Home | History | Annotate | Download | only in AArch64
      1 //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // For best-case performance on Cortex-A57, we should try to use a balanced
     10 // mix of odd and even D-registers when performing a critical sequence of
     11 // independent, non-quadword FP/ASIMD floating-point multiply or
     12 // multiply-accumulate operations.
     13 //
     14 // This pass attempts to detect situations where the register allocation may
     15 // adversely affect this load balancing and to change the registers used so as
     16 // to better utilize the CPU.
     17 //
     18 // Ideally we'd just take each multiply or multiply-accumulate in turn and
     19 // allocate it alternating even or odd registers. However, multiply-accumulates
     20 // are most efficiently performed in the same functional unit as their
     21 // accumulation operand. Therefore this pass tries to find maximal sequences
     22 // ("Chains") of multiply-accumulates linked via their accumulation operand,
     23 // and assign them all the same "color" (oddness/evenness).
     24 //
     25 // This optimization affects S-register and D-register floating point
     26 // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
     27 // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
     28 // not affected.
     29 //===----------------------------------------------------------------------===//
     30 
     31 #include "AArch64.h"
     32 #include "AArch64InstrInfo.h"
     33 #include "AArch64Subtarget.h"
     34 #include "llvm/ADT/BitVector.h"
     35 #include "llvm/ADT/EquivalenceClasses.h"
     36 #include "llvm/CodeGen/MachineFunction.h"
     37 #include "llvm/CodeGen/MachineFunctionPass.h"
     38 #include "llvm/CodeGen/MachineInstr.h"
     39 #include "llvm/CodeGen/MachineInstrBuilder.h"
     40 #include "llvm/CodeGen/MachineRegisterInfo.h"
     41 #include "llvm/CodeGen/RegisterClassInfo.h"
     42 #include "llvm/CodeGen/RegisterScavenging.h"
     43 #include "llvm/Support/CommandLine.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 using namespace llvm;
     47 
     48 #define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
     49 
     50 // Enforce the algorithm to use the scavenged register even when the original
     51 // destination register is the correct color. Used for testing.
     52 static cl::opt<bool>
     53 TransformAll("aarch64-a57-fp-load-balancing-force-all",
     54              cl::desc("Always modify dest registers regardless of color"),
     55              cl::init(false), cl::Hidden);
     56 
     57 // Never use the balance information obtained from chains - return a specific
     58 // color always. Used for testing.
     59 static cl::opt<unsigned>
     60 OverrideBalance("aarch64-a57-fp-load-balancing-override",
     61               cl::desc("Ignore balance information, always return "
     62                        "(1: Even, 2: Odd)."),
     63               cl::init(0), cl::Hidden);
     64 
     65 //===----------------------------------------------------------------------===//
     66 // Helper functions
     67 
     68 // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
     69 static bool isMul(MachineInstr *MI) {
     70   switch (MI->getOpcode()) {
     71   case AArch64::FMULSrr:
     72   case AArch64::FNMULSrr:
     73   case AArch64::FMULDrr:
     74   case AArch64::FNMULDrr:
     75     return true;
     76   default:
     77     return false;
     78   }
     79 }
     80 
     81 // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
     82 static bool isMla(MachineInstr *MI) {
     83   switch (MI->getOpcode()) {
     84   case AArch64::FMSUBSrrr:
     85   case AArch64::FMADDSrrr:
     86   case AArch64::FNMSUBSrrr:
     87   case AArch64::FNMADDSrrr:
     88   case AArch64::FMSUBDrrr:
     89   case AArch64::FMADDDrrr:
     90   case AArch64::FNMSUBDrrr:
     91   case AArch64::FNMADDDrrr:
     92     return true;
     93   default:
     94     return false;
     95   }
     96 }
     97 
     98 //===----------------------------------------------------------------------===//
     99 
    100 namespace {
    101 /// A "color", which is either even or odd. Yes, these aren't really colors
    102 /// but the algorithm is conceptually doing two-color graph coloring.
    103 enum class Color { Even, Odd };
    104 #ifndef NDEBUG
    105 static const char *ColorNames[2] = { "Even", "Odd" };
    106 #endif
    107 
    108 class Chain;
    109 
    110 class AArch64A57FPLoadBalancing : public MachineFunctionPass {
    111   MachineRegisterInfo *MRI;
    112   const TargetRegisterInfo *TRI;
    113   RegisterClassInfo RCI;
    114 
    115 public:
    116   static char ID;
    117   explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
    118     initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
    119   }
    120 
    121   bool runOnMachineFunction(MachineFunction &F) override;
    122 
    123   MachineFunctionProperties getRequiredProperties() const override {
    124     return MachineFunctionProperties().set(
    125         MachineFunctionProperties::Property::NoVRegs);
    126   }
    127 
    128   StringRef getPassName() const override {
    129     return "A57 FP Anti-dependency breaker";
    130   }
    131 
    132   void getAnalysisUsage(AnalysisUsage &AU) const override {
    133     AU.setPreservesCFG();
    134     MachineFunctionPass::getAnalysisUsage(AU);
    135   }
    136 
    137 private:
    138   bool runOnBasicBlock(MachineBasicBlock &MBB);
    139   bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
    140                      int &Balance);
    141   bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
    142   int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
    143   void scanInstruction(MachineInstr *MI, unsigned Idx,
    144                        std::map<unsigned, Chain*> &Active,
    145                        std::vector<std::unique_ptr<Chain>> &AllChains);
    146   void maybeKillChain(MachineOperand &MO, unsigned Idx,
    147                       std::map<unsigned, Chain*> &RegChains);
    148   Color getColor(unsigned Register);
    149   Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
    150 };
    151 }
    152 
    153 char AArch64A57FPLoadBalancing::ID = 0;
    154 
    155 INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
    156                       "AArch64 A57 FP Load-Balancing", false, false)
    157 INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
    158                     "AArch64 A57 FP Load-Balancing", false, false)
    159 
    160 namespace {
    161 /// A Chain is a sequence of instructions that are linked together by
    162 /// an accumulation operand. For example:
    163 ///
    164 ///   fmul def d0, ?
    165 ///   fmla def d1, ?, ?, killed d0
    166 ///   fmla def d2, ?, ?, killed d1
    167 ///
    168 /// There may be other instructions interleaved in the sequence that
    169 /// do not belong to the chain. These other instructions must not use
    170 /// the "chain" register at any point.
    171 ///
    172 /// We currently only support chains where the "chain" operand is killed
    173 /// at each link in the chain for simplicity.
    174 /// A chain has three important instructions - Start, Last and Kill.
    175 ///   * The start instruction is the first instruction in the chain.
    176 ///   * Last is the final instruction in the chain.
    177 ///   * Kill may or may not be defined. If defined, Kill is the instruction
    178 ///     where the outgoing value of the Last instruction is killed.
    179 ///     This information is important as if we know the outgoing value is
    180 ///     killed with no intervening uses, we can safely change its register.
    181 ///
    182 /// Without a kill instruction, we must assume the outgoing value escapes
    183 /// beyond our model and either must not change its register or must
    184 /// create a fixup FMOV to keep the old register value consistent.
    185 ///
    186 class Chain {
    187 public:
    188   /// The important (marker) instructions.
    189   MachineInstr *StartInst, *LastInst, *KillInst;
    190   /// The index, from the start of the basic block, that each marker
    191   /// appears. These are stored so we can do quick interval tests.
    192   unsigned StartInstIdx, LastInstIdx, KillInstIdx;
    193   /// All instructions in the chain.
    194   std::set<MachineInstr*> Insts;
    195   /// True if KillInst cannot be modified. If this is true,
    196   /// we cannot change LastInst's outgoing register.
    197   /// This will be true for tied values and regmasks.
    198   bool KillIsImmutable;
    199   /// The "color" of LastInst. This will be the preferred chain color,
    200   /// as changing intermediate nodes is easy but changing the last
    201   /// instruction can be more tricky.
    202   Color LastColor;
    203 
    204   Chain(MachineInstr *MI, unsigned Idx, Color C)
    205       : StartInst(MI), LastInst(MI), KillInst(nullptr),
    206         StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
    207         LastColor(C) {
    208     Insts.insert(MI);
    209   }
    210 
    211   /// Add a new instruction into the chain. The instruction's dest operand
    212   /// has the given color.
    213   void add(MachineInstr *MI, unsigned Idx, Color C) {
    214     LastInst = MI;
    215     LastInstIdx = Idx;
    216     LastColor = C;
    217     assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
    218            "Chain: broken invariant. A Chain can only be killed after its last "
    219            "def");
    220 
    221     Insts.insert(MI);
    222   }
    223 
    224   /// Return true if MI is a member of the chain.
    225   bool contains(MachineInstr &MI) { return Insts.count(&MI) > 0; }
    226 
    227   /// Return the number of instructions in the chain.
    228   unsigned size() const {
    229     return Insts.size();
    230   }
    231 
    232   /// Inform the chain that its last active register (the dest register of
    233   /// LastInst) is killed by MI with no intervening uses or defs.
    234   void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
    235     KillInst = MI;
    236     KillInstIdx = Idx;
    237     KillIsImmutable = Immutable;
    238     assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
    239            "Chain: broken invariant. A Chain can only be killed after its last "
    240            "def");
    241   }
    242 
    243   /// Return the first instruction in the chain.
    244   MachineInstr *getStart() const { return StartInst; }
    245   /// Return the last instruction in the chain.
    246   MachineInstr *getLast() const { return LastInst; }
    247   /// Return the "kill" instruction (as set with setKill()) or NULL.
    248   MachineInstr *getKill() const { return KillInst; }
    249   /// Return an instruction that can be used as an iterator for the end
    250   /// of the chain. This is the maximum of KillInst (if set) and LastInst.
    251   MachineBasicBlock::iterator end() const {
    252     return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
    253   }
    254   MachineBasicBlock::iterator begin() const { return getStart(); }
    255 
    256   /// Can the Kill instruction (assuming one exists) be modified?
    257   bool isKillImmutable() const { return KillIsImmutable; }
    258 
    259   /// Return the preferred color of this chain.
    260   Color getPreferredColor() {
    261     if (OverrideBalance != 0)
    262       return OverrideBalance == 1 ? Color::Even : Color::Odd;
    263     return LastColor;
    264   }
    265 
    266   /// Return true if this chain (StartInst..KillInst) overlaps with Other.
    267   bool rangeOverlapsWith(const Chain &Other) const {
    268     unsigned End = KillInst ? KillInstIdx : LastInstIdx;
    269     unsigned OtherEnd = Other.KillInst ?
    270       Other.KillInstIdx : Other.LastInstIdx;
    271 
    272     return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
    273   }
    274 
    275   /// Return true if this chain starts before Other.
    276   bool startsBefore(const Chain *Other) const {
    277     return StartInstIdx < Other->StartInstIdx;
    278   }
    279 
    280   /// Return true if the group will require a fixup MOV at the end.
    281   bool requiresFixup() const {
    282     return (getKill() && isKillImmutable()) || !getKill();
    283   }
    284 
    285   /// Return a simple string representation of the chain.
    286   std::string str() const {
    287     std::string S;
    288     raw_string_ostream OS(S);
    289 
    290     OS << "{";
    291     StartInst->print(OS, /* SkipOpers= */true);
    292     OS << " -> ";
    293     LastInst->print(OS, /* SkipOpers= */true);
    294     if (KillInst) {
    295       OS << " (kill @ ";
    296       KillInst->print(OS, /* SkipOpers= */true);
    297       OS << ")";
    298     }
    299     OS << "}";
    300 
    301     return OS.str();
    302   }
    303 
    304 };
    305 
    306 } // end anonymous namespace
    307 
    308 //===----------------------------------------------------------------------===//
    309 
    310 bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
    311   if (skipFunction(F.getFunction()))
    312     return false;
    313 
    314   if (!F.getSubtarget<AArch64Subtarget>().balanceFPOps())
    315     return false;
    316 
    317   bool Changed = false;
    318   LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
    319 
    320   MRI = &F.getRegInfo();
    321   TRI = F.getRegInfo().getTargetRegisterInfo();
    322   RCI.runOnMachineFunction(F);
    323 
    324   for (auto &MBB : F) {
    325     Changed |= runOnBasicBlock(MBB);
    326   }
    327 
    328   return Changed;
    329 }
    330 
    331 bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
    332   bool Changed = false;
    333   LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB
    334                     << " - scanning instructions...\n");
    335 
    336   // First, scan the basic block producing a set of chains.
    337 
    338   // The currently "active" chains - chains that can be added to and haven't
    339   // been killed yet. This is keyed by register - all chains can only have one
    340   // "link" register between each inst in the chain.
    341   std::map<unsigned, Chain*> ActiveChains;
    342   std::vector<std::unique_ptr<Chain>> AllChains;
    343   unsigned Idx = 0;
    344   for (auto &MI : MBB)
    345     scanInstruction(&MI, Idx++, ActiveChains, AllChains);
    346 
    347   LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains.size()
    348                     << " chains created.\n");
    349 
    350   // Group the chains into disjoint sets based on their liveness range. This is
    351   // a poor-man's version of graph coloring. Ideally we'd create an interference
    352   // graph and perform full-on graph coloring on that, but;
    353   //   (a) That's rather heavyweight for only two colors.
    354   //   (b) We expect multiple disjoint interference regions - in practice the live
    355   //       range of chains is quite small and they are clustered between loads
    356   //       and stores.
    357   EquivalenceClasses<Chain*> EC;
    358   for (auto &I : AllChains)
    359     EC.insert(I.get());
    360 
    361   for (auto &I : AllChains)
    362     for (auto &J : AllChains)
    363       if (I != J && I->rangeOverlapsWith(*J))
    364         EC.unionSets(I.get(), J.get());
    365   LLVM_DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
    366 
    367   // Now we assume that every member of an equivalence class interferes
    368   // with every other member of that class, and with no members of other classes.
    369 
    370   // Convert the EquivalenceClasses to a simpler set of sets.
    371   std::vector<std::vector<Chain*> > V;
    372   for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
    373     std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
    374     if (Cs.empty()) continue;
    375     V.push_back(std::move(Cs));
    376   }
    377 
    378   // Now we have a set of sets, order them by start address so
    379   // we can iterate over them sequentially.
    380   llvm::sort(V.begin(), V.end(),
    381              [](const std::vector<Chain*> &A,
    382                 const std::vector<Chain*> &B) {
    383       return A.front()->startsBefore(B.front());
    384     });
    385 
    386   // As we only have two colors, we can track the global (BB-level) balance of
    387   // odds versus evens. We aim to keep this near zero to keep both execution
    388   // units fed.
    389   // Positive means we're even-heavy, negative we're odd-heavy.
    390   //
    391   // FIXME: If chains have interdependencies, for example:
    392   //   mul r0, r1, r2
    393   //   mul r3, r0, r1
    394   // We do not model this and may color each one differently, assuming we'll
    395   // get ILP when we obviously can't. This hasn't been seen to be a problem
    396   // in practice so far, so we simplify the algorithm by ignoring it.
    397   int Parity = 0;
    398 
    399   for (auto &I : V)
    400     Changed |= colorChainSet(std::move(I), MBB, Parity);
    401 
    402   return Changed;
    403 }
    404 
    405 Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
    406                                                   std::vector<Chain*> &L) {
    407   if (L.empty())
    408     return nullptr;
    409 
    410   // We try and get the best candidate from L to color next, given that our
    411   // preferred color is "PreferredColor". L is ordered from larger to smaller
    412   // chains. It is beneficial to color the large chains before the small chains,
    413   // but if we can't find a chain of the maximum length with the preferred color,
    414   // we fuzz the size and look for slightly smaller chains before giving up and
    415   // returning a chain that must be recolored.
    416 
    417   // FIXME: Does this need to be configurable?
    418   const unsigned SizeFuzz = 1;
    419   unsigned MinSize = L.front()->size() - SizeFuzz;
    420   for (auto I = L.begin(), E = L.end(); I != E; ++I) {
    421     if ((*I)->size() <= MinSize) {
    422       // We've gone past the size limit. Return the previous item.
    423       Chain *Ch = *--I;
    424       L.erase(I);
    425       return Ch;
    426     }
    427 
    428     if ((*I)->getPreferredColor() == PreferredColor) {
    429       Chain *Ch = *I;
    430       L.erase(I);
    431       return Ch;
    432     }
    433   }
    434 
    435   // Bailout case - just return the first item.
    436   Chain *Ch = L.front();
    437   L.erase(L.begin());
    438   return Ch;
    439 }
    440 
    441 bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
    442                                               MachineBasicBlock &MBB,
    443                                               int &Parity) {
    444   bool Changed = false;
    445   LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
    446 
    447   // Sort by descending size order so that we allocate the most important
    448   // sets first.
    449   // Tie-break equivalent sizes by sorting chains requiring fixups before
    450   // those without fixups. The logic here is that we should look at the
    451   // chains that we cannot change before we look at those we can,
    452   // so the parity counter is updated and we know what color we should
    453   // change them to!
    454   // Final tie-break with instruction order so pass output is stable (i.e. not
    455   // dependent on malloc'd pointer values).
    456   llvm::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) {
    457       if (G1->size() != G2->size())
    458         return G1->size() > G2->size();
    459       if (G1->requiresFixup() != G2->requiresFixup())
    460         return G1->requiresFixup() > G2->requiresFixup();
    461       // Make sure startsBefore() produces a stable final order.
    462       assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
    463              "Starts before not total order!");
    464       return G1->startsBefore(G2);
    465     });
    466 
    467   Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
    468   while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
    469     // Start off by assuming we'll color to our own preferred color.
    470     Color C = PreferredColor;
    471     if (Parity == 0)
    472       // But if we really don't care, use the chain's preferred color.
    473       C = G->getPreferredColor();
    474 
    475     LLVM_DEBUG(dbgs() << " - Parity=" << Parity
    476                       << ", Color=" << ColorNames[(int)C] << "\n");
    477 
    478     // If we'll need a fixup FMOV, don't bother. Testing has shown that this
    479     // happens infrequently and when it does it has at least a 50% chance of
    480     // slowing code down instead of speeding it up.
    481     if (G->requiresFixup() && C != G->getPreferredColor()) {
    482       C = G->getPreferredColor();
    483       LLVM_DEBUG(dbgs() << " - " << G->str()
    484                         << " - not worthwhile changing; "
    485                            "color remains "
    486                         << ColorNames[(int)C] << "\n");
    487     }
    488 
    489     Changed |= colorChain(G, C, MBB);
    490 
    491     Parity += (C == Color::Even) ? G->size() : -G->size();
    492     PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
    493   }
    494 
    495   return Changed;
    496 }
    497 
    498 int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
    499                                                 MachineBasicBlock &MBB) {
    500   // Can we find an appropriate register that is available throughout the life
    501   // of the chain? Simulate liveness backwards until the end of the chain.
    502   LiveRegUnits Units(*TRI);
    503   Units.addLiveOuts(MBB);
    504   MachineBasicBlock::iterator I = MBB.end();
    505   MachineBasicBlock::iterator ChainEnd = G->end();
    506   while (I != ChainEnd) {
    507     --I;
    508     Units.stepBackward(*I);
    509   }
    510 
    511   // Check which register units are alive throughout the chain.
    512   MachineBasicBlock::iterator ChainBegin = G->begin();
    513   assert(ChainBegin != ChainEnd && "Chain should contain instructions");
    514   do {
    515     --I;
    516     Units.accumulate(*I);
    517   } while (I != ChainBegin);
    518 
    519   // Make sure we allocate in-order, to get the cheapest registers first.
    520   unsigned RegClassID = ChainBegin->getDesc().OpInfo[0].RegClass;
    521   auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
    522   for (auto Reg : Ord) {
    523     if (!Units.available(Reg))
    524       continue;
    525     if (C == getColor(Reg))
    526       return Reg;
    527   }
    528 
    529   return -1;
    530 }
    531 
    532 bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
    533                                            MachineBasicBlock &MBB) {
    534   bool Changed = false;
    535   LLVM_DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
    536                     << ColorNames[(int)C] << ")\n");
    537 
    538   // Try and obtain a free register of the right class. Without a register
    539   // to play with we cannot continue.
    540   int Reg = scavengeRegister(G, C, MBB);
    541   if (Reg == -1) {
    542     LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
    543     return false;
    544   }
    545   LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg, TRI) << "\n");
    546 
    547   std::map<unsigned, unsigned> Substs;
    548   for (MachineInstr &I : *G) {
    549     if (!G->contains(I) && (&I != G->getKill() || G->isKillImmutable()))
    550       continue;
    551 
    552     // I is a member of G, or I is a mutable instruction that kills G.
    553 
    554     std::vector<unsigned> ToErase;
    555     for (auto &U : I.operands()) {
    556       if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
    557         unsigned OrigReg = U.getReg();
    558         U.setReg(Substs[OrigReg]);
    559         if (U.isKill())
    560           // Don't erase straight away, because there may be other operands
    561           // that also reference this substitution!
    562           ToErase.push_back(OrigReg);
    563       } else if (U.isRegMask()) {
    564         for (auto J : Substs) {
    565           if (U.clobbersPhysReg(J.first))
    566             ToErase.push_back(J.first);
    567         }
    568       }
    569     }
    570     // Now it's safe to remove the substs identified earlier.
    571     for (auto J : ToErase)
    572       Substs.erase(J);
    573 
    574     // Only change the def if this isn't the last instruction.
    575     if (&I != G->getKill()) {
    576       MachineOperand &MO = I.getOperand(0);
    577 
    578       bool Change = TransformAll || getColor(MO.getReg()) != C;
    579       if (G->requiresFixup() && &I == G->getLast())
    580         Change = false;
    581 
    582       if (Change) {
    583         Substs[MO.getReg()] = Reg;
    584         MO.setReg(Reg);
    585 
    586         Changed = true;
    587       }
    588     }
    589   }
    590   assert(Substs.size() == 0 && "No substitutions should be left active!");
    591 
    592   if (G->getKill()) {
    593     LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n");
    594   } else {
    595     // We didn't have a kill instruction, but we didn't seem to need to change
    596     // the destination register anyway.
    597     LLVM_DEBUG(dbgs() << " - Destination register not changed.\n");
    598   }
    599   return Changed;
    600 }
    601 
    602 void AArch64A57FPLoadBalancing::scanInstruction(
    603     MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
    604     std::vector<std::unique_ptr<Chain>> &AllChains) {
    605   // Inspect "MI", updating ActiveChains and AllChains.
    606 
    607   if (isMul(MI)) {
    608 
    609     for (auto &I : MI->uses())
    610       maybeKillChain(I, Idx, ActiveChains);
    611     for (auto &I : MI->defs())
    612       maybeKillChain(I, Idx, ActiveChains);
    613 
    614     // Create a new chain. Multiplies don't require forwarding so can go on any
    615     // unit.
    616     unsigned DestReg = MI->getOperand(0).getReg();
    617 
    618     LLVM_DEBUG(dbgs() << "New chain started for register "
    619                       << printReg(DestReg, TRI) << " at " << *MI);
    620 
    621     auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
    622     ActiveChains[DestReg] = G.get();
    623     AllChains.push_back(std::move(G));
    624 
    625   } else if (isMla(MI)) {
    626 
    627     // It is beneficial to keep MLAs on the same functional unit as their
    628     // accumulator operand.
    629     unsigned DestReg  = MI->getOperand(0).getReg();
    630     unsigned AccumReg = MI->getOperand(3).getReg();
    631 
    632     maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
    633     maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
    634     if (DestReg != AccumReg)
    635       maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
    636 
    637     if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
    638       LLVM_DEBUG(dbgs() << "Chain found for accumulator register "
    639                         << printReg(AccumReg, TRI) << " in MI " << *MI);
    640 
    641       // For simplicity we only chain together sequences of MULs/MLAs where the
    642       // accumulator register is killed on each instruction. This means we don't
    643       // need to track other uses of the registers we want to rewrite.
    644       //
    645       // FIXME: We could extend to handle the non-kill cases for more coverage.
    646       if (MI->getOperand(3).isKill()) {
    647         // Add to chain.
    648         LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
    649         ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
    650         // Handle cases where the destination is not the same as the accumulator.
    651         if (DestReg != AccumReg) {
    652           ActiveChains[DestReg] = ActiveChains[AccumReg];
    653           ActiveChains.erase(AccumReg);
    654         }
    655         return;
    656       }
    657 
    658       LLVM_DEBUG(
    659           dbgs() << "Cannot add to chain because accumulator operand wasn't "
    660                  << "marked <kill>!\n");
    661       maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
    662     }
    663 
    664     LLVM_DEBUG(dbgs() << "Creating new chain for dest register "
    665                       << printReg(DestReg, TRI) << "\n");
    666     auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
    667     ActiveChains[DestReg] = G.get();
    668     AllChains.push_back(std::move(G));
    669 
    670   } else {
    671 
    672     // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
    673     // lists.
    674     for (auto &I : MI->uses())
    675       maybeKillChain(I, Idx, ActiveChains);
    676     for (auto &I : MI->defs())
    677       maybeKillChain(I, Idx, ActiveChains);
    678 
    679   }
    680 }
    681 
    682 void AArch64A57FPLoadBalancing::
    683 maybeKillChain(MachineOperand &MO, unsigned Idx,
    684                std::map<unsigned, Chain*> &ActiveChains) {
    685   // Given an operand and the set of active chains (keyed by register),
    686   // determine if a chain should be ended and remove from ActiveChains.
    687   MachineInstr *MI = MO.getParent();
    688 
    689   if (MO.isReg()) {
    690 
    691     // If this is a KILL of a current chain, record it.
    692     if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
    693       LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO.getReg(), TRI)
    694                         << "\n");
    695       ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
    696     }
    697     ActiveChains.erase(MO.getReg());
    698 
    699   } else if (MO.isRegMask()) {
    700 
    701     for (auto I = ActiveChains.begin(), E = ActiveChains.end();
    702          I != E;) {
    703       if (MO.clobbersPhysReg(I->first)) {
    704         LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain "
    705                           << printReg(I->first, TRI) << "\n");
    706         I->second->setKill(MI, Idx, /*Immutable=*/true);
    707         ActiveChains.erase(I++);
    708       } else
    709         ++I;
    710     }
    711 
    712   }
    713 }
    714 
    715 Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
    716   if ((TRI->getEncodingValue(Reg) % 2) == 0)
    717     return Color::Even;
    718   else
    719     return Color::Odd;
    720 }
    721 
    722 // Factory function used by AArch64TargetMachine to add the pass to the passmanager.
    723 FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
    724   return new AArch64A57FPLoadBalancing();
    725 }
    726