1 //===----------------- LoopRotationUtils.cpp -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file provides utilities to convert a loop into a loop with bottom test. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/LoopRotationUtils.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 #include "llvm/Transforms/Utils/SSAUpdater.h" 40 #include "llvm/Transforms/Utils/ValueMapper.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-rotate" 44 45 STATISTIC(NumRotated, "Number of loops rotated"); 46 47 namespace { 48 /// A simple loop rotation transformation. 49 class LoopRotate { 50 const unsigned MaxHeaderSize; 51 LoopInfo *LI; 52 const TargetTransformInfo *TTI; 53 AssumptionCache *AC; 54 DominatorTree *DT; 55 ScalarEvolution *SE; 56 const SimplifyQuery &SQ; 57 bool RotationOnly; 58 bool IsUtilMode; 59 60 public: 61 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 62 const TargetTransformInfo *TTI, AssumptionCache *AC, 63 DominatorTree *DT, ScalarEvolution *SE, const SimplifyQuery &SQ, 64 bool RotationOnly, bool IsUtilMode) 65 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 66 SQ(SQ), RotationOnly(RotationOnly), IsUtilMode(IsUtilMode) {} 67 bool processLoop(Loop *L); 68 69 private: 70 bool rotateLoop(Loop *L, bool SimplifiedLatch); 71 bool simplifyLoopLatch(Loop *L); 72 }; 73 } // end anonymous namespace 74 75 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 76 /// old header into the preheader. If there were uses of the values produced by 77 /// these instruction that were outside of the loop, we have to insert PHI nodes 78 /// to merge the two values. Do this now. 79 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 80 BasicBlock *OrigPreheader, 81 ValueToValueMapTy &ValueMap, 82 SmallVectorImpl<PHINode*> *InsertedPHIs) { 83 // Remove PHI node entries that are no longer live. 84 BasicBlock::iterator I, E = OrigHeader->end(); 85 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 86 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 87 88 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 89 // as necessary. 90 SSAUpdater SSA(InsertedPHIs); 91 for (I = OrigHeader->begin(); I != E; ++I) { 92 Value *OrigHeaderVal = &*I; 93 94 // If there are no uses of the value (e.g. because it returns void), there 95 // is nothing to rewrite. 96 if (OrigHeaderVal->use_empty()) 97 continue; 98 99 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 100 101 // The value now exits in two versions: the initial value in the preheader 102 // and the loop "next" value in the original header. 103 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 104 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 105 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 106 107 // Visit each use of the OrigHeader instruction. 108 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 109 UE = OrigHeaderVal->use_end(); 110 UI != UE;) { 111 // Grab the use before incrementing the iterator. 112 Use &U = *UI; 113 114 // Increment the iterator before removing the use from the list. 115 ++UI; 116 117 // SSAUpdater can't handle a non-PHI use in the same block as an 118 // earlier def. We can easily handle those cases manually. 119 Instruction *UserInst = cast<Instruction>(U.getUser()); 120 if (!isa<PHINode>(UserInst)) { 121 BasicBlock *UserBB = UserInst->getParent(); 122 123 // The original users in the OrigHeader are already using the 124 // original definitions. 125 if (UserBB == OrigHeader) 126 continue; 127 128 // Users in the OrigPreHeader need to use the value to which the 129 // original definitions are mapped. 130 if (UserBB == OrigPreheader) { 131 U = OrigPreHeaderVal; 132 continue; 133 } 134 } 135 136 // Anything else can be handled by SSAUpdater. 137 SSA.RewriteUse(U); 138 } 139 140 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 141 // intrinsics. 142 SmallVector<DbgValueInst *, 1> DbgValues; 143 llvm::findDbgValues(DbgValues, OrigHeaderVal); 144 for (auto &DbgValue : DbgValues) { 145 // The original users in the OrigHeader are already using the original 146 // definitions. 147 BasicBlock *UserBB = DbgValue->getParent(); 148 if (UserBB == OrigHeader) 149 continue; 150 151 // Users in the OrigPreHeader need to use the value to which the 152 // original definitions are mapped and anything else can be handled by 153 // the SSAUpdater. To avoid adding PHINodes, check if the value is 154 // available in UserBB, if not substitute undef. 155 Value *NewVal; 156 if (UserBB == OrigPreheader) 157 NewVal = OrigPreHeaderVal; 158 else if (SSA.HasValueForBlock(UserBB)) 159 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 160 else 161 NewVal = UndefValue::get(OrigHeaderVal->getType()); 162 DbgValue->setOperand(0, 163 MetadataAsValue::get(OrigHeaderVal->getContext(), 164 ValueAsMetadata::get(NewVal))); 165 } 166 } 167 } 168 169 // Look for a phi which is only used outside the loop (via a LCSSA phi) 170 // in the exit from the header. This means that rotating the loop can 171 // remove the phi. 172 static bool shouldRotateLoopExitingLatch(Loop *L) { 173 BasicBlock *Header = L->getHeader(); 174 BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0); 175 if (L->contains(HeaderExit)) 176 HeaderExit = Header->getTerminator()->getSuccessor(1); 177 178 for (auto &Phi : Header->phis()) { 179 // Look for uses of this phi in the loop/via exits other than the header. 180 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { 181 return cast<Instruction>(U)->getParent() != HeaderExit; 182 })) 183 continue; 184 return true; 185 } 186 187 return false; 188 } 189 190 /// Rotate loop LP. Return true if the loop is rotated. 191 /// 192 /// \param SimplifiedLatch is true if the latch was just folded into the final 193 /// loop exit. In this case we may want to rotate even though the new latch is 194 /// now an exiting branch. This rotation would have happened had the latch not 195 /// been simplified. However, if SimplifiedLatch is false, then we avoid 196 /// rotating loops in which the latch exits to avoid excessive or endless 197 /// rotation. LoopRotate should be repeatable and converge to a canonical 198 /// form. This property is satisfied because simplifying the loop latch can only 199 /// happen once across multiple invocations of the LoopRotate pass. 200 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 201 // If the loop has only one block then there is not much to rotate. 202 if (L->getBlocks().size() == 1) 203 return false; 204 205 BasicBlock *OrigHeader = L->getHeader(); 206 BasicBlock *OrigLatch = L->getLoopLatch(); 207 208 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 209 if (!BI || BI->isUnconditional()) 210 return false; 211 212 // If the loop header is not one of the loop exiting blocks then 213 // either this loop is already rotated or it is not 214 // suitable for loop rotation transformations. 215 if (!L->isLoopExiting(OrigHeader)) 216 return false; 217 218 // If the loop latch already contains a branch that leaves the loop then the 219 // loop is already rotated. 220 if (!OrigLatch) 221 return false; 222 223 // Rotate if either the loop latch does *not* exit the loop, or if the loop 224 // latch was just simplified. Or if we think it will be profitable. 225 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false && 226 !shouldRotateLoopExitingLatch(L)) 227 return false; 228 229 // Check size of original header and reject loop if it is very big or we can't 230 // duplicate blocks inside it. 231 { 232 SmallPtrSet<const Value *, 32> EphValues; 233 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 234 235 CodeMetrics Metrics; 236 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 237 if (Metrics.notDuplicatable) { 238 LLVM_DEBUG( 239 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 240 << " instructions: "; 241 L->dump()); 242 return false; 243 } 244 if (Metrics.convergent) { 245 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 246 "instructions: "; 247 L->dump()); 248 return false; 249 } 250 if (Metrics.NumInsts > MaxHeaderSize) 251 return false; 252 } 253 254 // Now, this loop is suitable for rotation. 255 BasicBlock *OrigPreheader = L->getLoopPreheader(); 256 257 // If the loop could not be converted to canonical form, it must have an 258 // indirectbr in it, just give up. 259 if (!OrigPreheader || !L->hasDedicatedExits()) 260 return false; 261 262 // Anything ScalarEvolution may know about this loop or the PHI nodes 263 // in its header will soon be invalidated. We should also invalidate 264 // all outer loops because insertion and deletion of blocks that happens 265 // during the rotation may violate invariants related to backedge taken 266 // infos in them. 267 if (SE) 268 SE->forgetTopmostLoop(L); 269 270 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 271 272 // Find new Loop header. NewHeader is a Header's one and only successor 273 // that is inside loop. Header's other successor is outside the 274 // loop. Otherwise loop is not suitable for rotation. 275 BasicBlock *Exit = BI->getSuccessor(0); 276 BasicBlock *NewHeader = BI->getSuccessor(1); 277 if (L->contains(Exit)) 278 std::swap(Exit, NewHeader); 279 assert(NewHeader && "Unable to determine new loop header"); 280 assert(L->contains(NewHeader) && !L->contains(Exit) && 281 "Unable to determine loop header and exit blocks"); 282 283 // This code assumes that the new header has exactly one predecessor. 284 // Remove any single-entry PHI nodes in it. 285 assert(NewHeader->getSinglePredecessor() && 286 "New header doesn't have one pred!"); 287 FoldSingleEntryPHINodes(NewHeader); 288 289 // Begin by walking OrigHeader and populating ValueMap with an entry for 290 // each Instruction. 291 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 292 ValueToValueMapTy ValueMap; 293 294 // For PHI nodes, the value available in OldPreHeader is just the 295 // incoming value from OldPreHeader. 296 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 297 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 298 299 // For the rest of the instructions, either hoist to the OrigPreheader if 300 // possible or create a clone in the OldPreHeader if not. 301 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 302 303 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication. 304 using DbgIntrinsicHash = 305 std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>; 306 auto makeHash = [](DbgInfoIntrinsic *D) -> DbgIntrinsicHash { 307 return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()}; 308 }; 309 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 310 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend(); 311 I != E; ++I) { 312 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&*I)) 313 DbgIntrinsics.insert(makeHash(DII)); 314 else 315 break; 316 } 317 318 while (I != E) { 319 Instruction *Inst = &*I++; 320 321 // If the instruction's operands are invariant and it doesn't read or write 322 // memory, then it is safe to hoist. Doing this doesn't change the order of 323 // execution in the preheader, but does prevent the instruction from 324 // executing in each iteration of the loop. This means it is safe to hoist 325 // something that might trap, but isn't safe to hoist something that reads 326 // memory (without proving that the loop doesn't write). 327 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 328 !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) && 329 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 330 Inst->moveBefore(LoopEntryBranch); 331 continue; 332 } 333 334 // Otherwise, create a duplicate of the instruction. 335 Instruction *C = Inst->clone(); 336 337 // Eagerly remap the operands of the instruction. 338 RemapInstruction(C, ValueMap, 339 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 340 341 // Avoid inserting the same intrinsic twice. 342 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(C)) 343 if (DbgIntrinsics.count(makeHash(DII))) { 344 C->deleteValue(); 345 continue; 346 } 347 348 // With the operands remapped, see if the instruction constant folds or is 349 // otherwise simplifyable. This commonly occurs because the entry from PHI 350 // nodes allows icmps and other instructions to fold. 351 Value *V = SimplifyInstruction(C, SQ); 352 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 353 // If so, then delete the temporary instruction and stick the folded value 354 // in the map. 355 ValueMap[Inst] = V; 356 if (!C->mayHaveSideEffects()) { 357 C->deleteValue(); 358 C = nullptr; 359 } 360 } else { 361 ValueMap[Inst] = C; 362 } 363 if (C) { 364 // Otherwise, stick the new instruction into the new block! 365 C->setName(Inst->getName()); 366 C->insertBefore(LoopEntryBranch); 367 368 if (auto *II = dyn_cast<IntrinsicInst>(C)) 369 if (II->getIntrinsicID() == Intrinsic::assume) 370 AC->registerAssumption(II); 371 } 372 } 373 374 // Along with all the other instructions, we just cloned OrigHeader's 375 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 376 // successors by duplicating their incoming values for OrigHeader. 377 TerminatorInst *TI = OrigHeader->getTerminator(); 378 for (BasicBlock *SuccBB : TI->successors()) 379 for (BasicBlock::iterator BI = SuccBB->begin(); 380 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 381 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 382 383 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 384 // OrigPreHeader's old terminator (the original branch into the loop), and 385 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 386 LoopEntryBranch->eraseFromParent(); 387 388 389 SmallVector<PHINode*, 2> InsertedPHIs; 390 // If there were any uses of instructions in the duplicated block outside the 391 // loop, update them, inserting PHI nodes as required 392 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, 393 &InsertedPHIs); 394 395 // Attach dbg.value intrinsics to the new phis if that phi uses a value that 396 // previously had debug metadata attached. This keeps the debug info 397 // up-to-date in the loop body. 398 if (!InsertedPHIs.empty()) 399 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); 400 401 // NewHeader is now the header of the loop. 402 L->moveToHeader(NewHeader); 403 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 404 405 // Inform DT about changes to the CFG. 406 if (DT) { 407 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 408 // the DT about the removed edge to the OrigHeader (that got removed). 409 SmallVector<DominatorTree::UpdateType, 3> Updates; 410 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 411 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 412 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 413 DT->applyUpdates(Updates); 414 } 415 416 // At this point, we've finished our major CFG changes. As part of cloning 417 // the loop into the preheader we've simplified instructions and the 418 // duplicated conditional branch may now be branching on a constant. If it is 419 // branching on a constant and if that constant means that we enter the loop, 420 // then we fold away the cond branch to an uncond branch. This simplifies the 421 // loop in cases important for nested loops, and it also means we don't have 422 // to split as many edges. 423 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 424 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 425 if (!isa<ConstantInt>(PHBI->getCondition()) || 426 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 427 NewHeader) { 428 // The conditional branch can't be folded, handle the general case. 429 // Split edges as necessary to preserve LoopSimplify form. 430 431 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 432 // thus is not a preheader anymore. 433 // Split the edge to form a real preheader. 434 BasicBlock *NewPH = SplitCriticalEdge( 435 OrigPreheader, NewHeader, 436 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 437 NewPH->setName(NewHeader->getName() + ".lr.ph"); 438 439 // Preserve canonical loop form, which means that 'Exit' should have only 440 // one predecessor. Note that Exit could be an exit block for multiple 441 // nested loops, causing both of the edges to now be critical and need to 442 // be split. 443 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 444 bool SplitLatchEdge = false; 445 for (BasicBlock *ExitPred : ExitPreds) { 446 // We only need to split loop exit edges. 447 Loop *PredLoop = LI->getLoopFor(ExitPred); 448 if (!PredLoop || PredLoop->contains(Exit)) 449 continue; 450 if (isa<IndirectBrInst>(ExitPred->getTerminator())) 451 continue; 452 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 453 BasicBlock *ExitSplit = SplitCriticalEdge( 454 ExitPred, Exit, 455 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 456 ExitSplit->moveBefore(Exit); 457 } 458 assert(SplitLatchEdge && 459 "Despite splitting all preds, failed to split latch exit?"); 460 } else { 461 // We can fold the conditional branch in the preheader, this makes things 462 // simpler. The first step is to remove the extra edge to the Exit block. 463 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 464 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 465 NewBI->setDebugLoc(PHBI->getDebugLoc()); 466 PHBI->eraseFromParent(); 467 468 // With our CFG finalized, update DomTree if it is available. 469 if (DT) DT->deleteEdge(OrigPreheader, Exit); 470 } 471 472 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 473 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 474 475 // Now that the CFG and DomTree are in a consistent state again, try to merge 476 // the OrigHeader block into OrigLatch. This will succeed if they are 477 // connected by an unconditional branch. This is just a cleanup so the 478 // emitted code isn't too gross in this common case. 479 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 480 481 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 482 483 ++NumRotated; 484 return true; 485 } 486 487 /// Determine whether the instructions in this range may be safely and cheaply 488 /// speculated. This is not an important enough situation to develop complex 489 /// heuristics. We handle a single arithmetic instruction along with any type 490 /// conversions. 491 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 492 BasicBlock::iterator End, Loop *L) { 493 bool seenIncrement = false; 494 bool MultiExitLoop = false; 495 496 if (!L->getExitingBlock()) 497 MultiExitLoop = true; 498 499 for (BasicBlock::iterator I = Begin; I != End; ++I) { 500 501 if (!isSafeToSpeculativelyExecute(&*I)) 502 return false; 503 504 if (isa<DbgInfoIntrinsic>(I)) 505 continue; 506 507 switch (I->getOpcode()) { 508 default: 509 return false; 510 case Instruction::GetElementPtr: 511 // GEPs are cheap if all indices are constant. 512 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 513 return false; 514 // fall-thru to increment case 515 LLVM_FALLTHROUGH; 516 case Instruction::Add: 517 case Instruction::Sub: 518 case Instruction::And: 519 case Instruction::Or: 520 case Instruction::Xor: 521 case Instruction::Shl: 522 case Instruction::LShr: 523 case Instruction::AShr: { 524 Value *IVOpnd = 525 !isa<Constant>(I->getOperand(0)) 526 ? I->getOperand(0) 527 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 528 if (!IVOpnd) 529 return false; 530 531 // If increment operand is used outside of the loop, this speculation 532 // could cause extra live range interference. 533 if (MultiExitLoop) { 534 for (User *UseI : IVOpnd->users()) { 535 auto *UserInst = cast<Instruction>(UseI); 536 if (!L->contains(UserInst)) 537 return false; 538 } 539 } 540 541 if (seenIncrement) 542 return false; 543 seenIncrement = true; 544 break; 545 } 546 case Instruction::Trunc: 547 case Instruction::ZExt: 548 case Instruction::SExt: 549 // ignore type conversions 550 break; 551 } 552 } 553 return true; 554 } 555 556 /// Fold the loop tail into the loop exit by speculating the loop tail 557 /// instructions. Typically, this is a single post-increment. In the case of a 558 /// simple 2-block loop, hoisting the increment can be much better than 559 /// duplicating the entire loop header. In the case of loops with early exits, 560 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 561 /// canonical form so downstream passes can handle it. 562 /// 563 /// I don't believe this invalidates SCEV. 564 bool LoopRotate::simplifyLoopLatch(Loop *L) { 565 BasicBlock *Latch = L->getLoopLatch(); 566 if (!Latch || Latch->hasAddressTaken()) 567 return false; 568 569 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 570 if (!Jmp || !Jmp->isUnconditional()) 571 return false; 572 573 BasicBlock *LastExit = Latch->getSinglePredecessor(); 574 if (!LastExit || !L->isLoopExiting(LastExit)) 575 return false; 576 577 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 578 if (!BI) 579 return false; 580 581 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 582 return false; 583 584 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 585 << LastExit->getName() << "\n"); 586 587 // Hoist the instructions from Latch into LastExit. 588 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 589 Latch->begin(), Jmp->getIterator()); 590 591 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 592 BasicBlock *Header = Jmp->getSuccessor(0); 593 assert(Header == L->getHeader() && "expected a backward branch"); 594 595 // Remove Latch from the CFG so that LastExit becomes the new Latch. 596 BI->setSuccessor(FallThruPath, Header); 597 Latch->replaceSuccessorsPhiUsesWith(LastExit); 598 Jmp->eraseFromParent(); 599 600 // Nuke the Latch block. 601 assert(Latch->empty() && "unable to evacuate Latch"); 602 LI->removeBlock(Latch); 603 if (DT) 604 DT->eraseNode(Latch); 605 Latch->eraseFromParent(); 606 return true; 607 } 608 609 /// Rotate \c L, and return true if any modification was made. 610 bool LoopRotate::processLoop(Loop *L) { 611 // Save the loop metadata. 612 MDNode *LoopMD = L->getLoopID(); 613 614 bool SimplifiedLatch = false; 615 616 // Simplify the loop latch before attempting to rotate the header 617 // upward. Rotation may not be needed if the loop tail can be folded into the 618 // loop exit. 619 if (!RotationOnly) 620 SimplifiedLatch = simplifyLoopLatch(L); 621 622 bool MadeChange = rotateLoop(L, SimplifiedLatch); 623 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 624 "Loop latch should be exiting after loop-rotate."); 625 626 // Restore the loop metadata. 627 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 628 if ((MadeChange || SimplifiedLatch) && LoopMD) 629 L->setLoopID(LoopMD); 630 631 return MadeChange || SimplifiedLatch; 632 } 633 634 635 /// The utility to convert a loop into a loop with bottom test. 636 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, 637 AssumptionCache *AC, DominatorTree *DT, 638 ScalarEvolution *SE, const SimplifyQuery &SQ, 639 bool RotationOnly = true, 640 unsigned Threshold = unsigned(-1), 641 bool IsUtilMode = true) { 642 LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, SQ, RotationOnly, IsUtilMode); 643 644 return LR.processLoop(L); 645 } 646