Home | History | Annotate | Download | only in Hexagon
      1 //===- BitTracker.h ---------------------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
     11 #define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
     12 
     13 #include "llvm/ADT/DenseSet.h"
     14 #include "llvm/ADT/SetVector.h"
     15 #include "llvm/ADT/SmallVector.h"
     16 #include "llvm/CodeGen/MachineInstr.h"
     17 #include "llvm/CodeGen/MachineOperand.h"
     18 #include <cassert>
     19 #include <cstdint>
     20 #include <map>
     21 #include <queue>
     22 #include <set>
     23 #include <utility>
     24 
     25 namespace llvm {
     26 
     27 class BitVector;
     28 class ConstantInt;
     29 class MachineRegisterInfo;
     30 class MachineBasicBlock;
     31 class MachineFunction;
     32 class raw_ostream;
     33 class TargetRegisterClass;
     34 class TargetRegisterInfo;
     35 
     36 struct BitTracker {
     37   struct BitRef;
     38   struct RegisterRef;
     39   struct BitValue;
     40   struct BitMask;
     41   struct RegisterCell;
     42   struct MachineEvaluator;
     43 
     44   using BranchTargetList = SetVector<const MachineBasicBlock *>;
     45   using CellMapType = std::map<unsigned, RegisterCell>;
     46 
     47   BitTracker(const MachineEvaluator &E, MachineFunction &F);
     48   ~BitTracker();
     49 
     50   void run();
     51   void trace(bool On = false) { Trace = On; }
     52   bool has(unsigned Reg) const;
     53   const RegisterCell &lookup(unsigned Reg) const;
     54   RegisterCell get(RegisterRef RR) const;
     55   void put(RegisterRef RR, const RegisterCell &RC);
     56   void subst(RegisterRef OldRR, RegisterRef NewRR);
     57   bool reached(const MachineBasicBlock *B) const;
     58   void visit(const MachineInstr &MI);
     59 
     60   void print_cells(raw_ostream &OS) const;
     61 
     62 private:
     63   void visitPHI(const MachineInstr &PI);
     64   void visitNonBranch(const MachineInstr &MI);
     65   void visitBranchesFrom(const MachineInstr &BI);
     66   void visitUsesOf(unsigned Reg);
     67 
     68   using CFGEdge = std::pair<int, int>;
     69   using EdgeSetType = std::set<CFGEdge>;
     70   using InstrSetType = std::set<const MachineInstr *>;
     71   using EdgeQueueType = std::queue<CFGEdge>;
     72 
     73   // Priority queue of instructions using modified registers, ordered by
     74   // their relative position in a basic block.
     75   struct UseQueueType {
     76     UseQueueType() : Uses(Dist) {}
     77 
     78     unsigned size() const {
     79       return Uses.size();
     80     }
     81     bool empty() const {
     82       return size() == 0;
     83     }
     84     MachineInstr *front() const {
     85       return Uses.top();
     86     }
     87     void push(MachineInstr *MI) {
     88       if (Set.insert(MI).second)
     89         Uses.push(MI);
     90     }
     91     void pop() {
     92       Set.erase(front());
     93       Uses.pop();
     94     }
     95     void reset() {
     96       Dist.clear();
     97     }
     98   private:
     99     struct Cmp {
    100       Cmp(DenseMap<const MachineInstr*,unsigned> &Map) : Dist(Map) {}
    101       bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const;
    102       DenseMap<const MachineInstr*,unsigned> &Dist;
    103     };
    104     std::priority_queue<MachineInstr*, std::vector<MachineInstr*>, Cmp> Uses;
    105     DenseSet<const MachineInstr*> Set; // Set to avoid adding duplicate entries.
    106     DenseMap<const MachineInstr*,unsigned> Dist;
    107   };
    108 
    109   void reset();
    110   void runEdgeQueue(BitVector &BlockScanned);
    111   void runUseQueue();
    112 
    113   const MachineEvaluator &ME;
    114   MachineFunction &MF;
    115   MachineRegisterInfo &MRI;
    116   CellMapType &Map;
    117 
    118   EdgeSetType EdgeExec;         // Executable flow graph edges.
    119   InstrSetType InstrExec;       // Executable instructions.
    120   UseQueueType UseQ;            // Work queue of register uses.
    121   EdgeQueueType FlowQ;          // Work queue of CFG edges.
    122   DenseSet<unsigned> ReachedBB; // Cache of reached blocks.
    123   bool Trace;                   // Enable tracing for debugging.
    124 };
    125 
    126 // Abstraction of a reference to bit at position Pos from a register Reg.
    127 struct BitTracker::BitRef {
    128   BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
    129 
    130   bool operator== (const BitRef &BR) const {
    131     // If Reg is 0, disregard Pos.
    132     return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
    133   }
    134 
    135   unsigned Reg;
    136   uint16_t Pos;
    137 };
    138 
    139 // Abstraction of a register reference in MachineOperand.  It contains the
    140 // register number and the subregister index.
    141 struct BitTracker::RegisterRef {
    142   RegisterRef(unsigned R = 0, unsigned S = 0)
    143     : Reg(R), Sub(S) {}
    144   RegisterRef(const MachineOperand &MO)
    145       : Reg(MO.getReg()), Sub(MO.getSubReg()) {}
    146 
    147   unsigned Reg, Sub;
    148 };
    149 
    150 // Value that a single bit can take.  This is outside of the context of
    151 // any register, it is more of an abstraction of the two-element set of
    152 // possible bit values.  One extension here is the "Ref" type, which
    153 // indicates that this bit takes the same value as the bit described by
    154 // RefInfo.
    155 struct BitTracker::BitValue {
    156   enum ValueType {
    157     Top,    // Bit not yet defined.
    158     Zero,   // Bit = 0.
    159     One,    // Bit = 1.
    160     Ref     // Bit value same as the one described in RefI.
    161     // Conceptually, there is no explicit "bottom" value: the lattice's
    162     // bottom will be expressed as a "ref to itself", which, in the context
    163     // of registers, could be read as "this value of this bit is defined by
    164     // this bit".
    165     // The ordering is:
    166     //   x <= Top,
    167     //   Self <= x, where "Self" is "ref to itself".
    168     // This makes the value lattice different for each virtual register
    169     // (even for each bit in the same virtual register), since the "bottom"
    170     // for one register will be a simple "ref" for another register.
    171     // Since we do not store the "Self" bit and register number, the meet
    172     // operation will need to take it as a parameter.
    173     //
    174     // In practice there is a special case for values that are not associa-
    175     // ted with any specific virtual register. An example would be a value
    176     // corresponding to a bit of a physical register, or an intermediate
    177     // value obtained in some computation (such as instruction evaluation).
    178     // Such cases are identical to the usual Ref type, but the register
    179     // number is 0. In such case the Pos field of the reference is ignored.
    180     //
    181     // What is worthy of notice is that in value V (that is a "ref"), as long
    182     // as the RefI.Reg is not 0, it may actually be the same register as the
    183     // one in which V will be contained.  If the RefI.Pos refers to the posi-
    184     // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
    185     // otherwise V is taken to be identical to the referenced bit of the
    186     // same register.
    187     // If RefI.Reg is 0, however, such a reference to the same register is
    188     // not possible.  Any value V that is a "ref", and whose RefI.Reg is 0
    189     // is treated as "bottom".
    190   };
    191   ValueType Type;
    192   BitRef RefI;
    193 
    194   BitValue(ValueType T = Top) : Type(T) {}
    195   BitValue(bool B) : Type(B ? One : Zero) {}
    196   BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
    197 
    198   bool operator== (const BitValue &V) const {
    199     if (Type != V.Type)
    200       return false;
    201     if (Type == Ref && !(RefI == V.RefI))
    202       return false;
    203     return true;
    204   }
    205   bool operator!= (const BitValue &V) const {
    206     return !operator==(V);
    207   }
    208 
    209   bool is(unsigned T) const {
    210     assert(T == 0 || T == 1);
    211     return T == 0 ? Type == Zero
    212                   : (T == 1 ? Type == One : false);
    213   }
    214 
    215   // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
    216   // (1)  x.x = x
    217   // (2)  x.y = y.x
    218   // (3)  x.(y.z) = (x.y).z
    219   // (4)  x.T = x  (i.e. T = "top")
    220   // (5)  x.B = B  (i.e. B = "bottom")
    221   //
    222   // This "meet" function will update the value of the "*this" object with
    223   // the newly calculated one, and return "true" if the value of *this has
    224   // changed, and "false" otherwise.
    225   // To prove that it satisfies the conditions (1)-(5), it is sufficient
    226   // to show that a relation
    227   //   x <= y  <=>  x.y = x
    228   // defines a partial order (i.e. that "meet" is same as "infimum").
    229   bool meet(const BitValue &V, const BitRef &Self) {
    230     // First, check the cases where there is nothing to be done.
    231     if (Type == Ref && RefI == Self)    // Bottom.meet(V) = Bottom (i.e. This)
    232       return false;
    233     if (V.Type == Top)                  // This.meet(Top) = This
    234       return false;
    235     if (*this == V)                     // This.meet(This) = This
    236       return false;
    237 
    238     // At this point, we know that the value of "this" will change.
    239     // If it is Top, it will become the same as V, otherwise it will
    240     // become "bottom" (i.e. Self).
    241     if (Type == Top) {
    242       Type = V.Type;
    243       RefI = V.RefI;  // This may be irrelevant, but copy anyway.
    244       return true;
    245     }
    246     // Become "bottom".
    247     Type = Ref;
    248     RefI = Self;
    249     return true;
    250   }
    251 
    252   // Create a reference to the bit value V.
    253   static BitValue ref(const BitValue &V);
    254   // Create a "self".
    255   static BitValue self(const BitRef &Self = BitRef());
    256 
    257   bool num() const {
    258     return Type == Zero || Type == One;
    259   }
    260 
    261   operator bool() const {
    262     assert(Type == Zero || Type == One);
    263     return Type == One;
    264   }
    265 
    266   friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
    267 };
    268 
    269 // This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
    270 inline BitTracker::BitValue
    271 BitTracker::BitValue::ref(const BitValue &V) {
    272   if (V.Type != Ref)
    273     return BitValue(V.Type);
    274   if (V.RefI.Reg != 0)
    275     return BitValue(V.RefI.Reg, V.RefI.Pos);
    276   return self();
    277 }
    278 
    279 inline BitTracker::BitValue
    280 BitTracker::BitValue::self(const BitRef &Self) {
    281   return BitValue(Self.Reg, Self.Pos);
    282 }
    283 
    284 // A sequence of bits starting from index B up to and including index E.
    285 // If E < B, the mask represents two sections: [0..E] and [B..W) where
    286 // W is the width of the register.
    287 struct BitTracker::BitMask {
    288   BitMask() = default;
    289   BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
    290 
    291   uint16_t first() const { return B; }
    292   uint16_t last() const { return E; }
    293 
    294 private:
    295   uint16_t B = 0;
    296   uint16_t E = 0;
    297 };
    298 
    299 // Representation of a register: a list of BitValues.
    300 struct BitTracker::RegisterCell {
    301   RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
    302 
    303   uint16_t width() const {
    304     return Bits.size();
    305   }
    306 
    307   const BitValue &operator[](uint16_t BitN) const {
    308     assert(BitN < Bits.size());
    309     return Bits[BitN];
    310   }
    311   BitValue &operator[](uint16_t BitN) {
    312     assert(BitN < Bits.size());
    313     return Bits[BitN];
    314   }
    315 
    316   bool meet(const RegisterCell &RC, unsigned SelfR);
    317   RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
    318   RegisterCell extract(const BitMask &M) const;  // Returns a new cell.
    319   RegisterCell &rol(uint16_t Sh);    // Rotate left.
    320   RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
    321   RegisterCell &cat(const RegisterCell &RC);  // Concatenate.
    322   uint16_t cl(bool B) const;
    323   uint16_t ct(bool B) const;
    324 
    325   bool operator== (const RegisterCell &RC) const;
    326   bool operator!= (const RegisterCell &RC) const {
    327     return !operator==(RC);
    328   }
    329 
    330   // Replace the ref-to-reg-0 bit values with the given register.
    331   RegisterCell &regify(unsigned R);
    332 
    333   // Generate a "ref" cell for the corresponding register. In the resulting
    334   // cell each bit will be described as being the same as the corresponding
    335   // bit in register Reg (i.e. the cell is "defined" by register Reg).
    336   static RegisterCell self(unsigned Reg, uint16_t Width);
    337   // Generate a "top" cell of given size.
    338   static RegisterCell top(uint16_t Width);
    339   // Generate a cell that is a "ref" to another cell.
    340   static RegisterCell ref(const RegisterCell &C);
    341 
    342 private:
    343   // The DefaultBitN is here only to avoid frequent reallocation of the
    344   // memory in the vector.
    345   static const unsigned DefaultBitN = 32;
    346   using BitValueList = SmallVector<BitValue, DefaultBitN>;
    347   BitValueList Bits;
    348 
    349   friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
    350 };
    351 
    352 inline bool BitTracker::has(unsigned Reg) const {
    353   return Map.find(Reg) != Map.end();
    354 }
    355 
    356 inline const BitTracker::RegisterCell&
    357 BitTracker::lookup(unsigned Reg) const {
    358   CellMapType::const_iterator F = Map.find(Reg);
    359   assert(F != Map.end());
    360   return F->second;
    361 }
    362 
    363 inline BitTracker::RegisterCell
    364 BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
    365   RegisterCell RC(Width);
    366   for (uint16_t i = 0; i < Width; ++i)
    367     RC.Bits[i] = BitValue::self(BitRef(Reg, i));
    368   return RC;
    369 }
    370 
    371 inline BitTracker::RegisterCell
    372 BitTracker::RegisterCell::top(uint16_t Width) {
    373   RegisterCell RC(Width);
    374   for (uint16_t i = 0; i < Width; ++i)
    375     RC.Bits[i] = BitValue(BitValue::Top);
    376   return RC;
    377 }
    378 
    379 inline BitTracker::RegisterCell
    380 BitTracker::RegisterCell::ref(const RegisterCell &C) {
    381   uint16_t W = C.width();
    382   RegisterCell RC(W);
    383   for (unsigned i = 0; i < W; ++i)
    384     RC[i] = BitValue::ref(C[i]);
    385   return RC;
    386 }
    387 
    388 // A class to evaluate target's instructions and update the cell maps.
    389 // This is used internally by the bit tracker.  A target that wants to
    390 // utilize this should implement the evaluation functions (noted below)
    391 // in a subclass of this class.
    392 struct BitTracker::MachineEvaluator {
    393   MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
    394       : TRI(T), MRI(M) {}
    395   virtual ~MachineEvaluator() = default;
    396 
    397   uint16_t getRegBitWidth(const RegisterRef &RR) const;
    398 
    399   RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
    400   void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
    401 
    402   // A result of any operation should use refs to the source cells, not
    403   // the cells directly. This function is a convenience wrapper to quickly
    404   // generate a ref for a cell corresponding to a register reference.
    405   RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
    406     RegisterCell RC = getCell(RR, M);
    407     return RegisterCell::ref(RC);
    408   }
    409 
    410   // Helper functions.
    411   // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
    412   bool isInt(const RegisterCell &A) const;
    413   // Convert cell to an immediate value.
    414   uint64_t toInt(const RegisterCell &A) const;
    415 
    416   // Generate cell from an immediate value.
    417   RegisterCell eIMM(int64_t V, uint16_t W) const;
    418   RegisterCell eIMM(const ConstantInt *CI) const;
    419 
    420   // Arithmetic.
    421   RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
    422   RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
    423   RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
    424   RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
    425 
    426   // Shifts.
    427   RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
    428   RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
    429   RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
    430 
    431   // Logical.
    432   RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
    433   RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
    434   RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
    435   RegisterCell eNOT(const RegisterCell &A1) const;
    436 
    437   // Set bit, clear bit.
    438   RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
    439   RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
    440 
    441   // Count leading/trailing bits (zeros/ones).
    442   RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
    443   RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
    444 
    445   // Sign/zero extension.
    446   RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
    447   RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
    448 
    449   // Extract/insert
    450   // XTR R,b,e:  extract bits from A1 starting at bit b, ending at e-1.
    451   // INS R,S,b:  take R and replace bits starting from b with S.
    452   RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
    453   RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
    454                     uint16_t AtN) const;
    455 
    456   // User-provided functions for individual targets:
    457 
    458   // Return a sub-register mask that indicates which bits in Reg belong
    459   // to the subregister Sub. These bits are assumed to be contiguous in
    460   // the super-register, and have the same ordering in the sub-register
    461   // as in the super-register. It is valid to call this function with
    462   // Sub == 0, in this case, the function should return a mask that spans
    463   // the entire register Reg (which is what the default implementation
    464   // does).
    465   virtual BitMask mask(unsigned Reg, unsigned Sub) const;
    466   // Indicate whether a given register class should be tracked.
    467   virtual bool track(const TargetRegisterClass *RC) const { return true; }
    468   // Evaluate a non-branching machine instruction, given the cell map with
    469   // the input values. Place the results in the Outputs map. Return "true"
    470   // if evaluation succeeded, "false" otherwise.
    471   virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs,
    472                         CellMapType &Outputs) const;
    473   // Evaluate a branch, given the cell map with the input values. Fill out
    474   // a list of all possible branch targets and indicate (through a flag)
    475   // whether the branch could fall-through. Return "true" if this information
    476   // has been successfully computed, "false" otherwise.
    477   virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs,
    478                         BranchTargetList &Targets, bool &FallsThru) const = 0;
    479   // Given a register class RC, return a register class that should be assumed
    480   // when a register from class RC is used with a subregister of index Idx.
    481   virtual const TargetRegisterClass&
    482   composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const {
    483     if (Idx == 0)
    484       return RC;
    485     llvm_unreachable("Unimplemented composeWithSubRegIndex");
    486   }
    487   // Return the size in bits of the physical register Reg.
    488   virtual uint16_t getPhysRegBitWidth(unsigned Reg) const;
    489 
    490   const TargetRegisterInfo &TRI;
    491   MachineRegisterInfo &MRI;
    492 };
    493 
    494 } // end namespace llvm
    495 
    496 #endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
    497