BBI = BBAnalysis[BB->getNumber()];
   1106 
   1107     if (!State.SuccsAnalyzed) {
   1108       if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
   1109         BBStack.pop_back();
   1110         continue;
   1111       }
   1112 
   1113       BBI.BB = BB;
   1114       BBI.IsBeingAnalyzed = true;
   1115 
   1116       AnalyzeBranches(BBI);
   1117       MachineBasicBlock::iterator Begin = BBI.BB->begin();
   1118       MachineBasicBlock::iterator End = BBI.BB->end();
   1119       ScanInstructions(BBI, Begin, End);
   1120 
   1121       // Unanalyzable or ends with fallthrough or unconditional branch, or if is
   1122       // not considered for ifcvt anymore.
   1123       if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
   1124         BBI.IsBeingAnalyzed = false;
   1125         BBI.IsAnalyzed = true;
   1126         BBStack.pop_back();
   1127         continue;
   1128       }
   1129 
   1130       // Do not ifcvt if either path is a back edge to the entry block.
   1131       if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
   1132         BBI.IsBeingAnalyzed = false;
   1133         BBI.IsAnalyzed = true;
   1134         BBStack.pop_back();
   1135         continue;
   1136       }
   1137 
   1138       // Do not ifcvt if true and false fallthrough blocks are the same.
   1139       if (!BBI.FalseBB) {
   1140         BBI.IsBeingAnalyzed = false;
   1141         BBI.IsAnalyzed = true;
   1142         BBStack.pop_back();
   1143         continue;
   1144       }
   1145 
   1146       // Push the False and True blocks to the stack.
   1147       State.SuccsAnalyzed = true;
   1148       BBStack.push_back(*BBI.FalseBB);
   1149       BBStack.push_back(*BBI.TrueBB);
   1150       continue;
   1151     }
   1152 
   1153     BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
   1154     BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
   1155 
   1156     if (TrueBBI.IsDone && FalseBBI.IsDone) {
   1157       BBI.IsBeingAnalyzed = false;
   1158       BBI.IsAnalyzed = true;
   1159       BBStack.pop_back();
   1160       continue;
   1161     }
   1162 
   1163     SmallVector<MachineOperand, 4>
   1164         RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
   1165     bool CanRevCond = !TII->reverseBranchCondition(RevCond);
   1166 
   1167     unsigned Dups = 0;
   1168     unsigned Dups2 = 0;
   1169     bool TNeedSub = !TrueBBI.Predicate.empty();
   1170     bool FNeedSub = !FalseBBI.Predicate.empty();
   1171     bool Enqueued = false;
   1172 
   1173     BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
   1174 
   1175     if (CanRevCond) {
   1176       BBInfo TrueBBICalc, FalseBBICalc;
   1177       auto feasibleDiamond = [&]() {
   1178         bool MeetsSize = MeetIfcvtSizeLimit(
   1179             *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
   1180                           TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
   1181             *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
   1182                            FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
   1183             Prediction);
   1184         bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
   1185                                                 /* IsTriangle */ false, /* RevCond */ false,
   1186                                                 /* hasCommonTail */ true);
   1187         bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
   1188                                                  /* IsTriangle */ false, /* RevCond */ false,
   1189                                                  /* hasCommonTail */ true);
   1190         return MeetsSize && TrueFeasible && FalseFeasible;
   1191       };
   1192 
   1193       if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
   1194                        TrueBBICalc, FalseBBICalc)) {
   1195         if (feasibleDiamond()) {
   1196           // Diamond:
   1197           //   EBB
   1198           //   / \_
   1199           //  |   |
   1200           // TBB FBB
   1201           //   \ /
   1202           //  TailBB
   1203           // Note TailBB can be empty.
   1204           Tokens.push_back(llvm::make_unique<IfcvtToken>(
   1205               BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
   1206               (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
   1207           Enqueued = true;
   1208         }
   1209       } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
   1210                                     TrueBBICalc, FalseBBICalc)) {
   1211         if (feasibleDiamond()) {
   1212           // ForkedDiamond:
   1213           // if TBB and FBB have a common tail that includes their conditional
   1214           // branch instructions, then we can If Convert this pattern.
   1215           //          EBB
   1216           //         _/ \_
   1217           //         |   |
   1218           //        TBB  FBB
   1219           //        / \ /   \
   1220           //  FalseBB TrueBB FalseBB
   1221           //
   1222           Tokens.push_back(llvm::make_unique<IfcvtToken>(
   1223               BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
   1224               (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
   1225           Enqueued = true;
   1226         }
   1227       }
   1228     }
   1229 
   1230     if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
   1231         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
   1232                            TrueBBI.ExtraCost2, Prediction) &&
   1233         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
   1234       // Triangle:
   1235       //   EBB
   1236       //   | \_
   1237       //   |  |
   1238       //   | TBB
   1239       //   |  /
   1240       //   FBB
   1241       Tokens.push_back(
   1242           llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
   1243       Enqueued = true;
   1244     }
   1245 
   1246     if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
   1247         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
   1248                            TrueBBI.ExtraCost2, Prediction) &&
   1249         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
   1250       Tokens.push_back(
   1251           llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
   1252       Enqueued = true;
   1253     }
   1254 
   1255     if (ValidSimple(TrueBBI, Dups, Prediction) &&
   1256         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
   1257                            TrueBBI.ExtraCost2, Prediction) &&
   1258         FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
   1259       // Simple (split, no rejoin):
   1260       //   EBB
   1261       //   | \_
   1262       //   |  |
   1263       //   | TBB---> exit
   1264       //   |
   1265       //   FBB
   1266       Tokens.push_back(
   1267           llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
   1268       Enqueued = true;
   1269     }
   1270 
   1271     if (CanRevCond) {
   1272       // Try the other path...
   1273       if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
   1274                         Prediction.getCompl()) &&
   1275           MeetIfcvtSizeLimit(*FalseBBI.BB,
   1276                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
   1277                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
   1278           FeasibilityAnalysis(FalseBBI, RevCond, true)) {
   1279         Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
   1280                                                        FNeedSub, Dups));
   1281         Enqueued = true;
   1282       }
   1283 
   1284       if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
   1285                         Prediction.getCompl()) &&
   1286           MeetIfcvtSizeLimit(*FalseBBI.BB,
   1287                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
   1288                            FalseBBI.ExtraCost2, Prediction.getCompl()) &&
   1289         FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
   1290         Tokens.push_back(
   1291             llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
   1292         Enqueued = true;
   1293       }
   1294 
   1295       if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
   1296           MeetIfcvtSizeLimit(*FalseBBI.BB,
   1297                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
   1298                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
   1299           FeasibilityAnalysis(FalseBBI, RevCond)) {
   1300         Tokens.push_back(
   1301             llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
   1302         Enqueued = true;
   1303       }
   1304     }
   1305 
   1306     BBI.IsEnqueued = Enqueued;
   1307     BBI.IsBeingAnalyzed = false;
   1308     BBI.IsAnalyzed = true;
   1309     BBStack.pop_back();
   1310   }
   1311 }
   1312 
   1313 /// Analyze all blocks and find entries for all if-conversion candidates.
   1314 void IfConverter::AnalyzeBlocks(
   1315     MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
   1316   for (MachineBasicBlock &MBB : MF)
   1317     AnalyzeBlock(MBB, Tokens);
   1318 
   1319   // Sort to favor more complex ifcvt scheme.
   1320   std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
   1321 }
   1322 
   1323 /// Returns true either if ToMBB is the next block after MBB or that all the
   1324 /// intervening blocks are empty (given MBB can fall through to its next block).
   1325 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
   1326   MachineFunction::iterator PI = MBB.getIterator();
   1327   MachineFunction::iterator I = std::next(PI);
   1328   MachineFunction::iterator TI = ToMBB.getIterator();
   1329   MachineFunction::iterator E = MBB.getParent()->end();
   1330   while (I != TI) {
   1331     // Check isSuccessor to avoid case where the next block is empty, but
   1332     // it's not a successor.
   1333     if (I == E || !I->empty() || !PI->isSuccessor(&*I))
   1334       return false;
   1335     PI = I++;
   1336   }
   1337   // Finally see if the last I is indeed a successor to PI.
   1338   return PI->isSuccessor(&*I);
   1339 }
   1340 
   1341 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
   1342 /// can be if-converted. If predecessor is already enqueued, dequeue it!
   1343 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
   1344   for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
   1345     BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
   1346     if (PBBI.IsDone || PBBI.BB == &MBB)
   1347       continue;
   1348     PBBI.IsAnalyzed = false;
   1349     PBBI.IsEnqueued = false;
   1350   }
   1351 }
   1352 
   1353 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
   1354 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
   1355                                const TargetInstrInfo *TII) {
   1356   DebugLoc dl;  // FIXME: this is nowhere
   1357   SmallVector<MachineOperand, 0> NoCond;
   1358   TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
   1359 }
   1360 
   1361 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
   1362 /// values defined in MI which are also live/used by MI.
   1363 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
   1364   const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
   1365 
   1366   // Before stepping forward past MI, remember which regs were live
   1367   // before MI. This is needed to set the Undef flag only when reg is
   1368   // dead.
   1369   SparseSet<unsigned> LiveBeforeMI;
   1370   LiveBeforeMI.setUniverse(TRI->getNumRegs());
   1371   for (unsigned Reg : Redefs)
   1372     LiveBeforeMI.insert(Reg);
   1373 
   1374   SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers;
   1375   Redefs.stepForward(MI, Clobbers);
   1376 
   1377   // Now add the implicit uses for each of the clobbered values.
   1378   for (auto Clobber : Clobbers) {
   1379     // FIXME: Const cast here is nasty, but better than making StepForward
   1380     // take a mutable instruction instead of const.
   1381     unsigned Reg = Clobber.first;
   1382     MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
   1383     MachineInstr *OpMI = Op.getParent();
   1384     MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
   1385     if (Op.isRegMask()) {
   1386       // First handle regmasks.  They clobber any entries in the mask which
   1387       // means that we need a def for those registers.
   1388       if (LiveBeforeMI.count(Reg))
   1389         MIB.addReg(Reg, RegState::Implicit);
   1390 
   1391       // We also need to add an implicit def of this register for the later
   1392       // use to read from.
   1393       // For the register allocator to have allocated a register clobbered
   1394       // by the call which is used later, it must be the case that
   1395       // the call doesn't return.
   1396       MIB.addReg(Reg, RegState::Implicit | RegState::Define);
   1397       continue;
   1398     }
   1399     if (LiveBeforeMI.count(Reg))
   1400       MIB.addReg(Reg, RegState::Implicit);
   1401     else {
   1402       bool HasLiveSubReg = false;
   1403       for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
   1404         if (!LiveBeforeMI.count(*S))
   1405           continue;
   1406         HasLiveSubReg = true;
   1407         break;
   1408       }
   1409       if (HasLiveSubReg)
   1410         MIB.addReg(Reg, RegState::Implicit);
   1411     }
   1412   }
   1413 }
   1414 
   1415 /// If convert a simple (split, no rejoin) sub-CFG.
   1416 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
   1417   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
   1418   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
   1419   BBInfo *CvtBBI = &TrueBBI;
   1420   BBInfo *NextBBI = &FalseBBI;
   1421 
   1422   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
   1423   if (Kind == ICSimpleFalse)
   1424     std::swap(CvtBBI, NextBBI);
   1425 
   1426   MachineBasicBlock &CvtMBB = *CvtBBI->BB;
   1427   MachineBasicBlock &NextMBB = *NextBBI->BB;
   1428   if (CvtBBI->IsDone ||
   1429       (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
   1430     // Something has changed. It's no longer safe to predicate this block.
   1431     BBI.IsAnalyzed = false;
   1432     CvtBBI->IsAnalyzed = false;
   1433     return false;
   1434   }
   1435 
   1436   if (CvtMBB.hasAddressTaken())
   1437     // Conservatively abort if-conversion if BB's address is taken.
   1438     return false;
   1439 
   1440   if (Kind == ICSimpleFalse)
   1441     if (TII->reverseBranchCondition(Cond))
   1442       llvm_unreachable("Unable to reverse branch condition!");
   1443 
   1444   Redefs.init(*TRI);
   1445 
   1446   if (MRI->tracksLiveness()) {
   1447     // Initialize liveins to the first BB. These are potentiall redefined by
   1448     // predicated instructions.
   1449     Redefs.addLiveIns(CvtMBB);
   1450     Redefs.addLiveIns(NextMBB);
   1451   }
   1452 
   1453   // Remove the branches from the entry so we can add the contents of the true
   1454   // block to it.
   1455   BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
   1456 
   1457   if (CvtMBB.pred_size() > 1) {
   1458     // Copy instructions in the true block, predicate them, and add them to
   1459     // the entry block.
   1460     CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
   1461 
   1462     // Keep the CFG updated.
   1463     BBI.BB->removeSuccessor(&CvtMBB, true);
   1464   } else {
   1465     // Predicate the instructions in the true block.
   1466     PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
   1467 
   1468     // Merge converted block into entry block. The BB to Cvt edge is removed
   1469     // by MergeBlocks.
   1470     MergeBlocks(BBI, *CvtBBI);
   1471   }
   1472 
   1473   bool IterIfcvt = true;
   1474   if (!canFallThroughTo(*BBI.BB, NextMBB)) {
   1475     InsertUncondBranch(*BBI.BB, NextMBB, TII);
   1476     BBI.HasFallThrough = false;
   1477     // Now ifcvt'd block will look like this:
   1478     // BB:
   1479     // ...
   1480     // t, f = cmp
   1481     // if t op
   1482     // b BBf
   1483     //
   1484     // We cannot further ifcvt this block because the unconditional branch
   1485     // will have to be predicated on the new condition, that will not be
   1486     // available if cmp executes.
   1487     IterIfcvt = false;
   1488   }
   1489 
   1490   // Update block info. BB can be iteratively if-converted.
   1491   if (!IterIfcvt)
   1492     BBI.IsDone = true;
   1493   InvalidatePreds(*BBI.BB);
   1494   CvtBBI->IsDone = true;
   1495 
   1496   // FIXME: Must maintain LiveIns.
   1497   return true;
   1498 }
   1499 
   1500 /// If convert a triangle sub-CFG.
   1501 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
   1502   BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
   1503   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
   1504   BBInfo *CvtBBI = &TrueBBI;
   1505   BBInfo *NextBBI = &FalseBBI;
   1506   DebugLoc dl;  // FIXME: this is nowhere
   1507 
   1508   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
   1509   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
   1510     std::swap(CvtBBI, NextBBI);
   1511 
   1512   MachineBasicBlock &CvtMBB = *CvtBBI->BB;
   1513   MachineBasicBlock &NextMBB = *NextBBI->BB;
   1514   if (CvtBBI->IsDone ||
   1515       (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
   1516     // Something has changed. It's no longer safe to predicate this block.
   1517     BBI.IsAnalyzed = false;
   1518     CvtBBI->IsAnalyzed = false;
   1519     return false;
   1520   }
   1521 
   1522   if (CvtMBB.hasAddressTaken())
   1523     // Conservatively abort if-conversion if BB's address is taken.
   1524     return false;
   1525 
   1526   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
   1527     if (TII->reverseBranchCondition(Cond))
   1528       llvm_unreachable("Unable to reverse branch condition!");
   1529 
   1530   if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
   1531     if (reverseBranchCondition(*CvtBBI)) {
   1532       // BB has been changed, modify its predecessors (except for this
   1533       // one) so they don't get ifcvt'ed based on bad intel.
   1534       for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
   1535         if (PBB == BBI.BB)
   1536           continue;
   1537         BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
   1538         if (PBBI.IsEnqueued) {
   1539           PBBI.IsAnalyzed = false;
   1540           PBBI.IsEnqueued = false;
   1541         }
   1542       }
   1543     }
   1544   }
   1545 
   1546   // Initialize liveins to the first BB. These are potentially redefined by
   1547   // predicated instructions.
   1548   Redefs.init(*TRI);
   1549   if (MRI->tracksLiveness()) {
   1550     Redefs.addLiveIns(CvtMBB);
   1551     Redefs.addLiveIns(NextMBB);
   1552   }
   1553 
   1554   bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
   1555   BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
   1556 
   1557   if (HasEarlyExit) {
   1558     // Get probabilities before modifying CvtMBB and BBI.BB.
   1559     CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
   1560     CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
   1561     BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
   1562     BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
   1563   }
   1564 
   1565   // Remove the branches from the entry so we can add the contents of the true
   1566   // block to it.
   1567   BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
   1568 
   1569   if (CvtMBB.pred_size() > 1) {
   1570     // Copy instructions in the true block, predicate them, and add them to
   1571     // the entry block.
   1572     CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
   1573   } else {
   1574     // Predicate the 'true' block after removing its branch.
   1575     CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
   1576     PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
   1577 
   1578     // Now merge the entry of the triangle with the true block.
   1579     MergeBlocks(BBI, *CvtBBI, false);
   1580   }
   1581 
   1582   // Keep the CFG updated.
   1583   BBI.BB->removeSuccessor(&CvtMBB, true);
   1584 
   1585   // If 'true' block has a 'false' successor, add an exit branch to it.
   1586   if (HasEarlyExit) {
   1587     SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
   1588                                            CvtBBI->BrCond.end());
   1589     if (TII->reverseBranchCondition(RevCond))
   1590       llvm_unreachable("Unable to reverse branch condition!");
   1591 
   1592     // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
   1593     // NewNext = New_Prob(BBI.BB, NextMBB) =
   1594     //   Prob(BBI.BB, NextMBB) +
   1595     //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
   1596     // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
   1597     //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
   1598     auto NewTrueBB = getNextBlock(*BBI.BB);
   1599     auto NewNext = BBNext + BBCvt * CvtNext;
   1600     auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
   1601     if (NewTrueBBIter != BBI.BB->succ_end())
   1602       BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
   1603 
   1604     auto NewFalse = BBCvt * CvtFalse;
   1605     TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
   1606     BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
   1607   }
   1608 
   1609   // Merge in the 'false' block if the 'false' block has no other
   1610   // predecessors. Otherwise, add an unconditional branch to 'false'.
   1611   bool FalseBBDead = false;
   1612   bool IterIfcvt = true;
   1613   bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
   1614   if (!isFallThrough) {
   1615     // Only merge them if the true block does not fallthrough to the false
   1616     // block. By not merging them, we make it possible to iteratively
   1617     // ifcvt the blocks.
   1618     if (!HasEarlyExit &&
   1619         NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
   1620         !NextMBB.hasAddressTaken()) {
   1621       MergeBlocks(BBI, *NextBBI);
   1622       FalseBBDead = true;
   1623     } else {
   1624       InsertUncondBranch(*BBI.BB, NextMBB, TII);
   1625       BBI.HasFallThrough = false;
   1626     }
   1627     // Mixed predicated and unpredicated code. This cannot be iteratively
   1628     // predicated.
   1629     IterIfcvt = false;
   1630   }
   1631 
   1632   // Update block info. BB can be iteratively if-converted.
   1633   if (!IterIfcvt)
   1634     BBI.IsDone = true;
   1635   InvalidatePreds(*BBI.BB);
   1636   CvtBBI->IsDone = true;
   1637   if (FalseBBDead)
   1638     NextBBI->IsDone = true;
   1639 
   1640   // FIXME: Must maintain LiveIns.
   1641   return true;
   1642 }
   1643 
   1644 /// Common code shared between diamond conversions.
   1645 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
   1646 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
   1647 ///               and FalseBBI
   1648 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
   1649 ///               and \p FalseBBI
   1650 /// \p RemoveBranch - Remove the common branch of the two blocks before
   1651 ///                   predicating. Only false for unanalyzable fallthrough
   1652 ///                   cases. The caller will replace the branch if necessary.
   1653 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
   1654 ///                    unanalyzable fallthrough
   1655 bool IfConverter::IfConvertDiamondCommon(
   1656     BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
   1657     unsigned NumDups1, unsigned NumDups2,
   1658     bool TClobbersPred, bool FClobbersPred,
   1659     bool RemoveBranch, bool MergeAddEdges) {
   1660 
   1661   if (TrueBBI.IsDone || FalseBBI.IsDone ||
   1662       TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
   1663     // Something has changed. It's no longer safe to predicate these blocks.
   1664     BBI.IsAnalyzed = false;
   1665     TrueBBI.IsAnalyzed = false;
   1666     FalseBBI.IsAnalyzed = false;
   1667     return false;
   1668   }
   1669 
   1670   if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
   1671     // Conservatively abort if-conversion if either BB has its address taken.
   1672     return false;
   1673 
   1674   // Put the predicated instructions from the 'true' block before the
   1675   // instructions from the 'false' block, unless the true block would clobber
   1676   // the predicate, in which case, do the opposite.
   1677   BBInfo *BBI1 = &TrueBBI;
   1678   BBInfo *BBI2 = &FalseBBI;
   1679   SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
   1680   if (TII->reverseBranchCondition(RevCond))
   1681     llvm_unreachable("Unable to reverse branch condition!");
   1682   SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
   1683   SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
   1684 
   1685   // Figure out the more profitable ordering.
   1686   bool DoSwap = false;
   1687   if (TClobbersPred && !FClobbersPred)
   1688     DoSwap = true;
   1689   else if (!TClobbersPred && !FClobbersPred) {
   1690     if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
   1691       DoSwap = true;
   1692   } else if (TClobbersPred && FClobbersPred)
   1693     llvm_unreachable("Predicate info cannot be clobbered by both sides.");
   1694   if (DoSwap) {
   1695     std::swap(BBI1, BBI2);
   1696     std::swap(Cond1, Cond2);
   1697   }
   1698 
   1699   // Remove the conditional branch from entry to the blocks.
   1700   BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
   1701 
   1702   MachineBasicBlock &MBB1 = *BBI1->BB;
   1703   MachineBasicBlock &MBB2 = *BBI2->BB;
   1704 
   1705   // Initialize the Redefs:
   1706   // - BB2 live-in regs need implicit uses before being redefined by BB1
   1707   //   instructions.
   1708   // - BB1 live-out regs need implicit uses before being redefined by BB2
   1709   //   instructions. We start with BB1 live-ins so we have the live-out regs
   1710   //   after tracking the BB1 instructions.
   1711   Redefs.init(*TRI);
   1712   if (MRI->tracksLiveness()) {
   1713     Redefs.addLiveIns(MBB1);
   1714     Redefs.addLiveIns(MBB2);
   1715   }
   1716 
   1717   // Remove the duplicated instructions at the beginnings of both paths.
   1718   // Skip dbg_value instructions.
   1719   MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
   1720   MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
   1721   BBI1->NonPredSize -= NumDups1;
   1722   BBI2->NonPredSize -= NumDups1;
   1723 
   1724   // Skip past the dups on each side separately since there may be
   1725   // differing dbg_value entries. NumDups1 can include a "return"
   1726   // instruction, if it's not marked as "branch".
   1727   for (unsigned i = 0; i < NumDups1; ++DI1) {
   1728     if (DI1 == MBB1.end())
   1729       break;
   1730     if (!DI1->isDebugInstr())
   1731       ++i;
   1732   }
   1733   while (NumDups1 != 0) {
   1734     ++DI2;
   1735     if (DI2 == MBB2.end())
   1736       break;
   1737     if (!DI2->isDebugInstr())
   1738       --NumDups1;
   1739   }
   1740 
   1741   if (MRI->tracksLiveness()) {
   1742     for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
   1743       SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Dummy;
   1744       Redefs.stepForward(MI, Dummy);
   1745     }
   1746   }
   1747 
   1748   BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
   1749   MBB2.erase(MBB2.begin(), DI2);
   1750 
   1751   // The branches have been checked to match, so it is safe to remove the
   1752   // branch in BB1 and rely on the copy in BB2. The complication is that
   1753   // the blocks may end with a return instruction, which may or may not
   1754   // be marked as "branch". If it's not, then it could be included in
   1755   // "dups1", leaving the blocks potentially empty after moving the common
   1756   // duplicates.
   1757 #ifndef NDEBUG
   1758   // Unanalyzable branches must match exactly. Check that now.
   1759   if (!BBI1->IsBrAnalyzable)
   1760     verifySameBranchInstructions(&MBB1, &MBB2);
   1761 #endif
   1762   BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB);
   1763   // Remove duplicated instructions.
   1764   DI1 = MBB1.end();
   1765   for (unsigned i = 0; i != NumDups2; ) {
   1766     // NumDups2 only counted non-dbg_value instructions, so this won't
   1767     // run off the head of the list.
   1768     assert(DI1 != MBB1.begin());
   1769     --DI1;
   1770     // skip dbg_value instructions
   1771     if (!DI1->isDebugInstr())
   1772       ++i;
   1773   }
   1774   MBB1.erase(DI1, MBB1.end());
   1775 
   1776   DI2 = BBI2->BB->end();
   1777   // The branches have been checked to match. Skip over the branch in the false
   1778   // block so that we don't try to predicate it.
   1779   if (RemoveBranch)
   1780     BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
   1781   else {
   1782     // Make DI2 point to the end of the range where the common "tail"
   1783     // instructions could be found.
   1784     while (DI2 != MBB2.begin()) {
   1785       MachineBasicBlock::iterator Prev = std::prev(DI2);
   1786       if (!Prev->isBranch() && !Prev->isDebugInstr())
   1787         break;
   1788       DI2 = Prev;
   1789     }
   1790   }
   1791   while (NumDups2 != 0) {
   1792     // NumDups2 only counted non-dbg_value instructions, so this won't
   1793     // run off the head of the list.
   1794     assert(DI2 != MBB2.begin());
   1795     --DI2;
   1796     // skip dbg_value instructions
   1797     if (!DI2->isDebugInstr())
   1798       --NumDups2;
   1799   }
   1800 
   1801   // Remember which registers would later be defined by the false block.
   1802   // This allows us not to predicate instructions in the true block that would
   1803   // later be re-defined. That is, rather than
   1804   //   subeq  r0, r1, #1
   1805   //   addne  r0, r1, #1
   1806   // generate:
   1807   //   sub    r0, r1, #1
   1808   //   addne  r0, r1, #1
   1809   SmallSet<unsigned, 4> RedefsByFalse;
   1810   SmallSet<unsigned, 4> ExtUses;
   1811   if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
   1812     for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
   1813       if (FI.isDebugInstr())
   1814         continue;
   1815       SmallVector<unsigned, 4> Defs;
   1816       for (const MachineOperand &MO : FI.operands()) {
   1817         if (!MO.isReg())
   1818           continue;
   1819         unsigned Reg = MO.getReg();
   1820         if (!Reg)
   1821           continue;
   1822         if (MO.isDef()) {
   1823           Defs.push_back(Reg);
   1824         } else if (!RedefsByFalse.count(Reg)) {
   1825           // These are defined before ctrl flow reach the 'false' instructions.
   1826           // They cannot be modified by the 'true' instructions.
   1827           for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
   1828                SubRegs.isValid(); ++SubRegs)
   1829             ExtUses.insert(*SubRegs);
   1830         }
   1831       }
   1832 
   1833       for (unsigned Reg : Defs) {
   1834         if (!ExtUses.count(Reg)) {
   1835           for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
   1836                SubRegs.isValid(); ++SubRegs)
   1837             RedefsByFalse.insert(*SubRegs);
   1838         }
   1839       }
   1840     }
   1841   }
   1842 
   1843   // Predicate the 'true' block.
   1844   PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
   1845 
   1846   // After predicating BBI1, if there is a predicated terminator in BBI1 and
   1847   // a non-predicated in BBI2, then we don't want to predicate the one from
   1848   // BBI2. The reason is that if we merged these blocks, we would end up with
   1849   // two predicated terminators in the same block.
   1850   // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
   1851   // predicate them either. They were checked to be identical, and so the
   1852   // same branch would happen regardless of which path was taken.
   1853   if (!MBB2.empty() && (DI2 == MBB2.end())) {
   1854     MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
   1855     MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
   1856     bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
   1857     bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
   1858     if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
   1859       --DI2;
   1860   }
   1861 
   1862   // Predicate the 'false' block.
   1863   PredicateBlock(*BBI2, DI2, *Cond2);
   1864 
   1865   // Merge the true block into the entry of the diamond.
   1866   MergeBlocks(BBI, *BBI1, MergeAddEdges);
   1867   MergeBlocks(BBI, *BBI2, MergeAddEdges);
   1868   return true;
   1869 }
   1870 
   1871 /// If convert an almost-diamond sub-CFG where the true
   1872 /// and false blocks share a common tail.
   1873 bool IfConverter::IfConvertForkedDiamond(
   1874     BBInfo &BBI, IfcvtKind Kind,
   1875     unsigned NumDups1, unsigned NumDups2,
   1876     bool TClobbersPred, bool FClobbersPred) {
   1877   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
   1878   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
   1879 
   1880   // Save the debug location for later.
   1881   DebugLoc dl;
   1882   MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
   1883   if (TIE != TrueBBI.BB->end())
   1884     dl = TIE->getDebugLoc();
   1885   // Removing branches from both blocks is safe, because we have already
   1886   // determined that both blocks have the same branch instructions. The branch
   1887   // will be added back at the end, unpredicated.
   1888   if (!IfConvertDiamondCommon(
   1889       BBI, TrueBBI, FalseBBI,
   1890       NumDups1, NumDups2,
   1891       TClobbersPred, FClobbersPred,
   1892       /* RemoveBranch */ true, /* MergeAddEdges */ true))
   1893     return false;
   1894 
   1895   // Add back the branch.
   1896   // Debug location saved above when removing the branch from BBI2
   1897   TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
   1898                     TrueBBI.BrCond, dl);
   1899 
   1900   // Update block info.
   1901   BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
   1902   InvalidatePreds(*BBI.BB);
   1903 
   1904   // FIXME: Must maintain LiveIns.
   1905   return true;
   1906 }
   1907 
   1908 /// If convert a diamond sub-CFG.
   1909 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
   1910                                    unsigned NumDups1, unsigned NumDups2,
   1911                                    bool TClobbersPred, bool FClobbersPred) {
   1912   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
   1913   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
   1914   MachineBasicBlock *TailBB = TrueBBI.TrueBB;
   1915 
   1916   // True block must fall through or end with an unanalyzable terminator.
   1917   if (!TailBB) {
   1918     if (blockAlwaysFallThrough(TrueBBI))
   1919       TailBB = FalseBBI.TrueBB;
   1920     assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
   1921   }
   1922 
   1923   if (!IfConvertDiamondCommon(
   1924       BBI, TrueBBI, FalseBBI,
   1925       NumDups1, NumDups2,
   1926       TClobbersPred, FClobbersPred,
   1927       /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
   1928       /* MergeAddEdges */ TailBB == nullptr))
   1929     return false;
   1930 
   1931   // If the if-converted block falls through or unconditionally branches into
   1932   // the tail block, and the tail block does not have other predecessors, then
   1933   // fold the tail block in as well. Otherwise, unless it falls through to the
   1934   // tail, add a unconditional branch to it.
   1935   if (TailBB) {
   1936     // We need to remove the edges to the true and false blocks manually since
   1937     // we didn't let IfConvertDiamondCommon update the CFG.
   1938     BBI.BB->removeSuccessor(TrueBBI.BB);
   1939     BBI.BB->removeSuccessor(FalseBBI.BB, true);
   1940 
   1941     BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
   1942     bool CanMergeTail = !TailBBI.HasFallThrough &&
   1943       !TailBBI.BB->hasAddressTaken();
   1944     // The if-converted block can still have a predicated terminator
   1945     // (e.g. a predicated return). If that is the case, we cannot merge
   1946     // it with the tail block.
   1947     MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
   1948     if (TI != BBI.BB->end() && TII->isPredicated(*TI))
   1949       CanMergeTail = false;
   1950     // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
   1951     // check if there are any other predecessors besides those.
   1952     unsigned NumPreds = TailBB->pred_size();
   1953     if (NumPreds > 1)
   1954       CanMergeTail = false;
   1955     else if (NumPreds == 1 && CanMergeTail) {
   1956       MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
   1957       if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
   1958         CanMergeTail = false;
   1959     }
   1960     if (CanMergeTail) {
   1961       MergeBlocks(BBI, TailBBI);
   1962       TailBBI.IsDone = true;
   1963     } else {
   1964       BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
   1965       InsertUncondBranch(*BBI.BB, *TailBB, TII);
   1966       BBI.HasFallThrough = false;
   1967     }
   1968   }
   1969 
   1970   // Update block info.
   1971   BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
   1972   InvalidatePreds(*BBI.BB);
   1973 
   1974   // FIXME: Must maintain LiveIns.
   1975   return true;
   1976 }
   1977 
   1978 static bool MaySpeculate(const MachineInstr &MI,
   1979                          SmallSet<unsigned, 4> &LaterRedefs) {
   1980   bool SawStore = true;
   1981   if (!MI.isSafeToMove(nullptr, SawStore))
   1982     return false;
   1983 
   1984   for (const MachineOperand &MO : MI.operands()) {
   1985     if (!MO.isReg())
   1986       continue;
   1987     unsigned Reg = MO.getReg();
   1988     if (!Reg)
   1989       continue;
   1990     if (MO.isDef() && !LaterRedefs.count(Reg))
   1991       return false;
   1992   }
   1993 
   1994   return true;
   1995 }
   1996 
   1997 /// Predicate instructions from the start of the block to the specified end with
   1998 /// the specified condition.
   1999 void IfConverter::PredicateBlock(BBInfo &BBI,
   2000                                  MachineBasicBlock::iterator E,
   2001                                  SmallVectorImpl<MachineOperand> &Cond,
   2002                                  SmallSet<unsigned, 4> *LaterRedefs) {
   2003   bool AnyUnpred = false;
   2004   bool MaySpec = LaterRedefs != nullptr;
   2005   for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
   2006     if (I.isDebugInstr() || TII->isPredicated(I))
   2007       continue;
   2008     // It may be possible not to predicate an instruction if it's the 'true'
   2009     // side of a diamond and the 'false' side may re-define the instruction's
   2010     // defs.
   2011     if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
   2012       AnyUnpred = true;
   2013       continue;
   2014     }
   2015     // If any instruction is predicated, then every instruction after it must
   2016     // be predicated.
   2017     MaySpec = false;
   2018     if (!TII->PredicateInstruction(I, Cond)) {
   2019 #ifndef NDEBUG
   2020       dbgs() << "Unable to predicate " << I << "!\n";
   2021 #endif
   2022       llvm_unreachable(nullptr);
   2023     }
   2024 
   2025     // If the predicated instruction now redefines a register as the result of
   2026     // if-conversion, add an implicit kill.
   2027     UpdatePredRedefs(I, Redefs);
   2028   }
   2029 
   2030   BBI.Predicate.append(Cond.begin(), Cond.end());
   2031 
   2032   BBI.IsAnalyzed = false;
   2033   BBI.NonPredSize = 0;
   2034 
   2035   ++NumIfConvBBs;
   2036   if (AnyUnpred)
   2037     ++NumUnpred;
   2038 }
   2039 
   2040 /// Copy and predicate instructions from source BB to the destination block.
   2041 /// Skip end of block branches if IgnoreBr is true.
   2042 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
   2043                                         SmallVectorImpl<MachineOperand> &Cond,
   2044                                         bool IgnoreBr) {
   2045   MachineFunction &MF = *ToBBI.BB->getParent();
   2046 
   2047   MachineBasicBlock &FromMBB = *FromBBI.BB;
   2048   for (MachineInstr &I : FromMBB) {
   2049     // Do not copy the end of the block branches.
   2050     if (IgnoreBr && I.isBranch())
   2051       break;
   2052 
   2053     MachineInstr *MI = MF.CloneMachineInstr(&I);
   2054     ToBBI.BB->insert(ToBBI.BB->end(), MI);
   2055     ToBBI.NonPredSize++;
   2056     unsigned ExtraPredCost = TII->getPredicationCost(I);
   2057     unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
   2058     if (NumCycles > 1)
   2059       ToBBI.ExtraCost += NumCycles-1;
   2060     ToBBI.ExtraCost2 += ExtraPredCost;
   2061 
   2062     if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
   2063       if (!TII->PredicateInstruction(*MI, Cond)) {
   2064 #ifndef NDEBUG
   2065         dbgs() << "Unable to predicate " << I << "!\n";
   2066 #endif
   2067         llvm_unreachable(nullptr);
   2068       }
   2069     }
   2070 
   2071     // If the predicated instruction now redefines a register as the result of
   2072     // if-conversion, add an implicit kill.
   2073     UpdatePredRedefs(*MI, Redefs);
   2074   }
   2075 
   2076   if (!IgnoreBr) {
   2077     std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
   2078                                            FromMBB.succ_end());
   2079     MachineBasicBlock *NBB = getNextBlock(FromMBB);
   2080     MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
   2081 
   2082     for (MachineBasicBlock *Succ : Succs) {
   2083       // Fallthrough edge can't be transferred.
   2084       if (Succ == FallThrough)
   2085         continue;
   2086       ToBBI.BB->addSuccessor(Succ);
   2087     }
   2088   }
   2089 
   2090   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
   2091   ToBBI.Predicate.append(Cond.begin(), Cond.end());
   2092 
   2093   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
   2094   ToBBI.IsAnalyzed = false;
   2095 
   2096   ++NumDupBBs;
   2097 }
   2098 
   2099 /// Move all instructions from FromBB to the end of ToBB.  This will leave
   2100 /// FromBB as an empty block, so remove all of its successor edges except for
   2101 /// the fall-through edge.  If AddEdges is true, i.e., when FromBBI's branch is
   2102 /// being moved, add those successor edges to ToBBI and remove the old edge
   2103 /// from ToBBI to FromBBI.
   2104 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
   2105   MachineBasicBlock &FromMBB = *FromBBI.BB;
   2106   assert(!FromMBB.hasAddressTaken() &&
   2107          "Removing a BB whose address is taken!");
   2108 
   2109   // In case FromMBB contains terminators (e.g. return instruction),
   2110   // first move the non-terminator instructions, then the terminators.
   2111   MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
   2112   MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
   2113   ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
   2114 
   2115   // If FromBB has non-predicated terminator we should copy it at the end.
   2116   if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
   2117     ToTI = ToBBI.BB->end();
   2118   ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
   2119 
   2120   // Force normalizing the successors' probabilities of ToBBI.BB to convert all
   2121   // unknown probabilities into known ones.
   2122   // FIXME: This usage is too tricky and in the future we would like to
   2123   // eliminate all unknown probabilities in MBB.
   2124   if (ToBBI.IsBrAnalyzable)
   2125     ToBBI.BB->normalizeSuccProbs();
   2126 
   2127   SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
   2128                                                 FromMBB.succ_end());
   2129   MachineBasicBlock *NBB = getNextBlock(FromMBB);
   2130   MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
   2131   // The edge probability from ToBBI.BB to FromMBB, which is only needed when
   2132   // AddEdges is true and FromMBB is a successor of ToBBI.BB.
   2133   auto To2FromProb = BranchProbability::getZero();
   2134   if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
   2135     // Remove the old edge but remember the edge probability so we can calculate
   2136     // the correct weights on the new edges being added further down.
   2137     To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
   2138     ToBBI.BB->removeSuccessor(&FromMBB);
   2139   }
   2140 
   2141   for (MachineBasicBlock *Succ : FromSuccs) {
   2142     // Fallthrough edge can't be transferred.
   2143     if (Succ == FallThrough)
   2144       continue;
   2145 
   2146     auto NewProb = BranchProbability::getZero();
   2147     if (AddEdges) {
   2148       // Calculate the edge probability for the edge from ToBBI.BB to Succ,
   2149       // which is a portion of the edge probability from FromMBB to Succ. The
   2150       // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
   2151       // FromBBI is a successor of ToBBI.BB. See comment below for excepion).
   2152       NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
   2153 
   2154       // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
   2155       // only happens when if-converting a diamond CFG and FromMBB is the
   2156       // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we
   2157       // could just use the probabilities on FromMBB's out-edges when adding
   2158       // new successors.
   2159       if (!To2FromProb.isZero())
   2160         NewProb *= To2FromProb;
   2161     }
   2162 
   2163     FromMBB.removeSuccessor(Succ);
   2164 
   2165     if (AddEdges) {
   2166       // If the edge from ToBBI.BB to Succ already exists, update the
   2167       // probability of this edge by adding NewProb to it. An example is shown
   2168       // below, in which A is ToBBI.BB and B is FromMBB. In this case we
   2169       // don't have to set C as A's successor as it already is. We only need to
   2170       // update the edge probability on A->C. Note that B will not be
   2171       // immediately removed from A's successors. It is possible that B->D is
   2172       // not removed either if D is a fallthrough of B. Later the edge A->D
   2173       // (generated here) and B->D will be combined into one edge. To maintain
   2174       // correct edge probability of this combined edge, we need to set the edge
   2175       // probability of A->B to zero, which is already done above. The edge
   2176       // probability on A->D is calculated by scaling the original probability
   2177       // on A->B by the probability of B->D.
   2178       //
   2179       // Before ifcvt:      After ifcvt (assume B->D is kept):
   2180       //
   2181       //       A                A
   2182       //      /|               /|\
   2183       //     / B              / B|
   2184       //    | /|             |  ||
   2185       //    |/ |             |  |/
   2186       //    C  D             C  D
   2187       //
   2188       if (ToBBI.BB->isSuccessor(Succ))
   2189         ToBBI.BB->setSuccProbability(
   2190             find(ToBBI.BB->successors(), Succ),
   2191             MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
   2192       else
   2193         ToBBI.BB->addSuccessor(Succ, NewProb);
   2194     }
   2195   }
   2196 
   2197   // Move the now empty FromMBB out of the way to the end of the function so
   2198   // it doesn't interfere with fallthrough checks done by canFallThroughTo().
   2199   MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
   2200   if (Last != &FromMBB)
   2201     FromMBB.moveAfter(Last);
   2202 
   2203   // Normalize the probabilities of ToBBI.BB's successors with all adjustment
   2204   // we've done above.
   2205   if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
   2206     ToBBI.BB->normalizeSuccProbs();
   2207 
   2208   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
   2209   FromBBI.Predicate.clear();
   2210 
   2211   ToBBI.NonPredSize += FromBBI.NonPredSize;
   2212   ToBBI.ExtraCost += FromBBI.ExtraCost;
   2213   ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
   2214   FromBBI.NonPredSize = 0;
   2215   FromBBI.ExtraCost = 0;
   2216   FromBBI.ExtraCost2 = 0;
   2217 
   2218   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
   2219   ToBBI.HasFallThrough = FromBBI.HasFallThrough;
   2220   ToBBI.IsAnalyzed = false;
   2221   FromBBI.IsAnalyzed = false;
   2222 }
   2223 
   2224 FunctionPass *
   2225 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
   2226   return new IfConverter(std::move(Ftor));
   2227 }
   2228