1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // SystemZ target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SystemZTargetTransformInfo.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/CodeGen/BasicTTIImpl.h" 20 #include "llvm/CodeGen/CostTable.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/Debug.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "systemztti" 27 28 //===----------------------------------------------------------------------===// 29 // 30 // SystemZ cost model. 31 // 32 //===----------------------------------------------------------------------===// 33 34 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 35 assert(Ty->isIntegerTy()); 36 37 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 38 // There is no cost model for constants with a bit size of 0. Return TCC_Free 39 // here, so that constant hoisting will ignore this constant. 40 if (BitSize == 0) 41 return TTI::TCC_Free; 42 // No cost model for operations on integers larger than 64 bit implemented yet. 43 if (BitSize > 64) 44 return TTI::TCC_Free; 45 46 if (Imm == 0) 47 return TTI::TCC_Free; 48 49 if (Imm.getBitWidth() <= 64) { 50 // Constants loaded via lgfi. 51 if (isInt<32>(Imm.getSExtValue())) 52 return TTI::TCC_Basic; 53 // Constants loaded via llilf. 54 if (isUInt<32>(Imm.getZExtValue())) 55 return TTI::TCC_Basic; 56 // Constants loaded via llihf: 57 if ((Imm.getZExtValue() & 0xffffffff) == 0) 58 return TTI::TCC_Basic; 59 60 return 2 * TTI::TCC_Basic; 61 } 62 63 return 4 * TTI::TCC_Basic; 64 } 65 66 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, 67 const APInt &Imm, Type *Ty) { 68 assert(Ty->isIntegerTy()); 69 70 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 71 // There is no cost model for constants with a bit size of 0. Return TCC_Free 72 // here, so that constant hoisting will ignore this constant. 73 if (BitSize == 0) 74 return TTI::TCC_Free; 75 // No cost model for operations on integers larger than 64 bit implemented yet. 76 if (BitSize > 64) 77 return TTI::TCC_Free; 78 79 switch (Opcode) { 80 default: 81 return TTI::TCC_Free; 82 case Instruction::GetElementPtr: 83 // Always hoist the base address of a GetElementPtr. This prevents the 84 // creation of new constants for every base constant that gets constant 85 // folded with the offset. 86 if (Idx == 0) 87 return 2 * TTI::TCC_Basic; 88 return TTI::TCC_Free; 89 case Instruction::Store: 90 if (Idx == 0 && Imm.getBitWidth() <= 64) { 91 // Any 8-bit immediate store can by implemented via mvi. 92 if (BitSize == 8) 93 return TTI::TCC_Free; 94 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 95 if (isInt<16>(Imm.getSExtValue())) 96 return TTI::TCC_Free; 97 } 98 break; 99 case Instruction::ICmp: 100 if (Idx == 1 && Imm.getBitWidth() <= 64) { 101 // Comparisons against signed 32-bit immediates implemented via cgfi. 102 if (isInt<32>(Imm.getSExtValue())) 103 return TTI::TCC_Free; 104 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 105 if (isUInt<32>(Imm.getZExtValue())) 106 return TTI::TCC_Free; 107 } 108 break; 109 case Instruction::Add: 110 case Instruction::Sub: 111 if (Idx == 1 && Imm.getBitWidth() <= 64) { 112 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 113 if (isUInt<32>(Imm.getZExtValue())) 114 return TTI::TCC_Free; 115 // Or their negation, by swapping addition vs. subtraction. 116 if (isUInt<32>(-Imm.getSExtValue())) 117 return TTI::TCC_Free; 118 } 119 break; 120 case Instruction::Mul: 121 if (Idx == 1 && Imm.getBitWidth() <= 64) { 122 // We use msgfi to multiply by 32-bit signed immediates. 123 if (isInt<32>(Imm.getSExtValue())) 124 return TTI::TCC_Free; 125 } 126 break; 127 case Instruction::Or: 128 case Instruction::Xor: 129 if (Idx == 1 && Imm.getBitWidth() <= 64) { 130 // Masks supported by oilf/xilf. 131 if (isUInt<32>(Imm.getZExtValue())) 132 return TTI::TCC_Free; 133 // Masks supported by oihf/xihf. 134 if ((Imm.getZExtValue() & 0xffffffff) == 0) 135 return TTI::TCC_Free; 136 } 137 break; 138 case Instruction::And: 139 if (Idx == 1 && Imm.getBitWidth() <= 64) { 140 // Any 32-bit AND operation can by implemented via nilf. 141 if (BitSize <= 32) 142 return TTI::TCC_Free; 143 // 64-bit masks supported by nilf. 144 if (isUInt<32>(~Imm.getZExtValue())) 145 return TTI::TCC_Free; 146 // 64-bit masks supported by nilh. 147 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 148 return TTI::TCC_Free; 149 // Some 64-bit AND operations can be implemented via risbg. 150 const SystemZInstrInfo *TII = ST->getInstrInfo(); 151 unsigned Start, End; 152 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 153 return TTI::TCC_Free; 154 } 155 break; 156 case Instruction::Shl: 157 case Instruction::LShr: 158 case Instruction::AShr: 159 // Always return TCC_Free for the shift value of a shift instruction. 160 if (Idx == 1) 161 return TTI::TCC_Free; 162 break; 163 case Instruction::UDiv: 164 case Instruction::SDiv: 165 case Instruction::URem: 166 case Instruction::SRem: 167 case Instruction::Trunc: 168 case Instruction::ZExt: 169 case Instruction::SExt: 170 case Instruction::IntToPtr: 171 case Instruction::PtrToInt: 172 case Instruction::BitCast: 173 case Instruction::PHI: 174 case Instruction::Call: 175 case Instruction::Select: 176 case Instruction::Ret: 177 case Instruction::Load: 178 break; 179 } 180 181 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 182 } 183 184 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 185 const APInt &Imm, Type *Ty) { 186 assert(Ty->isIntegerTy()); 187 188 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 189 // There is no cost model for constants with a bit size of 0. Return TCC_Free 190 // here, so that constant hoisting will ignore this constant. 191 if (BitSize == 0) 192 return TTI::TCC_Free; 193 // No cost model for operations on integers larger than 64 bit implemented yet. 194 if (BitSize > 64) 195 return TTI::TCC_Free; 196 197 switch (IID) { 198 default: 199 return TTI::TCC_Free; 200 case Intrinsic::sadd_with_overflow: 201 case Intrinsic::uadd_with_overflow: 202 case Intrinsic::ssub_with_overflow: 203 case Intrinsic::usub_with_overflow: 204 // These get expanded to include a normal addition/subtraction. 205 if (Idx == 1 && Imm.getBitWidth() <= 64) { 206 if (isUInt<32>(Imm.getZExtValue())) 207 return TTI::TCC_Free; 208 if (isUInt<32>(-Imm.getSExtValue())) 209 return TTI::TCC_Free; 210 } 211 break; 212 case Intrinsic::smul_with_overflow: 213 case Intrinsic::umul_with_overflow: 214 // These get expanded to include a normal multiplication. 215 if (Idx == 1 && Imm.getBitWidth() <= 64) { 216 if (isInt<32>(Imm.getSExtValue())) 217 return TTI::TCC_Free; 218 } 219 break; 220 case Intrinsic::experimental_stackmap: 221 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 222 return TTI::TCC_Free; 223 break; 224 case Intrinsic::experimental_patchpoint_void: 225 case Intrinsic::experimental_patchpoint_i64: 226 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 227 return TTI::TCC_Free; 228 break; 229 } 230 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 231 } 232 233 TargetTransformInfo::PopcntSupportKind 234 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 235 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 236 if (ST->hasPopulationCount() && TyWidth <= 64) 237 return TTI::PSK_FastHardware; 238 return TTI::PSK_Software; 239 } 240 241 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 242 TTI::UnrollingPreferences &UP) { 243 // Find out if L contains a call, what the machine instruction count 244 // estimate is, and how many stores there are. 245 bool HasCall = false; 246 unsigned NumStores = 0; 247 for (auto &BB : L->blocks()) 248 for (auto &I : *BB) { 249 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 250 ImmutableCallSite CS(&I); 251 if (const Function *F = CS.getCalledFunction()) { 252 if (isLoweredToCall(F)) 253 HasCall = true; 254 if (F->getIntrinsicID() == Intrinsic::memcpy || 255 F->getIntrinsicID() == Intrinsic::memset) 256 NumStores++; 257 } else { // indirect call. 258 HasCall = true; 259 } 260 } 261 if (isa<StoreInst>(&I)) { 262 Type *MemAccessTy = I.getOperand(0)->getType(); 263 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0); 264 } 265 } 266 267 // The z13 processor will run out of store tags if too many stores 268 // are fed into it too quickly. Therefore make sure there are not 269 // too many stores in the resulting unrolled loop. 270 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 271 272 if (HasCall) { 273 // Only allow full unrolling if loop has any calls. 274 UP.FullUnrollMaxCount = Max; 275 UP.MaxCount = 1; 276 return; 277 } 278 279 UP.MaxCount = Max; 280 if (UP.MaxCount <= 1) 281 return; 282 283 // Allow partial and runtime trip count unrolling. 284 UP.Partial = UP.Runtime = true; 285 286 UP.PartialThreshold = 75; 287 UP.DefaultUnrollRuntimeCount = 4; 288 289 // Allow expensive instructions in the pre-header of the loop. 290 UP.AllowExpensiveTripCount = true; 291 292 UP.Force = true; 293 } 294 295 296 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 297 TargetTransformInfo::LSRCost &C2) { 298 // SystemZ specific: check instruction count (first), and don't care about 299 // ImmCost, since offsets are checked explicitly. 300 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 301 C1.NumIVMuls, C1.NumBaseAdds, 302 C1.ScaleCost, C1.SetupCost) < 303 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 304 C2.NumIVMuls, C2.NumBaseAdds, 305 C2.ScaleCost, C2.SetupCost); 306 } 307 308 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) { 309 if (!Vector) 310 // Discount the stack pointer. Also leave out %r0, since it can't 311 // be used in an address. 312 return 14; 313 if (ST->hasVector()) 314 return 32; 315 return 0; 316 } 317 318 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { 319 if (!Vector) 320 return 64; 321 if (ST->hasVector()) 322 return 128; 323 return 0; 324 } 325 326 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 327 EVT VT = TLI->getValueType(DL, DataType); 328 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 329 } 330 331 int SystemZTTIImpl::getArithmeticInstrCost( 332 unsigned Opcode, Type *Ty, 333 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 334 TTI::OperandValueProperties Opd1PropInfo, 335 TTI::OperandValueProperties Opd2PropInfo, 336 ArrayRef<const Value *> Args) { 337 338 // TODO: return a good value for BB-VECTORIZER that includes the 339 // immediate loads, which we do not want to count for the loop 340 // vectorizer, since they are hopefully hoisted out of the loop. This 341 // would require a new parameter 'InLoop', but not sure if constant 342 // args are common enough to motivate this. 343 344 unsigned ScalarBits = Ty->getScalarSizeInBits(); 345 346 // Div with a constant which is a power of 2 will be converted by 347 // DAGCombiner to use shifts. With vector shift-element instructions, a 348 // vector sdiv costs about as much as a scalar one. 349 const unsigned SDivCostEstimate = 4; 350 bool SDivPow2 = false; 351 bool UDivPow2 = false; 352 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) && 353 Args.size() == 2) { 354 const ConstantInt *CI = nullptr; 355 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 356 if (C->getType()->isVectorTy()) 357 CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue()); 358 else 359 CI = dyn_cast<const ConstantInt>(C); 360 } 361 if (CI != nullptr && 362 (CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) { 363 if (Opcode == Instruction::SDiv) 364 SDivPow2 = true; 365 else 366 UDivPow2 = true; 367 } 368 } 369 370 if (Ty->isVectorTy()) { 371 assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type."); 372 unsigned VF = Ty->getVectorNumElements(); 373 unsigned NumVectors = getNumberOfParts(Ty); 374 375 // These vector operations are custom handled, but are still supported 376 // with one instruction per vector, regardless of element size. 377 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 378 Opcode == Instruction::AShr || UDivPow2) { 379 return NumVectors; 380 } 381 382 if (SDivPow2) 383 return (NumVectors * SDivCostEstimate); 384 385 // These FP operations are supported with a single vector instruction for 386 // double (base implementation assumes float generally costs 2). For 387 // FP128, the scalar cost is 1, and there is no overhead since the values 388 // are already in scalar registers. 389 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 390 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 391 switch (ScalarBits) { 392 case 32: { 393 // The vector enhancements facility 1 provides v4f32 instructions. 394 if (ST->hasVectorEnhancements1()) 395 return NumVectors; 396 // Return the cost of multiple scalar invocation plus the cost of 397 // inserting and extracting the values. 398 unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType()); 399 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); 400 // FIXME: VF 2 for these FP operations are currently just as 401 // expensive as for VF 4. 402 if (VF == 2) 403 Cost *= 2; 404 return Cost; 405 } 406 case 64: 407 case 128: 408 return NumVectors; 409 default: 410 break; 411 } 412 } 413 414 // There is no native support for FRem. 415 if (Opcode == Instruction::FRem) { 416 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); 417 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 418 if (VF == 2 && ScalarBits == 32) 419 Cost *= 2; 420 return Cost; 421 } 422 } 423 else { // Scalar: 424 // These FP operations are supported with a dedicated instruction for 425 // float, double and fp128 (base implementation assumes float generally 426 // costs 2). 427 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 428 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 429 return 1; 430 431 // There is no native support for FRem. 432 if (Opcode == Instruction::FRem) 433 return LIBCALL_COST; 434 435 if (Opcode == Instruction::LShr || Opcode == Instruction::AShr) 436 return (ScalarBits >= 32 ? 1 : 2 /*ext*/); 437 438 // Or requires one instruction, although it has custom handling for i64. 439 if (Opcode == Instruction::Or) 440 return 1; 441 442 if (Opcode == Instruction::Xor && ScalarBits == 1) 443 // 2 * ipm sequences ; xor ; shift ; compare 444 return 7; 445 446 if (UDivPow2) 447 return 1; 448 if (SDivPow2) 449 return SDivCostEstimate; 450 451 // An extra extension for narrow types is needed. 452 if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem)) 453 // sext of op(s) for narrow types 454 return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1)); 455 456 if (Opcode == Instruction::UDiv || Opcode == Instruction::URem) 457 // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r 458 return (ScalarBits < 32 ? 4 : 2); 459 } 460 461 // Fallback to the default implementation. 462 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 463 Opd1PropInfo, Opd2PropInfo, Args); 464 } 465 466 467 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 468 Type *SubTp) { 469 assert (Tp->isVectorTy()); 470 assert (ST->hasVector() && "getShuffleCost() called."); 471 unsigned NumVectors = getNumberOfParts(Tp); 472 473 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 474 475 // FP128 values are always in scalar registers, so there is no work 476 // involved with a shuffle, except for broadcast. In that case register 477 // moves are done with a single instruction per element. 478 if (Tp->getScalarType()->isFP128Ty()) 479 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 480 481 switch (Kind) { 482 case TargetTransformInfo::SK_ExtractSubvector: 483 // ExtractSubvector Index indicates start offset. 484 485 // Extracting a subvector from first index is a noop. 486 return (Index == 0 ? 0 : NumVectors); 487 488 case TargetTransformInfo::SK_Broadcast: 489 // Loop vectorizer calls here to figure out the extra cost of 490 // broadcasting a loaded value to all elements of a vector. Since vlrep 491 // loads and replicates with a single instruction, adjust the returned 492 // value. 493 return NumVectors - 1; 494 495 default: 496 497 // SystemZ supports single instruction permutation / replication. 498 return NumVectors; 499 } 500 501 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 502 } 503 504 // Return the log2 difference of the element sizes of the two vector types. 505 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 506 unsigned Bits0 = Ty0->getScalarSizeInBits(); 507 unsigned Bits1 = Ty1->getScalarSizeInBits(); 508 509 if (Bits1 > Bits0) 510 return (Log2_32(Bits1) - Log2_32(Bits0)); 511 512 return (Log2_32(Bits0) - Log2_32(Bits1)); 513 } 514 515 // Return the number of instructions needed to truncate SrcTy to DstTy. 516 unsigned SystemZTTIImpl:: 517 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 518 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 519 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 520 "Packing must reduce size of vector type."); 521 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() && 522 "Packing should not change number of elements."); 523 524 // TODO: Since fp32 is expanded, the extract cost should always be 0. 525 526 unsigned NumParts = getNumberOfParts(SrcTy); 527 if (NumParts <= 2) 528 // Up to 2 vector registers can be truncated efficiently with pack or 529 // permute. The latter requires an immediate mask to be loaded, which 530 // typically gets hoisted out of a loop. TODO: return a good value for 531 // BB-VECTORIZER that includes the immediate loads, which we do not want 532 // to count for the loop vectorizer. 533 return 1; 534 535 unsigned Cost = 0; 536 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 537 unsigned VF = SrcTy->getVectorNumElements(); 538 for (unsigned P = 0; P < Log2Diff; ++P) { 539 if (NumParts > 1) 540 NumParts /= 2; 541 Cost += NumParts; 542 } 543 544 // Currently, a general mix of permutes and pack instructions is output by 545 // isel, which follow the cost computation above except for this case which 546 // is one instruction less: 547 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 548 DstTy->getScalarSizeInBits() == 8) 549 Cost--; 550 551 return Cost; 552 } 553 554 // Return the cost of converting a vector bitmask produced by a compare 555 // (SrcTy), to the type of the select or extend instruction (DstTy). 556 unsigned SystemZTTIImpl:: 557 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 558 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 559 "Should only be called with vector types."); 560 561 unsigned PackCost = 0; 562 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 563 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 564 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 565 if (SrcScalarBits > DstScalarBits) 566 // The bitmask will be truncated. 567 PackCost = getVectorTruncCost(SrcTy, DstTy); 568 else if (SrcScalarBits < DstScalarBits) { 569 unsigned DstNumParts = getNumberOfParts(DstTy); 570 // Each vector select needs its part of the bitmask unpacked. 571 PackCost = Log2Diff * DstNumParts; 572 // Extra cost for moving part of mask before unpacking. 573 PackCost += DstNumParts - 1; 574 } 575 576 return PackCost; 577 } 578 579 // Return the type of the compared operands. This is needed to compute the 580 // cost for a Select / ZExt or SExt instruction. 581 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 582 Type *OpTy = nullptr; 583 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 584 OpTy = CI->getOperand(0)->getType(); 585 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 586 if (LogicI->getNumOperands() == 2) 587 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 588 if (isa<CmpInst>(LogicI->getOperand(1))) 589 OpTy = CI0->getOperand(0)->getType(); 590 591 if (OpTy != nullptr) { 592 if (VF == 1) { 593 assert (!OpTy->isVectorTy() && "Expected scalar type"); 594 return OpTy; 595 } 596 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 597 // be either scalar or already vectorized with a same or lesser VF. 598 Type *ElTy = OpTy->getScalarType(); 599 return VectorType::get(ElTy, VF); 600 } 601 602 return nullptr; 603 } 604 605 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 606 const Instruction *I) { 607 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 608 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 609 610 if (Src->isVectorTy()) { 611 assert (ST->hasVector() && "getCastInstrCost() called with vector type."); 612 assert (Dst->isVectorTy()); 613 unsigned VF = Src->getVectorNumElements(); 614 unsigned NumDstVectors = getNumberOfParts(Dst); 615 unsigned NumSrcVectors = getNumberOfParts(Src); 616 617 if (Opcode == Instruction::Trunc) { 618 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 619 return 0; // Check for NOOP conversions. 620 return getVectorTruncCost(Src, Dst); 621 } 622 623 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 624 if (SrcScalarBits >= 8) { 625 // ZExt/SExt will be handled with one unpack per doubling of width. 626 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 627 628 // For types that spans multiple vector registers, some additional 629 // instructions are used to setup the unpacking. 630 unsigned NumSrcVectorOps = 631 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 632 : (NumDstVectors / 2)); 633 634 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 635 } 636 else if (SrcScalarBits == 1) { 637 // This should be extension of a compare i1 result. 638 // If we know what the widths of the compared operands, get the 639 // cost of converting it to Dst. Otherwise assume same widths. 640 unsigned Cost = 0; 641 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 642 if (CmpOpTy != nullptr) 643 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 644 if (Opcode == Instruction::ZExt) 645 // One 'vn' per dst vector with an immediate mask. 646 Cost += NumDstVectors; 647 return Cost; 648 } 649 } 650 651 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 652 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 653 // TODO: Fix base implementation which could simplify things a bit here 654 // (seems to miss on differentiating on scalar/vector types). 655 656 // Only 64 bit vector conversions are natively supported. 657 if (SrcScalarBits == 64 && DstScalarBits == 64) 658 return NumDstVectors; 659 660 // Return the cost of multiple scalar invocation plus the cost of 661 // inserting and extracting the values. Base implementation does not 662 // realize float->int gets scalarized. 663 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 664 Src->getScalarType()); 665 unsigned TotCost = VF * ScalarCost; 666 bool NeedsInserts = true, NeedsExtracts = true; 667 // FP128 registers do not get inserted or extracted. 668 if (DstScalarBits == 128 && 669 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 670 NeedsInserts = false; 671 if (SrcScalarBits == 128 && 672 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 673 NeedsExtracts = false; 674 675 TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts); 676 677 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 678 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 679 TotCost *= 2; 680 681 return TotCost; 682 } 683 684 if (Opcode == Instruction::FPTrunc) { 685 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 686 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); 687 else // double -> float 688 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 689 } 690 691 if (Opcode == Instruction::FPExt) { 692 if (SrcScalarBits == 32 && DstScalarBits == 64) { 693 // float -> double is very rare and currently unoptimized. Instead of 694 // using vldeb, which can do two at a time, all conversions are 695 // scalarized. 696 return VF * 2; 697 } 698 // -> fp128. VF * lxdb/lxeb + extraction of elements. 699 return VF + getScalarizationOverhead(Src, false, true); 700 } 701 } 702 else { // Scalar 703 assert (!Dst->isVectorTy()); 704 705 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) 706 return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/); 707 708 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 709 Src->isIntegerTy(1)) { 710 // This should be extension of a compare i1 result, which is done with 711 // ipm and a varying sequence of instructions. 712 unsigned Cost = 0; 713 if (Opcode == Instruction::SExt) 714 Cost = (DstScalarBits < 64 ? 3 : 4); 715 if (Opcode == Instruction::ZExt) 716 Cost = 3; 717 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 718 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 719 // If operands of an fp-type was compared, this costs +1. 720 Cost++; 721 722 return Cost; 723 } 724 } 725 726 return BaseT::getCastInstrCost(Opcode, Dst, Src, I); 727 } 728 729 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 730 const Instruction *I) { 731 if (ValTy->isVectorTy()) { 732 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type."); 733 unsigned VF = ValTy->getVectorNumElements(); 734 735 // Called with a compare instruction. 736 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 737 unsigned PredicateExtraCost = 0; 738 if (I != nullptr) { 739 // Some predicates cost one or two extra instructions. 740 switch (cast<CmpInst>(I)->getPredicate()) { 741 case CmpInst::Predicate::ICMP_NE: 742 case CmpInst::Predicate::ICMP_UGE: 743 case CmpInst::Predicate::ICMP_ULE: 744 case CmpInst::Predicate::ICMP_SGE: 745 case CmpInst::Predicate::ICMP_SLE: 746 PredicateExtraCost = 1; 747 break; 748 case CmpInst::Predicate::FCMP_ONE: 749 case CmpInst::Predicate::FCMP_ORD: 750 case CmpInst::Predicate::FCMP_UEQ: 751 case CmpInst::Predicate::FCMP_UNO: 752 PredicateExtraCost = 2; 753 break; 754 default: 755 break; 756 } 757 } 758 759 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 760 // floats. FIXME: <2 x float> generates same code as <4 x float>. 761 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 762 unsigned NumVecs_cmp = getNumberOfParts(ValTy); 763 764 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 765 return Cost; 766 } 767 else { // Called with a select instruction. 768 assert (Opcode == Instruction::Select); 769 770 // We can figure out the extra cost of packing / unpacking if the 771 // instruction was passed and the compare instruction is found. 772 unsigned PackCost = 0; 773 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 774 if (CmpOpTy != nullptr) 775 PackCost = 776 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 777 778 return getNumberOfParts(ValTy) /*vsel*/ + PackCost; 779 } 780 } 781 else { // Scalar 782 switch (Opcode) { 783 case Instruction::ICmp: { 784 unsigned Cost = 1; 785 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 786 Cost += 2; // extend both operands 787 return Cost; 788 } 789 case Instruction::Select: 790 if (ValTy->isFloatingPointTy()) 791 return 4; // No load on condition for FP, so this costs a conditional jump. 792 return 1; // Load On Condition. 793 } 794 } 795 796 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); 797 } 798 799 int SystemZTTIImpl:: 800 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 801 // vlvgp will insert two grs into a vector register, so only count half the 802 // number of instructions. 803 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 804 return ((Index % 2 == 0) ? 1 : 0); 805 806 if (Opcode == Instruction::ExtractElement) { 807 int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1); 808 809 // Give a slight penalty for moving out of vector pipeline to FXU unit. 810 if (Index == 0 && Val->isIntOrIntVectorTy()) 811 Cost += 1; 812 813 return Cost; 814 } 815 816 return BaseT::getVectorInstrCost(Opcode, Val, Index); 817 } 818 819 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 820 unsigned Alignment, unsigned AddressSpace, 821 const Instruction *I) { 822 assert(!Src->isVoidTy() && "Invalid type"); 823 824 if (!Src->isVectorTy() && Opcode == Instruction::Load && 825 I != nullptr && I->hasOneUse()) { 826 const Instruction *UserI = cast<Instruction>(*I->user_begin()); 827 unsigned Bits = Src->getScalarSizeInBits(); 828 bool FoldsLoad = false; 829 switch (UserI->getOpcode()) { 830 case Instruction::ICmp: 831 case Instruction::Add: 832 case Instruction::Sub: 833 case Instruction::Mul: 834 case Instruction::SDiv: 835 case Instruction::UDiv: 836 case Instruction::And: 837 case Instruction::Or: 838 case Instruction::Xor: 839 // This also makes sense for float operations, but disabled for now due 840 // to regressions. 841 // case Instruction::FCmp: 842 // case Instruction::FAdd: 843 // case Instruction::FSub: 844 // case Instruction::FMul: 845 // case Instruction::FDiv: 846 FoldsLoad = (Bits == 32 || Bits == 64); 847 break; 848 } 849 850 if (FoldsLoad) { 851 assert (UserI->getNumOperands() == 2 && 852 "Expected to only handle binops."); 853 854 // UserI can't fold two loads, so in that case return 0 cost only 855 // half of the time. 856 for (unsigned i = 0; i < 2; ++i) { 857 if (UserI->getOperand(i) == I) 858 continue; 859 if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) { 860 if (LI->hasOneUse()) 861 return i == 0; 862 } 863 } 864 865 return 0; 866 } 867 } 868 869 unsigned NumOps = getNumberOfParts(Src); 870 871 if (Src->getScalarSizeInBits() == 128) 872 // 128 bit scalars are held in a pair of two 64 bit registers. 873 NumOps *= 2; 874 875 return NumOps; 876 } 877 878 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 879 unsigned Factor, 880 ArrayRef<unsigned> Indices, 881 unsigned Alignment, 882 unsigned AddressSpace) { 883 assert(isa<VectorType>(VecTy) && 884 "Expect a vector type for interleaved memory op"); 885 886 unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ? 887 (64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits()); 888 assert (WideBits > 0 && "Could not compute size of vector"); 889 int NumWideParts = 890 ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 891 892 // How many source vectors are handled to produce a vectorized operand? 893 int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts); 894 int NumSrcParts = 895 ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts); 896 897 // A Load group may have gaps. 898 unsigned NumOperands = 899 ((Opcode == Instruction::Load) ? Indices.size() : Factor); 900 901 // Each needed permute takes two vectors as input. 902 if (NumSrcParts > 1) 903 NumSrcParts--; 904 int NumPermutes = NumSrcParts * NumOperands; 905 906 // Cost of load/store operations and the permutations needed. 907 return NumWideParts + NumPermutes; 908 } 909