Home | History | Annotate | Download | only in Utils
      1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines common loop utility functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Utils/LoopUtils.h"
     15 #include "llvm/ADT/ScopeExit.h"
     16 #include "llvm/Analysis/AliasAnalysis.h"
     17 #include "llvm/Analysis/BasicAliasAnalysis.h"
     18 #include "llvm/Analysis/GlobalsModRef.h"
     19 #include "llvm/Analysis/InstructionSimplify.h"
     20 #include "llvm/Analysis/LoopInfo.h"
     21 #include "llvm/Analysis/LoopPass.h"
     22 #include "llvm/Analysis/MustExecute.h"
     23 #include "llvm/Analysis/ScalarEvolution.h"
     24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
     25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     27 #include "llvm/Analysis/TargetTransformInfo.h"
     28 #include "llvm/Analysis/ValueTracking.h"
     29 #include "llvm/IR/Dominators.h"
     30 #include "llvm/IR/Instructions.h"
     31 #include "llvm/IR/Module.h"
     32 #include "llvm/IR/PatternMatch.h"
     33 #include "llvm/IR/ValueHandle.h"
     34 #include "llvm/Pass.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/KnownBits.h"
     37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     38 
     39 using namespace llvm;
     40 using namespace llvm::PatternMatch;
     41 
     42 #define DEBUG_TYPE "loop-utils"
     43 
     44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
     45                                         SmallPtrSetImpl<Instruction *> &Set) {
     46   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
     47     if (!Set.count(dyn_cast<Instruction>(*Use)))
     48       return false;
     49   return true;
     50 }
     51 
     52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
     53   switch (Kind) {
     54   default:
     55     break;
     56   case RK_IntegerAdd:
     57   case RK_IntegerMult:
     58   case RK_IntegerOr:
     59   case RK_IntegerAnd:
     60   case RK_IntegerXor:
     61   case RK_IntegerMinMax:
     62     return true;
     63   }
     64   return false;
     65 }
     66 
     67 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
     68   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
     69 }
     70 
     71 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
     72   switch (Kind) {
     73   default:
     74     break;
     75   case RK_IntegerAdd:
     76   case RK_IntegerMult:
     77   case RK_FloatAdd:
     78   case RK_FloatMult:
     79     return true;
     80   }
     81   return false;
     82 }
     83 
     84 /// Determines if Phi may have been type-promoted. If Phi has a single user
     85 /// that ANDs the Phi with a type mask, return the user. RT is updated to
     86 /// account for the narrower bit width represented by the mask, and the AND
     87 /// instruction is added to CI.
     88 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
     89                                    SmallPtrSetImpl<Instruction *> &Visited,
     90                                    SmallPtrSetImpl<Instruction *> &CI) {
     91   if (!Phi->hasOneUse())
     92     return Phi;
     93 
     94   const APInt *M = nullptr;
     95   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
     96 
     97   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
     98   // with a new integer type of the corresponding bit width.
     99   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
    100     int32_t Bits = (*M + 1).exactLogBase2();
    101     if (Bits > 0) {
    102       RT = IntegerType::get(Phi->getContext(), Bits);
    103       Visited.insert(Phi);
    104       CI.insert(J);
    105       return J;
    106     }
    107   }
    108   return Phi;
    109 }
    110 
    111 /// Compute the minimal bit width needed to represent a reduction whose exit
    112 /// instruction is given by Exit.
    113 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
    114                                                      DemandedBits *DB,
    115                                                      AssumptionCache *AC,
    116                                                      DominatorTree *DT) {
    117   bool IsSigned = false;
    118   const DataLayout &DL = Exit->getModule()->getDataLayout();
    119   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
    120 
    121   if (DB) {
    122     // Use the demanded bits analysis to determine the bits that are live out
    123     // of the exit instruction, rounding up to the nearest power of two. If the
    124     // use of demanded bits results in a smaller bit width, we know the value
    125     // must be positive (i.e., IsSigned = false), because if this were not the
    126     // case, the sign bit would have been demanded.
    127     auto Mask = DB->getDemandedBits(Exit);
    128     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
    129   }
    130 
    131   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
    132     // If demanded bits wasn't able to limit the bit width, we can try to use
    133     // value tracking instead. This can be the case, for example, if the value
    134     // may be negative.
    135     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
    136     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
    137     MaxBitWidth = NumTypeBits - NumSignBits;
    138     KnownBits Bits = computeKnownBits(Exit, DL);
    139     if (!Bits.isNonNegative()) {
    140       // If the value is not known to be non-negative, we set IsSigned to true,
    141       // meaning that we will use sext instructions instead of zext
    142       // instructions to restore the original type.
    143       IsSigned = true;
    144       if (!Bits.isNegative())
    145         // If the value is not known to be negative, we don't known what the
    146         // upper bit is, and therefore, we don't know what kind of extend we
    147         // will need. In this case, just increase the bit width by one bit and
    148         // use sext.
    149         ++MaxBitWidth;
    150     }
    151   }
    152   if (!isPowerOf2_64(MaxBitWidth))
    153     MaxBitWidth = NextPowerOf2(MaxBitWidth);
    154 
    155   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
    156                         IsSigned);
    157 }
    158 
    159 /// Collect cast instructions that can be ignored in the vectorizer's cost
    160 /// model, given a reduction exit value and the minimal type in which the
    161 /// reduction can be represented.
    162 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
    163                                  Type *RecurrenceType,
    164                                  SmallPtrSetImpl<Instruction *> &Casts) {
    165 
    166   SmallVector<Instruction *, 8> Worklist;
    167   SmallPtrSet<Instruction *, 8> Visited;
    168   Worklist.push_back(Exit);
    169 
    170   while (!Worklist.empty()) {
    171     Instruction *Val = Worklist.pop_back_val();
    172     Visited.insert(Val);
    173     if (auto *Cast = dyn_cast<CastInst>(Val))
    174       if (Cast->getSrcTy() == RecurrenceType) {
    175         // If the source type of a cast instruction is equal to the recurrence
    176         // type, it will be eliminated, and should be ignored in the vectorizer
    177         // cost model.
    178         Casts.insert(Cast);
    179         continue;
    180       }
    181 
    182     // Add all operands to the work list if they are loop-varying values that
    183     // we haven't yet visited.
    184     for (Value *O : cast<User>(Val)->operands())
    185       if (auto *I = dyn_cast<Instruction>(O))
    186         if (TheLoop->contains(I) && !Visited.count(I))
    187           Worklist.push_back(I);
    188   }
    189 }
    190 
    191 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
    192                                            Loop *TheLoop, bool HasFunNoNaNAttr,
    193                                            RecurrenceDescriptor &RedDes,
    194                                            DemandedBits *DB,
    195                                            AssumptionCache *AC,
    196                                            DominatorTree *DT) {
    197   if (Phi->getNumIncomingValues() != 2)
    198     return false;
    199 
    200   // Reduction variables are only found in the loop header block.
    201   if (Phi->getParent() != TheLoop->getHeader())
    202     return false;
    203 
    204   // Obtain the reduction start value from the value that comes from the loop
    205   // preheader.
    206   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
    207 
    208   // ExitInstruction is the single value which is used outside the loop.
    209   // We only allow for a single reduction value to be used outside the loop.
    210   // This includes users of the reduction, variables (which form a cycle
    211   // which ends in the phi node).
    212   Instruction *ExitInstruction = nullptr;
    213   // Indicates that we found a reduction operation in our scan.
    214   bool FoundReduxOp = false;
    215 
    216   // We start with the PHI node and scan for all of the users of this
    217   // instruction. All users must be instructions that can be used as reduction
    218   // variables (such as ADD). We must have a single out-of-block user. The cycle
    219   // must include the original PHI.
    220   bool FoundStartPHI = false;
    221 
    222   // To recognize min/max patterns formed by a icmp select sequence, we store
    223   // the number of instruction we saw from the recognized min/max pattern,
    224   //  to make sure we only see exactly the two instructions.
    225   unsigned NumCmpSelectPatternInst = 0;
    226   InstDesc ReduxDesc(false, nullptr);
    227 
    228   // Data used for determining if the recurrence has been type-promoted.
    229   Type *RecurrenceType = Phi->getType();
    230   SmallPtrSet<Instruction *, 4> CastInsts;
    231   Instruction *Start = Phi;
    232   bool IsSigned = false;
    233 
    234   SmallPtrSet<Instruction *, 8> VisitedInsts;
    235   SmallVector<Instruction *, 8> Worklist;
    236 
    237   // Return early if the recurrence kind does not match the type of Phi. If the
    238   // recurrence kind is arithmetic, we attempt to look through AND operations
    239   // resulting from the type promotion performed by InstCombine.  Vector
    240   // operations are not limited to the legal integer widths, so we may be able
    241   // to evaluate the reduction in the narrower width.
    242   if (RecurrenceType->isFloatingPointTy()) {
    243     if (!isFloatingPointRecurrenceKind(Kind))
    244       return false;
    245   } else {
    246     if (!isIntegerRecurrenceKind(Kind))
    247       return false;
    248     if (isArithmeticRecurrenceKind(Kind))
    249       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
    250   }
    251 
    252   Worklist.push_back(Start);
    253   VisitedInsts.insert(Start);
    254 
    255   // A value in the reduction can be used:
    256   //  - By the reduction:
    257   //      - Reduction operation:
    258   //        - One use of reduction value (safe).
    259   //        - Multiple use of reduction value (not safe).
    260   //      - PHI:
    261   //        - All uses of the PHI must be the reduction (safe).
    262   //        - Otherwise, not safe.
    263   //  - By instructions outside of the loop (safe).
    264   //      * One value may have several outside users, but all outside
    265   //        uses must be of the same value.
    266   //  - By an instruction that is not part of the reduction (not safe).
    267   //    This is either:
    268   //      * An instruction type other than PHI or the reduction operation.
    269   //      * A PHI in the header other than the initial PHI.
    270   while (!Worklist.empty()) {
    271     Instruction *Cur = Worklist.back();
    272     Worklist.pop_back();
    273 
    274     // No Users.
    275     // If the instruction has no users then this is a broken chain and can't be
    276     // a reduction variable.
    277     if (Cur->use_empty())
    278       return false;
    279 
    280     bool IsAPhi = isa<PHINode>(Cur);
    281 
    282     // A header PHI use other than the original PHI.
    283     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
    284       return false;
    285 
    286     // Reductions of instructions such as Div, and Sub is only possible if the
    287     // LHS is the reduction variable.
    288     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
    289         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
    290         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
    291       return false;
    292 
    293     // Any reduction instruction must be of one of the allowed kinds. We ignore
    294     // the starting value (the Phi or an AND instruction if the Phi has been
    295     // type-promoted).
    296     if (Cur != Start) {
    297       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
    298       if (!ReduxDesc.isRecurrence())
    299         return false;
    300     }
    301 
    302     // A reduction operation must only have one use of the reduction value.
    303     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
    304         hasMultipleUsesOf(Cur, VisitedInsts))
    305       return false;
    306 
    307     // All inputs to a PHI node must be a reduction value.
    308     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
    309       return false;
    310 
    311     if (Kind == RK_IntegerMinMax &&
    312         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
    313       ++NumCmpSelectPatternInst;
    314     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
    315       ++NumCmpSelectPatternInst;
    316 
    317     // Check  whether we found a reduction operator.
    318     FoundReduxOp |= !IsAPhi && Cur != Start;
    319 
    320     // Process users of current instruction. Push non-PHI nodes after PHI nodes
    321     // onto the stack. This way we are going to have seen all inputs to PHI
    322     // nodes once we get to them.
    323     SmallVector<Instruction *, 8> NonPHIs;
    324     SmallVector<Instruction *, 8> PHIs;
    325     for (User *U : Cur->users()) {
    326       Instruction *UI = cast<Instruction>(U);
    327 
    328       // Check if we found the exit user.
    329       BasicBlock *Parent = UI->getParent();
    330       if (!TheLoop->contains(Parent)) {
    331         // If we already know this instruction is used externally, move on to
    332         // the next user.
    333         if (ExitInstruction == Cur)
    334           continue;
    335 
    336         // Exit if you find multiple values used outside or if the header phi
    337         // node is being used. In this case the user uses the value of the
    338         // previous iteration, in which case we would loose "VF-1" iterations of
    339         // the reduction operation if we vectorize.
    340         if (ExitInstruction != nullptr || Cur == Phi)
    341           return false;
    342 
    343         // The instruction used by an outside user must be the last instruction
    344         // before we feed back to the reduction phi. Otherwise, we loose VF-1
    345         // operations on the value.
    346         if (!is_contained(Phi->operands(), Cur))
    347           return false;
    348 
    349         ExitInstruction = Cur;
    350         continue;
    351       }
    352 
    353       // Process instructions only once (termination). Each reduction cycle
    354       // value must only be used once, except by phi nodes and min/max
    355       // reductions which are represented as a cmp followed by a select.
    356       InstDesc IgnoredVal(false, nullptr);
    357       if (VisitedInsts.insert(UI).second) {
    358         if (isa<PHINode>(UI))
    359           PHIs.push_back(UI);
    360         else
    361           NonPHIs.push_back(UI);
    362       } else if (!isa<PHINode>(UI) &&
    363                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
    364                    !isa<SelectInst>(UI)) ||
    365                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
    366         return false;
    367 
    368       // Remember that we completed the cycle.
    369       if (UI == Phi)
    370         FoundStartPHI = true;
    371     }
    372     Worklist.append(PHIs.begin(), PHIs.end());
    373     Worklist.append(NonPHIs.begin(), NonPHIs.end());
    374   }
    375 
    376   // This means we have seen one but not the other instruction of the
    377   // pattern or more than just a select and cmp.
    378   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
    379       NumCmpSelectPatternInst != 2)
    380     return false;
    381 
    382   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
    383     return false;
    384 
    385   if (Start != Phi) {
    386     // If the starting value is not the same as the phi node, we speculatively
    387     // looked through an 'and' instruction when evaluating a potential
    388     // arithmetic reduction to determine if it may have been type-promoted.
    389     //
    390     // We now compute the minimal bit width that is required to represent the
    391     // reduction. If this is the same width that was indicated by the 'and', we
    392     // can represent the reduction in the smaller type. The 'and' instruction
    393     // will be eliminated since it will essentially be a cast instruction that
    394     // can be ignore in the cost model. If we compute a different type than we
    395     // did when evaluating the 'and', the 'and' will not be eliminated, and we
    396     // will end up with different kinds of operations in the recurrence
    397     // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
    398     // the case.
    399     //
    400     // The vectorizer relies on InstCombine to perform the actual
    401     // type-shrinking. It does this by inserting instructions to truncate the
    402     // exit value of the reduction to the width indicated by RecurrenceType and
    403     // then extend this value back to the original width. If IsSigned is false,
    404     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
    405     // used.
    406     //
    407     // TODO: We should not rely on InstCombine to rewrite the reduction in the
    408     //       smaller type. We should just generate a correctly typed expression
    409     //       to begin with.
    410     Type *ComputedType;
    411     std::tie(ComputedType, IsSigned) =
    412         computeRecurrenceType(ExitInstruction, DB, AC, DT);
    413     if (ComputedType != RecurrenceType)
    414       return false;
    415 
    416     // The recurrence expression will be represented in a narrower type. If
    417     // there are any cast instructions that will be unnecessary, collect them
    418     // in CastInsts. Note that the 'and' instruction was already included in
    419     // this list.
    420     //
    421     // TODO: A better way to represent this may be to tag in some way all the
    422     //       instructions that are a part of the reduction. The vectorizer cost
    423     //       model could then apply the recurrence type to these instructions,
    424     //       without needing a white list of instructions to ignore.
    425     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
    426   }
    427 
    428   // We found a reduction var if we have reached the original phi node and we
    429   // only have a single instruction with out-of-loop users.
    430 
    431   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
    432   // is saved as part of the RecurrenceDescriptor.
    433 
    434   // Save the description of this reduction variable.
    435   RecurrenceDescriptor RD(
    436       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
    437       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
    438   RedDes = RD;
    439 
    440   return true;
    441 }
    442 
    443 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
    444 /// pattern corresponding to a min(X, Y) or max(X, Y).
    445 RecurrenceDescriptor::InstDesc
    446 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
    447 
    448   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
    449          "Expect a select instruction");
    450   Instruction *Cmp = nullptr;
    451   SelectInst *Select = nullptr;
    452 
    453   // We must handle the select(cmp()) as a single instruction. Advance to the
    454   // select.
    455   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
    456     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
    457       return InstDesc(false, I);
    458     return InstDesc(Select, Prev.getMinMaxKind());
    459   }
    460 
    461   // Only handle single use cases for now.
    462   if (!(Select = dyn_cast<SelectInst>(I)))
    463     return InstDesc(false, I);
    464   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
    465       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
    466     return InstDesc(false, I);
    467   if (!Cmp->hasOneUse())
    468     return InstDesc(false, I);
    469 
    470   Value *CmpLeft;
    471   Value *CmpRight;
    472 
    473   // Look for a min/max pattern.
    474   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    475     return InstDesc(Select, MRK_UIntMin);
    476   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    477     return InstDesc(Select, MRK_UIntMax);
    478   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    479     return InstDesc(Select, MRK_SIntMax);
    480   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    481     return InstDesc(Select, MRK_SIntMin);
    482   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    483     return InstDesc(Select, MRK_FloatMin);
    484   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    485     return InstDesc(Select, MRK_FloatMax);
    486   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    487     return InstDesc(Select, MRK_FloatMin);
    488   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    489     return InstDesc(Select, MRK_FloatMax);
    490 
    491   return InstDesc(false, I);
    492 }
    493 
    494 RecurrenceDescriptor::InstDesc
    495 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
    496                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
    497   bool FP = I->getType()->isFloatingPointTy();
    498   Instruction *UAI = Prev.getUnsafeAlgebraInst();
    499   if (!UAI && FP && !I->isFast())
    500     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
    501 
    502   switch (I->getOpcode()) {
    503   default:
    504     return InstDesc(false, I);
    505   case Instruction::PHI:
    506     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
    507   case Instruction::Sub:
    508   case Instruction::Add:
    509     return InstDesc(Kind == RK_IntegerAdd, I);
    510   case Instruction::Mul:
    511     return InstDesc(Kind == RK_IntegerMult, I);
    512   case Instruction::And:
    513     return InstDesc(Kind == RK_IntegerAnd, I);
    514   case Instruction::Or:
    515     return InstDesc(Kind == RK_IntegerOr, I);
    516   case Instruction::Xor:
    517     return InstDesc(Kind == RK_IntegerXor, I);
    518   case Instruction::FMul:
    519     return InstDesc(Kind == RK_FloatMult, I, UAI);
    520   case Instruction::FSub:
    521   case Instruction::FAdd:
    522     return InstDesc(Kind == RK_FloatAdd, I, UAI);
    523   case Instruction::FCmp:
    524   case Instruction::ICmp:
    525   case Instruction::Select:
    526     if (Kind != RK_IntegerMinMax &&
    527         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
    528       return InstDesc(false, I);
    529     return isMinMaxSelectCmpPattern(I, Prev);
    530   }
    531 }
    532 
    533 bool RecurrenceDescriptor::hasMultipleUsesOf(
    534     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
    535   unsigned NumUses = 0;
    536   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
    537        ++Use) {
    538     if (Insts.count(dyn_cast<Instruction>(*Use)))
    539       ++NumUses;
    540     if (NumUses > 1)
    541       return true;
    542   }
    543 
    544   return false;
    545 }
    546 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
    547                                           RecurrenceDescriptor &RedDes,
    548                                           DemandedBits *DB, AssumptionCache *AC,
    549                                           DominatorTree *DT) {
    550 
    551   BasicBlock *Header = TheLoop->getHeader();
    552   Function &F = *Header->getParent();
    553   bool HasFunNoNaNAttr =
    554       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
    555 
    556   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
    557                       AC, DT)) {
    558     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
    559     return true;
    560   }
    561   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
    562                       AC, DT)) {
    563     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
    564     return true;
    565   }
    566   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
    567                       AC, DT)) {
    568     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
    569     return true;
    570   }
    571   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
    572                       AC, DT)) {
    573     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
    574     return true;
    575   }
    576   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
    577                       AC, DT)) {
    578     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
    579     return true;
    580   }
    581   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
    582                       DB, AC, DT)) {
    583     LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
    584     return true;
    585   }
    586   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
    587                       AC, DT)) {
    588     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
    589     return true;
    590   }
    591   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
    592                       AC, DT)) {
    593     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
    594     return true;
    595   }
    596   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
    597                       AC, DT)) {
    598     LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
    599                       << "\n");
    600     return true;
    601   }
    602   // Not a reduction of known type.
    603   return false;
    604 }
    605 
    606 bool RecurrenceDescriptor::isFirstOrderRecurrence(
    607     PHINode *Phi, Loop *TheLoop,
    608     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
    609 
    610   // Ensure the phi node is in the loop header and has two incoming values.
    611   if (Phi->getParent() != TheLoop->getHeader() ||
    612       Phi->getNumIncomingValues() != 2)
    613     return false;
    614 
    615   // Ensure the loop has a preheader and a single latch block. The loop
    616   // vectorizer will need the latch to set up the next iteration of the loop.
    617   auto *Preheader = TheLoop->getLoopPreheader();
    618   auto *Latch = TheLoop->getLoopLatch();
    619   if (!Preheader || !Latch)
    620     return false;
    621 
    622   // Ensure the phi node's incoming blocks are the loop preheader and latch.
    623   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
    624       Phi->getBasicBlockIndex(Latch) < 0)
    625     return false;
    626 
    627   // Get the previous value. The previous value comes from the latch edge while
    628   // the initial value comes form the preheader edge.
    629   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
    630   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
    631       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
    632     return false;
    633 
    634   // Ensure every user of the phi node is dominated by the previous value.
    635   // The dominance requirement ensures the loop vectorizer will not need to
    636   // vectorize the initial value prior to the first iteration of the loop.
    637   // TODO: Consider extending this sinking to handle other kinds of instructions
    638   // and expressions, beyond sinking a single cast past Previous.
    639   if (Phi->hasOneUse()) {
    640     auto *I = Phi->user_back();
    641     if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
    642         DT->dominates(Previous, I->user_back())) {
    643       if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
    644         SinkAfter[I] = Previous;
    645       return true;
    646     }
    647   }
    648 
    649   for (User *U : Phi->users())
    650     if (auto *I = dyn_cast<Instruction>(U)) {
    651       if (!DT->dominates(Previous, I))
    652         return false;
    653     }
    654 
    655   return true;
    656 }
    657 
    658 /// This function returns the identity element (or neutral element) for
    659 /// the operation K.
    660 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
    661                                                       Type *Tp) {
    662   switch (K) {
    663   case RK_IntegerXor:
    664   case RK_IntegerAdd:
    665   case RK_IntegerOr:
    666     // Adding, Xoring, Oring zero to a number does not change it.
    667     return ConstantInt::get(Tp, 0);
    668   case RK_IntegerMult:
    669     // Multiplying a number by 1 does not change it.
    670     return ConstantInt::get(Tp, 1);
    671   case RK_IntegerAnd:
    672     // AND-ing a number with an all-1 value does not change it.
    673     return ConstantInt::get(Tp, -1, true);
    674   case RK_FloatMult:
    675     // Multiplying a number by 1 does not change it.
    676     return ConstantFP::get(Tp, 1.0L);
    677   case RK_FloatAdd:
    678     // Adding zero to a number does not change it.
    679     return ConstantFP::get(Tp, 0.0L);
    680   default:
    681     llvm_unreachable("Unknown recurrence kind");
    682   }
    683 }
    684 
    685 /// This function translates the recurrence kind to an LLVM binary operator.
    686 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
    687   switch (Kind) {
    688   case RK_IntegerAdd:
    689     return Instruction::Add;
    690   case RK_IntegerMult:
    691     return Instruction::Mul;
    692   case RK_IntegerOr:
    693     return Instruction::Or;
    694   case RK_IntegerAnd:
    695     return Instruction::And;
    696   case RK_IntegerXor:
    697     return Instruction::Xor;
    698   case RK_FloatMult:
    699     return Instruction::FMul;
    700   case RK_FloatAdd:
    701     return Instruction::FAdd;
    702   case RK_IntegerMinMax:
    703     return Instruction::ICmp;
    704   case RK_FloatMinMax:
    705     return Instruction::FCmp;
    706   default:
    707     llvm_unreachable("Unknown recurrence operation");
    708   }
    709 }
    710 
    711 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
    712                                             MinMaxRecurrenceKind RK,
    713                                             Value *Left, Value *Right) {
    714   CmpInst::Predicate P = CmpInst::ICMP_NE;
    715   switch (RK) {
    716   default:
    717     llvm_unreachable("Unknown min/max recurrence kind");
    718   case MRK_UIntMin:
    719     P = CmpInst::ICMP_ULT;
    720     break;
    721   case MRK_UIntMax:
    722     P = CmpInst::ICMP_UGT;
    723     break;
    724   case MRK_SIntMin:
    725     P = CmpInst::ICMP_SLT;
    726     break;
    727   case MRK_SIntMax:
    728     P = CmpInst::ICMP_SGT;
    729     break;
    730   case MRK_FloatMin:
    731     P = CmpInst::FCMP_OLT;
    732     break;
    733   case MRK_FloatMax:
    734     P = CmpInst::FCMP_OGT;
    735     break;
    736   }
    737 
    738   // We only match FP sequences that are 'fast', so we can unconditionally
    739   // set it on any generated instructions.
    740   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
    741   FastMathFlags FMF;
    742   FMF.setFast();
    743   Builder.setFastMathFlags(FMF);
    744 
    745   Value *Cmp;
    746   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
    747     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
    748   else
    749     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
    750 
    751   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
    752   return Select;
    753 }
    754 
    755 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
    756                                          const SCEV *Step, BinaryOperator *BOp,
    757                                          SmallVectorImpl<Instruction *> *Casts)
    758   : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
    759   assert(IK != IK_NoInduction && "Not an induction");
    760 
    761   // Start value type should match the induction kind and the value
    762   // itself should not be null.
    763   assert(StartValue && "StartValue is null");
    764   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
    765          "StartValue is not a pointer for pointer induction");
    766   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
    767          "StartValue is not an integer for integer induction");
    768 
    769   // Check the Step Value. It should be non-zero integer value.
    770   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
    771          "Step value is zero");
    772 
    773   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
    774          "Step value should be constant for pointer induction");
    775   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
    776          "StepValue is not an integer");
    777 
    778   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
    779          "StepValue is not FP for FpInduction");
    780   assert((IK != IK_FpInduction || (InductionBinOp &&
    781           (InductionBinOp->getOpcode() == Instruction::FAdd ||
    782            InductionBinOp->getOpcode() == Instruction::FSub))) &&
    783          "Binary opcode should be specified for FP induction");
    784 
    785   if (Casts) {
    786     for (auto &Inst : *Casts) {
    787       RedundantCasts.push_back(Inst);
    788     }
    789   }
    790 }
    791 
    792 int InductionDescriptor::getConsecutiveDirection() const {
    793   ConstantInt *ConstStep = getConstIntStepValue();
    794   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
    795     return ConstStep->getSExtValue();
    796   return 0;
    797 }
    798 
    799 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
    800   if (isa<SCEVConstant>(Step))
    801     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
    802   return nullptr;
    803 }
    804 
    805 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
    806                                       ScalarEvolution *SE,
    807                                       const DataLayout& DL) const {
    808 
    809   SCEVExpander Exp(*SE, DL, "induction");
    810   assert(Index->getType() == Step->getType() &&
    811          "Index type does not match StepValue type");
    812   switch (IK) {
    813   case IK_IntInduction: {
    814     assert(Index->getType() == StartValue->getType() &&
    815            "Index type does not match StartValue type");
    816 
    817     // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
    818     // and calculate (Start + Index * Step) for all cases, without
    819     // special handling for "isOne" and "isMinusOne".
    820     // But in the real life the result code getting worse. We mix SCEV
    821     // expressions and ADD/SUB operations and receive redundant
    822     // intermediate values being calculated in different ways and
    823     // Instcombine is unable to reduce them all.
    824 
    825     if (getConstIntStepValue() &&
    826         getConstIntStepValue()->isMinusOne())
    827       return B.CreateSub(StartValue, Index);
    828     if (getConstIntStepValue() &&
    829         getConstIntStepValue()->isOne())
    830       return B.CreateAdd(StartValue, Index);
    831     const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
    832                                    SE->getMulExpr(Step, SE->getSCEV(Index)));
    833     return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
    834   }
    835   case IK_PtrInduction: {
    836     assert(isa<SCEVConstant>(Step) &&
    837            "Expected constant step for pointer induction");
    838     const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
    839     Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
    840     return B.CreateGEP(nullptr, StartValue, Index);
    841   }
    842   case IK_FpInduction: {
    843     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
    844     assert(InductionBinOp &&
    845            (InductionBinOp->getOpcode() == Instruction::FAdd ||
    846             InductionBinOp->getOpcode() == Instruction::FSub) &&
    847            "Original bin op should be defined for FP induction");
    848 
    849     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
    850 
    851     // Floating point operations had to be 'fast' to enable the induction.
    852     FastMathFlags Flags;
    853     Flags.setFast();
    854 
    855     Value *MulExp = B.CreateFMul(StepValue, Index);
    856     if (isa<Instruction>(MulExp))
    857       // We have to check, the MulExp may be a constant.
    858       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
    859 
    860     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
    861                                MulExp, "induction");
    862     if (isa<Instruction>(BOp))
    863       cast<Instruction>(BOp)->setFastMathFlags(Flags);
    864 
    865     return BOp;
    866   }
    867   case IK_NoInduction:
    868     return nullptr;
    869   }
    870   llvm_unreachable("invalid enum");
    871 }
    872 
    873 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
    874                                            ScalarEvolution *SE,
    875                                            InductionDescriptor &D) {
    876 
    877   // Here we only handle FP induction variables.
    878   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
    879 
    880   if (TheLoop->getHeader() != Phi->getParent())
    881     return false;
    882 
    883   // The loop may have multiple entrances or multiple exits; we can analyze
    884   // this phi if it has a unique entry value and a unique backedge value.
    885   if (Phi->getNumIncomingValues() != 2)
    886     return false;
    887   Value *BEValue = nullptr, *StartValue = nullptr;
    888   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
    889     BEValue = Phi->getIncomingValue(0);
    890     StartValue = Phi->getIncomingValue(1);
    891   } else {
    892     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
    893            "Unexpected Phi node in the loop");
    894     BEValue = Phi->getIncomingValue(1);
    895     StartValue = Phi->getIncomingValue(0);
    896   }
    897 
    898   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
    899   if (!BOp)
    900     return false;
    901 
    902   Value *Addend = nullptr;
    903   if (BOp->getOpcode() == Instruction::FAdd) {
    904     if (BOp->getOperand(0) == Phi)
    905       Addend = BOp->getOperand(1);
    906     else if (BOp->getOperand(1) == Phi)
    907       Addend = BOp->getOperand(0);
    908   } else if (BOp->getOpcode() == Instruction::FSub)
    909     if (BOp->getOperand(0) == Phi)
    910       Addend = BOp->getOperand(1);
    911 
    912   if (!Addend)
    913     return false;
    914 
    915   // The addend should be loop invariant
    916   if (auto *I = dyn_cast<Instruction>(Addend))
    917     if (TheLoop->contains(I))
    918       return false;
    919 
    920   // FP Step has unknown SCEV
    921   const SCEV *Step = SE->getUnknown(Addend);
    922   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
    923   return true;
    924 }
    925 
    926 /// This function is called when we suspect that the update-chain of a phi node
    927 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
    928 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
    929 /// predicate P under which the SCEV expression for the phi can be the
    930 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
    931 /// cast instructions that are involved in the update-chain of this induction.
    932 /// A caller that adds the required runtime predicate can be free to drop these
    933 /// cast instructions, and compute the phi using \p AR (instead of some scev
    934 /// expression with casts).
    935 ///
    936 /// For example, without a predicate the scev expression can take the following
    937 /// form:
    938 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
    939 ///
    940 /// It corresponds to the following IR sequence:
    941 /// %for.body:
    942 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
    943 ///   %casted_phi = "ExtTrunc i64 %x"
    944 ///   %add = add i64 %casted_phi, %step
    945 ///
    946 /// where %x is given in \p PN,
    947 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
    948 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
    949 /// several forms, for example, such as:
    950 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
    951 /// or:
    952 ///   ExtTrunc2:    %t = shl %x, m
    953 ///                 %casted_phi = ashr %t, m
    954 ///
    955 /// If we are able to find such sequence, we return the instructions
    956 /// we found, namely %casted_phi and the instructions on its use-def chain up
    957 /// to the phi (not including the phi).
    958 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
    959                                     const SCEVUnknown *PhiScev,
    960                                     const SCEVAddRecExpr *AR,
    961                                     SmallVectorImpl<Instruction *> &CastInsts) {
    962 
    963   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
    964   auto *PN = cast<PHINode>(PhiScev->getValue());
    965   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
    966   const Loop *L = AR->getLoop();
    967 
    968   // Find any cast instructions that participate in the def-use chain of
    969   // PhiScev in the loop.
    970   // FORNOW/TODO: We currently expect the def-use chain to include only
    971   // two-operand instructions, where one of the operands is an invariant.
    972   // createAddRecFromPHIWithCasts() currently does not support anything more
    973   // involved than that, so we keep the search simple. This can be
    974   // extended/generalized as needed.
    975 
    976   auto getDef = [&](const Value *Val) -> Value * {
    977     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
    978     if (!BinOp)
    979       return nullptr;
    980     Value *Op0 = BinOp->getOperand(0);
    981     Value *Op1 = BinOp->getOperand(1);
    982     Value *Def = nullptr;
    983     if (L->isLoopInvariant(Op0))
    984       Def = Op1;
    985     else if (L->isLoopInvariant(Op1))
    986       Def = Op0;
    987     return Def;
    988   };
    989 
    990   // Look for the instruction that defines the induction via the
    991   // loop backedge.
    992   BasicBlock *Latch = L->getLoopLatch();
    993   if (!Latch)
    994     return false;
    995   Value *Val = PN->getIncomingValueForBlock(Latch);
    996   if (!Val)
    997     return false;
    998 
    999   // Follow the def-use chain until the induction phi is reached.
   1000   // If on the way we encounter a Value that has the same SCEV Expr as the
   1001   // phi node, we can consider the instructions we visit from that point
   1002   // as part of the cast-sequence that can be ignored.
   1003   bool InCastSequence = false;
   1004   auto *Inst = dyn_cast<Instruction>(Val);
   1005   while (Val != PN) {
   1006     // If we encountered a phi node other than PN, or if we left the loop,
   1007     // we bail out.
   1008     if (!Inst || !L->contains(Inst)) {
   1009       return false;
   1010     }
   1011     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
   1012     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
   1013       InCastSequence = true;
   1014     if (InCastSequence) {
   1015       // Only the last instruction in the cast sequence is expected to have
   1016       // uses outside the induction def-use chain.
   1017       if (!CastInsts.empty())
   1018         if (!Inst->hasOneUse())
   1019           return false;
   1020       CastInsts.push_back(Inst);
   1021     }
   1022     Val = getDef(Val);
   1023     if (!Val)
   1024       return false;
   1025     Inst = dyn_cast<Instruction>(Val);
   1026   }
   1027 
   1028   return InCastSequence;
   1029 }
   1030 
   1031 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
   1032                                          PredicatedScalarEvolution &PSE,
   1033                                          InductionDescriptor &D,
   1034                                          bool Assume) {
   1035   Type *PhiTy = Phi->getType();
   1036 
   1037   // Handle integer and pointer inductions variables.
   1038   // Now we handle also FP induction but not trying to make a
   1039   // recurrent expression from the PHI node in-place.
   1040 
   1041   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
   1042       !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
   1043     return false;
   1044 
   1045   if (PhiTy->isFloatingPointTy())
   1046     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
   1047 
   1048   const SCEV *PhiScev = PSE.getSCEV(Phi);
   1049   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
   1050 
   1051   // We need this expression to be an AddRecExpr.
   1052   if (Assume && !AR)
   1053     AR = PSE.getAsAddRec(Phi);
   1054 
   1055   if (!AR) {
   1056     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
   1057     return false;
   1058   }
   1059 
   1060   // Record any Cast instructions that participate in the induction update
   1061   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
   1062   // If we started from an UnknownSCEV, and managed to build an addRecurrence
   1063   // only after enabling Assume with PSCEV, this means we may have encountered
   1064   // cast instructions that required adding a runtime check in order to
   1065   // guarantee the correctness of the AddRecurence respresentation of the
   1066   // induction.
   1067   if (PhiScev != AR && SymbolicPhi) {
   1068     SmallVector<Instruction *, 2> Casts;
   1069     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
   1070       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
   1071   }
   1072 
   1073   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
   1074 }
   1075 
   1076 bool InductionDescriptor::isInductionPHI(
   1077     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
   1078     InductionDescriptor &D, const SCEV *Expr,
   1079     SmallVectorImpl<Instruction *> *CastsToIgnore) {
   1080   Type *PhiTy = Phi->getType();
   1081   // We only handle integer and pointer inductions variables.
   1082   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
   1083     return false;
   1084 
   1085   // Check that the PHI is consecutive.
   1086   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
   1087   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
   1088 
   1089   if (!AR) {
   1090     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
   1091     return false;
   1092   }
   1093 
   1094   if (AR->getLoop() != TheLoop) {
   1095     // FIXME: We should treat this as a uniform. Unfortunately, we
   1096     // don't currently know how to handled uniform PHIs.
   1097     LLVM_DEBUG(
   1098         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
   1099     return false;
   1100   }
   1101 
   1102   Value *StartValue =
   1103     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
   1104   const SCEV *Step = AR->getStepRecurrence(*SE);
   1105   // Calculate the pointer stride and check if it is consecutive.
   1106   // The stride may be a constant or a loop invariant integer value.
   1107   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
   1108   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
   1109     return false;
   1110 
   1111   if (PhiTy->isIntegerTy()) {
   1112     D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr,
   1113                             CastsToIgnore);
   1114     return true;
   1115   }
   1116 
   1117   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
   1118   // Pointer induction should be a constant.
   1119   if (!ConstStep)
   1120     return false;
   1121 
   1122   ConstantInt *CV = ConstStep->getValue();
   1123   Type *PointerElementType = PhiTy->getPointerElementType();
   1124   // The pointer stride cannot be determined if the pointer element type is not
   1125   // sized.
   1126   if (!PointerElementType->isSized())
   1127     return false;
   1128 
   1129   const DataLayout &DL = Phi->getModule()->getDataLayout();
   1130   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
   1131   if (!Size)
   1132     return false;
   1133 
   1134   int64_t CVSize = CV->getSExtValue();
   1135   if (CVSize % Size)
   1136     return false;
   1137   auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
   1138                                     true /* signed */);
   1139   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
   1140   return true;
   1141 }
   1142 
   1143 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
   1144                                    bool PreserveLCSSA) {
   1145   bool Changed = false;
   1146 
   1147   // We re-use a vector for the in-loop predecesosrs.
   1148   SmallVector<BasicBlock *, 4> InLoopPredecessors;
   1149 
   1150   auto RewriteExit = [&](BasicBlock *BB) {
   1151     assert(InLoopPredecessors.empty() &&
   1152            "Must start with an empty predecessors list!");
   1153     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
   1154 
   1155     // See if there are any non-loop predecessors of this exit block and
   1156     // keep track of the in-loop predecessors.
   1157     bool IsDedicatedExit = true;
   1158     for (auto *PredBB : predecessors(BB))
   1159       if (L->contains(PredBB)) {
   1160         if (isa<IndirectBrInst>(PredBB->getTerminator()))
   1161           // We cannot rewrite exiting edges from an indirectbr.
   1162           return false;
   1163 
   1164         InLoopPredecessors.push_back(PredBB);
   1165       } else {
   1166         IsDedicatedExit = false;
   1167       }
   1168 
   1169     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
   1170 
   1171     // Nothing to do if this is already a dedicated exit.
   1172     if (IsDedicatedExit)
   1173       return false;
   1174 
   1175     auto *NewExitBB = SplitBlockPredecessors(
   1176         BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
   1177 
   1178     if (!NewExitBB)
   1179       LLVM_DEBUG(
   1180           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
   1181                  << *L << "\n");
   1182     else
   1183       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
   1184                         << NewExitBB->getName() << "\n");
   1185     return true;
   1186   };
   1187 
   1188   // Walk the exit blocks directly rather than building up a data structure for
   1189   // them, but only visit each one once.
   1190   SmallPtrSet<BasicBlock *, 4> Visited;
   1191   for (auto *BB : L->blocks())
   1192     for (auto *SuccBB : successors(BB)) {
   1193       // We're looking for exit blocks so skip in-loop successors.
   1194       if (L->contains(SuccBB))
   1195         continue;
   1196 
   1197       // Visit each exit block exactly once.
   1198       if (!Visited.insert(SuccBB).second)
   1199         continue;
   1200 
   1201       Changed |= RewriteExit(SuccBB);
   1202     }
   1203 
   1204   return Changed;
   1205 }
   1206 
   1207 /// Returns the instructions that use values defined in the loop.
   1208 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
   1209   SmallVector<Instruction *, 8> UsedOutside;
   1210 
   1211   for (auto *Block : L->getBlocks())
   1212     // FIXME: I believe that this could use copy_if if the Inst reference could
   1213     // be adapted into a pointer.
   1214     for (auto &Inst : *Block) {
   1215       auto Users = Inst.users();
   1216       if (any_of(Users, [&](User *U) {
   1217             auto *Use = cast<Instruction>(U);
   1218             return !L->contains(Use->getParent());
   1219           }))
   1220         UsedOutside.push_back(&Inst);
   1221     }
   1222 
   1223   return UsedOutside;
   1224 }
   1225 
   1226 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
   1227   // By definition, all loop passes need the LoopInfo analysis and the
   1228   // Dominator tree it depends on. Because they all participate in the loop
   1229   // pass manager, they must also preserve these.
   1230   AU.addRequired<DominatorTreeWrapperPass>();
   1231   AU.addPreserved<DominatorTreeWrapperPass>();
   1232   AU.addRequired<LoopInfoWrapperPass>();
   1233   AU.addPreserved<LoopInfoWrapperPass>();
   1234 
   1235   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
   1236   // here because users shouldn't directly get them from this header.
   1237   extern char &LoopSimplifyID;
   1238   extern char &LCSSAID;
   1239   AU.addRequiredID(LoopSimplifyID);
   1240   AU.addPreservedID(LoopSimplifyID);
   1241   AU.addRequiredID(LCSSAID);
   1242   AU.addPreservedID(LCSSAID);
   1243   // This is used in the LPPassManager to perform LCSSA verification on passes
   1244   // which preserve lcssa form
   1245   AU.addRequired<LCSSAVerificationPass>();
   1246   AU.addPreserved<LCSSAVerificationPass>();
   1247 
   1248   // Loop passes are designed to run inside of a loop pass manager which means
   1249   // that any function analyses they require must be required by the first loop
   1250   // pass in the manager (so that it is computed before the loop pass manager
   1251   // runs) and preserved by all loop pasess in the manager. To make this
   1252   // reasonably robust, the set needed for most loop passes is maintained here.
   1253   // If your loop pass requires an analysis not listed here, you will need to
   1254   // carefully audit the loop pass manager nesting structure that results.
   1255   AU.addRequired<AAResultsWrapperPass>();
   1256   AU.addPreserved<AAResultsWrapperPass>();
   1257   AU.addPreserved<BasicAAWrapperPass>();
   1258   AU.addPreserved<GlobalsAAWrapperPass>();
   1259   AU.addPreserved<SCEVAAWrapperPass>();
   1260   AU.addRequired<ScalarEvolutionWrapperPass>();
   1261   AU.addPreserved<ScalarEvolutionWrapperPass>();
   1262 }
   1263 
   1264 /// Manually defined generic "LoopPass" dependency initialization. This is used
   1265 /// to initialize the exact set of passes from above in \c
   1266 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
   1267 /// with:
   1268 ///
   1269 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
   1270 ///
   1271 /// As-if "LoopPass" were a pass.
   1272 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
   1273   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   1274   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
   1275   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   1276   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
   1277   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
   1278   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
   1279   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
   1280   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
   1281   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
   1282 }
   1283 
   1284 /// Find string metadata for loop
   1285 ///
   1286 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
   1287 /// operand or null otherwise.  If the string metadata is not found return
   1288 /// Optional's not-a-value.
   1289 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
   1290                                                             StringRef Name) {
   1291   MDNode *LoopID = TheLoop->getLoopID();
   1292   // Return none if LoopID is false.
   1293   if (!LoopID)
   1294     return None;
   1295 
   1296   // First operand should refer to the loop id itself.
   1297   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
   1298   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
   1299 
   1300   // Iterate over LoopID operands and look for MDString Metadata
   1301   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
   1302     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
   1303     if (!MD)
   1304       continue;
   1305     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
   1306     if (!S)
   1307       continue;
   1308     // Return true if MDString holds expected MetaData.
   1309     if (Name.equals(S->getString()))
   1310       switch (MD->getNumOperands()) {
   1311       case 1:
   1312         return nullptr;
   1313       case 2:
   1314         return &MD->getOperand(1);
   1315       default:
   1316         llvm_unreachable("loop metadata has 0 or 1 operand");
   1317       }
   1318   }
   1319   return None;
   1320 }
   1321 
   1322 /// Does a BFS from a given node to all of its children inside a given loop.
   1323 /// The returned vector of nodes includes the starting point.
   1324 SmallVector<DomTreeNode *, 16>
   1325 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
   1326   SmallVector<DomTreeNode *, 16> Worklist;
   1327   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
   1328     // Only include subregions in the top level loop.
   1329     BasicBlock *BB = DTN->getBlock();
   1330     if (CurLoop->contains(BB))
   1331       Worklist.push_back(DTN);
   1332   };
   1333 
   1334   AddRegionToWorklist(N);
   1335 
   1336   for (size_t I = 0; I < Worklist.size(); I++)
   1337     for (DomTreeNode *Child : Worklist[I]->getChildren())
   1338       AddRegionToWorklist(Child);
   1339 
   1340   return Worklist;
   1341 }
   1342 
   1343 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
   1344                           ScalarEvolution *SE = nullptr,
   1345                           LoopInfo *LI = nullptr) {
   1346   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
   1347   auto *Preheader = L->getLoopPreheader();
   1348   assert(Preheader && "Preheader should exist!");
   1349 
   1350   // Now that we know the removal is safe, remove the loop by changing the
   1351   // branch from the preheader to go to the single exit block.
   1352   //
   1353   // Because we're deleting a large chunk of code at once, the sequence in which
   1354   // we remove things is very important to avoid invalidation issues.
   1355 
   1356   // Tell ScalarEvolution that the loop is deleted. Do this before
   1357   // deleting the loop so that ScalarEvolution can look at the loop
   1358   // to determine what it needs to clean up.
   1359   if (SE)
   1360     SE->forgetLoop(L);
   1361 
   1362   auto *ExitBlock = L->getUniqueExitBlock();
   1363   assert(ExitBlock && "Should have a unique exit block!");
   1364   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
   1365 
   1366   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
   1367   assert(OldBr && "Preheader must end with a branch");
   1368   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
   1369   // Connect the preheader to the exit block. Keep the old edge to the header
   1370   // around to perform the dominator tree update in two separate steps
   1371   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
   1372   // preheader -> header.
   1373   //
   1374   //
   1375   // 0.  Preheader          1.  Preheader           2.  Preheader
   1376   //        |                    |   |                   |
   1377   //        V                    |   V                   |
   1378   //      Header <--\            | Header <--\           | Header <--\
   1379   //       |  |     |            |  |  |     |           |  |  |     |
   1380   //       |  V     |            |  |  V     |           |  |  V     |
   1381   //       | Body --/            |  | Body --/           |  | Body --/
   1382   //       V                     V  V                    V  V
   1383   //      Exit                   Exit                    Exit
   1384   //
   1385   // By doing this is two separate steps we can perform the dominator tree
   1386   // update without using the batch update API.
   1387   //
   1388   // Even when the loop is never executed, we cannot remove the edge from the
   1389   // source block to the exit block. Consider the case where the unexecuted loop
   1390   // branches back to an outer loop. If we deleted the loop and removed the edge
   1391   // coming to this inner loop, this will break the outer loop structure (by
   1392   // deleting the backedge of the outer loop). If the outer loop is indeed a
   1393   // non-loop, it will be deleted in a future iteration of loop deletion pass.
   1394   IRBuilder<> Builder(OldBr);
   1395   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
   1396   // Remove the old branch. The conditional branch becomes a new terminator.
   1397   OldBr->eraseFromParent();
   1398 
   1399   // Rewrite phis in the exit block to get their inputs from the Preheader
   1400   // instead of the exiting block.
   1401   for (PHINode &P : ExitBlock->phis()) {
   1402     // Set the zero'th element of Phi to be from the preheader and remove all
   1403     // other incoming values. Given the loop has dedicated exits, all other
   1404     // incoming values must be from the exiting blocks.
   1405     int PredIndex = 0;
   1406     P.setIncomingBlock(PredIndex, Preheader);
   1407     // Removes all incoming values from all other exiting blocks (including
   1408     // duplicate values from an exiting block).
   1409     // Nuke all entries except the zero'th entry which is the preheader entry.
   1410     // NOTE! We need to remove Incoming Values in the reverse order as done
   1411     // below, to keep the indices valid for deletion (removeIncomingValues
   1412     // updates getNumIncomingValues and shifts all values down into the operand
   1413     // being deleted).
   1414     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
   1415       P.removeIncomingValue(e - i, false);
   1416 
   1417     assert((P.getNumIncomingValues() == 1 &&
   1418             P.getIncomingBlock(PredIndex) == Preheader) &&
   1419            "Should have exactly one value and that's from the preheader!");
   1420   }
   1421 
   1422   // Disconnect the loop body by branching directly to its exit.
   1423   Builder.SetInsertPoint(Preheader->getTerminator());
   1424   Builder.CreateBr(ExitBlock);
   1425   // Remove the old branch.
   1426   Preheader->getTerminator()->eraseFromParent();
   1427 
   1428   if (DT) {
   1429     // Update the dominator tree by informing it about the new edge from the
   1430     // preheader to the exit.
   1431     DT->insertEdge(Preheader, ExitBlock);
   1432     // Inform the dominator tree about the removed edge.
   1433     DT->deleteEdge(Preheader, L->getHeader());
   1434   }
   1435 
   1436   // Given LCSSA form is satisfied, we should not have users of instructions
   1437   // within the dead loop outside of the loop. However, LCSSA doesn't take
   1438   // unreachable uses into account. We handle them here.
   1439   // We could do it after drop all references (in this case all users in the
   1440   // loop will be already eliminated and we have less work to do but according
   1441   // to API doc of User::dropAllReferences only valid operation after dropping
   1442   // references, is deletion. So let's substitute all usages of
   1443   // instruction from the loop with undef value of corresponding type first.
   1444   for (auto *Block : L->blocks())
   1445     for (Instruction &I : *Block) {
   1446       auto *Undef = UndefValue::get(I.getType());
   1447       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
   1448         Use &U = *UI;
   1449         ++UI;
   1450         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
   1451           if (L->contains(Usr->getParent()))
   1452             continue;
   1453         // If we have a DT then we can check that uses outside a loop only in
   1454         // unreachable block.
   1455         if (DT)
   1456           assert(!DT->isReachableFromEntry(U) &&
   1457                  "Unexpected user in reachable block");
   1458         U.set(Undef);
   1459       }
   1460     }
   1461 
   1462   // Remove the block from the reference counting scheme, so that we can
   1463   // delete it freely later.
   1464   for (auto *Block : L->blocks())
   1465     Block->dropAllReferences();
   1466 
   1467   if (LI) {
   1468     // Erase the instructions and the blocks without having to worry
   1469     // about ordering because we already dropped the references.
   1470     // NOTE: This iteration is safe because erasing the block does not remove
   1471     // its entry from the loop's block list.  We do that in the next section.
   1472     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
   1473          LpI != LpE; ++LpI)
   1474       (*LpI)->eraseFromParent();
   1475 
   1476     // Finally, the blocks from loopinfo.  This has to happen late because
   1477     // otherwise our loop iterators won't work.
   1478 
   1479     SmallPtrSet<BasicBlock *, 8> blocks;
   1480     blocks.insert(L->block_begin(), L->block_end());
   1481     for (BasicBlock *BB : blocks)
   1482       LI->removeBlock(BB);
   1483 
   1484     // The last step is to update LoopInfo now that we've eliminated this loop.
   1485     LI->erase(L);
   1486   }
   1487 }
   1488 
   1489 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
   1490   // Only support loops with a unique exiting block, and a latch.
   1491   if (!L->getExitingBlock())
   1492     return None;
   1493 
   1494   // Get the branch weights for the loop's backedge.
   1495   BranchInst *LatchBR =
   1496       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
   1497   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
   1498     return None;
   1499 
   1500   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
   1501           LatchBR->getSuccessor(1) == L->getHeader()) &&
   1502          "At least one edge out of the latch must go to the header");
   1503 
   1504   // To estimate the number of times the loop body was executed, we want to
   1505   // know the number of times the backedge was taken, vs. the number of times
   1506   // we exited the loop.
   1507   uint64_t TrueVal, FalseVal;
   1508   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
   1509     return None;
   1510 
   1511   if (!TrueVal || !FalseVal)
   1512     return 0;
   1513 
   1514   // Divide the count of the backedge by the count of the edge exiting the loop,
   1515   // rounding to nearest.
   1516   if (LatchBR->getSuccessor(0) == L->getHeader())
   1517     return (TrueVal + (FalseVal / 2)) / FalseVal;
   1518   else
   1519     return (FalseVal + (TrueVal / 2)) / TrueVal;
   1520 }
   1521 
   1522 /// Adds a 'fast' flag to floating point operations.
   1523 static Value *addFastMathFlag(Value *V) {
   1524   if (isa<FPMathOperator>(V)) {
   1525     FastMathFlags Flags;
   1526     Flags.setFast();
   1527     cast<Instruction>(V)->setFastMathFlags(Flags);
   1528   }
   1529   return V;
   1530 }
   1531 
   1532 // Helper to generate an ordered reduction.
   1533 Value *
   1534 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
   1535                           unsigned Op,
   1536                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
   1537                           ArrayRef<Value *> RedOps) {
   1538   unsigned VF = Src->getType()->getVectorNumElements();
   1539 
   1540   // Extract and apply reduction ops in ascending order:
   1541   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
   1542   Value *Result = Acc;
   1543   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
   1544     Value *Ext =
   1545         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
   1546 
   1547     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
   1548       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
   1549                                    "bin.rdx");
   1550     } else {
   1551       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
   1552              "Invalid min/max");
   1553       Result = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, Result,
   1554                                                     Ext);
   1555     }
   1556 
   1557     if (!RedOps.empty())
   1558       propagateIRFlags(Result, RedOps);
   1559   }
   1560 
   1561   return Result;
   1562 }
   1563 
   1564 // Helper to generate a log2 shuffle reduction.
   1565 Value *
   1566 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
   1567                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
   1568                           ArrayRef<Value *> RedOps) {
   1569   unsigned VF = Src->getType()->getVectorNumElements();
   1570   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
   1571   // and vector ops, reducing the set of values being computed by half each
   1572   // round.
   1573   assert(isPowerOf2_32(VF) &&
   1574          "Reduction emission only supported for pow2 vectors!");
   1575   Value *TmpVec = Src;
   1576   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
   1577   for (unsigned i = VF; i != 1; i >>= 1) {
   1578     // Move the upper half of the vector to the lower half.
   1579     for (unsigned j = 0; j != i / 2; ++j)
   1580       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
   1581 
   1582     // Fill the rest of the mask with undef.
   1583     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
   1584               UndefValue::get(Builder.getInt32Ty()));
   1585 
   1586     Value *Shuf = Builder.CreateShuffleVector(
   1587         TmpVec, UndefValue::get(TmpVec->getType()),
   1588         ConstantVector::get(ShuffleMask), "rdx.shuf");
   1589 
   1590     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
   1591       // Floating point operations had to be 'fast' to enable the reduction.
   1592       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
   1593                                                    TmpVec, Shuf, "bin.rdx"));
   1594     } else {
   1595       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
   1596              "Invalid min/max");
   1597       TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
   1598                                                     Shuf);
   1599     }
   1600     if (!RedOps.empty())
   1601       propagateIRFlags(TmpVec, RedOps);
   1602   }
   1603   // The result is in the first element of the vector.
   1604   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
   1605 }
   1606 
   1607 /// Create a simple vector reduction specified by an opcode and some
   1608 /// flags (if generating min/max reductions).
   1609 Value *llvm::createSimpleTargetReduction(
   1610     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
   1611     Value *Src, TargetTransformInfo::ReductionFlags Flags,
   1612     ArrayRef<Value *> RedOps) {
   1613   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
   1614 
   1615   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
   1616   std::function<Value*()> BuildFunc;
   1617   using RD = RecurrenceDescriptor;
   1618   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
   1619   // TODO: Support creating ordered reductions.
   1620   FastMathFlags FMFFast;
   1621   FMFFast.setFast();
   1622 
   1623   switch (Opcode) {
   1624   case Instruction::Add:
   1625     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
   1626     break;
   1627   case Instruction::Mul:
   1628     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
   1629     break;
   1630   case Instruction::And:
   1631     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
   1632     break;
   1633   case Instruction::Or:
   1634     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
   1635     break;
   1636   case Instruction::Xor:
   1637     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
   1638     break;
   1639   case Instruction::FAdd:
   1640     BuildFunc = [&]() {
   1641       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
   1642       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
   1643       return Rdx;
   1644     };
   1645     break;
   1646   case Instruction::FMul:
   1647     BuildFunc = [&]() {
   1648       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
   1649       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
   1650       return Rdx;
   1651     };
   1652     break;
   1653   case Instruction::ICmp:
   1654     if (Flags.IsMaxOp) {
   1655       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
   1656       BuildFunc = [&]() {
   1657         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
   1658       };
   1659     } else {
   1660       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
   1661       BuildFunc = [&]() {
   1662         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
   1663       };
   1664     }
   1665     break;
   1666   case Instruction::FCmp:
   1667     if (Flags.IsMaxOp) {
   1668       MinMaxKind = RD::MRK_FloatMax;
   1669       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
   1670     } else {
   1671       MinMaxKind = RD::MRK_FloatMin;
   1672       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
   1673     }
   1674     break;
   1675   default:
   1676     llvm_unreachable("Unhandled opcode");
   1677     break;
   1678   }
   1679   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
   1680     return BuildFunc();
   1681   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
   1682 }
   1683 
   1684 /// Create a vector reduction using a given recurrence descriptor.
   1685 Value *llvm::createTargetReduction(IRBuilder<> &B,
   1686                                    const TargetTransformInfo *TTI,
   1687                                    RecurrenceDescriptor &Desc, Value *Src,
   1688                                    bool NoNaN) {
   1689   // TODO: Support in-order reductions based on the recurrence descriptor.
   1690   using RD = RecurrenceDescriptor;
   1691   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
   1692   TargetTransformInfo::ReductionFlags Flags;
   1693   Flags.NoNaN = NoNaN;
   1694   switch (RecKind) {
   1695   case RD::RK_FloatAdd:
   1696     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
   1697   case RD::RK_FloatMult:
   1698     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
   1699   case RD::RK_IntegerAdd:
   1700     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
   1701   case RD::RK_IntegerMult:
   1702     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
   1703   case RD::RK_IntegerAnd:
   1704     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
   1705   case RD::RK_IntegerOr:
   1706     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
   1707   case RD::RK_IntegerXor:
   1708     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
   1709   case RD::RK_IntegerMinMax: {
   1710     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
   1711     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
   1712     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
   1713     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
   1714   }
   1715   case RD::RK_FloatMinMax: {
   1716     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
   1717     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
   1718   }
   1719   default:
   1720     llvm_unreachable("Unhandled RecKind");
   1721   }
   1722 }
   1723 
   1724 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
   1725   auto *VecOp = dyn_cast<Instruction>(I);
   1726   if (!VecOp)
   1727     return;
   1728   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
   1729                                             : dyn_cast<Instruction>(OpValue);
   1730   if (!Intersection)
   1731     return;
   1732   const unsigned Opcode = Intersection->getOpcode();
   1733   VecOp->copyIRFlags(Intersection);
   1734   for (auto *V : VL) {
   1735     auto *Instr = dyn_cast<Instruction>(V);
   1736     if (!Instr)
   1737       continue;
   1738     if (OpValue == nullptr || Opcode == Instr->getOpcode())
   1739       VecOp->andIRFlags(V);
   1740   }
   1741 }
   1742