Home | History | Annotate | Download | only in Hexagon
      1 //===- HexagonBitSimplify.cpp ---------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "BitTracker.h"
     11 #include "HexagonBitTracker.h"
     12 #include "HexagonInstrInfo.h"
     13 #include "HexagonRegisterInfo.h"
     14 #include "HexagonSubtarget.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/GraphTraits.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/StringRef.h"
     21 #include "llvm/CodeGen/MachineBasicBlock.h"
     22 #include "llvm/CodeGen/MachineDominators.h"
     23 #include "llvm/CodeGen/MachineFunction.h"
     24 #include "llvm/CodeGen/MachineFunctionPass.h"
     25 #include "llvm/CodeGen/MachineInstr.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineOperand.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/TargetRegisterInfo.h"
     30 #include "llvm/IR/DebugLoc.h"
     31 #include "llvm/MC/MCInstrDesc.h"
     32 #include "llvm/Pass.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Compiler.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/MathExtras.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 #include <algorithm>
     40 #include <cassert>
     41 #include <cstdint>
     42 #include <iterator>
     43 #include <limits>
     44 #include <utility>
     45 #include <vector>
     46 
     47 #define DEBUG_TYPE "hexbit"
     48 
     49 using namespace llvm;
     50 
     51 static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
     52   cl::init(true), cl::desc("Preserve subregisters in tied operands"));
     53 static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
     54   cl::init(true), cl::desc("Generate extract instructions"));
     55 static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
     56   cl::init(true), cl::desc("Generate bitsplit instructions"));
     57 
     58 static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
     59   cl::init(std::numeric_limits<unsigned>::max()));
     60 static unsigned CountExtract = 0;
     61 static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
     62   cl::init(std::numeric_limits<unsigned>::max()));
     63 static unsigned CountBitSplit = 0;
     64 
     65 namespace llvm {
     66 
     67   void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
     68   FunctionPass *createHexagonBitSimplify();
     69 
     70 } // end namespace llvm
     71 
     72 namespace {
     73 
     74   // Set of virtual registers, based on BitVector.
     75   struct RegisterSet : private BitVector {
     76     RegisterSet() = default;
     77     explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
     78     RegisterSet(const RegisterSet &RS) = default;
     79 
     80     using BitVector::clear;
     81     using BitVector::count;
     82 
     83     unsigned find_first() const {
     84       int First = BitVector::find_first();
     85       if (First < 0)
     86         return 0;
     87       return x2v(First);
     88     }
     89 
     90     unsigned find_next(unsigned Prev) const {
     91       int Next = BitVector::find_next(v2x(Prev));
     92       if (Next < 0)
     93         return 0;
     94       return x2v(Next);
     95     }
     96 
     97     RegisterSet &insert(unsigned R) {
     98       unsigned Idx = v2x(R);
     99       ensure(Idx);
    100       return static_cast<RegisterSet&>(BitVector::set(Idx));
    101     }
    102     RegisterSet &remove(unsigned R) {
    103       unsigned Idx = v2x(R);
    104       if (Idx >= size())
    105         return *this;
    106       return static_cast<RegisterSet&>(BitVector::reset(Idx));
    107     }
    108 
    109     RegisterSet &insert(const RegisterSet &Rs) {
    110       return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
    111     }
    112     RegisterSet &remove(const RegisterSet &Rs) {
    113       return static_cast<RegisterSet&>(BitVector::reset(Rs));
    114     }
    115 
    116     reference operator[](unsigned R) {
    117       unsigned Idx = v2x(R);
    118       ensure(Idx);
    119       return BitVector::operator[](Idx);
    120     }
    121     bool operator[](unsigned R) const {
    122       unsigned Idx = v2x(R);
    123       assert(Idx < size());
    124       return BitVector::operator[](Idx);
    125     }
    126     bool has(unsigned R) const {
    127       unsigned Idx = v2x(R);
    128       if (Idx >= size())
    129         return false;
    130       return BitVector::test(Idx);
    131     }
    132 
    133     bool empty() const {
    134       return !BitVector::any();
    135     }
    136     bool includes(const RegisterSet &Rs) const {
    137       // A.BitVector::test(B)  <=>  A-B != {}
    138       return !Rs.BitVector::test(*this);
    139     }
    140     bool intersects(const RegisterSet &Rs) const {
    141       return BitVector::anyCommon(Rs);
    142     }
    143 
    144   private:
    145     void ensure(unsigned Idx) {
    146       if (size() <= Idx)
    147         resize(std::max(Idx+1, 32U));
    148     }
    149 
    150     static inline unsigned v2x(unsigned v) {
    151       return TargetRegisterInfo::virtReg2Index(v);
    152     }
    153 
    154     static inline unsigned x2v(unsigned x) {
    155       return TargetRegisterInfo::index2VirtReg(x);
    156     }
    157   };
    158 
    159   struct PrintRegSet {
    160     PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
    161       : RS(S), TRI(RI) {}
    162 
    163     friend raw_ostream &operator<< (raw_ostream &OS,
    164           const PrintRegSet &P);
    165 
    166   private:
    167     const RegisterSet &RS;
    168     const TargetRegisterInfo *TRI;
    169   };
    170 
    171   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
    172     LLVM_ATTRIBUTE_UNUSED;
    173   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
    174     OS << '{';
    175     for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
    176       OS << ' ' << printReg(R, P.TRI);
    177     OS << " }";
    178     return OS;
    179   }
    180 
    181   class Transformation;
    182 
    183   class HexagonBitSimplify : public MachineFunctionPass {
    184   public:
    185     static char ID;
    186 
    187     HexagonBitSimplify() : MachineFunctionPass(ID) {}
    188 
    189     StringRef getPassName() const override {
    190       return "Hexagon bit simplification";
    191     }
    192 
    193     void getAnalysisUsage(AnalysisUsage &AU) const override {
    194       AU.addRequired<MachineDominatorTree>();
    195       AU.addPreserved<MachineDominatorTree>();
    196       MachineFunctionPass::getAnalysisUsage(AU);
    197     }
    198 
    199     bool runOnMachineFunction(MachineFunction &MF) override;
    200 
    201     static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
    202     static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
    203     static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
    204         const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
    205     static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
    206         uint16_t W);
    207     static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
    208         uint16_t W, uint64_t &U);
    209     static bool replaceReg(unsigned OldR, unsigned NewR,
    210         MachineRegisterInfo &MRI);
    211     static bool getSubregMask(const BitTracker::RegisterRef &RR,
    212         unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
    213     static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
    214         unsigned NewSR, MachineRegisterInfo &MRI);
    215     static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
    216         unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
    217     static bool parseRegSequence(const MachineInstr &I,
    218         BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
    219         const MachineRegisterInfo &MRI);
    220 
    221     static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
    222         uint16_t Begin);
    223     static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
    224         uint16_t Begin, const HexagonInstrInfo &HII);
    225 
    226     static const TargetRegisterClass *getFinalVRegClass(
    227         const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
    228     static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
    229         const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
    230 
    231   private:
    232     MachineDominatorTree *MDT = nullptr;
    233 
    234     bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
    235     static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
    236         unsigned NewSub = Hexagon::NoSubRegister);
    237   };
    238 
    239   using HBS = HexagonBitSimplify;
    240 
    241   // The purpose of this class is to provide a common facility to traverse
    242   // the function top-down or bottom-up via the dominator tree, and keep
    243   // track of the available registers.
    244   class Transformation {
    245   public:
    246     bool TopDown;
    247 
    248     Transformation(bool TD) : TopDown(TD) {}
    249     virtual ~Transformation() = default;
    250 
    251     virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
    252   };
    253 
    254 } // end anonymous namespace
    255 
    256 char HexagonBitSimplify::ID = 0;
    257 
    258 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
    259       "Hexagon bit simplification", false, false)
    260 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    261 INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
    262       "Hexagon bit simplification", false, false)
    263 
    264 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
    265       RegisterSet &AVs) {
    266   bool Changed = false;
    267 
    268   if (T.TopDown)
    269     Changed = T.processBlock(B, AVs);
    270 
    271   RegisterSet Defs;
    272   for (auto &I : B)
    273     getInstrDefs(I, Defs);
    274   RegisterSet NewAVs = AVs;
    275   NewAVs.insert(Defs);
    276 
    277   for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
    278     Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
    279 
    280   if (!T.TopDown)
    281     Changed |= T.processBlock(B, AVs);
    282 
    283   return Changed;
    284 }
    285 
    286 //
    287 // Utility functions:
    288 //
    289 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
    290       RegisterSet &Defs) {
    291   for (auto &Op : MI.operands()) {
    292     if (!Op.isReg() || !Op.isDef())
    293       continue;
    294     unsigned R = Op.getReg();
    295     if (!TargetRegisterInfo::isVirtualRegister(R))
    296       continue;
    297     Defs.insert(R);
    298   }
    299 }
    300 
    301 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
    302       RegisterSet &Uses) {
    303   for (auto &Op : MI.operands()) {
    304     if (!Op.isReg() || !Op.isUse())
    305       continue;
    306     unsigned R = Op.getReg();
    307     if (!TargetRegisterInfo::isVirtualRegister(R))
    308       continue;
    309     Uses.insert(R);
    310   }
    311 }
    312 
    313 // Check if all the bits in range [B, E) in both cells are equal.
    314 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
    315       uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
    316       uint16_t W) {
    317   for (uint16_t i = 0; i < W; ++i) {
    318     // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
    319     if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
    320       return false;
    321     // Same for RC2[i].
    322     if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
    323       return false;
    324     if (RC1[B1+i] != RC2[B2+i])
    325       return false;
    326   }
    327   return true;
    328 }
    329 
    330 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
    331       uint16_t B, uint16_t W) {
    332   assert(B < RC.width() && B+W <= RC.width());
    333   for (uint16_t i = B; i < B+W; ++i)
    334     if (!RC[i].is(0))
    335       return false;
    336   return true;
    337 }
    338 
    339 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
    340         uint16_t B, uint16_t W, uint64_t &U) {
    341   assert(B < RC.width() && B+W <= RC.width());
    342   int64_t T = 0;
    343   for (uint16_t i = B+W; i > B; --i) {
    344     const BitTracker::BitValue &BV = RC[i-1];
    345     T <<= 1;
    346     if (BV.is(1))
    347       T |= 1;
    348     else if (!BV.is(0))
    349       return false;
    350   }
    351   U = T;
    352   return true;
    353 }
    354 
    355 bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
    356       MachineRegisterInfo &MRI) {
    357   if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
    358       !TargetRegisterInfo::isVirtualRegister(NewR))
    359     return false;
    360   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
    361   decltype(End) NextI;
    362   for (auto I = Begin; I != End; I = NextI) {
    363     NextI = std::next(I);
    364     I->setReg(NewR);
    365   }
    366   return Begin != End;
    367 }
    368 
    369 bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
    370       unsigned NewSR, MachineRegisterInfo &MRI) {
    371   if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
    372       !TargetRegisterInfo::isVirtualRegister(NewR))
    373     return false;
    374   if (hasTiedUse(OldR, MRI, NewSR))
    375     return false;
    376   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
    377   decltype(End) NextI;
    378   for (auto I = Begin; I != End; I = NextI) {
    379     NextI = std::next(I);
    380     I->setReg(NewR);
    381     I->setSubReg(NewSR);
    382   }
    383   return Begin != End;
    384 }
    385 
    386 bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
    387       unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
    388   if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
    389       !TargetRegisterInfo::isVirtualRegister(NewR))
    390     return false;
    391   if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
    392     return false;
    393   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
    394   decltype(End) NextI;
    395   for (auto I = Begin; I != End; I = NextI) {
    396     NextI = std::next(I);
    397     if (I->getSubReg() != OldSR)
    398       continue;
    399     I->setReg(NewR);
    400     I->setSubReg(NewSR);
    401   }
    402   return Begin != End;
    403 }
    404 
    405 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB
    406 // of Sub in Reg, and set Width to the size of Sub in bits. Return true,
    407 // if this succeeded, otherwise return false.
    408 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
    409       unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
    410   const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
    411   if (RR.Sub == 0) {
    412     Begin = 0;
    413     Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
    414     return true;
    415   }
    416 
    417   Begin = 0;
    418 
    419   switch (RC->getID()) {
    420     case Hexagon::DoubleRegsRegClassID:
    421     case Hexagon::HvxWRRegClassID:
    422       Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
    423       if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
    424         Begin = Width;
    425       break;
    426     default:
    427       return false;
    428   }
    429   return true;
    430 }
    431 
    432 
    433 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high
    434 // subregister.
    435 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
    436       BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
    437       const MachineRegisterInfo &MRI) {
    438   assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
    439   unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
    440   auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
    441   auto &HRI = static_cast<const HexagonRegisterInfo&>(
    442                   *MRI.getTargetRegisterInfo());
    443   unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
    444   unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
    445   assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
    446   if (Sub1 == SubLo && Sub2 == SubHi) {
    447     SL = I.getOperand(1);
    448     SH = I.getOperand(3);
    449     return true;
    450   }
    451   if (Sub1 == SubHi && Sub2 == SubLo) {
    452     SH = I.getOperand(1);
    453     SL = I.getOperand(3);
    454     return true;
    455   }
    456   return false;
    457 }
    458 
    459 // All stores (except 64-bit stores) take a 32-bit register as the source
    460 // of the value to be stored. If the instruction stores into a location
    461 // that is shorter than 32 bits, some bits of the source register are not
    462 // used. For each store instruction, calculate the set of used bits in
    463 // the source register, and set appropriate bits in Bits. Return true if
    464 // the bits are calculated, false otherwise.
    465 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
    466       uint16_t Begin) {
    467   using namespace Hexagon;
    468 
    469   switch (Opc) {
    470     // Store byte
    471     case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
    472     case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
    473     case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
    474     case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
    475     case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
    476     case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
    477     case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
    478     case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
    479     case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
    480     case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
    481     case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
    482     case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
    483     case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
    484     case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
    485     case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
    486     case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
    487     case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
    488     case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
    489     case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
    490     case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
    491     case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
    492     case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
    493     case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
    494     case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
    495     case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
    496     case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
    497     case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
    498     case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
    499     case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
    500     case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
    501     case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
    502     case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
    503     case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
    504     case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
    505     case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
    506     case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
    507     case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
    508     case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
    509     case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
    510     case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
    511     case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
    512     case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
    513     case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
    514     case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
    515     case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
    516     case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
    517     case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
    518     case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
    519     case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
    520     case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
    521     case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
    522     case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
    523       Bits.set(Begin, Begin+8);
    524       return true;
    525 
    526     // Store low half
    527     case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
    528     case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
    529     case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
    530     case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
    531     case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
    532     case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
    533     case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
    534     case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
    535     case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
    536     case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
    537     case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
    538     case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
    539     case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
    540     case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
    541     case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
    542     case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
    543     case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
    544     case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
    545     case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
    546     case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
    547     case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
    548     case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
    549     case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
    550     case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
    551     case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
    552     case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
    553     case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
    554     case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
    555     case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
    556     case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
    557     case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
    558     case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
    559     case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
    560     case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
    561     case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
    562     case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
    563     case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
    564     case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
    565     case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
    566     case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
    567     case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
    568     case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
    569     case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
    570     case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
    571     case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
    572     case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
    573     case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
    574     case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
    575     case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
    576     case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
    577     case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
    578     case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
    579       Bits.set(Begin, Begin+16);
    580       return true;
    581 
    582     // Store high half
    583     case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
    584     case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
    585     case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
    586     case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
    587     case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
    588     case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
    589     case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
    590     case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
    591     case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
    592     case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
    593     case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
    594     case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
    595     case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
    596     case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
    597     case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
    598     case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
    599     case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
    600     case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
    601     case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
    602     case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
    603     case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
    604     case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
    605     case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
    606     case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
    607     case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
    608     case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
    609       Bits.set(Begin+16, Begin+32);
    610       return true;
    611   }
    612 
    613   return false;
    614 }
    615 
    616 // For an instruction with opcode Opc, calculate the set of bits that it
    617 // uses in a register in operand OpN. This only calculates the set of used
    618 // bits for cases where it does not depend on any operands (as is the case
    619 // in shifts, for example). For concrete instructions from a program, the
    620 // operand may be a subregister of a larger register, while Bits would
    621 // correspond to the larger register in its entirety. Because of that,
    622 // the parameter Begin can be used to indicate which bit of Bits should be
    623 // considered the LSB of the operand.
    624 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
    625       BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
    626   using namespace Hexagon;
    627 
    628   const MCInstrDesc &D = HII.get(Opc);
    629   if (D.mayStore()) {
    630     if (OpN == D.getNumOperands()-1)
    631       return getUsedBitsInStore(Opc, Bits, Begin);
    632     return false;
    633   }
    634 
    635   switch (Opc) {
    636     // One register source. Used bits: R1[0-7].
    637     case A2_sxtb:
    638     case A2_zxtb:
    639     case A4_cmpbeqi:
    640     case A4_cmpbgti:
    641     case A4_cmpbgtui:
    642       if (OpN == 1) {
    643         Bits.set(Begin, Begin+8);
    644         return true;
    645       }
    646       break;
    647 
    648     // One register source. Used bits: R1[0-15].
    649     case A2_aslh:
    650     case A2_sxth:
    651     case A2_zxth:
    652     case A4_cmpheqi:
    653     case A4_cmphgti:
    654     case A4_cmphgtui:
    655       if (OpN == 1) {
    656         Bits.set(Begin, Begin+16);
    657         return true;
    658       }
    659       break;
    660 
    661     // One register source. Used bits: R1[16-31].
    662     case A2_asrh:
    663       if (OpN == 1) {
    664         Bits.set(Begin+16, Begin+32);
    665         return true;
    666       }
    667       break;
    668 
    669     // Two register sources. Used bits: R1[0-7], R2[0-7].
    670     case A4_cmpbeq:
    671     case A4_cmpbgt:
    672     case A4_cmpbgtu:
    673       if (OpN == 1) {
    674         Bits.set(Begin, Begin+8);
    675         return true;
    676       }
    677       break;
    678 
    679     // Two register sources. Used bits: R1[0-15], R2[0-15].
    680     case A4_cmpheq:
    681     case A4_cmphgt:
    682     case A4_cmphgtu:
    683     case A2_addh_h16_ll:
    684     case A2_addh_h16_sat_ll:
    685     case A2_addh_l16_ll:
    686     case A2_addh_l16_sat_ll:
    687     case A2_combine_ll:
    688     case A2_subh_h16_ll:
    689     case A2_subh_h16_sat_ll:
    690     case A2_subh_l16_ll:
    691     case A2_subh_l16_sat_ll:
    692     case M2_mpy_acc_ll_s0:
    693     case M2_mpy_acc_ll_s1:
    694     case M2_mpy_acc_sat_ll_s0:
    695     case M2_mpy_acc_sat_ll_s1:
    696     case M2_mpy_ll_s0:
    697     case M2_mpy_ll_s1:
    698     case M2_mpy_nac_ll_s0:
    699     case M2_mpy_nac_ll_s1:
    700     case M2_mpy_nac_sat_ll_s0:
    701     case M2_mpy_nac_sat_ll_s1:
    702     case M2_mpy_rnd_ll_s0:
    703     case M2_mpy_rnd_ll_s1:
    704     case M2_mpy_sat_ll_s0:
    705     case M2_mpy_sat_ll_s1:
    706     case M2_mpy_sat_rnd_ll_s0:
    707     case M2_mpy_sat_rnd_ll_s1:
    708     case M2_mpyd_acc_ll_s0:
    709     case M2_mpyd_acc_ll_s1:
    710     case M2_mpyd_ll_s0:
    711     case M2_mpyd_ll_s1:
    712     case M2_mpyd_nac_ll_s0:
    713     case M2_mpyd_nac_ll_s1:
    714     case M2_mpyd_rnd_ll_s0:
    715     case M2_mpyd_rnd_ll_s1:
    716     case M2_mpyu_acc_ll_s0:
    717     case M2_mpyu_acc_ll_s1:
    718     case M2_mpyu_ll_s0:
    719     case M2_mpyu_ll_s1:
    720     case M2_mpyu_nac_ll_s0:
    721     case M2_mpyu_nac_ll_s1:
    722     case M2_mpyud_acc_ll_s0:
    723     case M2_mpyud_acc_ll_s1:
    724     case M2_mpyud_ll_s0:
    725     case M2_mpyud_ll_s1:
    726     case M2_mpyud_nac_ll_s0:
    727     case M2_mpyud_nac_ll_s1:
    728       if (OpN == 1 || OpN == 2) {
    729         Bits.set(Begin, Begin+16);
    730         return true;
    731       }
    732       break;
    733 
    734     // Two register sources. Used bits: R1[0-15], R2[16-31].
    735     case A2_addh_h16_lh:
    736     case A2_addh_h16_sat_lh:
    737     case A2_combine_lh:
    738     case A2_subh_h16_lh:
    739     case A2_subh_h16_sat_lh:
    740     case M2_mpy_acc_lh_s0:
    741     case M2_mpy_acc_lh_s1:
    742     case M2_mpy_acc_sat_lh_s0:
    743     case M2_mpy_acc_sat_lh_s1:
    744     case M2_mpy_lh_s0:
    745     case M2_mpy_lh_s1:
    746     case M2_mpy_nac_lh_s0:
    747     case M2_mpy_nac_lh_s1:
    748     case M2_mpy_nac_sat_lh_s0:
    749     case M2_mpy_nac_sat_lh_s1:
    750     case M2_mpy_rnd_lh_s0:
    751     case M2_mpy_rnd_lh_s1:
    752     case M2_mpy_sat_lh_s0:
    753     case M2_mpy_sat_lh_s1:
    754     case M2_mpy_sat_rnd_lh_s0:
    755     case M2_mpy_sat_rnd_lh_s1:
    756     case M2_mpyd_acc_lh_s0:
    757     case M2_mpyd_acc_lh_s1:
    758     case M2_mpyd_lh_s0:
    759     case M2_mpyd_lh_s1:
    760     case M2_mpyd_nac_lh_s0:
    761     case M2_mpyd_nac_lh_s1:
    762     case M2_mpyd_rnd_lh_s0:
    763     case M2_mpyd_rnd_lh_s1:
    764     case M2_mpyu_acc_lh_s0:
    765     case M2_mpyu_acc_lh_s1:
    766     case M2_mpyu_lh_s0:
    767     case M2_mpyu_lh_s1:
    768     case M2_mpyu_nac_lh_s0:
    769     case M2_mpyu_nac_lh_s1:
    770     case M2_mpyud_acc_lh_s0:
    771     case M2_mpyud_acc_lh_s1:
    772     case M2_mpyud_lh_s0:
    773     case M2_mpyud_lh_s1:
    774     case M2_mpyud_nac_lh_s0:
    775     case M2_mpyud_nac_lh_s1:
    776     // These four are actually LH.
    777     case A2_addh_l16_hl:
    778     case A2_addh_l16_sat_hl:
    779     case A2_subh_l16_hl:
    780     case A2_subh_l16_sat_hl:
    781       if (OpN == 1) {
    782         Bits.set(Begin, Begin+16);
    783         return true;
    784       }
    785       if (OpN == 2) {
    786         Bits.set(Begin+16, Begin+32);
    787         return true;
    788       }
    789       break;
    790 
    791     // Two register sources, used bits: R1[16-31], R2[0-15].
    792     case A2_addh_h16_hl:
    793     case A2_addh_h16_sat_hl:
    794     case A2_combine_hl:
    795     case A2_subh_h16_hl:
    796     case A2_subh_h16_sat_hl:
    797     case M2_mpy_acc_hl_s0:
    798     case M2_mpy_acc_hl_s1:
    799     case M2_mpy_acc_sat_hl_s0:
    800     case M2_mpy_acc_sat_hl_s1:
    801     case M2_mpy_hl_s0:
    802     case M2_mpy_hl_s1:
    803     case M2_mpy_nac_hl_s0:
    804     case M2_mpy_nac_hl_s1:
    805     case M2_mpy_nac_sat_hl_s0:
    806     case M2_mpy_nac_sat_hl_s1:
    807     case M2_mpy_rnd_hl_s0:
    808     case M2_mpy_rnd_hl_s1:
    809     case M2_mpy_sat_hl_s0:
    810     case M2_mpy_sat_hl_s1:
    811     case M2_mpy_sat_rnd_hl_s0:
    812     case M2_mpy_sat_rnd_hl_s1:
    813     case M2_mpyd_acc_hl_s0:
    814     case M2_mpyd_acc_hl_s1:
    815     case M2_mpyd_hl_s0:
    816     case M2_mpyd_hl_s1:
    817     case M2_mpyd_nac_hl_s0:
    818     case M2_mpyd_nac_hl_s1:
    819     case M2_mpyd_rnd_hl_s0:
    820     case M2_mpyd_rnd_hl_s1:
    821     case M2_mpyu_acc_hl_s0:
    822     case M2_mpyu_acc_hl_s1:
    823     case M2_mpyu_hl_s0:
    824     case M2_mpyu_hl_s1:
    825     case M2_mpyu_nac_hl_s0:
    826     case M2_mpyu_nac_hl_s1:
    827     case M2_mpyud_acc_hl_s0:
    828     case M2_mpyud_acc_hl_s1:
    829     case M2_mpyud_hl_s0:
    830     case M2_mpyud_hl_s1:
    831     case M2_mpyud_nac_hl_s0:
    832     case M2_mpyud_nac_hl_s1:
    833       if (OpN == 1) {
    834         Bits.set(Begin+16, Begin+32);
    835         return true;
    836       }
    837       if (OpN == 2) {
    838         Bits.set(Begin, Begin+16);
    839         return true;
    840       }
    841       break;
    842 
    843     // Two register sources, used bits: R1[16-31], R2[16-31].
    844     case A2_addh_h16_hh:
    845     case A2_addh_h16_sat_hh:
    846     case A2_combine_hh:
    847     case A2_subh_h16_hh:
    848     case A2_subh_h16_sat_hh:
    849     case M2_mpy_acc_hh_s0:
    850     case M2_mpy_acc_hh_s1:
    851     case M2_mpy_acc_sat_hh_s0:
    852     case M2_mpy_acc_sat_hh_s1:
    853     case M2_mpy_hh_s0:
    854     case M2_mpy_hh_s1:
    855     case M2_mpy_nac_hh_s0:
    856     case M2_mpy_nac_hh_s1:
    857     case M2_mpy_nac_sat_hh_s0:
    858     case M2_mpy_nac_sat_hh_s1:
    859     case M2_mpy_rnd_hh_s0:
    860     case M2_mpy_rnd_hh_s1:
    861     case M2_mpy_sat_hh_s0:
    862     case M2_mpy_sat_hh_s1:
    863     case M2_mpy_sat_rnd_hh_s0:
    864     case M2_mpy_sat_rnd_hh_s1:
    865     case M2_mpyd_acc_hh_s0:
    866     case M2_mpyd_acc_hh_s1:
    867     case M2_mpyd_hh_s0:
    868     case M2_mpyd_hh_s1:
    869     case M2_mpyd_nac_hh_s0:
    870     case M2_mpyd_nac_hh_s1:
    871     case M2_mpyd_rnd_hh_s0:
    872     case M2_mpyd_rnd_hh_s1:
    873     case M2_mpyu_acc_hh_s0:
    874     case M2_mpyu_acc_hh_s1:
    875     case M2_mpyu_hh_s0:
    876     case M2_mpyu_hh_s1:
    877     case M2_mpyu_nac_hh_s0:
    878     case M2_mpyu_nac_hh_s1:
    879     case M2_mpyud_acc_hh_s0:
    880     case M2_mpyud_acc_hh_s1:
    881     case M2_mpyud_hh_s0:
    882     case M2_mpyud_hh_s1:
    883     case M2_mpyud_nac_hh_s0:
    884     case M2_mpyud_nac_hh_s1:
    885       if (OpN == 1 || OpN == 2) {
    886         Bits.set(Begin+16, Begin+32);
    887         return true;
    888       }
    889       break;
    890   }
    891 
    892   return false;
    893 }
    894 
    895 // Calculate the register class that matches Reg:Sub. For example, if
    896 // %1 is a double register, then %1:isub_hi would match the "int"
    897 // register class.
    898 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
    899       const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
    900   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
    901     return nullptr;
    902   auto *RC = MRI.getRegClass(RR.Reg);
    903   if (RR.Sub == 0)
    904     return RC;
    905   auto &HRI = static_cast<const HexagonRegisterInfo&>(
    906                   *MRI.getTargetRegisterInfo());
    907 
    908   auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
    909     (void)HRI;
    910     assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
    911            Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
    912   };
    913 
    914   switch (RC->getID()) {
    915     case Hexagon::DoubleRegsRegClassID:
    916       VerifySR(RC, RR.Sub);
    917       return &Hexagon::IntRegsRegClass;
    918     case Hexagon::HvxWRRegClassID:
    919       VerifySR(RC, RR.Sub);
    920       return &Hexagon::HvxVRRegClass;
    921   }
    922   return nullptr;
    923 }
    924 
    925 // Check if RD could be replaced with RS at any possible use of RD.
    926 // For example a predicate register cannot be replaced with a integer
    927 // register, but a 64-bit register with a subregister can be replaced
    928 // with a 32-bit register.
    929 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
    930       const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
    931   if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
    932       !TargetRegisterInfo::isVirtualRegister(RS.Reg))
    933     return false;
    934   // Return false if one (or both) classes are nullptr.
    935   auto *DRC = getFinalVRegClass(RD, MRI);
    936   if (!DRC)
    937     return false;
    938 
    939   return DRC == getFinalVRegClass(RS, MRI);
    940 }
    941 
    942 bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
    943       unsigned NewSub) {
    944   if (!PreserveTiedOps)
    945     return false;
    946   return llvm::any_of(MRI.use_operands(Reg),
    947                       [NewSub] (const MachineOperand &Op) -> bool {
    948                         return Op.getSubReg() != NewSub && Op.isTied();
    949                       });
    950 }
    951 
    952 namespace {
    953 
    954   class DeadCodeElimination {
    955   public:
    956     DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
    957       : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
    958         MDT(mdt), MRI(mf.getRegInfo()) {}
    959 
    960     bool run() {
    961       return runOnNode(MDT.getRootNode());
    962     }
    963 
    964   private:
    965     bool isDead(unsigned R) const;
    966     bool runOnNode(MachineDomTreeNode *N);
    967 
    968     MachineFunction &MF;
    969     const HexagonInstrInfo &HII;
    970     MachineDominatorTree &MDT;
    971     MachineRegisterInfo &MRI;
    972   };
    973 
    974 } // end anonymous namespace
    975 
    976 bool DeadCodeElimination::isDead(unsigned R) const {
    977   for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
    978     MachineInstr *UseI = I->getParent();
    979     if (UseI->isDebugValue())
    980       continue;
    981     if (UseI->isPHI()) {
    982       assert(!UseI->getOperand(0).getSubReg());
    983       unsigned DR = UseI->getOperand(0).getReg();
    984       if (DR == R)
    985         continue;
    986     }
    987     return false;
    988   }
    989   return true;
    990 }
    991 
    992 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
    993   bool Changed = false;
    994 
    995   for (auto *DTN : children<MachineDomTreeNode*>(N))
    996     Changed |= runOnNode(DTN);
    997 
    998   MachineBasicBlock *B = N->getBlock();
    999   std::vector<MachineInstr*> Instrs;
   1000   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
   1001     Instrs.push_back(&*I);
   1002 
   1003   for (auto MI : Instrs) {
   1004     unsigned Opc = MI->getOpcode();
   1005     // Do not touch lifetime markers. This is why the target-independent DCE
   1006     // cannot be used.
   1007     if (Opc == TargetOpcode::LIFETIME_START ||
   1008         Opc == TargetOpcode::LIFETIME_END)
   1009       continue;
   1010     bool Store = false;
   1011     if (MI->isInlineAsm())
   1012       continue;
   1013     // Delete PHIs if possible.
   1014     if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
   1015       continue;
   1016 
   1017     bool AllDead = true;
   1018     SmallVector<unsigned,2> Regs;
   1019     for (auto &Op : MI->operands()) {
   1020       if (!Op.isReg() || !Op.isDef())
   1021         continue;
   1022       unsigned R = Op.getReg();
   1023       if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
   1024         AllDead = false;
   1025         break;
   1026       }
   1027       Regs.push_back(R);
   1028     }
   1029     if (!AllDead)
   1030       continue;
   1031 
   1032     B->erase(MI);
   1033     for (unsigned i = 0, n = Regs.size(); i != n; ++i)
   1034       MRI.markUsesInDebugValueAsUndef(Regs[i]);
   1035     Changed = true;
   1036   }
   1037 
   1038   return Changed;
   1039 }
   1040 
   1041 namespace {
   1042 
   1043 // Eliminate redundant instructions
   1044 //
   1045 // This transformation will identify instructions where the output register
   1046 // is the same as one of its input registers. This only works on instructions
   1047 // that define a single register (unlike post-increment loads, for example).
   1048 // The equality check is actually more detailed: the code calculates which
   1049 // bits of the output are used, and only compares these bits with the input
   1050 // registers.
   1051 // If the output matches an input, the instruction is replaced with COPY.
   1052 // The copies will be removed by another transformation.
   1053   class RedundantInstrElimination : public Transformation {
   1054   public:
   1055     RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
   1056           const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
   1057         : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
   1058 
   1059     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
   1060 
   1061   private:
   1062     bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
   1063           unsigned &LostB, unsigned &LostE);
   1064     bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
   1065           unsigned &LostB, unsigned &LostE);
   1066     bool computeUsedBits(unsigned Reg, BitVector &Bits);
   1067     bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
   1068           uint16_t Begin);
   1069     bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
   1070 
   1071     const HexagonInstrInfo &HII;
   1072     const HexagonRegisterInfo &HRI;
   1073     MachineRegisterInfo &MRI;
   1074     BitTracker &BT;
   1075   };
   1076 
   1077 } // end anonymous namespace
   1078 
   1079 // Check if the instruction is a lossy shift left, where the input being
   1080 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
   1081 // of bit indices that are lost.
   1082 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
   1083       unsigned OpN, unsigned &LostB, unsigned &LostE) {
   1084   using namespace Hexagon;
   1085 
   1086   unsigned Opc = MI.getOpcode();
   1087   unsigned ImN, RegN, Width;
   1088   switch (Opc) {
   1089     case S2_asl_i_p:
   1090       ImN = 2;
   1091       RegN = 1;
   1092       Width = 64;
   1093       break;
   1094     case S2_asl_i_p_acc:
   1095     case S2_asl_i_p_and:
   1096     case S2_asl_i_p_nac:
   1097     case S2_asl_i_p_or:
   1098     case S2_asl_i_p_xacc:
   1099       ImN = 3;
   1100       RegN = 2;
   1101       Width = 64;
   1102       break;
   1103     case S2_asl_i_r:
   1104       ImN = 2;
   1105       RegN = 1;
   1106       Width = 32;
   1107       break;
   1108     case S2_addasl_rrri:
   1109     case S4_andi_asl_ri:
   1110     case S4_ori_asl_ri:
   1111     case S4_addi_asl_ri:
   1112     case S4_subi_asl_ri:
   1113     case S2_asl_i_r_acc:
   1114     case S2_asl_i_r_and:
   1115     case S2_asl_i_r_nac:
   1116     case S2_asl_i_r_or:
   1117     case S2_asl_i_r_sat:
   1118     case S2_asl_i_r_xacc:
   1119       ImN = 3;
   1120       RegN = 2;
   1121       Width = 32;
   1122       break;
   1123     default:
   1124       return false;
   1125   }
   1126 
   1127   if (RegN != OpN)
   1128     return false;
   1129 
   1130   assert(MI.getOperand(ImN).isImm());
   1131   unsigned S = MI.getOperand(ImN).getImm();
   1132   if (S == 0)
   1133     return false;
   1134   LostB = Width-S;
   1135   LostE = Width;
   1136   return true;
   1137 }
   1138 
   1139 // Check if the instruction is a lossy shift right, where the input being
   1140 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
   1141 // of bit indices that are lost.
   1142 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
   1143       unsigned OpN, unsigned &LostB, unsigned &LostE) {
   1144   using namespace Hexagon;
   1145 
   1146   unsigned Opc = MI.getOpcode();
   1147   unsigned ImN, RegN;
   1148   switch (Opc) {
   1149     case S2_asr_i_p:
   1150     case S2_lsr_i_p:
   1151       ImN = 2;
   1152       RegN = 1;
   1153       break;
   1154     case S2_asr_i_p_acc:
   1155     case S2_asr_i_p_and:
   1156     case S2_asr_i_p_nac:
   1157     case S2_asr_i_p_or:
   1158     case S2_lsr_i_p_acc:
   1159     case S2_lsr_i_p_and:
   1160     case S2_lsr_i_p_nac:
   1161     case S2_lsr_i_p_or:
   1162     case S2_lsr_i_p_xacc:
   1163       ImN = 3;
   1164       RegN = 2;
   1165       break;
   1166     case S2_asr_i_r:
   1167     case S2_lsr_i_r:
   1168       ImN = 2;
   1169       RegN = 1;
   1170       break;
   1171     case S4_andi_lsr_ri:
   1172     case S4_ori_lsr_ri:
   1173     case S4_addi_lsr_ri:
   1174     case S4_subi_lsr_ri:
   1175     case S2_asr_i_r_acc:
   1176     case S2_asr_i_r_and:
   1177     case S2_asr_i_r_nac:
   1178     case S2_asr_i_r_or:
   1179     case S2_lsr_i_r_acc:
   1180     case S2_lsr_i_r_and:
   1181     case S2_lsr_i_r_nac:
   1182     case S2_lsr_i_r_or:
   1183     case S2_lsr_i_r_xacc:
   1184       ImN = 3;
   1185       RegN = 2;
   1186       break;
   1187 
   1188     default:
   1189       return false;
   1190   }
   1191 
   1192   if (RegN != OpN)
   1193     return false;
   1194 
   1195   assert(MI.getOperand(ImN).isImm());
   1196   unsigned S = MI.getOperand(ImN).getImm();
   1197   LostB = 0;
   1198   LostE = S;
   1199   return true;
   1200 }
   1201 
   1202 // Calculate the bit vector that corresponds to the used bits of register Reg.
   1203 // The vector Bits has the same size, as the size of Reg in bits. If the cal-
   1204 // culation fails (i.e. the used bits are unknown), it returns false. Other-
   1205 // wise, it returns true and sets the corresponding bits in Bits.
   1206 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
   1207   BitVector Used(Bits.size());
   1208   RegisterSet Visited;
   1209   std::vector<unsigned> Pending;
   1210   Pending.push_back(Reg);
   1211 
   1212   for (unsigned i = 0; i < Pending.size(); ++i) {
   1213     unsigned R = Pending[i];
   1214     if (Visited.has(R))
   1215       continue;
   1216     Visited.insert(R);
   1217     for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
   1218       BitTracker::RegisterRef UR = *I;
   1219       unsigned B, W;
   1220       if (!HBS::getSubregMask(UR, B, W, MRI))
   1221         return false;
   1222       MachineInstr &UseI = *I->getParent();
   1223       if (UseI.isPHI() || UseI.isCopy()) {
   1224         unsigned DefR = UseI.getOperand(0).getReg();
   1225         if (!TargetRegisterInfo::isVirtualRegister(DefR))
   1226           return false;
   1227         Pending.push_back(DefR);
   1228       } else {
   1229         if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
   1230           return false;
   1231       }
   1232     }
   1233   }
   1234   Bits |= Used;
   1235   return true;
   1236 }
   1237 
   1238 // Calculate the bits used by instruction MI in a register in operand OpN.
   1239 // Return true/false if the calculation succeeds/fails. If is succeeds, set
   1240 // used bits in Bits. This function does not reset any bits in Bits, so
   1241 // subsequent calls over different instructions will result in the union
   1242 // of the used bits in all these instructions.
   1243 // The register in question may be used with a sub-register, whereas Bits
   1244 // holds the bits for the entire register. To keep track of that, the
   1245 // argument Begin indicates where in Bits is the lowest-significant bit
   1246 // of the register used in operand OpN. For example, in instruction:
   1247 //   %1 = S2_lsr_i_r %2:isub_hi, 10
   1248 // the operand 1 is a 32-bit register, which happens to be a subregister
   1249 // of the 64-bit register %2, and that subregister starts at position 32.
   1250 // In this case Begin=32, since Bits[32] would be the lowest-significant bit
   1251 // of %2:isub_hi.
   1252 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
   1253       unsigned OpN, BitVector &Bits, uint16_t Begin) {
   1254   unsigned Opc = MI.getOpcode();
   1255   BitVector T(Bits.size());
   1256   bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
   1257   // Even if we don't have bits yet, we could still provide some information
   1258   // if the instruction is a lossy shift: the lost bits will be marked as
   1259   // not used.
   1260   unsigned LB, LE;
   1261   if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
   1262     assert(MI.getOperand(OpN).isReg());
   1263     BitTracker::RegisterRef RR = MI.getOperand(OpN);
   1264     const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
   1265     uint16_t Width = HRI.getRegSizeInBits(*RC);
   1266 
   1267     if (!GotBits)
   1268       T.set(Begin, Begin+Width);
   1269     assert(LB <= LE && LB < Width && LE <= Width);
   1270     T.reset(Begin+LB, Begin+LE);
   1271     GotBits = true;
   1272   }
   1273   if (GotBits)
   1274     Bits |= T;
   1275   return GotBits;
   1276 }
   1277 
   1278 // Calculates the used bits in RD ("defined register"), and checks if these
   1279 // bits in RS ("used register") and RD are identical.
   1280 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
   1281       BitTracker::RegisterRef RS) {
   1282   const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
   1283   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
   1284 
   1285   unsigned DB, DW;
   1286   if (!HBS::getSubregMask(RD, DB, DW, MRI))
   1287     return false;
   1288   unsigned SB, SW;
   1289   if (!HBS::getSubregMask(RS, SB, SW, MRI))
   1290     return false;
   1291   if (SW != DW)
   1292     return false;
   1293 
   1294   BitVector Used(DC.width());
   1295   if (!computeUsedBits(RD.Reg, Used))
   1296     return false;
   1297 
   1298   for (unsigned i = 0; i != DW; ++i)
   1299     if (Used[i+DB] && DC[DB+i] != SC[SB+i])
   1300       return false;
   1301   return true;
   1302 }
   1303 
   1304 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
   1305       const RegisterSet&) {
   1306   if (!BT.reached(&B))
   1307     return false;
   1308   bool Changed = false;
   1309 
   1310   for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
   1311     NextI = std::next(I);
   1312     MachineInstr *MI = &*I;
   1313 
   1314     if (MI->getOpcode() == TargetOpcode::COPY)
   1315       continue;
   1316     if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
   1317       continue;
   1318     unsigned NumD = MI->getDesc().getNumDefs();
   1319     if (NumD != 1)
   1320       continue;
   1321 
   1322     BitTracker::RegisterRef RD = MI->getOperand(0);
   1323     if (!BT.has(RD.Reg))
   1324       continue;
   1325     const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
   1326     auto At = MachineBasicBlock::iterator(MI);
   1327 
   1328     // Find a source operand that is equal to the result.
   1329     for (auto &Op : MI->uses()) {
   1330       if (!Op.isReg())
   1331         continue;
   1332       BitTracker::RegisterRef RS = Op;
   1333       if (!BT.has(RS.Reg))
   1334         continue;
   1335       if (!HBS::isTransparentCopy(RD, RS, MRI))
   1336         continue;
   1337 
   1338       unsigned BN, BW;
   1339       if (!HBS::getSubregMask(RS, BN, BW, MRI))
   1340         continue;
   1341 
   1342       const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
   1343       if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
   1344         continue;
   1345 
   1346       // If found, replace the instruction with a COPY.
   1347       const DebugLoc &DL = MI->getDebugLoc();
   1348       const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
   1349       unsigned NewR = MRI.createVirtualRegister(FRC);
   1350       MachineInstr *CopyI =
   1351           BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
   1352             .addReg(RS.Reg, 0, RS.Sub);
   1353       HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
   1354       // This pass can create copies between registers that don't have the
   1355       // exact same values. Updating the tracker has to involve updating
   1356       // all dependent cells. Example:
   1357       //   %1  = inst %2     ; %1 != %2, but used bits are equal
   1358       //
   1359       //   %3  = copy %2     ; <- inserted
   1360       //   ... = %3          ; <- replaced from %2
   1361       // Indirectly, we can create a "copy" between %1 and %2 even
   1362       // though their exact values do not match.
   1363       BT.visit(*CopyI);
   1364       Changed = true;
   1365       break;
   1366     }
   1367   }
   1368 
   1369   return Changed;
   1370 }
   1371 
   1372 namespace {
   1373 
   1374 // Recognize instructions that produce constant values known at compile-time.
   1375 // Replace them with register definitions that load these constants directly.
   1376   class ConstGeneration : public Transformation {
   1377   public:
   1378     ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
   1379         MachineRegisterInfo &mri)
   1380       : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
   1381 
   1382     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
   1383     static bool isTfrConst(const MachineInstr &MI);
   1384 
   1385   private:
   1386     unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
   1387         MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
   1388 
   1389     const HexagonInstrInfo &HII;
   1390     MachineRegisterInfo &MRI;
   1391     BitTracker &BT;
   1392   };
   1393 
   1394 } // end anonymous namespace
   1395 
   1396 bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
   1397   unsigned Opc = MI.getOpcode();
   1398   switch (Opc) {
   1399     case Hexagon::A2_combineii:
   1400     case Hexagon::A4_combineii:
   1401     case Hexagon::A2_tfrsi:
   1402     case Hexagon::A2_tfrpi:
   1403     case Hexagon::PS_true:
   1404     case Hexagon::PS_false:
   1405     case Hexagon::CONST32:
   1406     case Hexagon::CONST64:
   1407       return true;
   1408   }
   1409   return false;
   1410 }
   1411 
   1412 // Generate a transfer-immediate instruction that is appropriate for the
   1413 // register class and the actual value being transferred.
   1414 unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
   1415       MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
   1416   unsigned Reg = MRI.createVirtualRegister(RC);
   1417   if (RC == &Hexagon::IntRegsRegClass) {
   1418     BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
   1419         .addImm(int32_t(C));
   1420     return Reg;
   1421   }
   1422 
   1423   if (RC == &Hexagon::DoubleRegsRegClass) {
   1424     if (isInt<8>(C)) {
   1425       BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
   1426           .addImm(C);
   1427       return Reg;
   1428     }
   1429 
   1430     unsigned Lo = Lo_32(C), Hi = Hi_32(C);
   1431     if (isInt<8>(Lo) || isInt<8>(Hi)) {
   1432       unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
   1433                                   : Hexagon::A4_combineii;
   1434       BuildMI(B, At, DL, HII.get(Opc), Reg)
   1435           .addImm(int32_t(Hi))
   1436           .addImm(int32_t(Lo));
   1437       return Reg;
   1438     }
   1439 
   1440     BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
   1441         .addImm(C);
   1442     return Reg;
   1443   }
   1444 
   1445   if (RC == &Hexagon::PredRegsRegClass) {
   1446     unsigned Opc;
   1447     if (C == 0)
   1448       Opc = Hexagon::PS_false;
   1449     else if ((C & 0xFF) == 0xFF)
   1450       Opc = Hexagon::PS_true;
   1451     else
   1452       return 0;
   1453     BuildMI(B, At, DL, HII.get(Opc), Reg);
   1454     return Reg;
   1455   }
   1456 
   1457   return 0;
   1458 }
   1459 
   1460 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
   1461   if (!BT.reached(&B))
   1462     return false;
   1463   bool Changed = false;
   1464   RegisterSet Defs;
   1465 
   1466   for (auto I = B.begin(), E = B.end(); I != E; ++I) {
   1467     if (isTfrConst(*I))
   1468       continue;
   1469     Defs.clear();
   1470     HBS::getInstrDefs(*I, Defs);
   1471     if (Defs.count() != 1)
   1472       continue;
   1473     unsigned DR = Defs.find_first();
   1474     if (!TargetRegisterInfo::isVirtualRegister(DR))
   1475       continue;
   1476     uint64_t U;
   1477     const BitTracker::RegisterCell &DRC = BT.lookup(DR);
   1478     if (HBS::getConst(DRC, 0, DRC.width(), U)) {
   1479       int64_t C = U;
   1480       DebugLoc DL = I->getDebugLoc();
   1481       auto At = I->isPHI() ? B.getFirstNonPHI() : I;
   1482       unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
   1483       if (ImmReg) {
   1484         HBS::replaceReg(DR, ImmReg, MRI);
   1485         BT.put(ImmReg, DRC);
   1486         Changed = true;
   1487       }
   1488     }
   1489   }
   1490   return Changed;
   1491 }
   1492 
   1493 namespace {
   1494 
   1495 // Identify pairs of available registers which hold identical values.
   1496 // In such cases, only one of them needs to be calculated, the other one
   1497 // will be defined as a copy of the first.
   1498   class CopyGeneration : public Transformation {
   1499   public:
   1500     CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
   1501         const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
   1502       : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
   1503 
   1504     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
   1505 
   1506   private:
   1507     bool findMatch(const BitTracker::RegisterRef &Inp,
   1508         BitTracker::RegisterRef &Out, const RegisterSet &AVs);
   1509 
   1510     const HexagonInstrInfo &HII;
   1511     const HexagonRegisterInfo &HRI;
   1512     MachineRegisterInfo &MRI;
   1513     BitTracker &BT;
   1514     RegisterSet Forbidden;
   1515   };
   1516 
   1517 // Eliminate register copies RD = RS, by replacing the uses of RD with
   1518 // with uses of RS.
   1519   class CopyPropagation : public Transformation {
   1520   public:
   1521     CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
   1522         : Transformation(false), HRI(hri), MRI(mri) {}
   1523 
   1524     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
   1525 
   1526     static bool isCopyReg(unsigned Opc, bool NoConv);
   1527 
   1528   private:
   1529     bool propagateRegCopy(MachineInstr &MI);
   1530 
   1531     const HexagonRegisterInfo &HRI;
   1532     MachineRegisterInfo &MRI;
   1533   };
   1534 
   1535 } // end anonymous namespace
   1536 
   1537 /// Check if there is a register in AVs that is identical to Inp. If so,
   1538 /// set Out to the found register. The output may be a pair Reg:Sub.
   1539 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
   1540       BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
   1541   if (!BT.has(Inp.Reg))
   1542     return false;
   1543   const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
   1544   auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
   1545   unsigned B, W;
   1546   if (!HBS::getSubregMask(Inp, B, W, MRI))
   1547     return false;
   1548 
   1549   for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
   1550     if (!BT.has(R) || Forbidden[R])
   1551       continue;
   1552     const BitTracker::RegisterCell &RC = BT.lookup(R);
   1553     unsigned RW = RC.width();
   1554     if (W == RW) {
   1555       if (FRC != MRI.getRegClass(R))
   1556         continue;
   1557       if (!HBS::isTransparentCopy(R, Inp, MRI))
   1558         continue;
   1559       if (!HBS::isEqual(InpRC, B, RC, 0, W))
   1560         continue;
   1561       Out.Reg = R;
   1562       Out.Sub = 0;
   1563       return true;
   1564     }
   1565     // Check if there is a super-register, whose part (with a subregister)
   1566     // is equal to the input.
   1567     // Only do double registers for now.
   1568     if (W*2 != RW)
   1569       continue;
   1570     if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
   1571       continue;
   1572 
   1573     if (HBS::isEqual(InpRC, B, RC, 0, W))
   1574       Out.Sub = Hexagon::isub_lo;
   1575     else if (HBS::isEqual(InpRC, B, RC, W, W))
   1576       Out.Sub = Hexagon::isub_hi;
   1577     else
   1578       continue;
   1579     Out.Reg = R;
   1580     if (HBS::isTransparentCopy(Out, Inp, MRI))
   1581       return true;
   1582   }
   1583   return false;
   1584 }
   1585 
   1586 bool CopyGeneration::processBlock(MachineBasicBlock &B,
   1587       const RegisterSet &AVs) {
   1588   if (!BT.reached(&B))
   1589     return false;
   1590   RegisterSet AVB(AVs);
   1591   bool Changed = false;
   1592   RegisterSet Defs;
   1593 
   1594   for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
   1595        ++I, AVB.insert(Defs)) {
   1596     NextI = std::next(I);
   1597     Defs.clear();
   1598     HBS::getInstrDefs(*I, Defs);
   1599 
   1600     unsigned Opc = I->getOpcode();
   1601     if (CopyPropagation::isCopyReg(Opc, false) ||
   1602         ConstGeneration::isTfrConst(*I))
   1603       continue;
   1604 
   1605     DebugLoc DL = I->getDebugLoc();
   1606     auto At = I->isPHI() ? B.getFirstNonPHI() : I;
   1607 
   1608     for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
   1609       BitTracker::RegisterRef MR;
   1610       auto *FRC = HBS::getFinalVRegClass(R, MRI);
   1611 
   1612       if (findMatch(R, MR, AVB)) {
   1613         unsigned NewR = MRI.createVirtualRegister(FRC);
   1614         BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
   1615           .addReg(MR.Reg, 0, MR.Sub);
   1616         BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
   1617         HBS::replaceReg(R, NewR, MRI);
   1618         Forbidden.insert(R);
   1619         continue;
   1620       }
   1621 
   1622       if (FRC == &Hexagon::DoubleRegsRegClass ||
   1623           FRC == &Hexagon::HvxWRRegClass) {
   1624         // Try to generate REG_SEQUENCE.
   1625         unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
   1626         unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
   1627         BitTracker::RegisterRef TL = { R, SubLo };
   1628         BitTracker::RegisterRef TH = { R, SubHi };
   1629         BitTracker::RegisterRef ML, MH;
   1630         if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
   1631           auto *FRC = HBS::getFinalVRegClass(R, MRI);
   1632           unsigned NewR = MRI.createVirtualRegister(FRC);
   1633           BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
   1634             .addReg(ML.Reg, 0, ML.Sub)
   1635             .addImm(SubLo)
   1636             .addReg(MH.Reg, 0, MH.Sub)
   1637             .addImm(SubHi);
   1638           BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
   1639           HBS::replaceReg(R, NewR, MRI);
   1640           Forbidden.insert(R);
   1641         }
   1642       }
   1643     }
   1644   }
   1645 
   1646   return Changed;
   1647 }
   1648 
   1649 bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
   1650   switch (Opc) {
   1651     case TargetOpcode::COPY:
   1652     case TargetOpcode::REG_SEQUENCE:
   1653     case Hexagon::A4_combineir:
   1654     case Hexagon::A4_combineri:
   1655       return true;
   1656     case Hexagon::A2_tfr:
   1657     case Hexagon::A2_tfrp:
   1658     case Hexagon::A2_combinew:
   1659     case Hexagon::V6_vcombine:
   1660       return NoConv;
   1661     default:
   1662       break;
   1663   }
   1664   return false;
   1665 }
   1666 
   1667 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
   1668   bool Changed = false;
   1669   unsigned Opc = MI.getOpcode();
   1670   BitTracker::RegisterRef RD = MI.getOperand(0);
   1671   assert(MI.getOperand(0).getSubReg() == 0);
   1672 
   1673   switch (Opc) {
   1674     case TargetOpcode::COPY:
   1675     case Hexagon::A2_tfr:
   1676     case Hexagon::A2_tfrp: {
   1677       BitTracker::RegisterRef RS = MI.getOperand(1);
   1678       if (!HBS::isTransparentCopy(RD, RS, MRI))
   1679         break;
   1680       if (RS.Sub != 0)
   1681         Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
   1682       else
   1683         Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
   1684       break;
   1685     }
   1686     case TargetOpcode::REG_SEQUENCE: {
   1687       BitTracker::RegisterRef SL, SH;
   1688       if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
   1689         const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
   1690         unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
   1691         unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
   1692         Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
   1693         Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
   1694       }
   1695       break;
   1696     }
   1697     case Hexagon::A2_combinew:
   1698     case Hexagon::V6_vcombine: {
   1699       const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
   1700       unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
   1701       unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
   1702       BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
   1703       Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
   1704       Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
   1705       break;
   1706     }
   1707     case Hexagon::A4_combineir:
   1708     case Hexagon::A4_combineri: {
   1709       unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
   1710       unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
   1711                                                     : Hexagon::isub_hi;
   1712       BitTracker::RegisterRef RS = MI.getOperand(SrcX);
   1713       Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
   1714       break;
   1715     }
   1716   }
   1717   return Changed;
   1718 }
   1719 
   1720 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
   1721   std::vector<MachineInstr*> Instrs;
   1722   for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
   1723     Instrs.push_back(&*I);
   1724 
   1725   bool Changed = false;
   1726   for (auto I : Instrs) {
   1727     unsigned Opc = I->getOpcode();
   1728     if (!CopyPropagation::isCopyReg(Opc, true))
   1729       continue;
   1730     Changed |= propagateRegCopy(*I);
   1731   }
   1732 
   1733   return Changed;
   1734 }
   1735 
   1736 namespace {
   1737 
   1738 // Recognize patterns that can be simplified and replace them with the
   1739 // simpler forms.
   1740 // This is by no means complete
   1741   class BitSimplification : public Transformation {
   1742   public:
   1743     BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
   1744         const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
   1745         MachineRegisterInfo &mri, MachineFunction &mf)
   1746       : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
   1747         MF(mf), BT(bt) {}
   1748 
   1749     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
   1750 
   1751   private:
   1752     struct RegHalf : public BitTracker::RegisterRef {
   1753       bool Low;  // Low/High halfword.
   1754     };
   1755 
   1756     bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
   1757           unsigned B, RegHalf &RH);
   1758     bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
   1759 
   1760     bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
   1761           BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
   1762     unsigned getCombineOpcode(bool HLow, bool LLow);
   1763 
   1764     bool genStoreUpperHalf(MachineInstr *MI);
   1765     bool genStoreImmediate(MachineInstr *MI);
   1766     bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
   1767           const BitTracker::RegisterCell &RC);
   1768     bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
   1769           const BitTracker::RegisterCell &RC);
   1770     bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
   1771           const BitTracker::RegisterCell &RC);
   1772     bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
   1773           const BitTracker::RegisterCell &RC);
   1774     bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
   1775           const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
   1776     bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
   1777           const BitTracker::RegisterCell &RC);
   1778     bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
   1779           const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
   1780     bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD);
   1781 
   1782     // Cache of created instructions to avoid creating duplicates.
   1783     // XXX Currently only used by genBitSplit.
   1784     std::vector<MachineInstr*> NewMIs;
   1785 
   1786     const MachineDominatorTree &MDT;
   1787     const HexagonInstrInfo &HII;
   1788     const HexagonRegisterInfo &HRI;
   1789     MachineRegisterInfo &MRI;
   1790     MachineFunction &MF;
   1791     BitTracker &BT;
   1792   };
   1793 
   1794 } // end anonymous namespace
   1795 
   1796 // Check if the bits [B..B+16) in register cell RC form a valid halfword,
   1797 // i.e. [0..16), [16..32), etc. of some register. If so, return true and
   1798 // set the information about the found register in RH.
   1799 bool BitSimplification::matchHalf(unsigned SelfR,
   1800       const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
   1801   // XXX This could be searching in the set of available registers, in case
   1802   // the match is not exact.
   1803 
   1804   // Match 16-bit chunks, where the RC[B..B+15] references exactly one
   1805   // register and all the bits B..B+15 match between RC and the register.
   1806   // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
   1807   // and RC = { [0]:0 [1-15]:v1[1-15]... }.
   1808   bool Low = false;
   1809   unsigned I = B;
   1810   while (I < B+16 && RC[I].num())
   1811     I++;
   1812   if (I == B+16)
   1813     return false;
   1814 
   1815   unsigned Reg = RC[I].RefI.Reg;
   1816   unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
   1817   if (P < I-B)
   1818     return false;
   1819   unsigned Pos = P - (I-B);
   1820 
   1821   if (Reg == 0 || Reg == SelfR)    // Don't match "self".
   1822     return false;
   1823   if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1824     return false;
   1825   if (!BT.has(Reg))
   1826     return false;
   1827 
   1828   const BitTracker::RegisterCell &SC = BT.lookup(Reg);
   1829   if (Pos+16 > SC.width())
   1830     return false;
   1831 
   1832   for (unsigned i = 0; i < 16; ++i) {
   1833     const BitTracker::BitValue &RV = RC[i+B];
   1834     if (RV.Type == BitTracker::BitValue::Ref) {
   1835       if (RV.RefI.Reg != Reg)
   1836         return false;
   1837       if (RV.RefI.Pos != i+Pos)
   1838         return false;
   1839       continue;
   1840     }
   1841     if (RC[i+B] != SC[i+Pos])
   1842       return false;
   1843   }
   1844 
   1845   unsigned Sub = 0;
   1846   switch (Pos) {
   1847     case 0:
   1848       Sub = Hexagon::isub_lo;
   1849       Low = true;
   1850       break;
   1851     case 16:
   1852       Sub = Hexagon::isub_lo;
   1853       Low = false;
   1854       break;
   1855     case 32:
   1856       Sub = Hexagon::isub_hi;
   1857       Low = true;
   1858       break;
   1859     case 48:
   1860       Sub = Hexagon::isub_hi;
   1861       Low = false;
   1862       break;
   1863     default:
   1864       return false;
   1865   }
   1866 
   1867   RH.Reg = Reg;
   1868   RH.Sub = Sub;
   1869   RH.Low = Low;
   1870   // If the subregister is not valid with the register, set it to 0.
   1871   if (!HBS::getFinalVRegClass(RH, MRI))
   1872     RH.Sub = 0;
   1873 
   1874   return true;
   1875 }
   1876 
   1877 bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
   1878       unsigned OpNum) {
   1879   auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
   1880   auto *RRC = HBS::getFinalVRegClass(R, MRI);
   1881   return OpRC->hasSubClassEq(RRC);
   1882 }
   1883 
   1884 // Check if RC matches the pattern of a S2_packhl. If so, return true and
   1885 // set the inputs Rs and Rt.
   1886 bool BitSimplification::matchPackhl(unsigned SelfR,
   1887       const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
   1888       BitTracker::RegisterRef &Rt) {
   1889   RegHalf L1, H1, L2, H2;
   1890 
   1891   if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
   1892     return false;
   1893   if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
   1894     return false;
   1895 
   1896   // Rs = H1.L1, Rt = H2.L2
   1897   if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
   1898     return false;
   1899   if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
   1900     return false;
   1901 
   1902   Rs = H1;
   1903   Rt = H2;
   1904   return true;
   1905 }
   1906 
   1907 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
   1908   return HLow ? LLow ? Hexagon::A2_combine_ll
   1909                      : Hexagon::A2_combine_lh
   1910               : LLow ? Hexagon::A2_combine_hl
   1911                      : Hexagon::A2_combine_hh;
   1912 }
   1913 
   1914 // If MI stores the upper halfword of a register (potentially obtained via
   1915 // shifts or extracts), replace it with a storerf instruction. This could
   1916 // cause the "extraction" code to become dead.
   1917 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
   1918   unsigned Opc = MI->getOpcode();
   1919   if (Opc != Hexagon::S2_storerh_io)
   1920     return false;
   1921 
   1922   MachineOperand &ValOp = MI->getOperand(2);
   1923   BitTracker::RegisterRef RS = ValOp;
   1924   if (!BT.has(RS.Reg))
   1925     return false;
   1926   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
   1927   RegHalf H;
   1928   if (!matchHalf(0, RC, 0, H))
   1929     return false;
   1930   if (H.Low)
   1931     return false;
   1932   MI->setDesc(HII.get(Hexagon::S2_storerf_io));
   1933   ValOp.setReg(H.Reg);
   1934   ValOp.setSubReg(H.Sub);
   1935   return true;
   1936 }
   1937 
   1938 // If MI stores a value known at compile-time, and the value is within a range
   1939 // that avoids using constant-extenders, replace it with a store-immediate.
   1940 bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
   1941   unsigned Opc = MI->getOpcode();
   1942   unsigned Align = 0;
   1943   switch (Opc) {
   1944     case Hexagon::S2_storeri_io:
   1945       Align++;
   1946       LLVM_FALLTHROUGH;
   1947     case Hexagon::S2_storerh_io:
   1948       Align++;
   1949       LLVM_FALLTHROUGH;
   1950     case Hexagon::S2_storerb_io:
   1951       break;
   1952     default:
   1953       return false;
   1954   }
   1955 
   1956   // Avoid stores to frame-indices (due to an unknown offset).
   1957   if (!MI->getOperand(0).isReg())
   1958     return false;
   1959   MachineOperand &OffOp = MI->getOperand(1);
   1960   if (!OffOp.isImm())
   1961     return false;
   1962 
   1963   int64_t Off = OffOp.getImm();
   1964   // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
   1965   if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
   1966     return false;
   1967   // Source register:
   1968   BitTracker::RegisterRef RS = MI->getOperand(2);
   1969   if (!BT.has(RS.Reg))
   1970     return false;
   1971   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
   1972   uint64_t U;
   1973   if (!HBS::getConst(RC, 0, RC.width(), U))
   1974     return false;
   1975 
   1976   // Only consider 8-bit values to avoid constant-extenders.
   1977   int V;
   1978   switch (Opc) {
   1979     case Hexagon::S2_storerb_io:
   1980       V = int8_t(U);
   1981       break;
   1982     case Hexagon::S2_storerh_io:
   1983       V = int16_t(U);
   1984       break;
   1985     case Hexagon::S2_storeri_io:
   1986       V = int32_t(U);
   1987       break;
   1988   }
   1989   if (!isInt<8>(V))
   1990     return false;
   1991 
   1992   MI->RemoveOperand(2);
   1993   switch (Opc) {
   1994     case Hexagon::S2_storerb_io:
   1995       MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
   1996       break;
   1997     case Hexagon::S2_storerh_io:
   1998       MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
   1999       break;
   2000     case Hexagon::S2_storeri_io:
   2001       MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
   2002       break;
   2003   }
   2004   MI->addOperand(MachineOperand::CreateImm(V));
   2005   return true;
   2006 }
   2007 
   2008 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
   2009 // last instruction in a sequence that results in something equivalent to
   2010 // the pack-halfwords. The intent is to cause the entire sequence to become
   2011 // dead.
   2012 bool BitSimplification::genPackhl(MachineInstr *MI,
   2013       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
   2014   unsigned Opc = MI->getOpcode();
   2015   if (Opc == Hexagon::S2_packhl)
   2016     return false;
   2017   BitTracker::RegisterRef Rs, Rt;
   2018   if (!matchPackhl(RD.Reg, RC, Rs, Rt))
   2019     return false;
   2020   if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
   2021       !validateReg(Rt, Hexagon::S2_packhl, 2))
   2022     return false;
   2023 
   2024   MachineBasicBlock &B = *MI->getParent();
   2025   unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
   2026   DebugLoc DL = MI->getDebugLoc();
   2027   auto At = MI->isPHI() ? B.getFirstNonPHI()
   2028                         : MachineBasicBlock::iterator(MI);
   2029   BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
   2030       .addReg(Rs.Reg, 0, Rs.Sub)
   2031       .addReg(Rt.Reg, 0, Rt.Sub);
   2032   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
   2033   BT.put(BitTracker::RegisterRef(NewR), RC);
   2034   return true;
   2035 }
   2036 
   2037 // If MI produces halfword of the input in the low half of the output,
   2038 // replace it with zero-extend or extractu.
   2039 bool BitSimplification::genExtractHalf(MachineInstr *MI,
   2040       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
   2041   RegHalf L;
   2042   // Check for halfword in low 16 bits, zeros elsewhere.
   2043   if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
   2044     return false;
   2045 
   2046   unsigned Opc = MI->getOpcode();
   2047   MachineBasicBlock &B = *MI->getParent();
   2048   DebugLoc DL = MI->getDebugLoc();
   2049 
   2050   // Prefer zxth, since zxth can go in any slot, while extractu only in
   2051   // slots 2 and 3.
   2052   unsigned NewR = 0;
   2053   auto At = MI->isPHI() ? B.getFirstNonPHI()
   2054                         : MachineBasicBlock::iterator(MI);
   2055   if (L.Low && Opc != Hexagon::A2_zxth) {
   2056     if (validateReg(L, Hexagon::A2_zxth, 1)) {
   2057       NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   2058       BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
   2059           .addReg(L.Reg, 0, L.Sub);
   2060     }
   2061   } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
   2062     if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
   2063       NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   2064       BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
   2065           .addReg(L.Reg, 0, L.Sub)
   2066           .addImm(16);
   2067     }
   2068   }
   2069   if (NewR == 0)
   2070     return false;
   2071   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
   2072   BT.put(BitTracker::RegisterRef(NewR), RC);
   2073   return true;
   2074 }
   2075 
   2076 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
   2077 // combine.
   2078 bool BitSimplification::genCombineHalf(MachineInstr *MI,
   2079       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
   2080   RegHalf L, H;
   2081   // Check for combine h/l
   2082   if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
   2083     return false;
   2084   // Do nothing if this is just a reg copy.
   2085   if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
   2086     return false;
   2087 
   2088   unsigned Opc = MI->getOpcode();
   2089   unsigned COpc = getCombineOpcode(H.Low, L.Low);
   2090   if (COpc == Opc)
   2091     return false;
   2092   if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
   2093     return false;
   2094 
   2095   MachineBasicBlock &B = *MI->getParent();
   2096   DebugLoc DL = MI->getDebugLoc();
   2097   unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   2098   auto At = MI->isPHI() ? B.getFirstNonPHI()
   2099                         : MachineBasicBlock::iterator(MI);
   2100   BuildMI(B, At, DL, HII.get(COpc), NewR)
   2101       .addReg(H.Reg, 0, H.Sub)
   2102       .addReg(L.Reg, 0, L.Sub);
   2103   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
   2104   BT.put(BitTracker::RegisterRef(NewR), RC);
   2105   return true;
   2106 }
   2107 
   2108 // If MI resets high bits of a register and keeps the lower ones, replace it
   2109 // with zero-extend byte/half, and-immediate, or extractu, as appropriate.
   2110 bool BitSimplification::genExtractLow(MachineInstr *MI,
   2111       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
   2112   unsigned Opc = MI->getOpcode();
   2113   switch (Opc) {
   2114     case Hexagon::A2_zxtb:
   2115     case Hexagon::A2_zxth:
   2116     case Hexagon::S2_extractu:
   2117       return false;
   2118   }
   2119   if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
   2120     int32_t Imm = MI->getOperand(2).getImm();
   2121     if (isInt<10>(Imm))
   2122       return false;
   2123   }
   2124 
   2125   if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
   2126     return false;
   2127   unsigned W = RC.width();
   2128   while (W > 0 && RC[W-1].is(0))
   2129     W--;
   2130   if (W == 0 || W == RC.width())
   2131     return false;
   2132   unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
   2133                   : (W == 16) ? Hexagon::A2_zxth
   2134                   : (W < 10)  ? Hexagon::A2_andir
   2135                   : Hexagon::S2_extractu;
   2136   MachineBasicBlock &B = *MI->getParent();
   2137   DebugLoc DL = MI->getDebugLoc();
   2138 
   2139   for (auto &Op : MI->uses()) {
   2140     if (!Op.isReg())
   2141       continue;
   2142     BitTracker::RegisterRef RS = Op;
   2143     if (!BT.has(RS.Reg))
   2144       continue;
   2145     const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
   2146     unsigned BN, BW;
   2147     if (!HBS::getSubregMask(RS, BN, BW, MRI))
   2148       continue;
   2149     if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
   2150       continue;
   2151     if (!validateReg(RS, NewOpc, 1))
   2152       continue;
   2153 
   2154     unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   2155     auto At = MI->isPHI() ? B.getFirstNonPHI()
   2156                           : MachineBasicBlock::iterator(MI);
   2157     auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
   2158                   .addReg(RS.Reg, 0, RS.Sub);
   2159     if (NewOpc == Hexagon::A2_andir)
   2160       MIB.addImm((1 << W) - 1);
   2161     else if (NewOpc == Hexagon::S2_extractu)
   2162       MIB.addImm(W).addImm(0);
   2163     HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
   2164     BT.put(BitTracker::RegisterRef(NewR), RC);
   2165     return true;
   2166   }
   2167   return false;
   2168 }
   2169 
   2170 bool BitSimplification::genBitSplit(MachineInstr *MI,
   2171       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
   2172       const RegisterSet &AVs) {
   2173   if (!GenBitSplit)
   2174     return false;
   2175   if (MaxBitSplit.getNumOccurrences()) {
   2176     if (CountBitSplit >= MaxBitSplit)
   2177       return false;
   2178   }
   2179 
   2180   unsigned Opc = MI->getOpcode();
   2181   switch (Opc) {
   2182     case Hexagon::A4_bitsplit:
   2183     case Hexagon::A4_bitspliti:
   2184       return false;
   2185   }
   2186 
   2187   unsigned W = RC.width();
   2188   if (W != 32)
   2189     return false;
   2190 
   2191   auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
   2192     unsigned Z = C.width();
   2193     while (Z > 0 && C[Z-1].is(0))
   2194       --Z;
   2195     return C.width() - Z;
   2196   };
   2197 
   2198   // Count the number of leading zeros in the target RC.
   2199   unsigned Z = ctlz(RC);
   2200   if (Z == 0 || Z == W)
   2201     return false;
   2202 
   2203   // A simplistic analysis: assume the source register (the one being split)
   2204   // is fully unknown, and that all its bits are self-references.
   2205   const BitTracker::BitValue &B0 = RC[0];
   2206   if (B0.Type != BitTracker::BitValue::Ref)
   2207     return false;
   2208 
   2209   unsigned SrcR = B0.RefI.Reg;
   2210   unsigned SrcSR = 0;
   2211   unsigned Pos = B0.RefI.Pos;
   2212 
   2213   // All the non-zero bits should be consecutive bits from the same register.
   2214   for (unsigned i = 1; i < W-Z; ++i) {
   2215     const BitTracker::BitValue &V = RC[i];
   2216     if (V.Type != BitTracker::BitValue::Ref)
   2217       return false;
   2218     if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
   2219       return false;
   2220   }
   2221 
   2222   // Now, find the other bitfield among AVs.
   2223   for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
   2224     // The number of leading zeros here should be the number of trailing
   2225     // non-zeros in RC.
   2226     if (!BT.has(S))
   2227       continue;
   2228     const BitTracker::RegisterCell &SC = BT.lookup(S);
   2229     if (SC.width() != W || ctlz(SC) != W-Z)
   2230       continue;
   2231     // The Z lower bits should now match SrcR.
   2232     const BitTracker::BitValue &S0 = SC[0];
   2233     if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
   2234       continue;
   2235     unsigned P = S0.RefI.Pos;
   2236 
   2237     if (Pos <= P && (Pos + W-Z) != P)
   2238       continue;
   2239     if (P < Pos && (P + Z) != Pos)
   2240       continue;
   2241     // The starting bitfield position must be at a subregister boundary.
   2242     if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
   2243       continue;
   2244 
   2245     unsigned I;
   2246     for (I = 1; I < Z; ++I) {
   2247       const BitTracker::BitValue &V = SC[I];
   2248       if (V.Type != BitTracker::BitValue::Ref)
   2249         break;
   2250       if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
   2251         break;
   2252     }
   2253     if (I != Z)
   2254       continue;
   2255 
   2256     // Generate bitsplit where S is defined.
   2257     if (MaxBitSplit.getNumOccurrences())
   2258       CountBitSplit++;
   2259     MachineInstr *DefS = MRI.getVRegDef(S);
   2260     assert(DefS != nullptr);
   2261     DebugLoc DL = DefS->getDebugLoc();
   2262     MachineBasicBlock &B = *DefS->getParent();
   2263     auto At = DefS->isPHI() ? B.getFirstNonPHI()
   2264                             : MachineBasicBlock::iterator(DefS);
   2265     if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
   2266       SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
   2267     if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
   2268       continue;
   2269     unsigned ImmOp = Pos <= P ? W-Z : Z;
   2270 
   2271     // Find an existing bitsplit instruction if one already exists.
   2272     unsigned NewR = 0;
   2273     for (MachineInstr *In : NewMIs) {
   2274       if (In->getOpcode() != Hexagon::A4_bitspliti)
   2275         continue;
   2276       MachineOperand &Op1 = In->getOperand(1);
   2277       if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
   2278         continue;
   2279       if (In->getOperand(2).getImm() != ImmOp)
   2280         continue;
   2281       // Check if the target register is available here.
   2282       MachineOperand &Op0 = In->getOperand(0);
   2283       MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
   2284       assert(DefI != nullptr);
   2285       if (!MDT.dominates(DefI, &*At))
   2286         continue;
   2287 
   2288       // Found one that can be reused.
   2289       assert(Op0.getSubReg() == 0);
   2290       NewR = Op0.getReg();
   2291       break;
   2292     }
   2293     if (!NewR) {
   2294       NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
   2295       auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
   2296                       .addReg(SrcR, 0, SrcSR)
   2297                       .addImm(ImmOp);
   2298       NewMIs.push_back(NewBS);
   2299     }
   2300     if (Pos <= P) {
   2301       HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
   2302       HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_hi, MRI);
   2303     } else {
   2304       HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_lo, MRI);
   2305       HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
   2306     }
   2307     return true;
   2308   }
   2309 
   2310   return false;
   2311 }
   2312 
   2313 // Check for tstbit simplification opportunity, where the bit being checked
   2314 // can be tracked back to another register. For example:
   2315 //   %2 = S2_lsr_i_r  %1, 5
   2316 //   %3 = S2_tstbit_i %2, 0
   2317 // =>
   2318 //   %3 = S2_tstbit_i %1, 5
   2319 bool BitSimplification::simplifyTstbit(MachineInstr *MI,
   2320       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
   2321   unsigned Opc = MI->getOpcode();
   2322   if (Opc != Hexagon::S2_tstbit_i)
   2323     return false;
   2324 
   2325   unsigned BN = MI->getOperand(2).getImm();
   2326   BitTracker::RegisterRef RS = MI->getOperand(1);
   2327   unsigned F, W;
   2328   DebugLoc DL = MI->getDebugLoc();
   2329   if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
   2330     return false;
   2331   MachineBasicBlock &B = *MI->getParent();
   2332   auto At = MI->isPHI() ? B.getFirstNonPHI()
   2333                         : MachineBasicBlock::iterator(MI);
   2334 
   2335   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
   2336   const BitTracker::BitValue &V = SC[F+BN];
   2337   if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
   2338     const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
   2339     // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
   2340     // a double register, need to use a subregister and adjust bit
   2341     // number.
   2342     unsigned P = std::numeric_limits<unsigned>::max();
   2343     BitTracker::RegisterRef RR(V.RefI.Reg, 0);
   2344     if (TC == &Hexagon::DoubleRegsRegClass) {
   2345       P = V.RefI.Pos;
   2346       RR.Sub = Hexagon::isub_lo;
   2347       if (P >= 32) {
   2348         P -= 32;
   2349         RR.Sub = Hexagon::isub_hi;
   2350       }
   2351     } else if (TC == &Hexagon::IntRegsRegClass) {
   2352       P = V.RefI.Pos;
   2353     }
   2354     if (P != std::numeric_limits<unsigned>::max()) {
   2355       unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
   2356       BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
   2357           .addReg(RR.Reg, 0, RR.Sub)
   2358           .addImm(P);
   2359       HBS::replaceReg(RD.Reg, NewR, MRI);
   2360       BT.put(NewR, RC);
   2361       return true;
   2362     }
   2363   } else if (V.is(0) || V.is(1)) {
   2364     unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
   2365     unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
   2366     BuildMI(B, At, DL, HII.get(NewOpc), NewR);
   2367     HBS::replaceReg(RD.Reg, NewR, MRI);
   2368     return true;
   2369   }
   2370 
   2371   return false;
   2372 }
   2373 
   2374 // Detect whether RD is a bitfield extract (sign- or zero-extended) of
   2375 // some register from the AVs set. Create a new corresponding instruction
   2376 // at the location of MI. The intent is to recognize situations where
   2377 // a sequence of instructions performs an operation that is equivalent to
   2378 // an extract operation, such as a shift left followed by a shift right.
   2379 bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
   2380       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
   2381       const RegisterSet &AVs) {
   2382   if (!GenExtract)
   2383     return false;
   2384   if (MaxExtract.getNumOccurrences()) {
   2385     if (CountExtract >= MaxExtract)
   2386       return false;
   2387     CountExtract++;
   2388   }
   2389 
   2390   unsigned W = RC.width();
   2391   unsigned RW = W;
   2392   unsigned Len;
   2393   bool Signed;
   2394 
   2395   // The code is mostly class-independent, except for the part that generates
   2396   // the extract instruction, and establishes the source register (in case it
   2397   // needs to use a subregister).
   2398   const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
   2399   if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
   2400     return false;
   2401   assert(RD.Sub == 0);
   2402 
   2403   // Observation:
   2404   // If the cell has a form of 00..0xx..x with k zeros and n remaining
   2405   // bits, this could be an extractu of the n bits, but it could also be
   2406   // an extractu of a longer field which happens to have 0s in the top
   2407   // bit positions.
   2408   // The same logic applies to sign-extended fields.
   2409   //
   2410   // Do not check for the extended extracts, since it would expand the
   2411   // search space quite a bit. The search may be expensive as it is.
   2412 
   2413   const BitTracker::BitValue &TopV = RC[W-1];
   2414 
   2415   // Eliminate candidates that have self-referential bits, since they
   2416   // cannot be extracts from other registers. Also, skip registers that
   2417   // have compile-time constant values.
   2418   bool IsConst = true;
   2419   for (unsigned I = 0; I != W; ++I) {
   2420     const BitTracker::BitValue &V = RC[I];
   2421     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
   2422       return false;
   2423     IsConst = IsConst && (V.is(0) || V.is(1));
   2424   }
   2425   if (IsConst)
   2426     return false;
   2427 
   2428   if (TopV.is(0) || TopV.is(1)) {
   2429     bool S = TopV.is(1);
   2430     for (--W; W > 0 && RC[W-1].is(S); --W)
   2431       ;
   2432     Len = W;
   2433     Signed = S;
   2434     // The sign bit must be a part of the field being extended.
   2435     if (Signed)
   2436       ++Len;
   2437   } else {
   2438     // This could still be a sign-extended extract.
   2439     assert(TopV.Type == BitTracker::BitValue::Ref);
   2440     if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
   2441       return false;
   2442     for (--W; W > 0 && RC[W-1] == TopV; --W)
   2443       ;
   2444     // The top bits of RC are copies of TopV. One occurrence of TopV will
   2445     // be a part of the field.
   2446     Len = W + 1;
   2447     Signed = true;
   2448   }
   2449 
   2450   // This would be just a copy. It should be handled elsewhere.
   2451   if (Len == RW)
   2452     return false;
   2453 
   2454   LLVM_DEBUG({
   2455     dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
   2456            << ", MI: " << *MI;
   2457     dbgs() << "Cell: " << RC << '\n';
   2458     dbgs() << "Expected bitfield size: " << Len << " bits, "
   2459            << (Signed ? "sign" : "zero") << "-extended\n";
   2460   });
   2461 
   2462   bool Changed = false;
   2463 
   2464   for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
   2465     if (!BT.has(R))
   2466       continue;
   2467     const BitTracker::RegisterCell &SC = BT.lookup(R);
   2468     unsigned SW = SC.width();
   2469 
   2470     // The source can be longer than the destination, as long as its size is
   2471     // a multiple of the size of the destination. Also, we would need to be
   2472     // able to refer to the subregister in the source that would be of the
   2473     // same size as the destination, but only check the sizes here.
   2474     if (SW < RW || (SW % RW) != 0)
   2475       continue;
   2476 
   2477     // The field can start at any offset in SC as long as it contains Len
   2478     // bits and does not cross subregister boundary (if the source register
   2479     // is longer than the destination).
   2480     unsigned Off = 0;
   2481     while (Off <= SW-Len) {
   2482       unsigned OE = (Off+Len)/RW;
   2483       if (OE != Off/RW) {
   2484         // The assumption here is that if the source (R) is longer than the
   2485         // destination, then the destination is a sequence of words of
   2486         // size RW, and each such word in R can be accessed via a subregister.
   2487         //
   2488         // If the beginning and the end of the field cross the subregister
   2489         // boundary, advance to the next subregister.
   2490         Off = OE*RW;
   2491         continue;
   2492       }
   2493       if (HBS::isEqual(RC, 0, SC, Off, Len))
   2494         break;
   2495       ++Off;
   2496     }
   2497 
   2498     if (Off > SW-Len)
   2499       continue;
   2500 
   2501     // Found match.
   2502     unsigned ExtOpc = 0;
   2503     if (Off == 0) {
   2504       if (Len == 8)
   2505         ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
   2506       else if (Len == 16)
   2507         ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
   2508       else if (Len < 10 && !Signed)
   2509         ExtOpc = Hexagon::A2_andir;
   2510     }
   2511     if (ExtOpc == 0) {
   2512       ExtOpc =
   2513           Signed ? (RW == 32 ? Hexagon::S4_extract  : Hexagon::S4_extractp)
   2514                  : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
   2515     }
   2516     unsigned SR = 0;
   2517     // This only recognizes isub_lo and isub_hi.
   2518     if (RW != SW && RW*2 != SW)
   2519       continue;
   2520     if (RW != SW)
   2521       SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
   2522     Off = Off % RW;
   2523 
   2524     if (!validateReg({R,SR}, ExtOpc, 1))
   2525       continue;
   2526 
   2527     // Don't generate the same instruction as the one being optimized.
   2528     if (MI->getOpcode() == ExtOpc) {
   2529       // All possible ExtOpc's have the source in operand(1).
   2530       const MachineOperand &SrcOp = MI->getOperand(1);
   2531       if (SrcOp.getReg() == R)
   2532         continue;
   2533     }
   2534 
   2535     DebugLoc DL = MI->getDebugLoc();
   2536     MachineBasicBlock &B = *MI->getParent();
   2537     unsigned NewR = MRI.createVirtualRegister(FRC);
   2538     auto At = MI->isPHI() ? B.getFirstNonPHI()
   2539                           : MachineBasicBlock::iterator(MI);
   2540     auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
   2541                   .addReg(R, 0, SR);
   2542     switch (ExtOpc) {
   2543       case Hexagon::A2_sxtb:
   2544       case Hexagon::A2_zxtb:
   2545       case Hexagon::A2_sxth:
   2546       case Hexagon::A2_zxth:
   2547         break;
   2548       case Hexagon::A2_andir:
   2549         MIB.addImm((1u << Len) - 1);
   2550         break;
   2551       case Hexagon::S4_extract:
   2552       case Hexagon::S2_extractu:
   2553       case Hexagon::S4_extractp:
   2554       case Hexagon::S2_extractup:
   2555         MIB.addImm(Len)
   2556            .addImm(Off);
   2557         break;
   2558       default:
   2559         llvm_unreachable("Unexpected opcode");
   2560     }
   2561 
   2562     HBS::replaceReg(RD.Reg, NewR, MRI);
   2563     BT.put(BitTracker::RegisterRef(NewR), RC);
   2564     Changed = true;
   2565     break;
   2566   }
   2567 
   2568   return Changed;
   2569 }
   2570 
   2571 bool BitSimplification::simplifyRCmp0(MachineInstr *MI,
   2572       BitTracker::RegisterRef RD) {
   2573   unsigned Opc = MI->getOpcode();
   2574   if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi)
   2575     return false;
   2576   MachineOperand &CmpOp = MI->getOperand(2);
   2577   if (!CmpOp.isImm() || CmpOp.getImm() != 0)
   2578     return false;
   2579 
   2580   const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
   2581   if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
   2582     return false;
   2583   assert(RD.Sub == 0);
   2584 
   2585   MachineBasicBlock &B = *MI->getParent();
   2586   const DebugLoc &DL = MI->getDebugLoc();
   2587   auto At = MI->isPHI() ? B.getFirstNonPHI()
   2588                         : MachineBasicBlock::iterator(MI);
   2589   bool KnownZ = true;
   2590   bool KnownNZ = false;
   2591 
   2592   BitTracker::RegisterRef SR = MI->getOperand(1);
   2593   if (!BT.has(SR.Reg))
   2594     return false;
   2595   const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg);
   2596   unsigned F, W;
   2597   if (!HBS::getSubregMask(SR, F, W, MRI))
   2598     return false;
   2599 
   2600   for (uint16_t I = F; I != F+W; ++I) {
   2601     const BitTracker::BitValue &V = SC[I];
   2602     if (!V.is(0))
   2603       KnownZ = false;
   2604     if (V.is(1))
   2605       KnownNZ = true;
   2606   }
   2607 
   2608   auto ReplaceWithConst = [&] (int C) {
   2609     unsigned NewR = MRI.createVirtualRegister(FRC);
   2610     BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR)
   2611       .addImm(C);
   2612     HBS::replaceReg(RD.Reg, NewR, MRI);
   2613     BitTracker::RegisterCell NewRC(W);
   2614     for (uint16_t I = 0; I != W; ++I) {
   2615       NewRC[I] = BitTracker::BitValue(C & 1);
   2616       C = unsigned(C) >> 1;
   2617     }
   2618     BT.put(BitTracker::RegisterRef(NewR), NewRC);
   2619     return true;
   2620   };
   2621 
   2622   auto IsNonZero = [] (const MachineOperand &Op) {
   2623     if (Op.isGlobal() || Op.isBlockAddress())
   2624       return true;
   2625     if (Op.isImm())
   2626       return Op.getImm() != 0;
   2627     if (Op.isCImm())
   2628       return !Op.getCImm()->isZero();
   2629     if (Op.isFPImm())
   2630       return !Op.getFPImm()->isZero();
   2631     return false;
   2632   };
   2633 
   2634   auto IsZero = [] (const MachineOperand &Op) {
   2635     if (Op.isGlobal() || Op.isBlockAddress())
   2636       return false;
   2637     if (Op.isImm())
   2638       return Op.getImm() == 0;
   2639     if (Op.isCImm())
   2640       return Op.getCImm()->isZero();
   2641     if (Op.isFPImm())
   2642       return Op.getFPImm()->isZero();
   2643     return false;
   2644   };
   2645 
   2646   // If the source register is known to be 0 or non-0, the comparison can
   2647   // be folded to a load of a constant.
   2648   if (KnownZ || KnownNZ) {
   2649     assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0");
   2650     return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi));
   2651   }
   2652 
   2653   // Special case: if the compare comes from a C2_muxii, then we know the
   2654   // two possible constants that can be the source value.
   2655   MachineInstr *InpDef = MRI.getVRegDef(SR.Reg);
   2656   if (!InpDef)
   2657     return false;
   2658   if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) {
   2659     MachineOperand &Src1 = InpDef->getOperand(2);
   2660     MachineOperand &Src2 = InpDef->getOperand(3);
   2661     // Check if both are non-zero.
   2662     bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2);
   2663     if (KnownNZ1 && KnownNZ2)
   2664       return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi);
   2665     // Check if both are zero.
   2666     bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2);
   2667     if (KnownZ1 && KnownZ2)
   2668       return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi);
   2669 
   2670     // If for both operands we know that they are either 0 or non-0,
   2671     // replace the comparison with a C2_muxii, using the same predicate
   2672     // register, but with operands substituted with 0/1 accordingly.
   2673     if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) {
   2674       unsigned NewR = MRI.createVirtualRegister(FRC);
   2675       BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR)
   2676         .addReg(InpDef->getOperand(1).getReg())
   2677         .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi))
   2678         .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi));
   2679       HBS::replaceReg(RD.Reg, NewR, MRI);
   2680       // Create a new cell with only the least significant bit unknown.
   2681       BitTracker::RegisterCell NewRC(W);
   2682       NewRC[0] = BitTracker::BitValue::self();
   2683       NewRC.fill(1, W, BitTracker::BitValue::Zero);
   2684       BT.put(BitTracker::RegisterRef(NewR), NewRC);
   2685       return true;
   2686     }
   2687   }
   2688 
   2689   return false;
   2690 }
   2691 
   2692 bool BitSimplification::processBlock(MachineBasicBlock &B,
   2693       const RegisterSet &AVs) {
   2694   if (!BT.reached(&B))
   2695     return false;
   2696   bool Changed = false;
   2697   RegisterSet AVB = AVs;
   2698   RegisterSet Defs;
   2699 
   2700   for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
   2701     MachineInstr *MI = &*I;
   2702     Defs.clear();
   2703     HBS::getInstrDefs(*MI, Defs);
   2704 
   2705     unsigned Opc = MI->getOpcode();
   2706     if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
   2707       continue;
   2708 
   2709     if (MI->mayStore()) {
   2710       bool T = genStoreUpperHalf(MI);
   2711       T = T || genStoreImmediate(MI);
   2712       Changed |= T;
   2713       continue;
   2714     }
   2715 
   2716     if (Defs.count() != 1)
   2717       continue;
   2718     const MachineOperand &Op0 = MI->getOperand(0);
   2719     if (!Op0.isReg() || !Op0.isDef())
   2720       continue;
   2721     BitTracker::RegisterRef RD = Op0;
   2722     if (!BT.has(RD.Reg))
   2723       continue;
   2724     const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
   2725     const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
   2726 
   2727     if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
   2728       bool T = genPackhl(MI, RD, RC);
   2729       T = T || simplifyExtractLow(MI, RD, RC, AVB);
   2730       Changed |= T;
   2731       continue;
   2732     }
   2733 
   2734     if (FRC->getID() == Hexagon::IntRegsRegClassID) {
   2735       bool T = genBitSplit(MI, RD, RC, AVB);
   2736       T = T || simplifyExtractLow(MI, RD, RC, AVB);
   2737       T = T || genExtractHalf(MI, RD, RC);
   2738       T = T || genCombineHalf(MI, RD, RC);
   2739       T = T || genExtractLow(MI, RD, RC);
   2740       T = T || simplifyRCmp0(MI, RD);
   2741       Changed |= T;
   2742       continue;
   2743     }
   2744 
   2745     if (FRC->getID() == Hexagon::PredRegsRegClassID) {
   2746       bool T = simplifyTstbit(MI, RD, RC);
   2747       Changed |= T;
   2748       continue;
   2749     }
   2750   }
   2751   return Changed;
   2752 }
   2753 
   2754 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
   2755   if (skipFunction(MF.getFunction()))
   2756     return false;
   2757 
   2758   auto &HST = MF.getSubtarget<HexagonSubtarget>();
   2759   auto &HRI = *HST.getRegisterInfo();
   2760   auto &HII = *HST.getInstrInfo();
   2761 
   2762   MDT = &getAnalysis<MachineDominatorTree>();
   2763   MachineRegisterInfo &MRI = MF.getRegInfo();
   2764   bool Changed;
   2765 
   2766   Changed = DeadCodeElimination(MF, *MDT).run();
   2767 
   2768   const HexagonEvaluator HE(HRI, MRI, HII, MF);
   2769   BitTracker BT(HE, MF);
   2770   LLVM_DEBUG(BT.trace(true));
   2771   BT.run();
   2772 
   2773   MachineBasicBlock &Entry = MF.front();
   2774 
   2775   RegisterSet AIG;  // Available registers for IG.
   2776   ConstGeneration ImmG(BT, HII, MRI);
   2777   Changed |= visitBlock(Entry, ImmG, AIG);
   2778 
   2779   RegisterSet ARE;  // Available registers for RIE.
   2780   RedundantInstrElimination RIE(BT, HII, HRI, MRI);
   2781   bool Ried = visitBlock(Entry, RIE, ARE);
   2782   if (Ried) {
   2783     Changed = true;
   2784     BT.run();
   2785   }
   2786 
   2787   RegisterSet ACG;  // Available registers for CG.
   2788   CopyGeneration CopyG(BT, HII, HRI, MRI);
   2789   Changed |= visitBlock(Entry, CopyG, ACG);
   2790 
   2791   RegisterSet ACP;  // Available registers for CP.
   2792   CopyPropagation CopyP(HRI, MRI);
   2793   Changed |= visitBlock(Entry, CopyP, ACP);
   2794 
   2795   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
   2796 
   2797   BT.run();
   2798   RegisterSet ABS;  // Available registers for BS.
   2799   BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
   2800   Changed |= visitBlock(Entry, BitS, ABS);
   2801 
   2802   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
   2803 
   2804   if (Changed) {
   2805     for (auto &B : MF)
   2806       for (auto &I : B)
   2807         I.clearKillInfo();
   2808     DeadCodeElimination(MF, *MDT).run();
   2809   }
   2810   return Changed;
   2811 }
   2812 
   2813 // Recognize loops where the code at the end of the loop matches the code
   2814 // before the entry of the loop, and the matching code is such that is can
   2815 // be simplified. This pass relies on the bit simplification above and only
   2816 // prepares code in a way that can be handled by the bit simplifcation.
   2817 //
   2818 // This is the motivating testcase (and explanation):
   2819 //
   2820 // {
   2821 //   loop0(.LBB0_2, r1)      // %for.body.preheader
   2822 //   r5:4 = memd(r0++#8)
   2823 // }
   2824 // {
   2825 //   r3 = lsr(r4, #16)
   2826 //   r7:6 = combine(r5, r5)
   2827 // }
   2828 // {
   2829 //   r3 = insert(r5, #16, #16)
   2830 //   r7:6 = vlsrw(r7:6, #16)
   2831 // }
   2832 // .LBB0_2:
   2833 // {
   2834 //   memh(r2+#4) = r5
   2835 //   memh(r2+#6) = r6            # R6 is really R5.H
   2836 // }
   2837 // {
   2838 //   r2 = add(r2, #8)
   2839 //   memh(r2+#0) = r4
   2840 //   memh(r2+#2) = r3            # R3 is really R4.H
   2841 // }
   2842 // {
   2843 //   r5:4 = memd(r0++#8)
   2844 // }
   2845 // {                             # "Shuffling" code that sets up R3 and R6
   2846 //   r3 = lsr(r4, #16)           # so that their halves can be stored in the
   2847 //   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
   2848 // }                             # the stores if the code was at the beginning
   2849 // {                             # of the loop iteration. Since the same code
   2850 //   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
   2851 //   r7:6 = vlsrw(r7:6, #16)     # there.
   2852 // }:endloop0
   2853 //
   2854 //
   2855 // The outcome:
   2856 //
   2857 // {
   2858 //   loop0(.LBB0_2, r1)
   2859 //   r5:4 = memd(r0++#8)
   2860 // }
   2861 // .LBB0_2:
   2862 // {
   2863 //   memh(r2+#4) = r5
   2864 //   memh(r2+#6) = r5.h
   2865 // }
   2866 // {
   2867 //   r2 = add(r2, #8)
   2868 //   memh(r2+#0) = r4
   2869 //   memh(r2+#2) = r4.h
   2870 // }
   2871 // {
   2872 //   r5:4 = memd(r0++#8)
   2873 // }:endloop0
   2874 
   2875 namespace llvm {
   2876 
   2877   FunctionPass *createHexagonLoopRescheduling();
   2878   void initializeHexagonLoopReschedulingPass(PassRegistry&);
   2879 
   2880 } // end namespace llvm
   2881 
   2882 namespace {
   2883 
   2884   class HexagonLoopRescheduling : public MachineFunctionPass {
   2885   public:
   2886     static char ID;
   2887 
   2888     HexagonLoopRescheduling() : MachineFunctionPass(ID) {
   2889       initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
   2890     }
   2891 
   2892     bool runOnMachineFunction(MachineFunction &MF) override;
   2893 
   2894   private:
   2895     const HexagonInstrInfo *HII = nullptr;
   2896     const HexagonRegisterInfo *HRI = nullptr;
   2897     MachineRegisterInfo *MRI = nullptr;
   2898     BitTracker *BTP = nullptr;
   2899 
   2900     struct LoopCand {
   2901       LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
   2902             MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
   2903 
   2904       MachineBasicBlock *LB, *PB, *EB;
   2905     };
   2906     using InstrList = std::vector<MachineInstr *>;
   2907     struct InstrGroup {
   2908       BitTracker::RegisterRef Inp, Out;
   2909       InstrList Ins;
   2910     };
   2911     struct PhiInfo {
   2912       PhiInfo(MachineInstr &P, MachineBasicBlock &B);
   2913 
   2914       unsigned DefR;
   2915       BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
   2916       MachineBasicBlock *LB, *PB;     // Loop Block, Preheader Block
   2917     };
   2918 
   2919     static unsigned getDefReg(const MachineInstr *MI);
   2920     bool isConst(unsigned Reg) const;
   2921     bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
   2922     bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
   2923     bool isShuffleOf(unsigned OutR, unsigned InpR) const;
   2924     bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
   2925         unsigned &InpR2) const;
   2926     void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
   2927         MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
   2928     bool processLoop(LoopCand &C);
   2929   };
   2930 
   2931 } // end anonymous namespace
   2932 
   2933 char HexagonLoopRescheduling::ID = 0;
   2934 
   2935 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
   2936   "Hexagon Loop Rescheduling", false, false)
   2937 
   2938 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
   2939       MachineBasicBlock &B) {
   2940   DefR = HexagonLoopRescheduling::getDefReg(&P);
   2941   LB = &B;
   2942   PB = nullptr;
   2943   for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
   2944     const MachineOperand &OpB = P.getOperand(i+1);
   2945     if (OpB.getMBB() == &B) {
   2946       LR = P.getOperand(i);
   2947       continue;
   2948     }
   2949     PB = OpB.getMBB();
   2950     PR = P.getOperand(i);
   2951   }
   2952 }
   2953 
   2954 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
   2955   RegisterSet Defs;
   2956   HBS::getInstrDefs(*MI, Defs);
   2957   if (Defs.count() != 1)
   2958     return 0;
   2959   return Defs.find_first();
   2960 }
   2961 
   2962 bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
   2963   if (!BTP->has(Reg))
   2964     return false;
   2965   const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
   2966   for (unsigned i = 0, w = RC.width(); i < w; ++i) {
   2967     const BitTracker::BitValue &V = RC[i];
   2968     if (!V.is(0) && !V.is(1))
   2969       return false;
   2970   }
   2971   return true;
   2972 }
   2973 
   2974 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
   2975       unsigned DefR) const {
   2976   unsigned Opc = MI->getOpcode();
   2977   switch (Opc) {
   2978     case TargetOpcode::COPY:
   2979     case Hexagon::S2_lsr_i_r:
   2980     case Hexagon::S2_asr_i_r:
   2981     case Hexagon::S2_asl_i_r:
   2982     case Hexagon::S2_lsr_i_p:
   2983     case Hexagon::S2_asr_i_p:
   2984     case Hexagon::S2_asl_i_p:
   2985     case Hexagon::S2_insert:
   2986     case Hexagon::A2_or:
   2987     case Hexagon::A2_orp:
   2988     case Hexagon::A2_and:
   2989     case Hexagon::A2_andp:
   2990     case Hexagon::A2_combinew:
   2991     case Hexagon::A4_combineri:
   2992     case Hexagon::A4_combineir:
   2993     case Hexagon::A2_combineii:
   2994     case Hexagon::A4_combineii:
   2995     case Hexagon::A2_combine_ll:
   2996     case Hexagon::A2_combine_lh:
   2997     case Hexagon::A2_combine_hl:
   2998     case Hexagon::A2_combine_hh:
   2999       return true;
   3000   }
   3001   return false;
   3002 }
   3003 
   3004 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
   3005       unsigned InpR) const {
   3006   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
   3007     const MachineOperand &Op = MI->getOperand(i);
   3008     if (!Op.isReg())
   3009       continue;
   3010     if (Op.getReg() == InpR)
   3011       return i == n-1;
   3012   }
   3013   return false;
   3014 }
   3015 
   3016 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
   3017   if (!BTP->has(OutR) || !BTP->has(InpR))
   3018     return false;
   3019   const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
   3020   for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
   3021     const BitTracker::BitValue &V = OutC[i];
   3022     if (V.Type != BitTracker::BitValue::Ref)
   3023       continue;
   3024     if (V.RefI.Reg != InpR)
   3025       return false;
   3026   }
   3027   return true;
   3028 }
   3029 
   3030 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
   3031       unsigned OutR2, unsigned &InpR2) const {
   3032   if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
   3033     return false;
   3034   const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
   3035   const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
   3036   unsigned W = OutC1.width();
   3037   unsigned MatchR = 0;
   3038   if (W != OutC2.width())
   3039     return false;
   3040   for (unsigned i = 0; i < W; ++i) {
   3041     const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
   3042     if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
   3043       return false;
   3044     if (V1.Type != BitTracker::BitValue::Ref)
   3045       continue;
   3046     if (V1.RefI.Pos != V2.RefI.Pos)
   3047       return false;
   3048     if (V1.RefI.Reg != InpR1)
   3049       return false;
   3050     if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
   3051       return false;
   3052     if (!MatchR)
   3053       MatchR = V2.RefI.Reg;
   3054     else if (V2.RefI.Reg != MatchR)
   3055       return false;
   3056   }
   3057   InpR2 = MatchR;
   3058   return true;
   3059 }
   3060 
   3061 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
   3062       MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
   3063       unsigned NewPredR) {
   3064   DenseMap<unsigned,unsigned> RegMap;
   3065 
   3066   const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
   3067   unsigned PhiR = MRI->createVirtualRegister(PhiRC);
   3068   BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
   3069     .addReg(NewPredR)
   3070     .addMBB(&PB)
   3071     .addReg(G.Inp.Reg)
   3072     .addMBB(&LB);
   3073   RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
   3074 
   3075   for (unsigned i = G.Ins.size(); i > 0; --i) {
   3076     const MachineInstr *SI = G.Ins[i-1];
   3077     unsigned DR = getDefReg(SI);
   3078     const TargetRegisterClass *RC = MRI->getRegClass(DR);
   3079     unsigned NewDR = MRI->createVirtualRegister(RC);
   3080     DebugLoc DL = SI->getDebugLoc();
   3081 
   3082     auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
   3083     for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
   3084       const MachineOperand &Op = SI->getOperand(j);
   3085       if (!Op.isReg()) {
   3086         MIB.add(Op);
   3087         continue;
   3088       }
   3089       if (!Op.isUse())
   3090         continue;
   3091       unsigned UseR = RegMap[Op.getReg()];
   3092       MIB.addReg(UseR, 0, Op.getSubReg());
   3093     }
   3094     RegMap.insert(std::make_pair(DR, NewDR));
   3095   }
   3096 
   3097   HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
   3098 }
   3099 
   3100 bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
   3101   LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
   3102                     << "\n");
   3103   std::vector<PhiInfo> Phis;
   3104   for (auto &I : *C.LB) {
   3105     if (!I.isPHI())
   3106       break;
   3107     unsigned PR = getDefReg(&I);
   3108     if (isConst(PR))
   3109       continue;
   3110     bool BadUse = false, GoodUse = false;
   3111     for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
   3112       MachineInstr *UseI = UI->getParent();
   3113       if (UseI->getParent() != C.LB) {
   3114         BadUse = true;
   3115         break;
   3116       }
   3117       if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
   3118         GoodUse = true;
   3119     }
   3120     if (BadUse || !GoodUse)
   3121       continue;
   3122 
   3123     Phis.push_back(PhiInfo(I, *C.LB));
   3124   }
   3125 
   3126   LLVM_DEBUG({
   3127     dbgs() << "Phis: {";
   3128     for (auto &I : Phis) {
   3129       dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
   3130              << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
   3131              << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
   3132              << I.LB->getNumber() << ')';
   3133     }
   3134     dbgs() << " }\n";
   3135   });
   3136 
   3137   if (Phis.empty())
   3138     return false;
   3139 
   3140   bool Changed = false;
   3141   InstrList ShufIns;
   3142 
   3143   // Go backwards in the block: for each bit shuffling instruction, check
   3144   // if that instruction could potentially be moved to the front of the loop:
   3145   // the output of the loop cannot be used in a non-shuffling instruction
   3146   // in this loop.
   3147   for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
   3148     if (I->isTerminator())
   3149       continue;
   3150     if (I->isPHI())
   3151       break;
   3152 
   3153     RegisterSet Defs;
   3154     HBS::getInstrDefs(*I, Defs);
   3155     if (Defs.count() != 1)
   3156       continue;
   3157     unsigned DefR = Defs.find_first();
   3158     if (!TargetRegisterInfo::isVirtualRegister(DefR))
   3159       continue;
   3160     if (!isBitShuffle(&*I, DefR))
   3161       continue;
   3162 
   3163     bool BadUse = false;
   3164     for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
   3165       MachineInstr *UseI = UI->getParent();
   3166       if (UseI->getParent() == C.LB) {
   3167         if (UseI->isPHI()) {
   3168           // If the use is in a phi node in this loop, then it should be
   3169           // the value corresponding to the back edge.
   3170           unsigned Idx = UI.getOperandNo();
   3171           if (UseI->getOperand(Idx+1).getMBB() != C.LB)
   3172             BadUse = true;
   3173         } else {
   3174           auto F = find(ShufIns, UseI);
   3175           if (F == ShufIns.end())
   3176             BadUse = true;
   3177         }
   3178       } else {
   3179         // There is a use outside of the loop, but there is no epilog block
   3180         // suitable for a copy-out.
   3181         if (C.EB == nullptr)
   3182           BadUse = true;
   3183       }
   3184       if (BadUse)
   3185         break;
   3186     }
   3187 
   3188     if (BadUse)
   3189       continue;
   3190     ShufIns.push_back(&*I);
   3191   }
   3192 
   3193   // Partition the list of shuffling instructions into instruction groups,
   3194   // where each group has to be moved as a whole (i.e. a group is a chain of
   3195   // dependent instructions). A group produces a single live output register,
   3196   // which is meant to be the input of the loop phi node (although this is
   3197   // not checked here yet). It also uses a single register as its input,
   3198   // which is some value produced in the loop body. After moving the group
   3199   // to the beginning of the loop, that input register would need to be
   3200   // the loop-carried register (through a phi node) instead of the (currently
   3201   // loop-carried) output register.
   3202   using InstrGroupList = std::vector<InstrGroup>;
   3203   InstrGroupList Groups;
   3204 
   3205   for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
   3206     MachineInstr *SI = ShufIns[i];
   3207     if (SI == nullptr)
   3208       continue;
   3209 
   3210     InstrGroup G;
   3211     G.Ins.push_back(SI);
   3212     G.Out.Reg = getDefReg(SI);
   3213     RegisterSet Inputs;
   3214     HBS::getInstrUses(*SI, Inputs);
   3215 
   3216     for (unsigned j = i+1; j < n; ++j) {
   3217       MachineInstr *MI = ShufIns[j];
   3218       if (MI == nullptr)
   3219         continue;
   3220       RegisterSet Defs;
   3221       HBS::getInstrDefs(*MI, Defs);
   3222       // If this instruction does not define any pending inputs, skip it.
   3223       if (!Defs.intersects(Inputs))
   3224         continue;
   3225       // Otherwise, add it to the current group and remove the inputs that
   3226       // are defined by MI.
   3227       G.Ins.push_back(MI);
   3228       Inputs.remove(Defs);
   3229       // Then add all registers used by MI.
   3230       HBS::getInstrUses(*MI, Inputs);
   3231       ShufIns[j] = nullptr;
   3232     }
   3233 
   3234     // Only add a group if it requires at most one register.
   3235     if (Inputs.count() > 1)
   3236       continue;
   3237     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
   3238       return G.Out.Reg == P.LR.Reg;
   3239     };
   3240     if (llvm::find_if(Phis, LoopInpEq) == Phis.end())
   3241       continue;
   3242 
   3243     G.Inp.Reg = Inputs.find_first();
   3244     Groups.push_back(G);
   3245   }
   3246 
   3247   LLVM_DEBUG({
   3248     for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
   3249       InstrGroup &G = Groups[i];
   3250       dbgs() << "Group[" << i << "] inp: "
   3251              << printReg(G.Inp.Reg, HRI, G.Inp.Sub)
   3252              << "  out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
   3253       for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
   3254         dbgs() << "  " << *G.Ins[j];
   3255     }
   3256   });
   3257 
   3258   for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
   3259     InstrGroup &G = Groups[i];
   3260     if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
   3261       continue;
   3262     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
   3263       return G.Out.Reg == P.LR.Reg;
   3264     };
   3265     auto F = llvm::find_if(Phis, LoopInpEq);
   3266     if (F == Phis.end())
   3267       continue;
   3268     unsigned PrehR = 0;
   3269     if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
   3270       const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
   3271       unsigned Opc = DefPrehR->getOpcode();
   3272       if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
   3273         continue;
   3274       if (!DefPrehR->getOperand(1).isImm())
   3275         continue;
   3276       if (DefPrehR->getOperand(1).getImm() != 0)
   3277         continue;
   3278       const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
   3279       if (RC != MRI->getRegClass(F->PR.Reg)) {
   3280         PrehR = MRI->createVirtualRegister(RC);
   3281         unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
   3282                                                           : Hexagon::A2_tfrpi;
   3283         auto T = C.PB->getFirstTerminator();
   3284         DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
   3285         BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
   3286           .addImm(0);
   3287       } else {
   3288         PrehR = F->PR.Reg;
   3289       }
   3290     }
   3291     // isSameShuffle could match with PrehR being of a wider class than
   3292     // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
   3293     // it would match for the input being a 32-bit register, and PrehR
   3294     // being a 64-bit register (where the low 32 bits match). This could
   3295     // be handled, but for now skip these cases.
   3296     if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
   3297       continue;
   3298     moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
   3299     Changed = true;
   3300   }
   3301 
   3302   return Changed;
   3303 }
   3304 
   3305 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
   3306   if (skipFunction(MF.getFunction()))
   3307     return false;
   3308 
   3309   auto &HST = MF.getSubtarget<HexagonSubtarget>();
   3310   HII = HST.getInstrInfo();
   3311   HRI = HST.getRegisterInfo();
   3312   MRI = &MF.getRegInfo();
   3313   const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
   3314   BitTracker BT(HE, MF);
   3315   LLVM_DEBUG(BT.trace(true));
   3316   BT.run();
   3317   BTP = &BT;
   3318 
   3319   std::vector<LoopCand> Cand;
   3320 
   3321   for (auto &B : MF) {
   3322     if (B.pred_size() != 2 || B.succ_size() != 2)
   3323       continue;
   3324     MachineBasicBlock *PB = nullptr;
   3325     bool IsLoop = false;
   3326     for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
   3327       if (*PI != &B)
   3328         PB = *PI;
   3329       else
   3330         IsLoop = true;
   3331     }
   3332     if (!IsLoop)
   3333       continue;
   3334 
   3335     MachineBasicBlock *EB = nullptr;
   3336     for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
   3337       if (*SI == &B)
   3338         continue;
   3339       // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
   3340       // edge from B to EP is non-critical.
   3341       if ((*SI)->pred_size() == 1)
   3342         EB = *SI;
   3343       break;
   3344     }
   3345 
   3346     Cand.push_back(LoopCand(&B, PB, EB));
   3347   }
   3348 
   3349   bool Changed = false;
   3350   for (auto &C : Cand)
   3351     Changed |= processLoop(C);
   3352 
   3353   return Changed;
   3354 }
   3355 
   3356 //===----------------------------------------------------------------------===//
   3357 //                         Public Constructor Functions
   3358 //===----------------------------------------------------------------------===//
   3359 
   3360 FunctionPass *llvm::createHexagonLoopRescheduling() {
   3361   return new HexagonLoopRescheduling();
   3362 }
   3363 
   3364 FunctionPass *llvm::createHexagonBitSimplify() {
   3365   return new HexagonBitSimplify();
   3366 }
   3367