Home | History | Annotate | Download | only in TableGen
      1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "DAGISelMatcher.h"
     11 #include "CodeGenDAGPatterns.h"
     12 #include "CodeGenRegisters.h"
     13 #include "llvm/ADT/SmallVector.h"
     14 #include "llvm/ADT/StringMap.h"
     15 #include "llvm/TableGen/Error.h"
     16 #include "llvm/TableGen/Record.h"
     17 #include <utility>
     18 using namespace llvm;
     19 
     20 
     21 /// getRegisterValueType - Look up and return the ValueType of the specified
     22 /// register. If the register is a member of multiple register classes which
     23 /// have different associated types, return MVT::Other.
     24 static MVT::SimpleValueType getRegisterValueType(Record *R,
     25                                                  const CodeGenTarget &T) {
     26   bool FoundRC = false;
     27   MVT::SimpleValueType VT = MVT::Other;
     28   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
     29 
     30   for (const auto &RC : T.getRegBank().getRegClasses()) {
     31     if (!RC.contains(Reg))
     32       continue;
     33 
     34     if (!FoundRC) {
     35       FoundRC = true;
     36       ValueTypeByHwMode VVT = RC.getValueTypeNum(0);
     37       if (VVT.isSimple())
     38         VT = VVT.getSimple().SimpleTy;
     39       continue;
     40     }
     41 
     42     // If this occurs in multiple register classes, they all have to agree.
     43 #ifndef NDEBUG
     44     ValueTypeByHwMode T = RC.getValueTypeNum(0);
     45     assert((!T.isSimple() || T.getSimple().SimpleTy == VT) &&
     46            "ValueType mismatch between register classes for this register");
     47 #endif
     48   }
     49   return VT;
     50 }
     51 
     52 
     53 namespace {
     54   class MatcherGen {
     55     const PatternToMatch &Pattern;
     56     const CodeGenDAGPatterns &CGP;
     57 
     58     /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
     59     /// out with all of the types removed.  This allows us to insert type checks
     60     /// as we scan the tree.
     61     TreePatternNodePtr PatWithNoTypes;
     62 
     63     /// VariableMap - A map from variable names ('$dst') to the recorded operand
     64     /// number that they were captured as.  These are biased by 1 to make
     65     /// insertion easier.
     66     StringMap<unsigned> VariableMap;
     67 
     68     /// This maintains the recorded operand number that OPC_CheckComplexPattern
     69     /// drops each sub-operand into. We don't want to insert these into
     70     /// VariableMap because that leads to identity checking if they are
     71     /// encountered multiple times. Biased by 1 like VariableMap for
     72     /// consistency.
     73     StringMap<unsigned> NamedComplexPatternOperands;
     74 
     75     /// NextRecordedOperandNo - As we emit opcodes to record matched values in
     76     /// the RecordedNodes array, this keeps track of which slot will be next to
     77     /// record into.
     78     unsigned NextRecordedOperandNo;
     79 
     80     /// MatchedChainNodes - This maintains the position in the recorded nodes
     81     /// array of all of the recorded input nodes that have chains.
     82     SmallVector<unsigned, 2> MatchedChainNodes;
     83 
     84     /// MatchedComplexPatterns - This maintains a list of all of the
     85     /// ComplexPatterns that we need to check. The second element of each pair
     86     /// is the recorded operand number of the input node.
     87     SmallVector<std::pair<const TreePatternNode*,
     88                           unsigned>, 2> MatchedComplexPatterns;
     89 
     90     /// PhysRegInputs - List list has an entry for each explicitly specified
     91     /// physreg input to the pattern.  The first elt is the Register node, the
     92     /// second is the recorded slot number the input pattern match saved it in.
     93     SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
     94 
     95     /// Matcher - This is the top level of the generated matcher, the result.
     96     Matcher *TheMatcher;
     97 
     98     /// CurPredicate - As we emit matcher nodes, this points to the latest check
     99     /// which should have future checks stuck into its Next position.
    100     Matcher *CurPredicate;
    101   public:
    102     MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
    103 
    104     bool EmitMatcherCode(unsigned Variant);
    105     void EmitResultCode();
    106 
    107     Matcher *GetMatcher() const { return TheMatcher; }
    108   private:
    109     void AddMatcher(Matcher *NewNode);
    110     void InferPossibleTypes(unsigned ForceMode);
    111 
    112     // Matcher Generation.
    113     void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes,
    114                        unsigned ForceMode);
    115     void EmitLeafMatchCode(const TreePatternNode *N);
    116     void EmitOperatorMatchCode(const TreePatternNode *N,
    117                                TreePatternNode *NodeNoTypes,
    118                                unsigned ForceMode);
    119 
    120     /// If this is the first time a node with unique identifier Name has been
    121     /// seen, record it. Otherwise, emit a check to make sure this is the same
    122     /// node. Returns true if this is the first encounter.
    123     bool recordUniqueNode(const std::string &Name);
    124 
    125     // Result Code Generation.
    126     unsigned getNamedArgumentSlot(StringRef Name) {
    127       unsigned VarMapEntry = VariableMap[Name];
    128       assert(VarMapEntry != 0 &&
    129              "Variable referenced but not defined and not caught earlier!");
    130       return VarMapEntry-1;
    131     }
    132 
    133     void EmitResultOperand(const TreePatternNode *N,
    134                            SmallVectorImpl<unsigned> &ResultOps);
    135     void EmitResultOfNamedOperand(const TreePatternNode *N,
    136                                   SmallVectorImpl<unsigned> &ResultOps);
    137     void EmitResultLeafAsOperand(const TreePatternNode *N,
    138                                  SmallVectorImpl<unsigned> &ResultOps);
    139     void EmitResultInstructionAsOperand(const TreePatternNode *N,
    140                                         SmallVectorImpl<unsigned> &ResultOps);
    141     void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    142                                         SmallVectorImpl<unsigned> &ResultOps);
    143     };
    144 
    145 } // end anon namespace.
    146 
    147 MatcherGen::MatcherGen(const PatternToMatch &pattern,
    148                        const CodeGenDAGPatterns &cgp)
    149 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
    150   TheMatcher(nullptr), CurPredicate(nullptr) {
    151   // We need to produce the matcher tree for the patterns source pattern.  To do
    152   // this we need to match the structure as well as the types.  To do the type
    153   // matching, we want to figure out the fewest number of type checks we need to
    154   // emit.  For example, if there is only one integer type supported by a
    155   // target, there should be no type comparisons at all for integer patterns!
    156   //
    157   // To figure out the fewest number of type checks needed, clone the pattern,
    158   // remove the types, then perform type inference on the pattern as a whole.
    159   // If there are unresolved types, emit an explicit check for those types,
    160   // apply the type to the tree, then rerun type inference.  Iterate until all
    161   // types are resolved.
    162   //
    163   PatWithNoTypes = Pattern.getSrcPattern()->clone();
    164   PatWithNoTypes->RemoveAllTypes();
    165 
    166   // If there are types that are manifestly known, infer them.
    167   InferPossibleTypes(Pattern.ForceMode);
    168 }
    169 
    170 /// InferPossibleTypes - As we emit the pattern, we end up generating type
    171 /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
    172 /// want to propagate implied types as far throughout the tree as possible so
    173 /// that we avoid doing redundant type checks.  This does the type propagation.
    174 void MatcherGen::InferPossibleTypes(unsigned ForceMode) {
    175   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
    176   // diagnostics, which we know are impossible at this point.
    177   TreePattern &TP = *CGP.pf_begin()->second;
    178   TP.getInfer().CodeGen = true;
    179   TP.getInfer().ForceMode = ForceMode;
    180 
    181   bool MadeChange = true;
    182   while (MadeChange)
    183     MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
    184                                               true/*Ignore reg constraints*/);
    185 }
    186 
    187 
    188 /// AddMatcher - Add a matcher node to the current graph we're building.
    189 void MatcherGen::AddMatcher(Matcher *NewNode) {
    190   if (CurPredicate)
    191     CurPredicate->setNext(NewNode);
    192   else
    193     TheMatcher = NewNode;
    194   CurPredicate = NewNode;
    195 }
    196 
    197 
    198 //===----------------------------------------------------------------------===//
    199 // Pattern Match Generation
    200 //===----------------------------------------------------------------------===//
    201 
    202 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
    203 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
    204   assert(N->isLeaf() && "Not a leaf?");
    205 
    206   // Direct match against an integer constant.
    207   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    208     // If this is the root of the dag we're matching, we emit a redundant opcode
    209     // check to ensure that this gets folded into the normal top-level
    210     // OpcodeSwitch.
    211     if (N == Pattern.getSrcPattern()) {
    212       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
    213       AddMatcher(new CheckOpcodeMatcher(NI));
    214     }
    215 
    216     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
    217   }
    218 
    219   // An UnsetInit represents a named node without any constraints.
    220   if (isa<UnsetInit>(N->getLeafValue())) {
    221     assert(N->hasName() && "Unnamed ? leaf");
    222     return;
    223   }
    224 
    225   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
    226   if (!DI) {
    227     errs() << "Unknown leaf kind: " << *N << "\n";
    228     abort();
    229   }
    230 
    231   Record *LeafRec = DI->getDef();
    232 
    233   // A ValueType leaf node can represent a register when named, or itself when
    234   // unnamed.
    235   if (LeafRec->isSubClassOf("ValueType")) {
    236     // A named ValueType leaf always matches: (add i32:$a, i32:$b).
    237     if (N->hasName())
    238       return;
    239     // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
    240     return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
    241   }
    242 
    243   if (// Handle register references.  Nothing to do here, they always match.
    244       LeafRec->isSubClassOf("RegisterClass") ||
    245       LeafRec->isSubClassOf("RegisterOperand") ||
    246       LeafRec->isSubClassOf("PointerLikeRegClass") ||
    247       LeafRec->isSubClassOf("SubRegIndex") ||
    248       // Place holder for SRCVALUE nodes. Nothing to do here.
    249       LeafRec->getName() == "srcvalue")
    250     return;
    251 
    252   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
    253   // record the register
    254   if (LeafRec->isSubClassOf("Register")) {
    255     AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
    256                                  NextRecordedOperandNo));
    257     PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
    258     return;
    259   }
    260 
    261   if (LeafRec->isSubClassOf("CondCode"))
    262     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
    263 
    264   if (LeafRec->isSubClassOf("ComplexPattern")) {
    265     // We can't model ComplexPattern uses that don't have their name taken yet.
    266     // The OPC_CheckComplexPattern operation implicitly records the results.
    267     if (N->getName().empty()) {
    268       std::string S;
    269       raw_string_ostream OS(S);
    270       OS << "We expect complex pattern uses to have names: " << *N;
    271       PrintFatalError(OS.str());
    272     }
    273 
    274     // Remember this ComplexPattern so that we can emit it after all the other
    275     // structural matches are done.
    276     unsigned InputOperand = VariableMap[N->getName()] - 1;
    277     MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
    278     return;
    279   }
    280 
    281   errs() << "Unknown leaf kind: " << *N << "\n";
    282   abort();
    283 }
    284 
    285 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
    286                                        TreePatternNode *NodeNoTypes,
    287                                        unsigned ForceMode) {
    288   assert(!N->isLeaf() && "Not an operator?");
    289 
    290   if (N->getOperator()->isSubClassOf("ComplexPattern")) {
    291     // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
    292     // "MY_PAT:op1:op2". We should already have validated that the uses are
    293     // consistent.
    294     std::string PatternName = N->getOperator()->getName();
    295     for (unsigned i = 0; i < N->getNumChildren(); ++i) {
    296       PatternName += ":";
    297       PatternName += N->getChild(i)->getName();
    298     }
    299 
    300     if (recordUniqueNode(PatternName)) {
    301       auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
    302       MatchedComplexPatterns.push_back(NodeAndOpNum);
    303     }
    304 
    305     return;
    306   }
    307 
    308   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
    309 
    310   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
    311   // a constant without a predicate fn that has more than one bit set, handle
    312   // this as a special case.  This is usually for targets that have special
    313   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
    314   // handling stuff).  Using these instructions is often far more efficient
    315   // than materializing the constant.  Unfortunately, both the instcombiner
    316   // and the dag combiner can often infer that bits are dead, and thus drop
    317   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
    318   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
    319   // to handle this.
    320   if ((N->getOperator()->getName() == "and" ||
    321        N->getOperator()->getName() == "or") &&
    322       N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
    323       N->getPredicateFns().empty()) {
    324     if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
    325       if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
    326         // If this is at the root of the pattern, we emit a redundant
    327         // CheckOpcode so that the following checks get factored properly under
    328         // a single opcode check.
    329         if (N == Pattern.getSrcPattern())
    330           AddMatcher(new CheckOpcodeMatcher(CInfo));
    331 
    332         // Emit the CheckAndImm/CheckOrImm node.
    333         if (N->getOperator()->getName() == "and")
    334           AddMatcher(new CheckAndImmMatcher(II->getValue()));
    335         else
    336           AddMatcher(new CheckOrImmMatcher(II->getValue()));
    337 
    338         // Match the LHS of the AND as appropriate.
    339         AddMatcher(new MoveChildMatcher(0));
    340         EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode);
    341         AddMatcher(new MoveParentMatcher());
    342         return;
    343       }
    344     }
    345   }
    346 
    347   // Check that the current opcode lines up.
    348   AddMatcher(new CheckOpcodeMatcher(CInfo));
    349 
    350   // If this node has memory references (i.e. is a load or store), tell the
    351   // interpreter to capture them in the memref array.
    352   if (N->NodeHasProperty(SDNPMemOperand, CGP))
    353     AddMatcher(new RecordMemRefMatcher());
    354 
    355   // If this node has a chain, then the chain is operand #0 is the SDNode, and
    356   // the child numbers of the node are all offset by one.
    357   unsigned OpNo = 0;
    358   if (N->NodeHasProperty(SDNPHasChain, CGP)) {
    359     // Record the node and remember it in our chained nodes list.
    360     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
    361                                          "' chained node",
    362                                  NextRecordedOperandNo));
    363     // Remember all of the input chains our pattern will match.
    364     MatchedChainNodes.push_back(NextRecordedOperandNo++);
    365 
    366     // Don't look at the input chain when matching the tree pattern to the
    367     // SDNode.
    368     OpNo = 1;
    369 
    370     // If this node is not the root and the subtree underneath it produces a
    371     // chain, then the result of matching the node is also produce a chain.
    372     // Beyond that, this means that we're also folding (at least) the root node
    373     // into the node that produce the chain (for example, matching
    374     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
    375     // problematic, if the 'reg' node also uses the load (say, its chain).
    376     // Graphically:
    377     //
    378     //         [LD]
    379     //         ^  ^
    380     //         |  \                              DAG's like cheese.
    381     //        /    |
    382     //       /    [YY]
    383     //       |     ^
    384     //      [XX]--/
    385     //
    386     // It would be invalid to fold XX and LD.  In this case, folding the two
    387     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
    388     // To prevent this, we emit a dynamic check for legality before allowing
    389     // this to be folded.
    390     //
    391     const TreePatternNode *Root = Pattern.getSrcPattern();
    392     if (N != Root) {                             // Not the root of the pattern.
    393       // If there is a node between the root and this node, then we definitely
    394       // need to emit the check.
    395       bool NeedCheck = !Root->hasChild(N);
    396 
    397       // If it *is* an immediate child of the root, we can still need a check if
    398       // the root SDNode has multiple inputs.  For us, this means that it is an
    399       // intrinsic, has multiple operands, or has other inputs like chain or
    400       // glue).
    401       if (!NeedCheck) {
    402         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
    403         NeedCheck =
    404           Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
    405           Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
    406           Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
    407           PInfo.getNumOperands() > 1 ||
    408           PInfo.hasProperty(SDNPHasChain) ||
    409           PInfo.hasProperty(SDNPInGlue) ||
    410           PInfo.hasProperty(SDNPOptInGlue);
    411       }
    412 
    413       if (NeedCheck)
    414         AddMatcher(new CheckFoldableChainNodeMatcher());
    415     }
    416   }
    417 
    418   // If this node has an output glue and isn't the root, remember it.
    419   if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
    420       N != Pattern.getSrcPattern()) {
    421     // TODO: This redundantly records nodes with both glues and chains.
    422 
    423     // Record the node and remember it in our chained nodes list.
    424     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
    425                                          "' glue output node",
    426                                  NextRecordedOperandNo));
    427   }
    428 
    429   // If this node is known to have an input glue or if it *might* have an input
    430   // glue, capture it as the glue input of the pattern.
    431   if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
    432       N->NodeHasProperty(SDNPInGlue, CGP))
    433     AddMatcher(new CaptureGlueInputMatcher());
    434 
    435   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
    436     // Get the code suitable for matching this child.  Move to the child, check
    437     // it then move back to the parent.
    438     AddMatcher(new MoveChildMatcher(OpNo));
    439     EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode);
    440     AddMatcher(new MoveParentMatcher());
    441   }
    442 }
    443 
    444 bool MatcherGen::recordUniqueNode(const std::string &Name) {
    445   unsigned &VarMapEntry = VariableMap[Name];
    446   if (VarMapEntry == 0) {
    447     // If it is a named node, we must emit a 'Record' opcode.
    448     AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo));
    449     VarMapEntry = ++NextRecordedOperandNo;
    450     return true;
    451   }
    452 
    453   // If we get here, this is a second reference to a specific name.  Since
    454   // we already have checked that the first reference is valid, we don't
    455   // have to recursively match it, just check that it's the same as the
    456   // previously named thing.
    457   AddMatcher(new CheckSameMatcher(VarMapEntry-1));
    458   return false;
    459 }
    460 
    461 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
    462                                TreePatternNode *NodeNoTypes,
    463                                unsigned ForceMode) {
    464   // If N and NodeNoTypes don't agree on a type, then this is a case where we
    465   // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
    466   // reinfer any correlated types.
    467   SmallVector<unsigned, 2> ResultsToTypeCheck;
    468 
    469   for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
    470     if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
    471     NodeNoTypes->setType(i, N->getExtType(i));
    472     InferPossibleTypes(ForceMode);
    473     ResultsToTypeCheck.push_back(i);
    474   }
    475 
    476   // If this node has a name associated with it, capture it in VariableMap. If
    477   // we already saw this in the pattern, emit code to verify dagness.
    478   if (!N->getName().empty())
    479     if (!recordUniqueNode(N->getName()))
    480       return;
    481 
    482   if (N->isLeaf())
    483     EmitLeafMatchCode(N);
    484   else
    485     EmitOperatorMatchCode(N, NodeNoTypes, ForceMode);
    486 
    487   // If there are node predicates for this node, generate their checks.
    488   for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
    489     AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
    490 
    491   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
    492     AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
    493                                     ResultsToTypeCheck[i]));
    494 }
    495 
    496 /// EmitMatcherCode - Generate the code that matches the predicate of this
    497 /// pattern for the specified Variant.  If the variant is invalid this returns
    498 /// true and does not generate code, if it is valid, it returns false.
    499 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
    500   // If the root of the pattern is a ComplexPattern and if it is specified to
    501   // match some number of root opcodes, these are considered to be our variants.
    502   // Depending on which variant we're generating code for, emit the root opcode
    503   // check.
    504   if (const ComplexPattern *CP =
    505                    Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
    506     const std::vector<Record*> &OpNodes = CP->getRootNodes();
    507     assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
    508     if (Variant >= OpNodes.size()) return true;
    509 
    510     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
    511   } else {
    512     if (Variant != 0) return true;
    513   }
    514 
    515   // Emit the matcher for the pattern structure and types.
    516   EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(),
    517                 Pattern.ForceMode);
    518 
    519   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
    520   // feature is around, do the check).
    521   if (!Pattern.getPredicateCheck().empty())
    522     AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
    523 
    524   // Now that we've completed the structural type match, emit any ComplexPattern
    525   // checks (e.g. addrmode matches).  We emit this after the structural match
    526   // because they are generally more expensive to evaluate and more difficult to
    527   // factor.
    528   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
    529     auto N = MatchedComplexPatterns[i].first;
    530 
    531     // Remember where the results of this match get stuck.
    532     if (N->isLeaf()) {
    533       NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
    534     } else {
    535       unsigned CurOp = NextRecordedOperandNo;
    536       for (unsigned i = 0; i < N->getNumChildren(); ++i) {
    537         NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
    538         CurOp += N->getChild(i)->getNumMIResults(CGP);
    539       }
    540     }
    541 
    542     // Get the slot we recorded the value in from the name on the node.
    543     unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
    544 
    545     const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
    546 
    547     // Emit a CheckComplexPat operation, which does the match (aborting if it
    548     // fails) and pushes the matched operands onto the recorded nodes list.
    549     AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
    550                                           N->getName(), NextRecordedOperandNo));
    551 
    552     // Record the right number of operands.
    553     NextRecordedOperandNo += CP.getNumOperands();
    554     if (CP.hasProperty(SDNPHasChain)) {
    555       // If the complex pattern has a chain, then we need to keep track of the
    556       // fact that we just recorded a chain input.  The chain input will be
    557       // matched as the last operand of the predicate if it was successful.
    558       ++NextRecordedOperandNo; // Chained node operand.
    559 
    560       // It is the last operand recorded.
    561       assert(NextRecordedOperandNo > 1 &&
    562              "Should have recorded input/result chains at least!");
    563       MatchedChainNodes.push_back(NextRecordedOperandNo-1);
    564     }
    565 
    566     // TODO: Complex patterns can't have output glues, if they did, we'd want
    567     // to record them.
    568   }
    569 
    570   return false;
    571 }
    572 
    573 
    574 //===----------------------------------------------------------------------===//
    575 // Node Result Generation
    576 //===----------------------------------------------------------------------===//
    577 
    578 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
    579                                           SmallVectorImpl<unsigned> &ResultOps){
    580   assert(!N->getName().empty() && "Operand not named!");
    581 
    582   if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
    583     // Complex operands have already been completely selected, just find the
    584     // right slot ant add the arguments directly.
    585     for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
    586       ResultOps.push_back(SlotNo - 1 + i);
    587 
    588     return;
    589   }
    590 
    591   unsigned SlotNo = getNamedArgumentSlot(N->getName());
    592 
    593   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
    594   // version of the immediate so that it doesn't get selected due to some other
    595   // node use.
    596   if (!N->isLeaf()) {
    597     StringRef OperatorName = N->getOperator()->getName();
    598     if (OperatorName == "imm" || OperatorName == "fpimm") {
    599       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
    600       ResultOps.push_back(NextRecordedOperandNo++);
    601       return;
    602     }
    603   }
    604 
    605   for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
    606     ResultOps.push_back(SlotNo + i);
    607 }
    608 
    609 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
    610                                          SmallVectorImpl<unsigned> &ResultOps) {
    611   assert(N->isLeaf() && "Must be a leaf");
    612 
    613   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    614     AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
    615     ResultOps.push_back(NextRecordedOperandNo++);
    616     return;
    617   }
    618 
    619   // If this is an explicit register reference, handle it.
    620   if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
    621     Record *Def = DI->getDef();
    622     if (Def->isSubClassOf("Register")) {
    623       const CodeGenRegister *Reg =
    624         CGP.getTargetInfo().getRegBank().getReg(Def);
    625       AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
    626       ResultOps.push_back(NextRecordedOperandNo++);
    627       return;
    628     }
    629 
    630     if (Def->getName() == "zero_reg") {
    631       AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
    632       ResultOps.push_back(NextRecordedOperandNo++);
    633       return;
    634     }
    635 
    636     // Handle a reference to a register class. This is used
    637     // in COPY_TO_SUBREG instructions.
    638     if (Def->isSubClassOf("RegisterOperand"))
    639       Def = Def->getValueAsDef("RegClass");
    640     if (Def->isSubClassOf("RegisterClass")) {
    641       std::string Value = getQualifiedName(Def) + "RegClassID";
    642       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    643       ResultOps.push_back(NextRecordedOperandNo++);
    644       return;
    645     }
    646 
    647     // Handle a subregister index. This is used for INSERT_SUBREG etc.
    648     if (Def->isSubClassOf("SubRegIndex")) {
    649       std::string Value = getQualifiedName(Def);
    650       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    651       ResultOps.push_back(NextRecordedOperandNo++);
    652       return;
    653     }
    654   }
    655 
    656   errs() << "unhandled leaf node: \n";
    657   N->dump();
    658 }
    659 
    660 static bool
    661 mayInstNodeLoadOrStore(const TreePatternNode *N,
    662                        const CodeGenDAGPatterns &CGP) {
    663   Record *Op = N->getOperator();
    664   const CodeGenTarget &CGT = CGP.getTargetInfo();
    665   CodeGenInstruction &II = CGT.getInstruction(Op);
    666   return II.mayLoad || II.mayStore;
    667 }
    668 
    669 static unsigned
    670 numNodesThatMayLoadOrStore(const TreePatternNode *N,
    671                            const CodeGenDAGPatterns &CGP) {
    672   if (N->isLeaf())
    673     return 0;
    674 
    675   Record *OpRec = N->getOperator();
    676   if (!OpRec->isSubClassOf("Instruction"))
    677     return 0;
    678 
    679   unsigned Count = 0;
    680   if (mayInstNodeLoadOrStore(N, CGP))
    681     ++Count;
    682 
    683   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    684     Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
    685 
    686   return Count;
    687 }
    688 
    689 void MatcherGen::
    690 EmitResultInstructionAsOperand(const TreePatternNode *N,
    691                                SmallVectorImpl<unsigned> &OutputOps) {
    692   Record *Op = N->getOperator();
    693   const CodeGenTarget &CGT = CGP.getTargetInfo();
    694   CodeGenInstruction &II = CGT.getInstruction(Op);
    695   const DAGInstruction &Inst = CGP.getInstruction(Op);
    696 
    697   bool isRoot = N == Pattern.getDstPattern();
    698 
    699   // TreeHasOutGlue - True if this tree has glue.
    700   bool TreeHasInGlue = false, TreeHasOutGlue = false;
    701   if (isRoot) {
    702     const TreePatternNode *SrcPat = Pattern.getSrcPattern();
    703     TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
    704                     SrcPat->TreeHasProperty(SDNPInGlue, CGP);
    705 
    706     // FIXME2: this is checking the entire pattern, not just the node in
    707     // question, doing this just for the root seems like a total hack.
    708     TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
    709   }
    710 
    711   // NumResults - This is the number of results produced by the instruction in
    712   // the "outs" list.
    713   unsigned NumResults = Inst.getNumResults();
    714 
    715   // Number of operands we know the output instruction must have. If it is
    716   // variadic, we could have more operands.
    717   unsigned NumFixedOperands = II.Operands.size();
    718 
    719   SmallVector<unsigned, 8> InstOps;
    720 
    721   // Loop over all of the fixed operands of the instruction pattern, emitting
    722   // code to fill them all in. The node 'N' usually has number children equal to
    723   // the number of input operands of the instruction.  However, in cases where
    724   // there are predicate operands for an instruction, we need to fill in the
    725   // 'execute always' values. Match up the node operands to the instruction
    726   // operands to do this.
    727   unsigned ChildNo = 0;
    728   for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
    729        InstOpNo != e; ++InstOpNo) {
    730     // Determine what to emit for this operand.
    731     Record *OperandNode = II.Operands[InstOpNo].Rec;
    732     if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
    733         !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
    734       // This is a predicate or optional def operand; emit the
    735       // 'default ops' operands.
    736       const DAGDefaultOperand &DefaultOp
    737         = CGP.getDefaultOperand(OperandNode);
    738       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
    739         EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
    740       continue;
    741     }
    742 
    743     // Otherwise this is a normal operand or a predicate operand without
    744     // 'execute always'; emit it.
    745 
    746     // For operands with multiple sub-operands we may need to emit
    747     // multiple child patterns to cover them all.  However, ComplexPattern
    748     // children may themselves emit multiple MI operands.
    749     unsigned NumSubOps = 1;
    750     if (OperandNode->isSubClassOf("Operand")) {
    751       DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
    752       if (unsigned NumArgs = MIOpInfo->getNumArgs())
    753         NumSubOps = NumArgs;
    754     }
    755 
    756     unsigned FinalNumOps = InstOps.size() + NumSubOps;
    757     while (InstOps.size() < FinalNumOps) {
    758       const TreePatternNode *Child = N->getChild(ChildNo);
    759       unsigned BeforeAddingNumOps = InstOps.size();
    760       EmitResultOperand(Child, InstOps);
    761       assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
    762 
    763       // If the operand is an instruction and it produced multiple results, just
    764       // take the first one.
    765       if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
    766         InstOps.resize(BeforeAddingNumOps+1);
    767 
    768       ++ChildNo;
    769     }
    770   }
    771 
    772   // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
    773   // expand suboperands, use default operands, or other features determined from
    774   // the CodeGenInstruction after the fixed operands, which were handled
    775   // above. Emit the remaining instructions implicitly added by the use for
    776   // variable_ops.
    777   if (II.Operands.isVariadic) {
    778     for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
    779       EmitResultOperand(N->getChild(I), InstOps);
    780   }
    781 
    782   // If this node has input glue or explicitly specified input physregs, we
    783   // need to add chained and glued copyfromreg nodes and materialize the glue
    784   // input.
    785   if (isRoot && !PhysRegInputs.empty()) {
    786     // Emit all of the CopyToReg nodes for the input physical registers.  These
    787     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
    788     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
    789       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
    790                                           PhysRegInputs[i].first));
    791     // Even if the node has no other glue inputs, the resultant node must be
    792     // glued to the CopyFromReg nodes we just generated.
    793     TreeHasInGlue = true;
    794   }
    795 
    796   // Result order: node results, chain, glue
    797 
    798   // Determine the result types.
    799   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
    800   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
    801     ResultVTs.push_back(N->getSimpleType(i));
    802 
    803   // If this is the root instruction of a pattern that has physical registers in
    804   // its result pattern, add output VTs for them.  For example, X86 has:
    805   //   (set AL, (mul ...))
    806   // This also handles implicit results like:
    807   //   (implicit EFLAGS)
    808   if (isRoot && !Pattern.getDstRegs().empty()) {
    809     // If the root came from an implicit def in the instruction handling stuff,
    810     // don't re-add it.
    811     Record *HandledReg = nullptr;
    812     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    813       HandledReg = II.ImplicitDefs[0];
    814 
    815     for (Record *Reg : Pattern.getDstRegs()) {
    816       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    817       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
    818     }
    819   }
    820 
    821   // If this is the root of the pattern and the pattern we're matching includes
    822   // a node that is variadic, mark the generated node as variadic so that it
    823   // gets the excess operands from the input DAG.
    824   int NumFixedArityOperands = -1;
    825   if (isRoot &&
    826       Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
    827     NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
    828 
    829   // If this is the root node and multiple matched nodes in the input pattern
    830   // have MemRefs in them, have the interpreter collect them and plop them onto
    831   // this node. If there is just one node with MemRefs, leave them on that node
    832   // even if it is not the root.
    833   //
    834   // FIXME3: This is actively incorrect for result patterns with multiple
    835   // memory-referencing instructions.
    836   bool PatternHasMemOperands =
    837     Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
    838 
    839   bool NodeHasMemRefs = false;
    840   if (PatternHasMemOperands) {
    841     unsigned NumNodesThatLoadOrStore =
    842       numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
    843     bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
    844                                    NumNodesThatLoadOrStore == 1;
    845     NodeHasMemRefs =
    846       NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
    847                                              NumNodesThatLoadOrStore != 1));
    848   }
    849 
    850   // Determine whether we need to attach a chain to this node.
    851   bool NodeHasChain = false;
    852   if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
    853     // For some instructions, we were able to infer from the pattern whether
    854     // they should have a chain.  Otherwise, attach the chain to the root.
    855     //
    856     // FIXME2: This is extremely dubious for several reasons, not the least of
    857     // which it gives special status to instructions with patterns that Pat<>
    858     // nodes can't duplicate.
    859     if (II.hasChain_Inferred)
    860       NodeHasChain = II.hasChain;
    861     else
    862       NodeHasChain = isRoot;
    863     // Instructions which load and store from memory should have a chain,
    864     // regardless of whether they happen to have a pattern saying so.
    865     if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
    866         II.hasSideEffects)
    867       NodeHasChain = true;
    868   }
    869 
    870   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
    871          "Node has no result");
    872 
    873   AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(),
    874                                  ResultVTs, InstOps,
    875                                  NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
    876                                  NodeHasMemRefs, NumFixedArityOperands,
    877                                  NextRecordedOperandNo));
    878 
    879   // The non-chain and non-glue results of the newly emitted node get recorded.
    880   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
    881     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
    882     OutputOps.push_back(NextRecordedOperandNo++);
    883   }
    884 }
    885 
    886 void MatcherGen::
    887 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    888                                SmallVectorImpl<unsigned> &ResultOps) {
    889   assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
    890 
    891   // Emit the operand.
    892   SmallVector<unsigned, 8> InputOps;
    893 
    894   // FIXME2: Could easily generalize this to support multiple inputs and outputs
    895   // to the SDNodeXForm.  For now we just support one input and one output like
    896   // the old instruction selector.
    897   assert(N->getNumChildren() == 1);
    898   EmitResultOperand(N->getChild(0), InputOps);
    899 
    900   // The input currently must have produced exactly one result.
    901   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
    902 
    903   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
    904   ResultOps.push_back(NextRecordedOperandNo++);
    905 }
    906 
    907 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
    908                                    SmallVectorImpl<unsigned> &ResultOps) {
    909   // This is something selected from the pattern we matched.
    910   if (!N->getName().empty())
    911     return EmitResultOfNamedOperand(N, ResultOps);
    912 
    913   if (N->isLeaf())
    914     return EmitResultLeafAsOperand(N, ResultOps);
    915 
    916   Record *OpRec = N->getOperator();
    917   if (OpRec->isSubClassOf("Instruction"))
    918     return EmitResultInstructionAsOperand(N, ResultOps);
    919   if (OpRec->isSubClassOf("SDNodeXForm"))
    920     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
    921   errs() << "Unknown result node to emit code for: " << *N << '\n';
    922   PrintFatalError("Unknown node in result pattern!");
    923 }
    924 
    925 void MatcherGen::EmitResultCode() {
    926   // Patterns that match nodes with (potentially multiple) chain inputs have to
    927   // merge them together into a token factor.  This informs the generated code
    928   // what all the chained nodes are.
    929   if (!MatchedChainNodes.empty())
    930     AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
    931 
    932   // Codegen the root of the result pattern, capturing the resulting values.
    933   SmallVector<unsigned, 8> Ops;
    934   EmitResultOperand(Pattern.getDstPattern(), Ops);
    935 
    936   // At this point, we have however many values the result pattern produces.
    937   // However, the input pattern might not need all of these.  If there are
    938   // excess values at the end (such as implicit defs of condition codes etc)
    939   // just lop them off.  This doesn't need to worry about glue or chains, just
    940   // explicit results.
    941   //
    942   unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
    943 
    944   // If the pattern also has (implicit) results, count them as well.
    945   if (!Pattern.getDstRegs().empty()) {
    946     // If the root came from an implicit def in the instruction handling stuff,
    947     // don't re-add it.
    948     Record *HandledReg = nullptr;
    949     const TreePatternNode *DstPat = Pattern.getDstPattern();
    950     if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
    951       const CodeGenTarget &CGT = CGP.getTargetInfo();
    952       CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
    953 
    954       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    955         HandledReg = II.ImplicitDefs[0];
    956     }
    957 
    958     for (Record *Reg : Pattern.getDstRegs()) {
    959       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    960       ++NumSrcResults;
    961     }
    962   }
    963 
    964   assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
    965   Ops.resize(NumSrcResults);
    966 
    967   AddMatcher(new CompleteMatchMatcher(Ops, Pattern));
    968 }
    969 
    970 
    971 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
    972 /// the specified variant.  If the variant number is invalid, this returns null.
    973 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
    974                                        unsigned Variant,
    975                                        const CodeGenDAGPatterns &CGP) {
    976   MatcherGen Gen(Pattern, CGP);
    977 
    978   // Generate the code for the matcher.
    979   if (Gen.EmitMatcherCode(Variant))
    980     return nullptr;
    981 
    982   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
    983   // FIXME2: Split result code out to another table, and make the matcher end
    984   // with an "Emit <index>" command.  This allows result generation stuff to be
    985   // shared and factored?
    986 
    987   // If the match succeeds, then we generate Pattern.
    988   Gen.EmitResultCode();
    989 
    990   // Unconditional match.
    991   return Gen.GetMatcher();
    992 }
    993