Home | History | Annotate | Download | only in IPO
      1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the mechanics required to implement inlining without
     11 // missing any calls and updating the call graph.  The decisions of which calls
     12 // are profitable to inline are implemented elsewhere.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/IPO/Inliner.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/None.h"
     19 #include "llvm/ADT/Optional.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/SetVector.h"
     22 #include "llvm/ADT/SmallPtrSet.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/ADT/StringRef.h"
     26 #include "llvm/Analysis/AliasAnalysis.h"
     27 #include "llvm/Analysis/AssumptionCache.h"
     28 #include "llvm/Analysis/BasicAliasAnalysis.h"
     29 #include "llvm/Analysis/BlockFrequencyInfo.h"
     30 #include "llvm/Analysis/CGSCCPassManager.h"
     31 #include "llvm/Analysis/CallGraph.h"
     32 #include "llvm/Analysis/InlineCost.h"
     33 #include "llvm/Analysis/LazyCallGraph.h"
     34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
     35 #include "llvm/Analysis/ProfileSummaryInfo.h"
     36 #include "llvm/Analysis/TargetLibraryInfo.h"
     37 #include "llvm/Analysis/TargetTransformInfo.h"
     38 #include "llvm/Transforms/Utils/Local.h"
     39 #include "llvm/IR/Attributes.h"
     40 #include "llvm/IR/BasicBlock.h"
     41 #include "llvm/IR/CallSite.h"
     42 #include "llvm/IR/DataLayout.h"
     43 #include "llvm/IR/DebugLoc.h"
     44 #include "llvm/IR/DerivedTypes.h"
     45 #include "llvm/IR/DiagnosticInfo.h"
     46 #include "llvm/IR/Function.h"
     47 #include "llvm/IR/InstIterator.h"
     48 #include "llvm/IR/Instruction.h"
     49 #include "llvm/IR/Instructions.h"
     50 #include "llvm/IR/IntrinsicInst.h"
     51 #include "llvm/IR/Metadata.h"
     52 #include "llvm/IR/Module.h"
     53 #include "llvm/IR/PassManager.h"
     54 #include "llvm/IR/User.h"
     55 #include "llvm/IR/Value.h"
     56 #include "llvm/Pass.h"
     57 #include "llvm/Support/Casting.h"
     58 #include "llvm/Support/CommandLine.h"
     59 #include "llvm/Support/Debug.h"
     60 #include "llvm/Support/raw_ostream.h"
     61 #include "llvm/Transforms/Utils/Cloning.h"
     62 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
     63 #include "llvm/Transforms/Utils/ModuleUtils.h"
     64 #include <algorithm>
     65 #include <cassert>
     66 #include <functional>
     67 #include <tuple>
     68 #include <utility>
     69 #include <vector>
     70 
     71 using namespace llvm;
     72 
     73 #define DEBUG_TYPE "inline"
     74 
     75 STATISTIC(NumInlined, "Number of functions inlined");
     76 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
     77 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
     78 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
     79 
     80 // This weirdly named statistic tracks the number of times that, when attempting
     81 // to inline a function A into B, we analyze the callers of B in order to see
     82 // if those would be more profitable and blocked inline steps.
     83 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
     84 
     85 /// Flag to disable manual alloca merging.
     86 ///
     87 /// Merging of allocas was originally done as a stack-size saving technique
     88 /// prior to LLVM's code generator having support for stack coloring based on
     89 /// lifetime markers. It is now in the process of being removed. To experiment
     90 /// with disabling it and relying fully on lifetime marker based stack
     91 /// coloring, you can pass this flag to LLVM.
     92 static cl::opt<bool>
     93     DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
     94                                 cl::init(false), cl::Hidden);
     95 
     96 namespace {
     97 
     98 enum class InlinerFunctionImportStatsOpts {
     99   No = 0,
    100   Basic = 1,
    101   Verbose = 2,
    102 };
    103 
    104 } // end anonymous namespace
    105 
    106 static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
    107     "inliner-function-import-stats",
    108     cl::init(InlinerFunctionImportStatsOpts::No),
    109     cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
    110                           "basic statistics"),
    111                clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
    112                           "printing of statistics for each inlined function")),
    113     cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
    114 
    115 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
    116 
    117 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
    118     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
    119 
    120 /// For this class, we declare that we require and preserve the call graph.
    121 /// If the derived class implements this method, it should
    122 /// always explicitly call the implementation here.
    123 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
    124   AU.addRequired<AssumptionCacheTracker>();
    125   AU.addRequired<ProfileSummaryInfoWrapperPass>();
    126   AU.addRequired<TargetLibraryInfoWrapperPass>();
    127   getAAResultsAnalysisUsage(AU);
    128   CallGraphSCCPass::getAnalysisUsage(AU);
    129 }
    130 
    131 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
    132 
    133 /// Look at all of the allocas that we inlined through this call site.  If we
    134 /// have already inlined other allocas through other calls into this function,
    135 /// then we know that they have disjoint lifetimes and that we can merge them.
    136 ///
    137 /// There are many heuristics possible for merging these allocas, and the
    138 /// different options have different tradeoffs.  One thing that we *really*
    139 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
    140 /// longer address taken and so they can be promoted.
    141 ///
    142 /// Our "solution" for that is to only merge allocas whose outermost type is an
    143 /// array type.  These are usually not promoted because someone is using a
    144 /// variable index into them.  These are also often the most important ones to
    145 /// merge.
    146 ///
    147 /// A better solution would be to have real memory lifetime markers in the IR
    148 /// and not have the inliner do any merging of allocas at all.  This would
    149 /// allow the backend to do proper stack slot coloring of all allocas that
    150 /// *actually make it to the backend*, which is really what we want.
    151 ///
    152 /// Because we don't have this information, we do this simple and useful hack.
    153 static void mergeInlinedArrayAllocas(
    154     Function *Caller, InlineFunctionInfo &IFI,
    155     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) {
    156   SmallPtrSet<AllocaInst *, 16> UsedAllocas;
    157 
    158   // When processing our SCC, check to see if CS was inlined from some other
    159   // call site.  For example, if we're processing "A" in this code:
    160   //   A() { B() }
    161   //   B() { x = alloca ... C() }
    162   //   C() { y = alloca ... }
    163   // Assume that C was not inlined into B initially, and so we're processing A
    164   // and decide to inline B into A.  Doing this makes an alloca available for
    165   // reuse and makes a callsite (C) available for inlining.  When we process
    166   // the C call site we don't want to do any alloca merging between X and Y
    167   // because their scopes are not disjoint.  We could make this smarter by
    168   // keeping track of the inline history for each alloca in the
    169   // InlinedArrayAllocas but this isn't likely to be a significant win.
    170   if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
    171     return;
    172 
    173   // Loop over all the allocas we have so far and see if they can be merged with
    174   // a previously inlined alloca.  If not, remember that we had it.
    175   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e;
    176        ++AllocaNo) {
    177     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
    178 
    179     // Don't bother trying to merge array allocations (they will usually be
    180     // canonicalized to be an allocation *of* an array), or allocations whose
    181     // type is not itself an array (because we're afraid of pessimizing SRoA).
    182     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
    183     if (!ATy || AI->isArrayAllocation())
    184       continue;
    185 
    186     // Get the list of all available allocas for this array type.
    187     std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
    188 
    189     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
    190     // that we have to be careful not to reuse the same "available" alloca for
    191     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
    192     // set to keep track of which "available" allocas are being used by this
    193     // function.  Also, AllocasForType can be empty of course!
    194     bool MergedAwayAlloca = false;
    195     for (AllocaInst *AvailableAlloca : AllocasForType) {
    196       unsigned Align1 = AI->getAlignment(),
    197                Align2 = AvailableAlloca->getAlignment();
    198 
    199       // The available alloca has to be in the right function, not in some other
    200       // function in this SCC.
    201       if (AvailableAlloca->getParent() != AI->getParent())
    202         continue;
    203 
    204       // If the inlined function already uses this alloca then we can't reuse
    205       // it.
    206       if (!UsedAllocas.insert(AvailableAlloca).second)
    207         continue;
    208 
    209       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
    210       // success!
    211       LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
    212                         << "\n\t\tINTO: " << *AvailableAlloca << '\n');
    213 
    214       // Move affected dbg.declare calls immediately after the new alloca to
    215       // avoid the situation when a dbg.declare precedes its alloca.
    216       if (auto *L = LocalAsMetadata::getIfExists(AI))
    217         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
    218           for (User *U : MDV->users())
    219             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
    220               DDI->moveBefore(AvailableAlloca->getNextNode());
    221 
    222       AI->replaceAllUsesWith(AvailableAlloca);
    223 
    224       if (Align1 != Align2) {
    225         if (!Align1 || !Align2) {
    226           const DataLayout &DL = Caller->getParent()->getDataLayout();
    227           unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
    228 
    229           Align1 = Align1 ? Align1 : TypeAlign;
    230           Align2 = Align2 ? Align2 : TypeAlign;
    231         }
    232 
    233         if (Align1 > Align2)
    234           AvailableAlloca->setAlignment(AI->getAlignment());
    235       }
    236 
    237       AI->eraseFromParent();
    238       MergedAwayAlloca = true;
    239       ++NumMergedAllocas;
    240       IFI.StaticAllocas[AllocaNo] = nullptr;
    241       break;
    242     }
    243 
    244     // If we already nuked the alloca, we're done with it.
    245     if (MergedAwayAlloca)
    246       continue;
    247 
    248     // If we were unable to merge away the alloca either because there are no
    249     // allocas of the right type available or because we reused them all
    250     // already, remember that this alloca came from an inlined function and mark
    251     // it used so we don't reuse it for other allocas from this inline
    252     // operation.
    253     AllocasForType.push_back(AI);
    254     UsedAllocas.insert(AI);
    255   }
    256 }
    257 
    258 /// If it is possible to inline the specified call site,
    259 /// do so and update the CallGraph for this operation.
    260 ///
    261 /// This function also does some basic book-keeping to update the IR.  The
    262 /// InlinedArrayAllocas map keeps track of any allocas that are already
    263 /// available from other functions inlined into the caller.  If we are able to
    264 /// inline this call site we attempt to reuse already available allocas or add
    265 /// any new allocas to the set if not possible.
    266 static bool InlineCallIfPossible(
    267     CallSite CS, InlineFunctionInfo &IFI,
    268     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
    269     bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
    270     ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
    271   Function *Callee = CS.getCalledFunction();
    272   Function *Caller = CS.getCaller();
    273 
    274   AAResults &AAR = AARGetter(*Callee);
    275 
    276   // Try to inline the function.  Get the list of static allocas that were
    277   // inlined.
    278   if (!InlineFunction(CS, IFI, &AAR, InsertLifetime))
    279     return false;
    280 
    281   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
    282     ImportedFunctionsStats.recordInline(*Caller, *Callee);
    283 
    284   AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
    285 
    286   if (!DisableInlinedAllocaMerging)
    287     mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
    288 
    289   return true;
    290 }
    291 
    292 /// Return true if inlining of CS can block the caller from being
    293 /// inlined which is proved to be more beneficial. \p IC is the
    294 /// estimated inline cost associated with callsite \p CS.
    295 /// \p TotalSecondaryCost will be set to the estimated cost of inlining the
    296 /// caller if \p CS is suppressed for inlining.
    297 static bool
    298 shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
    299                  int &TotalSecondaryCost,
    300                  function_ref<InlineCost(CallSite CS)> GetInlineCost) {
    301   // For now we only handle local or inline functions.
    302   if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
    303     return false;
    304   // Try to detect the case where the current inlining candidate caller (call
    305   // it B) is a static or linkonce-ODR function and is an inlining candidate
    306   // elsewhere, and the current candidate callee (call it C) is large enough
    307   // that inlining it into B would make B too big to inline later. In these
    308   // circumstances it may be best not to inline C into B, but to inline B into
    309   // its callers.
    310   //
    311   // This only applies to static and linkonce-ODR functions because those are
    312   // expected to be available for inlining in the translation units where they
    313   // are used. Thus we will always have the opportunity to make local inlining
    314   // decisions. Importantly the linkonce-ODR linkage covers inline functions
    315   // and templates in C++.
    316   //
    317   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
    318   // the internal implementation of the inline cost metrics rather than
    319   // treating them as truly abstract units etc.
    320   TotalSecondaryCost = 0;
    321   // The candidate cost to be imposed upon the current function.
    322   int CandidateCost = IC.getCost() - 1;
    323   // This bool tracks what happens if we do NOT inline C into B.
    324   bool callerWillBeRemoved = Caller->hasLocalLinkage();
    325   // This bool tracks what happens if we DO inline C into B.
    326   bool inliningPreventsSomeOuterInline = false;
    327   for (User *U : Caller->users()) {
    328     CallSite CS2(U);
    329 
    330     // If this isn't a call to Caller (it could be some other sort
    331     // of reference) skip it.  Such references will prevent the caller
    332     // from being removed.
    333     if (!CS2 || CS2.getCalledFunction() != Caller) {
    334       callerWillBeRemoved = false;
    335       continue;
    336     }
    337 
    338     InlineCost IC2 = GetInlineCost(CS2);
    339     ++NumCallerCallersAnalyzed;
    340     if (!IC2) {
    341       callerWillBeRemoved = false;
    342       continue;
    343     }
    344     if (IC2.isAlways())
    345       continue;
    346 
    347     // See if inlining of the original callsite would erase the cost delta of
    348     // this callsite. We subtract off the penalty for the call instruction,
    349     // which we would be deleting.
    350     if (IC2.getCostDelta() <= CandidateCost) {
    351       inliningPreventsSomeOuterInline = true;
    352       TotalSecondaryCost += IC2.getCost();
    353     }
    354   }
    355   // If all outer calls to Caller would get inlined, the cost for the last
    356   // one is set very low by getInlineCost, in anticipation that Caller will
    357   // be removed entirely.  We did not account for this above unless there
    358   // is only one caller of Caller.
    359   if (callerWillBeRemoved && !Caller->hasOneUse())
    360     TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus;
    361 
    362   if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
    363     return true;
    364 
    365   return false;
    366 }
    367 
    368 /// Return the cost only if the inliner should attempt to inline at the given
    369 /// CallSite. If we return the cost, we will emit an optimisation remark later
    370 /// using that cost, so we won't do so from this function.
    371 static Optional<InlineCost>
    372 shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost,
    373              OptimizationRemarkEmitter &ORE) {
    374   using namespace ore;
    375 
    376   InlineCost IC = GetInlineCost(CS);
    377   Instruction *Call = CS.getInstruction();
    378   Function *Callee = CS.getCalledFunction();
    379   Function *Caller = CS.getCaller();
    380 
    381   if (IC.isAlways()) {
    382     LLVM_DEBUG(dbgs() << "    Inlining: cost=always"
    383                       << ", Call: " << *CS.getInstruction() << "\n");
    384     return IC;
    385   }
    386 
    387   if (IC.isNever()) {
    388     LLVM_DEBUG(dbgs() << "    NOT Inlining: cost=never"
    389                       << ", Call: " << *CS.getInstruction() << "\n");
    390     ORE.emit([&]() {
    391       return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
    392              << NV("Callee", Callee) << " not inlined into "
    393              << NV("Caller", Caller)
    394              << " because it should never be inlined (cost=never)";
    395     });
    396     return None;
    397   }
    398 
    399   if (!IC) {
    400     LLVM_DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
    401                       << ", thres=" << IC.getThreshold()
    402                       << ", Call: " << *CS.getInstruction() << "\n");
    403     ORE.emit([&]() {
    404       return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call)
    405              << NV("Callee", Callee) << " not inlined into "
    406              << NV("Caller", Caller) << " because too costly to inline (cost="
    407              << NV("Cost", IC.getCost())
    408              << ", threshold=" << NV("Threshold", IC.getThreshold()) << ")";
    409     });
    410     return None;
    411   }
    412 
    413   int TotalSecondaryCost = 0;
    414   if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
    415     LLVM_DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction()
    416                       << " Cost = " << IC.getCost()
    417                       << ", outer Cost = " << TotalSecondaryCost << '\n');
    418     ORE.emit([&]() {
    419       return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts",
    420                                       Call)
    421              << "Not inlining. Cost of inlining " << NV("Callee", Callee)
    422              << " increases the cost of inlining " << NV("Caller", Caller)
    423              << " in other contexts";
    424     });
    425 
    426     // IC does not bool() to false, so get an InlineCost that will.
    427     // This will not be inspected to make an error message.
    428     return None;
    429   }
    430 
    431   LLVM_DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
    432                     << ", thres=" << IC.getThreshold()
    433                     << ", Call: " << *CS.getInstruction() << '\n');
    434   return IC;
    435 }
    436 
    437 /// Return true if the specified inline history ID
    438 /// indicates an inline history that includes the specified function.
    439 static bool InlineHistoryIncludes(
    440     Function *F, int InlineHistoryID,
    441     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
    442   while (InlineHistoryID != -1) {
    443     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
    444            "Invalid inline history ID");
    445     if (InlineHistory[InlineHistoryID].first == F)
    446       return true;
    447     InlineHistoryID = InlineHistory[InlineHistoryID].second;
    448   }
    449   return false;
    450 }
    451 
    452 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
    453   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
    454     ImportedFunctionsStats.setModuleInfo(CG.getModule());
    455   return false; // No changes to CallGraph.
    456 }
    457 
    458 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
    459   if (skipSCC(SCC))
    460     return false;
    461   return inlineCalls(SCC);
    462 }
    463 
    464 static bool
    465 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
    466                 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
    467                 ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI,
    468                 bool InsertLifetime,
    469                 function_ref<InlineCost(CallSite CS)> GetInlineCost,
    470                 function_ref<AAResults &(Function &)> AARGetter,
    471                 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
    472   SmallPtrSet<Function *, 8> SCCFunctions;
    473   LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
    474   for (CallGraphNode *Node : SCC) {
    475     Function *F = Node->getFunction();
    476     if (F)
    477       SCCFunctions.insert(F);
    478     LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
    479   }
    480 
    481   // Scan through and identify all call sites ahead of time so that we only
    482   // inline call sites in the original functions, not call sites that result
    483   // from inlining other functions.
    484   SmallVector<std::pair<CallSite, int>, 16> CallSites;
    485 
    486   // When inlining a callee produces new call sites, we want to keep track of
    487   // the fact that they were inlined from the callee.  This allows us to avoid
    488   // infinite inlining in some obscure cases.  To represent this, we use an
    489   // index into the InlineHistory vector.
    490   SmallVector<std::pair<Function *, int>, 8> InlineHistory;
    491 
    492   for (CallGraphNode *Node : SCC) {
    493     Function *F = Node->getFunction();
    494     if (!F || F->isDeclaration())
    495       continue;
    496 
    497     OptimizationRemarkEmitter ORE(F);
    498     for (BasicBlock &BB : *F)
    499       for (Instruction &I : BB) {
    500         CallSite CS(cast<Value>(&I));
    501         // If this isn't a call, or it is a call to an intrinsic, it can
    502         // never be inlined.
    503         if (!CS || isa<IntrinsicInst>(I))
    504           continue;
    505 
    506         // If this is a direct call to an external function, we can never inline
    507         // it.  If it is an indirect call, inlining may resolve it to be a
    508         // direct call, so we keep it.
    509         if (Function *Callee = CS.getCalledFunction())
    510           if (Callee->isDeclaration()) {
    511             using namespace ore;
    512 
    513             ORE.emit([&]() {
    514               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
    515                      << NV("Callee", Callee) << " will not be inlined into "
    516                      << NV("Caller", CS.getCaller())
    517                      << " because its definition is unavailable"
    518                      << setIsVerbose();
    519             });
    520             continue;
    521           }
    522 
    523         CallSites.push_back(std::make_pair(CS, -1));
    524       }
    525   }
    526 
    527   LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
    528 
    529   // If there are no calls in this function, exit early.
    530   if (CallSites.empty())
    531     return false;
    532 
    533   // Now that we have all of the call sites, move the ones to functions in the
    534   // current SCC to the end of the list.
    535   unsigned FirstCallInSCC = CallSites.size();
    536   for (unsigned i = 0; i < FirstCallInSCC; ++i)
    537     if (Function *F = CallSites[i].first.getCalledFunction())
    538       if (SCCFunctions.count(F))
    539         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
    540 
    541   InlinedArrayAllocasTy InlinedArrayAllocas;
    542   InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI);
    543 
    544   // Now that we have all of the call sites, loop over them and inline them if
    545   // it looks profitable to do so.
    546   bool Changed = false;
    547   bool LocalChange;
    548   do {
    549     LocalChange = false;
    550     // Iterate over the outer loop because inlining functions can cause indirect
    551     // calls to become direct calls.
    552     // CallSites may be modified inside so ranged for loop can not be used.
    553     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
    554       CallSite CS = CallSites[CSi].first;
    555 
    556       Function *Caller = CS.getCaller();
    557       Function *Callee = CS.getCalledFunction();
    558 
    559       // We can only inline direct calls to non-declarations.
    560       if (!Callee || Callee->isDeclaration())
    561         continue;
    562 
    563       Instruction *Instr = CS.getInstruction();
    564 
    565       bool IsTriviallyDead = isInstructionTriviallyDead(Instr, &TLI);
    566 
    567       int InlineHistoryID;
    568       if (!IsTriviallyDead) {
    569         // If this call site was obtained by inlining another function, verify
    570         // that the include path for the function did not include the callee
    571         // itself.  If so, we'd be recursively inlining the same function,
    572         // which would provide the same callsites, which would cause us to
    573         // infinitely inline.
    574         InlineHistoryID = CallSites[CSi].second;
    575         if (InlineHistoryID != -1 &&
    576             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
    577           continue;
    578       }
    579 
    580       // FIXME for new PM: because of the old PM we currently generate ORE and
    581       // in turn BFI on demand.  With the new PM, the ORE dependency should
    582       // just become a regular analysis dependency.
    583       OptimizationRemarkEmitter ORE(Caller);
    584 
    585       Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
    586       // If the policy determines that we should inline this function,
    587       // delete the call instead.
    588       if (!OIC)
    589         continue;
    590 
    591       // If this call site is dead and it is to a readonly function, we should
    592       // just delete the call instead of trying to inline it, regardless of
    593       // size.  This happens because IPSCCP propagates the result out of the
    594       // call and then we're left with the dead call.
    595       if (IsTriviallyDead) {
    596         LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << *Instr << "\n");
    597         // Update the call graph by deleting the edge from Callee to Caller.
    598         CG[Caller]->removeCallEdgeFor(CS);
    599         Instr->eraseFromParent();
    600         ++NumCallsDeleted;
    601       } else {
    602         // Get DebugLoc to report. CS will be invalid after Inliner.
    603         DebugLoc DLoc = CS->getDebugLoc();
    604         BasicBlock *Block = CS.getParent();
    605 
    606         // Attempt to inline the function.
    607         using namespace ore;
    608 
    609         if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
    610                                   InlineHistoryID, InsertLifetime, AARGetter,
    611                                   ImportedFunctionsStats)) {
    612           ORE.emit([&]() {
    613             return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
    614                                             Block)
    615                    << NV("Callee", Callee) << " will not be inlined into "
    616                    << NV("Caller", Caller);
    617           });
    618           continue;
    619         }
    620         ++NumInlined;
    621 
    622         ORE.emit([&]() {
    623           bool AlwaysInline = OIC->isAlways();
    624           StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined";
    625           OptimizationRemark R(DEBUG_TYPE, RemarkName, DLoc, Block);
    626           R << NV("Callee", Callee) << " inlined into ";
    627           R << NV("Caller", Caller);
    628           if (AlwaysInline)
    629             R << " with cost=always";
    630           else {
    631             R << " with cost=" << NV("Cost", OIC->getCost());
    632             R << " (threshold=" << NV("Threshold", OIC->getThreshold());
    633             R << ")";
    634           }
    635           return R;
    636         });
    637 
    638         // If inlining this function gave us any new call sites, throw them
    639         // onto our worklist to process.  They are useful inline candidates.
    640         if (!InlineInfo.InlinedCalls.empty()) {
    641           // Create a new inline history entry for this, so that we remember
    642           // that these new callsites came about due to inlining Callee.
    643           int NewHistoryID = InlineHistory.size();
    644           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
    645 
    646           for (Value *Ptr : InlineInfo.InlinedCalls)
    647             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
    648         }
    649       }
    650 
    651       // If we inlined or deleted the last possible call site to the function,
    652       // delete the function body now.
    653       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
    654           // TODO: Can remove if in SCC now.
    655           !SCCFunctions.count(Callee) &&
    656           // The function may be apparently dead, but if there are indirect
    657           // callgraph references to the node, we cannot delete it yet, this
    658           // could invalidate the CGSCC iterator.
    659           CG[Callee]->getNumReferences() == 0) {
    660         LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
    661                           << Callee->getName() << "\n");
    662         CallGraphNode *CalleeNode = CG[Callee];
    663 
    664         // Remove any call graph edges from the callee to its callees.
    665         CalleeNode->removeAllCalledFunctions();
    666 
    667         // Removing the node for callee from the call graph and delete it.
    668         delete CG.removeFunctionFromModule(CalleeNode);
    669         ++NumDeleted;
    670       }
    671 
    672       // Remove this call site from the list.  If possible, use
    673       // swap/pop_back for efficiency, but do not use it if doing so would
    674       // move a call site to a function in this SCC before the
    675       // 'FirstCallInSCC' barrier.
    676       if (SCC.isSingular()) {
    677         CallSites[CSi] = CallSites.back();
    678         CallSites.pop_back();
    679       } else {
    680         CallSites.erase(CallSites.begin() + CSi);
    681       }
    682       --CSi;
    683 
    684       Changed = true;
    685       LocalChange = true;
    686     }
    687   } while (LocalChange);
    688 
    689   return Changed;
    690 }
    691 
    692 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
    693   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
    694   ACT = &getAnalysis<AssumptionCacheTracker>();
    695   PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
    696   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    697   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
    698     return ACT->getAssumptionCache(F);
    699   };
    700   return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime,
    701                          [this](CallSite CS) { return getInlineCost(CS); },
    702                          LegacyAARGetter(*this), ImportedFunctionsStats);
    703 }
    704 
    705 /// Remove now-dead linkonce functions at the end of
    706 /// processing to avoid breaking the SCC traversal.
    707 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
    708   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
    709     ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
    710                                 InlinerFunctionImportStatsOpts::Verbose);
    711   return removeDeadFunctions(CG);
    712 }
    713 
    714 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
    715 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
    716                                             bool AlwaysInlineOnly) {
    717   SmallVector<CallGraphNode *, 16> FunctionsToRemove;
    718   SmallVector<Function *, 16> DeadFunctionsInComdats;
    719 
    720   auto RemoveCGN = [&](CallGraphNode *CGN) {
    721     // Remove any call graph edges from the function to its callees.
    722     CGN->removeAllCalledFunctions();
    723 
    724     // Remove any edges from the external node to the function's call graph
    725     // node.  These edges might have been made irrelegant due to
    726     // optimization of the program.
    727     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
    728 
    729     // Removing the node for callee from the call graph and delete it.
    730     FunctionsToRemove.push_back(CGN);
    731   };
    732 
    733   // Scan for all of the functions, looking for ones that should now be removed
    734   // from the program.  Insert the dead ones in the FunctionsToRemove set.
    735   for (const auto &I : CG) {
    736     CallGraphNode *CGN = I.second.get();
    737     Function *F = CGN->getFunction();
    738     if (!F || F->isDeclaration())
    739       continue;
    740 
    741     // Handle the case when this function is called and we only want to care
    742     // about always-inline functions. This is a bit of a hack to share code
    743     // between here and the InlineAlways pass.
    744     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
    745       continue;
    746 
    747     // If the only remaining users of the function are dead constants, remove
    748     // them.
    749     F->removeDeadConstantUsers();
    750 
    751     if (!F->isDefTriviallyDead())
    752       continue;
    753 
    754     // It is unsafe to drop a function with discardable linkage from a COMDAT
    755     // without also dropping the other members of the COMDAT.
    756     // The inliner doesn't visit non-function entities which are in COMDAT
    757     // groups so it is unsafe to do so *unless* the linkage is local.
    758     if (!F->hasLocalLinkage()) {
    759       if (F->hasComdat()) {
    760         DeadFunctionsInComdats.push_back(F);
    761         continue;
    762       }
    763     }
    764 
    765     RemoveCGN(CGN);
    766   }
    767   if (!DeadFunctionsInComdats.empty()) {
    768     // Filter out the functions whose comdats remain alive.
    769     filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
    770     // Remove the rest.
    771     for (Function *F : DeadFunctionsInComdats)
    772       RemoveCGN(CG[F]);
    773   }
    774 
    775   if (FunctionsToRemove.empty())
    776     return false;
    777 
    778   // Now that we know which functions to delete, do so.  We didn't want to do
    779   // this inline, because that would invalidate our CallGraph::iterator
    780   // objects. :(
    781   //
    782   // Note that it doesn't matter that we are iterating over a non-stable order
    783   // here to do this, it doesn't matter which order the functions are deleted
    784   // in.
    785   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
    786   FunctionsToRemove.erase(
    787       std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
    788       FunctionsToRemove.end());
    789   for (CallGraphNode *CGN : FunctionsToRemove) {
    790     delete CG.removeFunctionFromModule(CGN);
    791     ++NumDeleted;
    792   }
    793   return true;
    794 }
    795 
    796 InlinerPass::~InlinerPass() {
    797   if (ImportedFunctionsStats) {
    798     assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No);
    799     ImportedFunctionsStats->dump(InlinerFunctionImportStats ==
    800                                  InlinerFunctionImportStatsOpts::Verbose);
    801   }
    802 }
    803 
    804 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
    805                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
    806                                    CGSCCUpdateResult &UR) {
    807   const ModuleAnalysisManager &MAM =
    808       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager();
    809   bool Changed = false;
    810 
    811   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
    812   Module &M = *InitialC.begin()->getFunction().getParent();
    813   ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
    814 
    815   if (!ImportedFunctionsStats &&
    816       InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) {
    817     ImportedFunctionsStats =
    818         llvm::make_unique<ImportedFunctionsInliningStatistics>();
    819     ImportedFunctionsStats->setModuleInfo(M);
    820   }
    821 
    822   // We use a single common worklist for calls across the entire SCC. We
    823   // process these in-order and append new calls introduced during inlining to
    824   // the end.
    825   //
    826   // Note that this particular order of processing is actually critical to
    827   // avoid very bad behaviors. Consider *highly connected* call graphs where
    828   // each function contains a small amonut of code and a couple of calls to
    829   // other functions. Because the LLVM inliner is fundamentally a bottom-up
    830   // inliner, it can handle gracefully the fact that these all appear to be
    831   // reasonable inlining candidates as it will flatten things until they become
    832   // too big to inline, and then move on and flatten another batch.
    833   //
    834   // However, when processing call edges *within* an SCC we cannot rely on this
    835   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
    836   // functions we can end up incrementally inlining N calls into each of
    837   // N functions because each incremental inlining decision looks good and we
    838   // don't have a topological ordering to prevent explosions.
    839   //
    840   // To compensate for this, we don't process transitive edges made immediate
    841   // by inlining until we've done one pass of inlining across the entire SCC.
    842   // Large, highly connected SCCs still lead to some amount of code bloat in
    843   // this model, but it is uniformly spread across all the functions in the SCC
    844   // and eventually they all become too large to inline, rather than
    845   // incrementally maknig a single function grow in a super linear fashion.
    846   SmallVector<std::pair<CallSite, int>, 16> Calls;
    847 
    848   FunctionAnalysisManager &FAM =
    849       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
    850           .getManager();
    851 
    852   // Populate the initial list of calls in this SCC.
    853   for (auto &N : InitialC) {
    854     auto &ORE =
    855         FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
    856     // We want to generally process call sites top-down in order for
    857     // simplifications stemming from replacing the call with the returned value
    858     // after inlining to be visible to subsequent inlining decisions.
    859     // FIXME: Using instructions sequence is a really bad way to do this.
    860     // Instead we should do an actual RPO walk of the function body.
    861     for (Instruction &I : instructions(N.getFunction()))
    862       if (auto CS = CallSite(&I))
    863         if (Function *Callee = CS.getCalledFunction()) {
    864           if (!Callee->isDeclaration())
    865             Calls.push_back({CS, -1});
    866           else if (!isa<IntrinsicInst>(I)) {
    867             using namespace ore;
    868             ORE.emit([&]() {
    869               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
    870                      << NV("Callee", Callee) << " will not be inlined into "
    871                      << NV("Caller", CS.getCaller())
    872                      << " because its definition is unavailable"
    873                      << setIsVerbose();
    874             });
    875           }
    876         }
    877   }
    878   if (Calls.empty())
    879     return PreservedAnalyses::all();
    880 
    881   // Capture updatable variables for the current SCC and RefSCC.
    882   auto *C = &InitialC;
    883   auto *RC = &C->getOuterRefSCC();
    884 
    885   // When inlining a callee produces new call sites, we want to keep track of
    886   // the fact that they were inlined from the callee.  This allows us to avoid
    887   // infinite inlining in some obscure cases.  To represent this, we use an
    888   // index into the InlineHistory vector.
    889   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
    890 
    891   // Track a set vector of inlined callees so that we can augment the caller
    892   // with all of their edges in the call graph before pruning out the ones that
    893   // got simplified away.
    894   SmallSetVector<Function *, 4> InlinedCallees;
    895 
    896   // Track the dead functions to delete once finished with inlining calls. We
    897   // defer deleting these to make it easier to handle the call graph updates.
    898   SmallVector<Function *, 4> DeadFunctions;
    899 
    900   // Loop forward over all of the calls. Note that we cannot cache the size as
    901   // inlining can introduce new calls that need to be processed.
    902   for (int i = 0; i < (int)Calls.size(); ++i) {
    903     // We expect the calls to typically be batched with sequences of calls that
    904     // have the same caller, so we first set up some shared infrastructure for
    905     // this caller. We also do any pruning we can at this layer on the caller
    906     // alone.
    907     Function &F = *Calls[i].first.getCaller();
    908     LazyCallGraph::Node &N = *CG.lookup(F);
    909     if (CG.lookupSCC(N) != C)
    910       continue;
    911     if (F.hasFnAttribute(Attribute::OptimizeNone))
    912       continue;
    913 
    914     LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
    915 
    916     // Get a FunctionAnalysisManager via a proxy for this particular node. We
    917     // do this each time we visit a node as the SCC may have changed and as
    918     // we're going to mutate this particular function we want to make sure the
    919     // proxy is in place to forward any invalidation events. We can use the
    920     // manager we get here for looking up results for functions other than this
    921     // node however because those functions aren't going to be mutated by this
    922     // pass.
    923     FunctionAnalysisManager &FAM =
    924         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG)
    925             .getManager();
    926 
    927     // Get the remarks emission analysis for the caller.
    928     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
    929 
    930     std::function<AssumptionCache &(Function &)> GetAssumptionCache =
    931         [&](Function &F) -> AssumptionCache & {
    932       return FAM.getResult<AssumptionAnalysis>(F);
    933     };
    934     auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
    935       return FAM.getResult<BlockFrequencyAnalysis>(F);
    936     };
    937 
    938     auto GetInlineCost = [&](CallSite CS) {
    939       Function &Callee = *CS.getCalledFunction();
    940       auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
    941       return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI},
    942                            PSI, &ORE);
    943     };
    944 
    945     // Now process as many calls as we have within this caller in the sequnece.
    946     // We bail out as soon as the caller has to change so we can update the
    947     // call graph and prepare the context of that new caller.
    948     bool DidInline = false;
    949     for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) {
    950       int InlineHistoryID;
    951       CallSite CS;
    952       std::tie(CS, InlineHistoryID) = Calls[i];
    953       Function &Callee = *CS.getCalledFunction();
    954 
    955       if (InlineHistoryID != -1 &&
    956           InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory))
    957         continue;
    958 
    959       // Check if this inlining may repeat breaking an SCC apart that has
    960       // already been split once before. In that case, inlining here may
    961       // trigger infinite inlining, much like is prevented within the inliner
    962       // itself by the InlineHistory above, but spread across CGSCC iterations
    963       // and thus hidden from the full inline history.
    964       if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
    965           UR.InlinedInternalEdges.count({&N, C})) {
    966         LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
    967                              "previously split out of this SCC by inlining: "
    968                           << F.getName() << " -> " << Callee.getName() << "\n");
    969         continue;
    970       }
    971 
    972       Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
    973       // Check whether we want to inline this callsite.
    974       if (!OIC)
    975         continue;
    976 
    977       // Setup the data structure used to plumb customization into the
    978       // `InlineFunction` routine.
    979       InlineFunctionInfo IFI(
    980           /*cg=*/nullptr, &GetAssumptionCache, PSI,
    981           &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())),
    982           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
    983 
    984       // Get DebugLoc to report. CS will be invalid after Inliner.
    985       DebugLoc DLoc = CS->getDebugLoc();
    986       BasicBlock *Block = CS.getParent();
    987 
    988       using namespace ore;
    989 
    990       if (!InlineFunction(CS, IFI)) {
    991         ORE.emit([&]() {
    992           return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
    993                  << NV("Callee", &Callee) << " will not be inlined into "
    994                  << NV("Caller", &F);
    995         });
    996         continue;
    997       }
    998       DidInline = true;
    999       InlinedCallees.insert(&Callee);
   1000 
   1001       ORE.emit([&]() {
   1002         bool AlwaysInline = OIC->isAlways();
   1003         StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined";
   1004         OptimizationRemark R(DEBUG_TYPE, RemarkName, DLoc, Block);
   1005         R << NV("Callee", &Callee) << " inlined into ";
   1006         R << NV("Caller", &F);
   1007         if (AlwaysInline)
   1008           R << " with cost=always";
   1009         else {
   1010           R << " with cost=" << NV("Cost", OIC->getCost());
   1011           R << " (threshold=" << NV("Threshold", OIC->getThreshold());
   1012           R << ")";
   1013         }
   1014         return R;
   1015       });
   1016 
   1017       // Add any new callsites to defined functions to the worklist.
   1018       if (!IFI.InlinedCallSites.empty()) {
   1019         int NewHistoryID = InlineHistory.size();
   1020         InlineHistory.push_back({&Callee, InlineHistoryID});
   1021         for (CallSite &CS : reverse(IFI.InlinedCallSites))
   1022           if (Function *NewCallee = CS.getCalledFunction())
   1023             if (!NewCallee->isDeclaration())
   1024               Calls.push_back({CS, NewHistoryID});
   1025       }
   1026 
   1027       if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
   1028         ImportedFunctionsStats->recordInline(F, Callee);
   1029 
   1030       // Merge the attributes based on the inlining.
   1031       AttributeFuncs::mergeAttributesForInlining(F, Callee);
   1032 
   1033       // For local functions, check whether this makes the callee trivially
   1034       // dead. In that case, we can drop the body of the function eagerly
   1035       // which may reduce the number of callers of other functions to one,
   1036       // changing inline cost thresholds.
   1037       if (Callee.hasLocalLinkage()) {
   1038         // To check this we also need to nuke any dead constant uses (perhaps
   1039         // made dead by this operation on other functions).
   1040         Callee.removeDeadConstantUsers();
   1041         if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
   1042           Calls.erase(
   1043               std::remove_if(Calls.begin() + i + 1, Calls.end(),
   1044                              [&Callee](const std::pair<CallSite, int> &Call) {
   1045                                return Call.first.getCaller() == &Callee;
   1046                              }),
   1047               Calls.end());
   1048           // Clear the body and queue the function itself for deletion when we
   1049           // finish inlining and call graph updates.
   1050           // Note that after this point, it is an error to do anything other
   1051           // than use the callee's address or delete it.
   1052           Callee.dropAllReferences();
   1053           assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
   1054                  "Cannot put cause a function to become dead twice!");
   1055           DeadFunctions.push_back(&Callee);
   1056         }
   1057       }
   1058     }
   1059 
   1060     // Back the call index up by one to put us in a good position to go around
   1061     // the outer loop.
   1062     --i;
   1063 
   1064     if (!DidInline)
   1065       continue;
   1066     Changed = true;
   1067 
   1068     // Add all the inlined callees' edges as ref edges to the caller. These are
   1069     // by definition trivial edges as we always have *some* transitive ref edge
   1070     // chain. While in some cases these edges are direct calls inside the
   1071     // callee, they have to be modeled in the inliner as reference edges as
   1072     // there may be a reference edge anywhere along the chain from the current
   1073     // caller to the callee that causes the whole thing to appear like
   1074     // a (transitive) reference edge that will require promotion to a call edge
   1075     // below.
   1076     for (Function *InlinedCallee : InlinedCallees) {
   1077       LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
   1078       for (LazyCallGraph::Edge &E : *CalleeN)
   1079         RC->insertTrivialRefEdge(N, E.getNode());
   1080     }
   1081 
   1082     // At this point, since we have made changes we have at least removed
   1083     // a call instruction. However, in the process we do some incremental
   1084     // simplification of the surrounding code. This simplification can
   1085     // essentially do all of the same things as a function pass and we can
   1086     // re-use the exact same logic for updating the call graph to reflect the
   1087     // change.
   1088     LazyCallGraph::SCC *OldC = C;
   1089     C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR);
   1090     LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
   1091     RC = &C->getOuterRefSCC();
   1092 
   1093     // If this causes an SCC to split apart into multiple smaller SCCs, there
   1094     // is a subtle risk we need to prepare for. Other transformations may
   1095     // expose an "infinite inlining" opportunity later, and because of the SCC
   1096     // mutation, we will revisit this function and potentially re-inline. If we
   1097     // do, and that re-inlining also has the potentially to mutate the SCC
   1098     // structure, the infinite inlining problem can manifest through infinite
   1099     // SCC splits and merges. To avoid this, we capture the originating caller
   1100     // node and the SCC containing the call edge. This is a slight over
   1101     // approximation of the possible inlining decisions that must be avoided,
   1102     // but is relatively efficient to store.
   1103     // FIXME: This seems like a very heavyweight way of retaining the inline
   1104     // history, we should look for a more efficient way of tracking it.
   1105     if (C != OldC && llvm::any_of(InlinedCallees, [&](Function *Callee) {
   1106           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
   1107         })) {
   1108       LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
   1109                            "retaining this to avoid infinite inlining.\n");
   1110       UR.InlinedInternalEdges.insert({&N, OldC});
   1111     }
   1112     InlinedCallees.clear();
   1113   }
   1114 
   1115   // Now that we've finished inlining all of the calls across this SCC, delete
   1116   // all of the trivially dead functions, updating the call graph and the CGSCC
   1117   // pass manager in the process.
   1118   //
   1119   // Note that this walks a pointer set which has non-deterministic order but
   1120   // that is OK as all we do is delete things and add pointers to unordered
   1121   // sets.
   1122   for (Function *DeadF : DeadFunctions) {
   1123     // Get the necessary information out of the call graph and nuke the
   1124     // function there. Also, cclear out any cached analyses.
   1125     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
   1126     FunctionAnalysisManager &FAM =
   1127         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG)
   1128             .getManager();
   1129     FAM.clear(*DeadF, DeadF->getName());
   1130     AM.clear(DeadC, DeadC.getName());
   1131     auto &DeadRC = DeadC.getOuterRefSCC();
   1132     CG.removeDeadFunction(*DeadF);
   1133 
   1134     // Mark the relevant parts of the call graph as invalid so we don't visit
   1135     // them.
   1136     UR.InvalidatedSCCs.insert(&DeadC);
   1137     UR.InvalidatedRefSCCs.insert(&DeadRC);
   1138 
   1139     // And delete the actual function from the module.
   1140     M.getFunctionList().erase(DeadF);
   1141   }
   1142 
   1143   if (!Changed)
   1144     return PreservedAnalyses::all();
   1145 
   1146   // Even if we change the IR, we update the core CGSCC data structures and so
   1147   // can preserve the proxy to the function analysis manager.
   1148   PreservedAnalyses PA;
   1149   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
   1150   return PA;
   1151 }
   1152