Home | History | Annotate | Download | only in CodeGen
      1 //===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the MachineSSAUpdater class. It's based on SSAUpdater
     11 // class in lib/Transforms/Utils.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/MachineSSAUpdater.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/CodeGen/MachineBasicBlock.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineInstr.h"
     21 #include "llvm/CodeGen/MachineInstrBuilder.h"
     22 #include "llvm/CodeGen/MachineOperand.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/TargetInstrInfo.h"
     25 #include "llvm/CodeGen/TargetOpcodes.h"
     26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     27 #include "llvm/IR/DebugLoc.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
     32 #include <utility>
     33 
     34 using namespace llvm;
     35 
     36 #define DEBUG_TYPE "machine-ssaupdater"
     37 
     38 using AvailableValsTy = DenseMap<MachineBasicBlock *, unsigned>;
     39 
     40 static AvailableValsTy &getAvailableVals(void *AV) {
     41   return *static_cast<AvailableValsTy*>(AV);
     42 }
     43 
     44 MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
     45                                      SmallVectorImpl<MachineInstr*> *NewPHI)
     46   : InsertedPHIs(NewPHI), TII(MF.getSubtarget().getInstrInfo()),
     47     MRI(&MF.getRegInfo()) {}
     48 
     49 MachineSSAUpdater::~MachineSSAUpdater() {
     50   delete static_cast<AvailableValsTy*>(AV);
     51 }
     52 
     53 /// Initialize - Reset this object to get ready for a new set of SSA
     54 /// updates.  ProtoValue is the value used to name PHI nodes.
     55 void MachineSSAUpdater::Initialize(unsigned V) {
     56   if (!AV)
     57     AV = new AvailableValsTy();
     58   else
     59     getAvailableVals(AV).clear();
     60 
     61   VR = V;
     62   VRC = MRI->getRegClass(VR);
     63 }
     64 
     65 /// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
     66 /// the specified block.
     67 bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
     68   return getAvailableVals(AV).count(BB);
     69 }
     70 
     71 /// AddAvailableValue - Indicate that a rewritten value is available in the
     72 /// specified block with the specified value.
     73 void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
     74   getAvailableVals(AV)[BB] = V;
     75 }
     76 
     77 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
     78 /// live at the end of the specified block.
     79 unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
     80   return GetValueAtEndOfBlockInternal(BB);
     81 }
     82 
     83 static
     84 unsigned LookForIdenticalPHI(MachineBasicBlock *BB,
     85         SmallVectorImpl<std::pair<MachineBasicBlock *, unsigned>> &PredValues) {
     86   if (BB->empty())
     87     return 0;
     88 
     89   MachineBasicBlock::iterator I = BB->begin();
     90   if (!I->isPHI())
     91     return 0;
     92 
     93   AvailableValsTy AVals;
     94   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
     95     AVals[PredValues[i].first] = PredValues[i].second;
     96   while (I != BB->end() && I->isPHI()) {
     97     bool Same = true;
     98     for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) {
     99       unsigned SrcReg = I->getOperand(i).getReg();
    100       MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB();
    101       if (AVals[SrcBB] != SrcReg) {
    102         Same = false;
    103         break;
    104       }
    105     }
    106     if (Same)
    107       return I->getOperand(0).getReg();
    108     ++I;
    109   }
    110   return 0;
    111 }
    112 
    113 /// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
    114 /// a value of the given register class at the start of the specified basic
    115 /// block. It returns the virtual register defined by the instruction.
    116 static
    117 MachineInstrBuilder InsertNewDef(unsigned Opcode,
    118                            MachineBasicBlock *BB, MachineBasicBlock::iterator I,
    119                            const TargetRegisterClass *RC,
    120                            MachineRegisterInfo *MRI,
    121                            const TargetInstrInfo *TII) {
    122   unsigned NewVR = MRI->createVirtualRegister(RC);
    123   return BuildMI(*BB, I, DebugLoc(), TII->get(Opcode), NewVR);
    124 }
    125 
    126 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
    127 /// is live in the middle of the specified block.
    128 ///
    129 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
    130 /// important case: if there is a definition of the rewritten value after the
    131 /// 'use' in BB.  Consider code like this:
    132 ///
    133 ///      X1 = ...
    134 ///   SomeBB:
    135 ///      use(X)
    136 ///      X2 = ...
    137 ///      br Cond, SomeBB, OutBB
    138 ///
    139 /// In this case, there are two values (X1 and X2) added to the AvailableVals
    140 /// set by the client of the rewriter, and those values are both live out of
    141 /// their respective blocks.  However, the use of X happens in the *middle* of
    142 /// a block.  Because of this, we need to insert a new PHI node in SomeBB to
    143 /// merge the appropriate values, and this value isn't live out of the block.
    144 unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
    145   // If there is no definition of the renamed variable in this block, just use
    146   // GetValueAtEndOfBlock to do our work.
    147   if (!HasValueForBlock(BB))
    148     return GetValueAtEndOfBlockInternal(BB);
    149 
    150   // If there are no predecessors, just return undef.
    151   if (BB->pred_empty()) {
    152     // Insert an implicit_def to represent an undef value.
    153     MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
    154                                         BB, BB->getFirstTerminator(),
    155                                         VRC, MRI, TII);
    156     return NewDef->getOperand(0).getReg();
    157   }
    158 
    159   // Otherwise, we have the hard case.  Get the live-in values for each
    160   // predecessor.
    161   SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
    162   unsigned SingularValue = 0;
    163 
    164   bool isFirstPred = true;
    165   for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
    166          E = BB->pred_end(); PI != E; ++PI) {
    167     MachineBasicBlock *PredBB = *PI;
    168     unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
    169     PredValues.push_back(std::make_pair(PredBB, PredVal));
    170 
    171     // Compute SingularValue.
    172     if (isFirstPred) {
    173       SingularValue = PredVal;
    174       isFirstPred = false;
    175     } else if (PredVal != SingularValue)
    176       SingularValue = 0;
    177   }
    178 
    179   // Otherwise, if all the merged values are the same, just use it.
    180   if (SingularValue != 0)
    181     return SingularValue;
    182 
    183   // If an identical PHI is already in BB, just reuse it.
    184   unsigned DupPHI = LookForIdenticalPHI(BB, PredValues);
    185   if (DupPHI)
    186     return DupPHI;
    187 
    188   // Otherwise, we do need a PHI: insert one now.
    189   MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->begin();
    190   MachineInstrBuilder InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB,
    191                                                  Loc, VRC, MRI, TII);
    192 
    193   // Fill in all the predecessors of the PHI.
    194   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
    195     InsertedPHI.addReg(PredValues[i].second).addMBB(PredValues[i].first);
    196 
    197   // See if the PHI node can be merged to a single value.  This can happen in
    198   // loop cases when we get a PHI of itself and one other value.
    199   if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
    200     InsertedPHI->eraseFromParent();
    201     return ConstVal;
    202   }
    203 
    204   // If the client wants to know about all new instructions, tell it.
    205   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
    206 
    207   LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
    208   return InsertedPHI->getOperand(0).getReg();
    209 }
    210 
    211 static
    212 MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
    213                                          MachineOperand *U) {
    214   for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
    215     if (&MI->getOperand(i) == U)
    216       return MI->getOperand(i+1).getMBB();
    217   }
    218 
    219   llvm_unreachable("MachineOperand::getParent() failure?");
    220 }
    221 
    222 /// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
    223 /// which use their value in the corresponding predecessor.
    224 void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
    225   MachineInstr *UseMI = U.getParent();
    226   unsigned NewVR = 0;
    227   if (UseMI->isPHI()) {
    228     MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
    229     NewVR = GetValueAtEndOfBlockInternal(SourceBB);
    230   } else {
    231     NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
    232   }
    233 
    234   U.setReg(NewVR);
    235 }
    236 
    237 /// SSAUpdaterTraits<MachineSSAUpdater> - Traits for the SSAUpdaterImpl
    238 /// template, specialized for MachineSSAUpdater.
    239 namespace llvm {
    240 
    241 template<>
    242 class SSAUpdaterTraits<MachineSSAUpdater> {
    243 public:
    244   using BlkT = MachineBasicBlock;
    245   using ValT = unsigned;
    246   using PhiT = MachineInstr;
    247   using BlkSucc_iterator = MachineBasicBlock::succ_iterator;
    248 
    249   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
    250   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
    251 
    252   /// Iterator for PHI operands.
    253   class PHI_iterator {
    254   private:
    255     MachineInstr *PHI;
    256     unsigned idx;
    257 
    258   public:
    259     explicit PHI_iterator(MachineInstr *P) // begin iterator
    260       : PHI(P), idx(1) {}
    261     PHI_iterator(MachineInstr *P, bool) // end iterator
    262       : PHI(P), idx(PHI->getNumOperands()) {}
    263 
    264     PHI_iterator &operator++() { idx += 2; return *this; }
    265     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
    266     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
    267 
    268     unsigned getIncomingValue() { return PHI->getOperand(idx).getReg(); }
    269 
    270     MachineBasicBlock *getIncomingBlock() {
    271       return PHI->getOperand(idx+1).getMBB();
    272     }
    273   };
    274 
    275   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
    276 
    277   static inline PHI_iterator PHI_end(PhiT *PHI) {
    278     return PHI_iterator(PHI, true);
    279   }
    280 
    281   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
    282   /// vector.
    283   static void FindPredecessorBlocks(MachineBasicBlock *BB,
    284                                     SmallVectorImpl<MachineBasicBlock*> *Preds){
    285     for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
    286            E = BB->pred_end(); PI != E; ++PI)
    287       Preds->push_back(*PI);
    288   }
    289 
    290   /// GetUndefVal - Create an IMPLICIT_DEF instruction with a new register.
    291   /// Add it into the specified block and return the register.
    292   static unsigned GetUndefVal(MachineBasicBlock *BB,
    293                               MachineSSAUpdater *Updater) {
    294     // Insert an implicit_def to represent an undef value.
    295     MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
    296                                         BB, BB->getFirstTerminator(),
    297                                         Updater->VRC, Updater->MRI,
    298                                         Updater->TII);
    299     return NewDef->getOperand(0).getReg();
    300   }
    301 
    302   /// CreateEmptyPHI - Create a PHI instruction that defines a new register.
    303   /// Add it into the specified block and return the register.
    304   static unsigned CreateEmptyPHI(MachineBasicBlock *BB, unsigned NumPreds,
    305                                  MachineSSAUpdater *Updater) {
    306     MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->begin();
    307     MachineInstr *PHI = InsertNewDef(TargetOpcode::PHI, BB, Loc,
    308                                      Updater->VRC, Updater->MRI,
    309                                      Updater->TII);
    310     return PHI->getOperand(0).getReg();
    311   }
    312 
    313   /// AddPHIOperand - Add the specified value as an operand of the PHI for
    314   /// the specified predecessor block.
    315   static void AddPHIOperand(MachineInstr *PHI, unsigned Val,
    316                             MachineBasicBlock *Pred) {
    317     MachineInstrBuilder(*Pred->getParent(), PHI).addReg(Val).addMBB(Pred);
    318   }
    319 
    320   /// InstrIsPHI - Check if an instruction is a PHI.
    321   static MachineInstr *InstrIsPHI(MachineInstr *I) {
    322     if (I && I->isPHI())
    323       return I;
    324     return nullptr;
    325   }
    326 
    327   /// ValueIsPHI - Check if the instruction that defines the specified register
    328   /// is a PHI instruction.
    329   static MachineInstr *ValueIsPHI(unsigned Val, MachineSSAUpdater *Updater) {
    330     return InstrIsPHI(Updater->MRI->getVRegDef(Val));
    331   }
    332 
    333   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
    334   /// operands, i.e., it was just added.
    335   static MachineInstr *ValueIsNewPHI(unsigned Val, MachineSSAUpdater *Updater) {
    336     MachineInstr *PHI = ValueIsPHI(Val, Updater);
    337     if (PHI && PHI->getNumOperands() <= 1)
    338       return PHI;
    339     return nullptr;
    340   }
    341 
    342   /// GetPHIValue - For the specified PHI instruction, return the register
    343   /// that it defines.
    344   static unsigned GetPHIValue(MachineInstr *PHI) {
    345     return PHI->getOperand(0).getReg();
    346   }
    347 };
    348 
    349 } // end namespace llvm
    350 
    351 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
    352 /// for the specified BB and if so, return it.  If not, construct SSA form by
    353 /// first calculating the required placement of PHIs and then inserting new
    354 /// PHIs where needed.
    355 unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
    356   AvailableValsTy &AvailableVals = getAvailableVals(AV);
    357   if (unsigned V = AvailableVals[BB])
    358     return V;
    359 
    360   SSAUpdaterImpl<MachineSSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
    361   return Impl.GetValue(BB);
    362 }
    363