Home | History | Annotate | Download | only in Scalar
      1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass identifies expensive constants to hoist and coalesces them to
     11 // better prepare it for SelectionDAG-based code generation. This works around
     12 // the limitations of the basic-block-at-a-time approach.
     13 //
     14 // First it scans all instructions for integer constants and calculates its
     15 // cost. If the constant can be folded into the instruction (the cost is
     16 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
     17 // consider it expensive and leave it alone. This is the default behavior and
     18 // the default implementation of getIntImmCost will always return TCC_Free.
     19 //
     20 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
     21 // into the instruction and it might be beneficial to hoist the constant.
     22 // Similar constants are coalesced to reduce register pressure and
     23 // materialization code.
     24 //
     25 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
     26 // be live-out of the basic block. Otherwise the constant would be just
     27 // duplicated and each basic block would have its own copy in the SelectionDAG.
     28 // The SelectionDAG recognizes such constants as opaque and doesn't perform
     29 // certain transformations on them, which would create a new expensive constant.
     30 //
     31 // This optimization is only applied to integer constants in instructions and
     32 // simple (this means not nested) constant cast expressions. For example:
     33 // %0 = load i64* inttoptr (i64 big_constant to i64*)
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
     37 #include "llvm/ADT/APInt.h"
     38 #include "llvm/ADT/DenseMap.h"
     39 #include "llvm/ADT/None.h"
     40 #include "llvm/ADT/Optional.h"
     41 #include "llvm/ADT/SmallPtrSet.h"
     42 #include "llvm/ADT/SmallVector.h"
     43 #include "llvm/ADT/Statistic.h"
     44 #include "llvm/Analysis/BlockFrequencyInfo.h"
     45 #include "llvm/Analysis/TargetTransformInfo.h"
     46 #include "llvm/Transforms/Utils/Local.h"
     47 #include "llvm/IR/BasicBlock.h"
     48 #include "llvm/IR/Constants.h"
     49 #include "llvm/IR/DebugInfoMetadata.h"
     50 #include "llvm/IR/Dominators.h"
     51 #include "llvm/IR/Function.h"
     52 #include "llvm/IR/InstrTypes.h"
     53 #include "llvm/IR/Instruction.h"
     54 #include "llvm/IR/Instructions.h"
     55 #include "llvm/IR/IntrinsicInst.h"
     56 #include "llvm/IR/Value.h"
     57 #include "llvm/Pass.h"
     58 #include "llvm/Support/BlockFrequency.h"
     59 #include "llvm/Support/Casting.h"
     60 #include "llvm/Support/CommandLine.h"
     61 #include "llvm/Support/Debug.h"
     62 #include "llvm/Support/raw_ostream.h"
     63 #include "llvm/Transforms/Scalar.h"
     64 #include <algorithm>
     65 #include <cassert>
     66 #include <cstdint>
     67 #include <iterator>
     68 #include <tuple>
     69 #include <utility>
     70 
     71 using namespace llvm;
     72 using namespace consthoist;
     73 
     74 #define DEBUG_TYPE "consthoist"
     75 
     76 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
     77 STATISTIC(NumConstantsRebased, "Number of constants rebased");
     78 
     79 static cl::opt<bool> ConstHoistWithBlockFrequency(
     80     "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
     81     cl::desc("Enable the use of the block frequency analysis to reduce the "
     82              "chance to execute const materialization more frequently than "
     83              "without hoisting."));
     84 
     85 namespace {
     86 
     87 /// The constant hoisting pass.
     88 class ConstantHoistingLegacyPass : public FunctionPass {
     89 public:
     90   static char ID; // Pass identification, replacement for typeid
     91 
     92   ConstantHoistingLegacyPass() : FunctionPass(ID) {
     93     initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
     94   }
     95 
     96   bool runOnFunction(Function &Fn) override;
     97 
     98   StringRef getPassName() const override { return "Constant Hoisting"; }
     99 
    100   void getAnalysisUsage(AnalysisUsage &AU) const override {
    101     AU.setPreservesCFG();
    102     if (ConstHoistWithBlockFrequency)
    103       AU.addRequired<BlockFrequencyInfoWrapperPass>();
    104     AU.addRequired<DominatorTreeWrapperPass>();
    105     AU.addRequired<TargetTransformInfoWrapperPass>();
    106   }
    107 
    108   void releaseMemory() override { Impl.releaseMemory(); }
    109 
    110 private:
    111   ConstantHoistingPass Impl;
    112 };
    113 
    114 } // end anonymous namespace
    115 
    116 char ConstantHoistingLegacyPass::ID = 0;
    117 
    118 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
    119                       "Constant Hoisting", false, false)
    120 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
    121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    122 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    123 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
    124                     "Constant Hoisting", false, false)
    125 
    126 FunctionPass *llvm::createConstantHoistingPass() {
    127   return new ConstantHoistingLegacyPass();
    128 }
    129 
    130 /// Perform the constant hoisting optimization for the given function.
    131 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
    132   if (skipFunction(Fn))
    133     return false;
    134 
    135   LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
    136   LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
    137 
    138   bool MadeChange =
    139       Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
    140                    getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
    141                    ConstHoistWithBlockFrequency
    142                        ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
    143                        : nullptr,
    144                    Fn.getEntryBlock());
    145 
    146   if (MadeChange) {
    147     LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
    148                       << Fn.getName() << '\n');
    149     LLVM_DEBUG(dbgs() << Fn);
    150   }
    151   LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
    152 
    153   return MadeChange;
    154 }
    155 
    156 /// Find the constant materialization insertion point.
    157 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
    158                                                    unsigned Idx) const {
    159   // If the operand is a cast instruction, then we have to materialize the
    160   // constant before the cast instruction.
    161   if (Idx != ~0U) {
    162     Value *Opnd = Inst->getOperand(Idx);
    163     if (auto CastInst = dyn_cast<Instruction>(Opnd))
    164       if (CastInst->isCast())
    165         return CastInst;
    166   }
    167 
    168   // The simple and common case. This also includes constant expressions.
    169   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
    170     return Inst;
    171 
    172   // We can't insert directly before a phi node or an eh pad. Insert before
    173   // the terminator of the incoming or dominating block.
    174   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
    175   if (Idx != ~0U && isa<PHINode>(Inst))
    176     return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
    177 
    178   // This must be an EH pad. Iterate over immediate dominators until we find a
    179   // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
    180   // and terminators.
    181   auto IDom = DT->getNode(Inst->getParent())->getIDom();
    182   while (IDom->getBlock()->isEHPad()) {
    183     assert(Entry != IDom->getBlock() && "eh pad in entry block");
    184     IDom = IDom->getIDom();
    185   }
    186 
    187   return IDom->getBlock()->getTerminator();
    188 }
    189 
    190 /// Given \p BBs as input, find another set of BBs which collectively
    191 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
    192 /// set found in \p BBs.
    193 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
    194                                  BasicBlock *Entry,
    195                                  SmallPtrSet<BasicBlock *, 8> &BBs) {
    196   assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
    197   // Nodes on the current path to the root.
    198   SmallPtrSet<BasicBlock *, 8> Path;
    199   // Candidates includes any block 'BB' in set 'BBs' that is not strictly
    200   // dominated by any other blocks in set 'BBs', and all nodes in the path
    201   // in the dominator tree from Entry to 'BB'.
    202   SmallPtrSet<BasicBlock *, 16> Candidates;
    203   for (auto BB : BBs) {
    204     Path.clear();
    205     // Walk up the dominator tree until Entry or another BB in BBs
    206     // is reached. Insert the nodes on the way to the Path.
    207     BasicBlock *Node = BB;
    208     // The "Path" is a candidate path to be added into Candidates set.
    209     bool isCandidate = false;
    210     do {
    211       Path.insert(Node);
    212       if (Node == Entry || Candidates.count(Node)) {
    213         isCandidate = true;
    214         break;
    215       }
    216       assert(DT.getNode(Node)->getIDom() &&
    217              "Entry doens't dominate current Node");
    218       Node = DT.getNode(Node)->getIDom()->getBlock();
    219     } while (!BBs.count(Node));
    220 
    221     // If isCandidate is false, Node is another Block in BBs dominating
    222     // current 'BB'. Drop the nodes on the Path.
    223     if (!isCandidate)
    224       continue;
    225 
    226     // Add nodes on the Path into Candidates.
    227     Candidates.insert(Path.begin(), Path.end());
    228   }
    229 
    230   // Sort the nodes in Candidates in top-down order and save the nodes
    231   // in Orders.
    232   unsigned Idx = 0;
    233   SmallVector<BasicBlock *, 16> Orders;
    234   Orders.push_back(Entry);
    235   while (Idx != Orders.size()) {
    236     BasicBlock *Node = Orders[Idx++];
    237     for (auto ChildDomNode : DT.getNode(Node)->getChildren()) {
    238       if (Candidates.count(ChildDomNode->getBlock()))
    239         Orders.push_back(ChildDomNode->getBlock());
    240     }
    241   }
    242 
    243   // Visit Orders in bottom-up order.
    244   using InsertPtsCostPair =
    245       std::pair<SmallPtrSet<BasicBlock *, 16>, BlockFrequency>;
    246 
    247   // InsertPtsMap is a map from a BB to the best insertion points for the
    248   // subtree of BB (subtree not including the BB itself).
    249   DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
    250   InsertPtsMap.reserve(Orders.size() + 1);
    251   for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
    252     BasicBlock *Node = *RIt;
    253     bool NodeInBBs = BBs.count(Node);
    254     SmallPtrSet<BasicBlock *, 16> &InsertPts = InsertPtsMap[Node].first;
    255     BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
    256 
    257     // Return the optimal insert points in BBs.
    258     if (Node == Entry) {
    259       BBs.clear();
    260       if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
    261           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
    262         BBs.insert(Entry);
    263       else
    264         BBs.insert(InsertPts.begin(), InsertPts.end());
    265       break;
    266     }
    267 
    268     BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
    269     // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
    270     // will update its parent's ParentInsertPts and ParentPtsFreq.
    271     SmallPtrSet<BasicBlock *, 16> &ParentInsertPts = InsertPtsMap[Parent].first;
    272     BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
    273     // Choose to insert in Node or in subtree of Node.
    274     // Don't hoist to EHPad because we may not find a proper place to insert
    275     // in EHPad.
    276     // If the total frequency of InsertPts is the same as the frequency of the
    277     // target Node, and InsertPts contains more than one nodes, choose hoisting
    278     // to reduce code size.
    279     if (NodeInBBs ||
    280         (!Node->isEHPad() &&
    281          (InsertPtsFreq > BFI.getBlockFreq(Node) ||
    282           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
    283       ParentInsertPts.insert(Node);
    284       ParentPtsFreq += BFI.getBlockFreq(Node);
    285     } else {
    286       ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
    287       ParentPtsFreq += InsertPtsFreq;
    288     }
    289   }
    290 }
    291 
    292 /// Find an insertion point that dominates all uses.
    293 SmallPtrSet<Instruction *, 8> ConstantHoistingPass::findConstantInsertionPoint(
    294     const ConstantInfo &ConstInfo) const {
    295   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
    296   // Collect all basic blocks.
    297   SmallPtrSet<BasicBlock *, 8> BBs;
    298   SmallPtrSet<Instruction *, 8> InsertPts;
    299   for (auto const &RCI : ConstInfo.RebasedConstants)
    300     for (auto const &U : RCI.Uses)
    301       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
    302 
    303   if (BBs.count(Entry)) {
    304     InsertPts.insert(&Entry->front());
    305     return InsertPts;
    306   }
    307 
    308   if (BFI) {
    309     findBestInsertionSet(*DT, *BFI, Entry, BBs);
    310     for (auto BB : BBs) {
    311       BasicBlock::iterator InsertPt = BB->begin();
    312       for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
    313         ;
    314       InsertPts.insert(&*InsertPt);
    315     }
    316     return InsertPts;
    317   }
    318 
    319   while (BBs.size() >= 2) {
    320     BasicBlock *BB, *BB1, *BB2;
    321     BB1 = *BBs.begin();
    322     BB2 = *std::next(BBs.begin());
    323     BB = DT->findNearestCommonDominator(BB1, BB2);
    324     if (BB == Entry) {
    325       InsertPts.insert(&Entry->front());
    326       return InsertPts;
    327     }
    328     BBs.erase(BB1);
    329     BBs.erase(BB2);
    330     BBs.insert(BB);
    331   }
    332   assert((BBs.size() == 1) && "Expected only one element.");
    333   Instruction &FirstInst = (*BBs.begin())->front();
    334   InsertPts.insert(findMatInsertPt(&FirstInst));
    335   return InsertPts;
    336 }
    337 
    338 /// Record constant integer ConstInt for instruction Inst at operand
    339 /// index Idx.
    340 ///
    341 /// The operand at index Idx is not necessarily the constant integer itself. It
    342 /// could also be a cast instruction or a constant expression that uses the
    343 // constant integer.
    344 void ConstantHoistingPass::collectConstantCandidates(
    345     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
    346     ConstantInt *ConstInt) {
    347   unsigned Cost;
    348   // Ask the target about the cost of materializing the constant for the given
    349   // instruction and operand index.
    350   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
    351     Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
    352                               ConstInt->getValue(), ConstInt->getType());
    353   else
    354     Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
    355                               ConstInt->getType());
    356 
    357   // Ignore cheap integer constants.
    358   if (Cost > TargetTransformInfo::TCC_Basic) {
    359     ConstCandMapType::iterator Itr;
    360     bool Inserted;
    361     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
    362     if (Inserted) {
    363       ConstCandVec.push_back(ConstantCandidate(ConstInt));
    364       Itr->second = ConstCandVec.size() - 1;
    365     }
    366     ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
    367     LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
    368                    << "Collect constant " << *ConstInt << " from " << *Inst
    369                    << " with cost " << Cost << '\n';
    370                else dbgs() << "Collect constant " << *ConstInt
    371                            << " indirectly from " << *Inst << " via "
    372                            << *Inst->getOperand(Idx) << " with cost " << Cost
    373                            << '\n';);
    374   }
    375 }
    376 
    377 /// Check the operand for instruction Inst at index Idx.
    378 void ConstantHoistingPass::collectConstantCandidates(
    379     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
    380   Value *Opnd = Inst->getOperand(Idx);
    381 
    382   // Visit constant integers.
    383   if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
    384     collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    385     return;
    386   }
    387 
    388   // Visit cast instructions that have constant integers.
    389   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
    390     // Only visit cast instructions, which have been skipped. All other
    391     // instructions should have already been visited.
    392     if (!CastInst->isCast())
    393       return;
    394 
    395     if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
    396       // Pretend the constant is directly used by the instruction and ignore
    397       // the cast instruction.
    398       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    399       return;
    400     }
    401   }
    402 
    403   // Visit constant expressions that have constant integers.
    404   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
    405     // Only visit constant cast expressions.
    406     if (!ConstExpr->isCast())
    407       return;
    408 
    409     if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
    410       // Pretend the constant is directly used by the instruction and ignore
    411       // the constant expression.
    412       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    413       return;
    414     }
    415   }
    416 }
    417 
    418 /// Scan the instruction for expensive integer constants and record them
    419 /// in the constant candidate vector.
    420 void ConstantHoistingPass::collectConstantCandidates(
    421     ConstCandMapType &ConstCandMap, Instruction *Inst) {
    422   // Skip all cast instructions. They are visited indirectly later on.
    423   if (Inst->isCast())
    424     return;
    425 
    426   // Scan all operands.
    427   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
    428     // The cost of materializing the constants (defined in
    429     // `TargetTransformInfo::getIntImmCost`) for instructions which only take
    430     // constant variables is lower than `TargetTransformInfo::TCC_Basic`. So
    431     // it's safe for us to collect constant candidates from all IntrinsicInsts.
    432     if (canReplaceOperandWithVariable(Inst, Idx) || isa<IntrinsicInst>(Inst)) {
    433       collectConstantCandidates(ConstCandMap, Inst, Idx);
    434     }
    435   } // end of for all operands
    436 }
    437 
    438 /// Collect all integer constants in the function that cannot be folded
    439 /// into an instruction itself.
    440 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
    441   ConstCandMapType ConstCandMap;
    442   for (BasicBlock &BB : Fn)
    443     for (Instruction &Inst : BB)
    444       collectConstantCandidates(ConstCandMap, &Inst);
    445 }
    446 
    447 // This helper function is necessary to deal with values that have different
    448 // bit widths (APInt Operator- does not like that). If the value cannot be
    449 // represented in uint64 we return an "empty" APInt. This is then interpreted
    450 // as the value is not in range.
    451 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
    452   Optional<APInt> Res = None;
    453   unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
    454                 V1.getBitWidth() : V2.getBitWidth();
    455   uint64_t LimVal1 = V1.getLimitedValue();
    456   uint64_t LimVal2 = V2.getLimitedValue();
    457 
    458   if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
    459     return Res;
    460 
    461   uint64_t Diff = LimVal1 - LimVal2;
    462   return APInt(BW, Diff, true);
    463 }
    464 
    465 // From a list of constants, one needs to picked as the base and the other
    466 // constants will be transformed into an offset from that base constant. The
    467 // question is which we can pick best? For example, consider these constants
    468 // and their number of uses:
    469 //
    470 //  Constants| 2 | 4 | 12 | 42 |
    471 //  NumUses  | 3 | 2 |  8 |  7 |
    472 //
    473 // Selecting constant 12 because it has the most uses will generate negative
    474 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
    475 // offsets lead to less optimal code generation, then there might be better
    476 // solutions. Suppose immediates in the range of 0..35 are most optimally
    477 // supported by the architecture, then selecting constant 2 is most optimal
    478 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
    479 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
    480 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
    481 // selecting the base constant the range of the offsets is a very important
    482 // factor too that we take into account here. This algorithm calculates a total
    483 // costs for selecting a constant as the base and substract the costs if
    484 // immediates are out of range. It has quadratic complexity, so we call this
    485 // function only when we're optimising for size and there are less than 100
    486 // constants, we fall back to the straightforward algorithm otherwise
    487 // which does not do all the offset calculations.
    488 unsigned
    489 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
    490                                            ConstCandVecType::iterator E,
    491                                            ConstCandVecType::iterator &MaxCostItr) {
    492   unsigned NumUses = 0;
    493 
    494   if(!Entry->getParent()->optForSize() || std::distance(S,E) > 100) {
    495     for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    496       NumUses += ConstCand->Uses.size();
    497       if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
    498         MaxCostItr = ConstCand;
    499     }
    500     return NumUses;
    501   }
    502 
    503   LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
    504   int MaxCost = -1;
    505   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    506     auto Value = ConstCand->ConstInt->getValue();
    507     Type *Ty = ConstCand->ConstInt->getType();
    508     int Cost = 0;
    509     NumUses += ConstCand->Uses.size();
    510     LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
    511                       << "\n");
    512 
    513     for (auto User : ConstCand->Uses) {
    514       unsigned Opcode = User.Inst->getOpcode();
    515       unsigned OpndIdx = User.OpndIdx;
    516       Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty);
    517       LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
    518 
    519       for (auto C2 = S; C2 != E; ++C2) {
    520         Optional<APInt> Diff = calculateOffsetDiff(
    521                                    C2->ConstInt->getValue(),
    522                                    ConstCand->ConstInt->getValue());
    523         if (Diff) {
    524           const int ImmCosts =
    525             TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
    526           Cost -= ImmCosts;
    527           LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
    528                             << "has penalty: " << ImmCosts << "\n"
    529                             << "Adjusted cost: " << Cost << "\n");
    530         }
    531       }
    532     }
    533     LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
    534     if (Cost > MaxCost) {
    535       MaxCost = Cost;
    536       MaxCostItr = ConstCand;
    537       LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
    538                         << "\n");
    539     }
    540   }
    541   return NumUses;
    542 }
    543 
    544 /// Find the base constant within the given range and rebase all other
    545 /// constants with respect to the base constant.
    546 void ConstantHoistingPass::findAndMakeBaseConstant(
    547     ConstCandVecType::iterator S, ConstCandVecType::iterator E) {
    548   auto MaxCostItr = S;
    549   unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
    550 
    551   // Don't hoist constants that have only one use.
    552   if (NumUses <= 1)
    553     return;
    554 
    555   ConstantInfo ConstInfo;
    556   ConstInfo.BaseConstant = MaxCostItr->ConstInt;
    557   Type *Ty = ConstInfo.BaseConstant->getType();
    558 
    559   // Rebase the constants with respect to the base constant.
    560   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    561     APInt Diff = ConstCand->ConstInt->getValue() -
    562                  ConstInfo.BaseConstant->getValue();
    563     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
    564     ConstInfo.RebasedConstants.push_back(
    565       RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
    566   }
    567   ConstantVec.push_back(std::move(ConstInfo));
    568 }
    569 
    570 /// Finds and combines constant candidates that can be easily
    571 /// rematerialized with an add from a common base constant.
    572 void ConstantHoistingPass::findBaseConstants() {
    573   // Sort the constants by value and type. This invalidates the mapping!
    574   llvm::sort(ConstCandVec.begin(), ConstCandVec.end(),
    575              [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
    576     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
    577       return LHS.ConstInt->getType()->getBitWidth() <
    578              RHS.ConstInt->getType()->getBitWidth();
    579     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
    580   });
    581 
    582   // Simple linear scan through the sorted constant candidate vector for viable
    583   // merge candidates.
    584   auto MinValItr = ConstCandVec.begin();
    585   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
    586        CC != E; ++CC) {
    587     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
    588       // Check if the constant is in range of an add with immediate.
    589       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
    590       if ((Diff.getBitWidth() <= 64) &&
    591           TTI->isLegalAddImmediate(Diff.getSExtValue()))
    592         continue;
    593     }
    594     // We either have now a different constant type or the constant is not in
    595     // range of an add with immediate anymore.
    596     findAndMakeBaseConstant(MinValItr, CC);
    597     // Start a new base constant search.
    598     MinValItr = CC;
    599   }
    600   // Finalize the last base constant search.
    601   findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
    602 }
    603 
    604 /// Updates the operand at Idx in instruction Inst with the result of
    605 ///        instruction Mat. If the instruction is a PHI node then special
    606 ///        handling for duplicate values form the same incoming basic block is
    607 ///        required.
    608 /// \return The update will always succeed, but the return value indicated if
    609 ///         Mat was used for the update or not.
    610 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
    611   if (auto PHI = dyn_cast<PHINode>(Inst)) {
    612     // Check if any previous operand of the PHI node has the same incoming basic
    613     // block. This is a very odd case that happens when the incoming basic block
    614     // has a switch statement. In this case use the same value as the previous
    615     // operand(s), otherwise we will fail verification due to different values.
    616     // The values are actually the same, but the variable names are different
    617     // and the verifier doesn't like that.
    618     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
    619     for (unsigned i = 0; i < Idx; ++i) {
    620       if (PHI->getIncomingBlock(i) == IncomingBB) {
    621         Value *IncomingVal = PHI->getIncomingValue(i);
    622         Inst->setOperand(Idx, IncomingVal);
    623         return false;
    624       }
    625     }
    626   }
    627 
    628   Inst->setOperand(Idx, Mat);
    629   return true;
    630 }
    631 
    632 /// Emit materialization code for all rebased constants and update their
    633 /// users.
    634 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
    635                                              Constant *Offset,
    636                                              const ConstantUser &ConstUser) {
    637   Instruction *Mat = Base;
    638   if (Offset) {
    639     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
    640                                                ConstUser.OpndIdx);
    641     Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
    642                                  "const_mat", InsertionPt);
    643 
    644     LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
    645                       << " + " << *Offset << ") in BB "
    646                       << Mat->getParent()->getName() << '\n'
    647                       << *Mat << '\n');
    648     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
    649   }
    650   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
    651 
    652   // Visit constant integer.
    653   if (isa<ConstantInt>(Opnd)) {
    654     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    655     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
    656       Mat->eraseFromParent();
    657     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    658     return;
    659   }
    660 
    661   // Visit cast instruction.
    662   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
    663     assert(CastInst->isCast() && "Expected an cast instruction!");
    664     // Check if we already have visited this cast instruction before to avoid
    665     // unnecessary cloning.
    666     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
    667     if (!ClonedCastInst) {
    668       ClonedCastInst = CastInst->clone();
    669       ClonedCastInst->setOperand(0, Mat);
    670       ClonedCastInst->insertAfter(CastInst);
    671       // Use the same debug location as the original cast instruction.
    672       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
    673       LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
    674                         << "To               : " << *ClonedCastInst << '\n');
    675     }
    676 
    677     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    678     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
    679     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    680     return;
    681   }
    682 
    683   // Visit constant expression.
    684   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
    685     Instruction *ConstExprInst = ConstExpr->getAsInstruction();
    686     ConstExprInst->setOperand(0, Mat);
    687     ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
    688                                                 ConstUser.OpndIdx));
    689 
    690     // Use the same debug location as the instruction we are about to update.
    691     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
    692 
    693     LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
    694                       << "From              : " << *ConstExpr << '\n');
    695     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    696     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
    697       ConstExprInst->eraseFromParent();
    698       if (Offset)
    699         Mat->eraseFromParent();
    700     }
    701     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    702     return;
    703   }
    704 }
    705 
    706 /// Hoist and hide the base constant behind a bitcast and emit
    707 /// materialization code for derived constants.
    708 bool ConstantHoistingPass::emitBaseConstants() {
    709   bool MadeChange = false;
    710   for (auto const &ConstInfo : ConstantVec) {
    711     // Hoist and hide the base constant behind a bitcast.
    712     SmallPtrSet<Instruction *, 8> IPSet = findConstantInsertionPoint(ConstInfo);
    713     assert(!IPSet.empty() && "IPSet is empty");
    714 
    715     unsigned UsesNum = 0;
    716     unsigned ReBasesNum = 0;
    717     for (Instruction *IP : IPSet) {
    718       IntegerType *Ty = ConstInfo.BaseConstant->getType();
    719       Instruction *Base =
    720           new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
    721 
    722       Base->setDebugLoc(IP->getDebugLoc());
    723 
    724       LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant
    725                         << ") to BB " << IP->getParent()->getName() << '\n'
    726                         << *Base << '\n');
    727 
    728       // Emit materialization code for all rebased constants.
    729       unsigned Uses = 0;
    730       for (auto const &RCI : ConstInfo.RebasedConstants) {
    731         for (auto const &U : RCI.Uses) {
    732           Uses++;
    733           BasicBlock *OrigMatInsertBB =
    734               findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
    735           // If Base constant is to be inserted in multiple places,
    736           // generate rebase for U using the Base dominating U.
    737           if (IPSet.size() == 1 ||
    738               DT->dominates(Base->getParent(), OrigMatInsertBB)) {
    739             emitBaseConstants(Base, RCI.Offset, U);
    740             ReBasesNum++;
    741           }
    742 
    743           Base->setDebugLoc(DILocation::getMergedLocation(Base->getDebugLoc(), U.Inst->getDebugLoc()));
    744         }
    745       }
    746       UsesNum = Uses;
    747 
    748       // Use the same debug location as the last user of the constant.
    749       assert(!Base->use_empty() && "The use list is empty!?");
    750       assert(isa<Instruction>(Base->user_back()) &&
    751              "All uses should be instructions.");
    752     }
    753     (void)UsesNum;
    754     (void)ReBasesNum;
    755     // Expect all uses are rebased after rebase is done.
    756     assert(UsesNum == ReBasesNum && "Not all uses are rebased");
    757 
    758     NumConstantsHoisted++;
    759 
    760     // Base constant is also included in ConstInfo.RebasedConstants, so
    761     // deduct 1 from ConstInfo.RebasedConstants.size().
    762     NumConstantsRebased = ConstInfo.RebasedConstants.size() - 1;
    763 
    764     MadeChange = true;
    765   }
    766   return MadeChange;
    767 }
    768 
    769 /// Check all cast instructions we made a copy of and remove them if they
    770 /// have no more users.
    771 void ConstantHoistingPass::deleteDeadCastInst() const {
    772   for (auto const &I : ClonedCastMap)
    773     if (I.first->use_empty())
    774       I.first->eraseFromParent();
    775 }
    776 
    777 /// Optimize expensive integer constants in the given function.
    778 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
    779                                    DominatorTree &DT, BlockFrequencyInfo *BFI,
    780                                    BasicBlock &Entry) {
    781   this->TTI = &TTI;
    782   this->DT = &DT;
    783   this->BFI = BFI;
    784   this->Entry = &Entry;
    785   // Collect all constant candidates.
    786   collectConstantCandidates(Fn);
    787 
    788   // There are no constant candidates to worry about.
    789   if (ConstCandVec.empty())
    790     return false;
    791 
    792   // Combine constants that can be easily materialized with an add from a common
    793   // base constant.
    794   findBaseConstants();
    795 
    796   // There are no constants to emit.
    797   if (ConstantVec.empty())
    798     return false;
    799 
    800   // Finally hoist the base constant and emit materialization code for dependent
    801   // constants.
    802   bool MadeChange = emitBaseConstants();
    803 
    804   // Cleanup dead instructions.
    805   deleteDeadCastInst();
    806 
    807   return MadeChange;
    808 }
    809 
    810 PreservedAnalyses ConstantHoistingPass::run(Function &F,
    811                                             FunctionAnalysisManager &AM) {
    812   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
    813   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
    814   auto BFI = ConstHoistWithBlockFrequency
    815                  ? &AM.getResult<BlockFrequencyAnalysis>(F)
    816                  : nullptr;
    817   if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock()))
    818     return PreservedAnalyses::all();
    819 
    820   PreservedAnalyses PA;
    821   PA.preserveSet<CFGAnalyses>();
    822   return PA;
    823 }
    824