Home | History | Annotate | Download | only in ExecutionEngine
      1 //===- SectionMemoryManager.cpp - Memory manager for MCJIT/RtDyld *- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the section-based memory manager used by the MCJIT
     11 // execution engine and RuntimeDyld
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
     16 #include "llvm/Config/config.h"
     17 #include "llvm/Support/MathExtras.h"
     18 #include "llvm/Support/Process.h"
     19 
     20 namespace llvm {
     21 
     22 uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size,
     23                                                    unsigned Alignment,
     24                                                    unsigned SectionID,
     25                                                    StringRef SectionName,
     26                                                    bool IsReadOnly) {
     27   if (IsReadOnly)
     28     return allocateSection(SectionMemoryManager::AllocationPurpose::ROData,
     29                            Size, Alignment);
     30   return allocateSection(SectionMemoryManager::AllocationPurpose::RWData, Size,
     31                          Alignment);
     32 }
     33 
     34 uint8_t *SectionMemoryManager::allocateCodeSection(uintptr_t Size,
     35                                                    unsigned Alignment,
     36                                                    unsigned SectionID,
     37                                                    StringRef SectionName) {
     38   return allocateSection(SectionMemoryManager::AllocationPurpose::Code, Size,
     39                          Alignment);
     40 }
     41 
     42 uint8_t *SectionMemoryManager::allocateSection(
     43     SectionMemoryManager::AllocationPurpose Purpose, uintptr_t Size,
     44     unsigned Alignment) {
     45   if (!Alignment)
     46     Alignment = 16;
     47 
     48   assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two.");
     49 
     50   uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1) / Alignment + 1);
     51   uintptr_t Addr = 0;
     52 
     53   MemoryGroup &MemGroup = [&]() -> MemoryGroup & {
     54     switch (Purpose) {
     55     case AllocationPurpose::Code:
     56       return CodeMem;
     57     case AllocationPurpose::ROData:
     58       return RODataMem;
     59     case AllocationPurpose::RWData:
     60       return RWDataMem;
     61     }
     62     llvm_unreachable("Unknown SectionMemoryManager::AllocationPurpose");
     63   }();
     64 
     65   // Look in the list of free memory regions and use a block there if one
     66   // is available.
     67   for (FreeMemBlock &FreeMB : MemGroup.FreeMem) {
     68     if (FreeMB.Free.size() >= RequiredSize) {
     69       Addr = (uintptr_t)FreeMB.Free.base();
     70       uintptr_t EndOfBlock = Addr + FreeMB.Free.size();
     71       // Align the address.
     72       Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
     73 
     74       if (FreeMB.PendingPrefixIndex == (unsigned)-1) {
     75         // The part of the block we're giving out to the user is now pending
     76         MemGroup.PendingMem.push_back(sys::MemoryBlock((void *)Addr, Size));
     77 
     78         // Remember this pending block, such that future allocations can just
     79         // modify it rather than creating a new one
     80         FreeMB.PendingPrefixIndex = MemGroup.PendingMem.size() - 1;
     81       } else {
     82         sys::MemoryBlock &PendingMB =
     83             MemGroup.PendingMem[FreeMB.PendingPrefixIndex];
     84         PendingMB = sys::MemoryBlock(PendingMB.base(),
     85                                      Addr + Size - (uintptr_t)PendingMB.base());
     86       }
     87 
     88       // Remember how much free space is now left in this block
     89       FreeMB.Free =
     90           sys::MemoryBlock((void *)(Addr + Size), EndOfBlock - Addr - Size);
     91       return (uint8_t *)Addr;
     92     }
     93   }
     94 
     95   // No pre-allocated free block was large enough. Allocate a new memory region.
     96   // Note that all sections get allocated as read-write.  The permissions will
     97   // be updated later based on memory group.
     98   //
     99   // FIXME: It would be useful to define a default allocation size (or add
    100   // it as a constructor parameter) to minimize the number of allocations.
    101   //
    102   // FIXME: Initialize the Near member for each memory group to avoid
    103   // interleaving.
    104   std::error_code ec;
    105   sys::MemoryBlock MB = MMapper.allocateMappedMemory(
    106       Purpose, RequiredSize, &MemGroup.Near,
    107       sys::Memory::MF_READ | sys::Memory::MF_WRITE, ec);
    108   if (ec) {
    109     // FIXME: Add error propagation to the interface.
    110     return nullptr;
    111   }
    112 
    113   // Save this address as the basis for our next request
    114   MemGroup.Near = MB;
    115 
    116   // Remember that we allocated this memory
    117   MemGroup.AllocatedMem.push_back(MB);
    118   Addr = (uintptr_t)MB.base();
    119   uintptr_t EndOfBlock = Addr + MB.size();
    120 
    121   // Align the address.
    122   Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
    123 
    124   // The part of the block we're giving out to the user is now pending
    125   MemGroup.PendingMem.push_back(sys::MemoryBlock((void *)Addr, Size));
    126 
    127   // The allocateMappedMemory may allocate much more memory than we need. In
    128   // this case, we store the unused memory as a free memory block.
    129   unsigned FreeSize = EndOfBlock - Addr - Size;
    130   if (FreeSize > 16) {
    131     FreeMemBlock FreeMB;
    132     FreeMB.Free = sys::MemoryBlock((void *)(Addr + Size), FreeSize);
    133     FreeMB.PendingPrefixIndex = (unsigned)-1;
    134     MemGroup.FreeMem.push_back(FreeMB);
    135   }
    136 
    137   // Return aligned address
    138   return (uint8_t *)Addr;
    139 }
    140 
    141 bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg) {
    142   // FIXME: Should in-progress permissions be reverted if an error occurs?
    143   std::error_code ec;
    144 
    145   // Make code memory executable.
    146   ec = applyMemoryGroupPermissions(CodeMem,
    147                                    sys::Memory::MF_READ | sys::Memory::MF_EXEC);
    148   if (ec) {
    149     if (ErrMsg) {
    150       *ErrMsg = ec.message();
    151     }
    152     return true;
    153   }
    154 
    155   // Make read-only data memory read-only.
    156   ec = applyMemoryGroupPermissions(RODataMem,
    157                                    sys::Memory::MF_READ | sys::Memory::MF_EXEC);
    158   if (ec) {
    159     if (ErrMsg) {
    160       *ErrMsg = ec.message();
    161     }
    162     return true;
    163   }
    164 
    165   // Read-write data memory already has the correct permissions
    166 
    167   // Some platforms with separate data cache and instruction cache require
    168   // explicit cache flush, otherwise JIT code manipulations (like resolved
    169   // relocations) will get to the data cache but not to the instruction cache.
    170   invalidateInstructionCache();
    171 
    172   return false;
    173 }
    174 
    175 static sys::MemoryBlock trimBlockToPageSize(sys::MemoryBlock M) {
    176   static const size_t PageSize = sys::Process::getPageSize();
    177 
    178   size_t StartOverlap =
    179       (PageSize - ((uintptr_t)M.base() % PageSize)) % PageSize;
    180 
    181   size_t TrimmedSize = M.size();
    182   TrimmedSize -= StartOverlap;
    183   TrimmedSize -= TrimmedSize % PageSize;
    184 
    185   sys::MemoryBlock Trimmed((void *)((uintptr_t)M.base() + StartOverlap),
    186                            TrimmedSize);
    187 
    188   assert(((uintptr_t)Trimmed.base() % PageSize) == 0);
    189   assert((Trimmed.size() % PageSize) == 0);
    190   assert(M.base() <= Trimmed.base() && Trimmed.size() <= M.size());
    191 
    192   return Trimmed;
    193 }
    194 
    195 std::error_code
    196 SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup,
    197                                                   unsigned Permissions) {
    198   for (sys::MemoryBlock &MB : MemGroup.PendingMem)
    199     if (std::error_code EC = MMapper.protectMappedMemory(MB, Permissions))
    200       return EC;
    201 
    202   MemGroup.PendingMem.clear();
    203 
    204   // Now go through free blocks and trim any of them that don't span the entire
    205   // page because one of the pending blocks may have overlapped it.
    206   for (FreeMemBlock &FreeMB : MemGroup.FreeMem) {
    207     FreeMB.Free = trimBlockToPageSize(FreeMB.Free);
    208     // We cleared the PendingMem list, so all these pointers are now invalid
    209     FreeMB.PendingPrefixIndex = (unsigned)-1;
    210   }
    211 
    212   // Remove all blocks which are now empty
    213   MemGroup.FreeMem.erase(
    214       remove_if(MemGroup.FreeMem,
    215                 [](FreeMemBlock &FreeMB) { return FreeMB.Free.size() == 0; }),
    216       MemGroup.FreeMem.end());
    217 
    218   return std::error_code();
    219 }
    220 
    221 void SectionMemoryManager::invalidateInstructionCache() {
    222   for (sys::MemoryBlock &Block : CodeMem.PendingMem)
    223     sys::Memory::InvalidateInstructionCache(Block.base(), Block.size());
    224 }
    225 
    226 SectionMemoryManager::~SectionMemoryManager() {
    227   for (MemoryGroup *Group : {&CodeMem, &RWDataMem, &RODataMem}) {
    228     for (sys::MemoryBlock &Block : Group->AllocatedMem)
    229       MMapper.releaseMappedMemory(Block);
    230   }
    231 }
    232 
    233 SectionMemoryManager::MemoryMapper::~MemoryMapper() {}
    234 
    235 void SectionMemoryManager::anchor() {}
    236 
    237 namespace {
    238 // Trivial implementation of SectionMemoryManager::MemoryMapper that just calls
    239 // into sys::Memory.
    240 class DefaultMMapper final : public SectionMemoryManager::MemoryMapper {
    241 public:
    242   sys::MemoryBlock
    243   allocateMappedMemory(SectionMemoryManager::AllocationPurpose Purpose,
    244                        size_t NumBytes, const sys::MemoryBlock *const NearBlock,
    245                        unsigned Flags, std::error_code &EC) override {
    246     return sys::Memory::allocateMappedMemory(NumBytes, NearBlock, Flags, EC);
    247   }
    248 
    249   std::error_code protectMappedMemory(const sys::MemoryBlock &Block,
    250                                       unsigned Flags) override {
    251     return sys::Memory::protectMappedMemory(Block, Flags);
    252   }
    253 
    254   std::error_code releaseMappedMemory(sys::MemoryBlock &M) override {
    255     return sys::Memory::releaseMappedMemory(M);
    256   }
    257 };
    258 
    259 DefaultMMapper DefaultMMapperInstance;
    260 } // namespace
    261 
    262 SectionMemoryManager::SectionMemoryManager(MemoryMapper *MM)
    263     : MMapper(MM ? *MM : DefaultMMapperInstance) {}
    264 
    265 } // namespace llvm
    266