Home | History | Annotate | Download | only in quark
      1 // SPDX-License-Identifier: Intel
      2 /*
      3  * Copyright (C) 2013, Intel Corporation
      4  * Copyright (C) 2015, Bin Meng <bmeng.cn (at) gmail.com>
      5  *
      6  * Ported from Intel released Quark UEFI BIOS
      7  * QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
      8  */
      9 
     10 #include <common.h>
     11 #include <asm/arch/device.h>
     12 #include <asm/arch/mrc.h>
     13 #include <asm/arch/msg_port.h>
     14 #include <asm/arch/quark.h>
     15 #include "mrc_util.h"
     16 #include "hte.h"
     17 #include "smc.h"
     18 
     19 static const uint8_t vref_codes[64] = {
     20 	/* lowest to highest */
     21 	0x3f, 0x3e, 0x3d, 0x3c, 0x3b, 0x3a, 0x39, 0x38,
     22 	0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30,
     23 	0x2f, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x28,
     24 	0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x20,
     25 	0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
     26 	0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
     27 	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
     28 	0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
     29 };
     30 
     31 void mrc_write_mask(u32 unit, u32 addr, u32 data, u32 mask)
     32 {
     33 	msg_port_write(unit, addr,
     34 		       (msg_port_read(unit, addr) & ~(mask)) |
     35 		       ((data) & (mask)));
     36 }
     37 
     38 void mrc_alt_write_mask(u32 unit, u32 addr, u32 data, u32 mask)
     39 {
     40 	msg_port_alt_write(unit, addr,
     41 			   (msg_port_alt_read(unit, addr) & ~(mask)) |
     42 			   ((data) & (mask)));
     43 }
     44 
     45 void mrc_post_code(uint8_t major, uint8_t minor)
     46 {
     47 	/* send message to UART */
     48 	DPF(D_INFO, "POST: 0x%01x%02x\n", major, minor);
     49 
     50 	/* error check */
     51 	if (major == 0xee)
     52 		hang();
     53 }
     54 
     55 /* Delay number of nanoseconds */
     56 void delay_n(uint32_t ns)
     57 {
     58 	/* 1000 MHz clock has 1ns period --> no conversion required */
     59 	uint64_t final_tsc = rdtsc();
     60 
     61 	final_tsc += ((get_tbclk_mhz() * ns) / 1000);
     62 
     63 	while (rdtsc() < final_tsc)
     64 		;
     65 }
     66 
     67 /* Delay number of microseconds */
     68 void delay_u(uint32_t ms)
     69 {
     70 	/* 64-bit math is not an option, just use loops */
     71 	while (ms--)
     72 		delay_n(1000);
     73 }
     74 
     75 /* Select Memory Manager as the source for PRI interface */
     76 void select_mem_mgr(void)
     77 {
     78 	u32 dco;
     79 
     80 	ENTERFN();
     81 
     82 	dco = msg_port_read(MEM_CTLR, DCO);
     83 	dco &= ~DCO_PMICTL;
     84 	msg_port_write(MEM_CTLR, DCO, dco);
     85 
     86 	LEAVEFN();
     87 }
     88 
     89 /* Select HTE as the source for PRI interface */
     90 void select_hte(void)
     91 {
     92 	u32 dco;
     93 
     94 	ENTERFN();
     95 
     96 	dco = msg_port_read(MEM_CTLR, DCO);
     97 	dco |= DCO_PMICTL;
     98 	msg_port_write(MEM_CTLR, DCO, dco);
     99 
    100 	LEAVEFN();
    101 }
    102 
    103 /*
    104  * Send DRAM command
    105  * data should be formated using DCMD_Xxxx macro or emrsXCommand structure
    106  */
    107 void dram_init_command(uint32_t data)
    108 {
    109 	qrk_pci_write_config_dword(QUARK_HOST_BRIDGE, MSG_DATA_REG, data);
    110 	qrk_pci_write_config_dword(QUARK_HOST_BRIDGE, MSG_CTRL_EXT_REG, 0);
    111 	msg_port_setup(MSG_OP_DRAM_INIT, MEM_CTLR, 0);
    112 
    113 	DPF(D_REGWR, "WR32 %03X %08X %08X\n", MEM_CTLR, 0, data);
    114 }
    115 
    116 /* Send DRAM wake command using special MCU side-band WAKE opcode */
    117 void dram_wake_command(void)
    118 {
    119 	ENTERFN();
    120 
    121 	msg_port_setup(MSG_OP_DRAM_WAKE, MEM_CTLR, 0);
    122 
    123 	LEAVEFN();
    124 }
    125 
    126 void training_message(uint8_t channel, uint8_t rank, uint8_t byte_lane)
    127 {
    128 	/* send message to UART */
    129 	DPF(D_INFO, "CH%01X RK%01X BL%01X\n", channel, rank, byte_lane);
    130 }
    131 
    132 /*
    133  * This function will program the RCVEN delays
    134  *
    135  * (currently doesn't comprehend rank)
    136  */
    137 void set_rcvn(uint8_t channel, uint8_t rank,
    138 	      uint8_t byte_lane, uint32_t pi_count)
    139 {
    140 	uint32_t reg;
    141 	uint32_t msk;
    142 	uint32_t temp;
    143 
    144 	ENTERFN();
    145 
    146 	DPF(D_TRN, "Rcvn ch%d rnk%d ln%d : pi=%03X\n",
    147 	    channel, rank, byte_lane, pi_count);
    148 
    149 	/*
    150 	 * RDPTR (1/2 MCLK, 64 PIs)
    151 	 * BL0 -> B01PTRCTL0[11:08] (0x0-0xF)
    152 	 * BL1 -> B01PTRCTL0[23:20] (0x0-0xF)
    153 	 */
    154 	reg = B01PTRCTL0 + (byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    155 		channel * DDRIODQ_CH_OFFSET;
    156 	msk = (byte_lane & 1) ? 0xf00000 : 0xf00;
    157 	temp = (byte_lane & 1) ? (pi_count / HALF_CLK) << 20 :
    158 		(pi_count / HALF_CLK) << 8;
    159 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    160 
    161 	/* Adjust PI_COUNT */
    162 	pi_count -= ((pi_count / HALF_CLK) & 0xf) * HALF_CLK;
    163 
    164 	/*
    165 	 * PI (1/64 MCLK, 1 PIs)
    166 	 * BL0 -> B0DLLPICODER0[29:24] (0x00-0x3F)
    167 	 * BL1 -> B1DLLPICODER0[29:24] (0x00-0x3F)
    168 	 */
    169 	reg = (byte_lane & 1) ? B1DLLPICODER0 : B0DLLPICODER0;
    170 	reg += ((byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    171 		channel * DDRIODQ_CH_OFFSET);
    172 	msk = 0x3f000000;
    173 	temp = pi_count << 24;
    174 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    175 
    176 	/*
    177 	 * DEADBAND
    178 	 * BL0/1 -> B01DBCTL1[08/11] (+1 select)
    179 	 * BL0/1 -> B01DBCTL1[02/05] (enable)
    180 	 */
    181 	reg = B01DBCTL1 + (byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    182 		channel * DDRIODQ_CH_OFFSET;
    183 	msk = 0x00;
    184 	temp = 0x00;
    185 
    186 	/* enable */
    187 	msk |= (byte_lane & 1) ? (1 << 5) : (1 << 2);
    188 	if ((pi_count < EARLY_DB) || (pi_count > LATE_DB))
    189 		temp |= msk;
    190 
    191 	/* select */
    192 	msk |= (byte_lane & 1) ? (1 << 11) : (1 << 8);
    193 	if (pi_count < EARLY_DB)
    194 		temp |= msk;
    195 
    196 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    197 
    198 	/* error check */
    199 	if (pi_count > 0x3f) {
    200 		training_message(channel, rank, byte_lane);
    201 		mrc_post_code(0xee, 0xe0);
    202 	}
    203 
    204 	LEAVEFN();
    205 }
    206 
    207 /*
    208  * This function will return the current RCVEN delay on the given
    209  * channel, rank, byte_lane as an absolute PI count.
    210  *
    211  * (currently doesn't comprehend rank)
    212  */
    213 uint32_t get_rcvn(uint8_t channel, uint8_t rank, uint8_t byte_lane)
    214 {
    215 	uint32_t reg;
    216 	uint32_t temp;
    217 	uint32_t pi_count;
    218 
    219 	ENTERFN();
    220 
    221 	/*
    222 	 * RDPTR (1/2 MCLK, 64 PIs)
    223 	 * BL0 -> B01PTRCTL0[11:08] (0x0-0xF)
    224 	 * BL1 -> B01PTRCTL0[23:20] (0x0-0xF)
    225 	 */
    226 	reg = B01PTRCTL0 + (byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    227 		channel * DDRIODQ_CH_OFFSET;
    228 	temp = msg_port_alt_read(DDRPHY, reg);
    229 	temp >>= (byte_lane & 1) ? 20 : 8;
    230 	temp &= 0xf;
    231 
    232 	/* Adjust PI_COUNT */
    233 	pi_count = temp * HALF_CLK;
    234 
    235 	/*
    236 	 * PI (1/64 MCLK, 1 PIs)
    237 	 * BL0 -> B0DLLPICODER0[29:24] (0x00-0x3F)
    238 	 * BL1 -> B1DLLPICODER0[29:24] (0x00-0x3F)
    239 	 */
    240 	reg = (byte_lane & 1) ? B1DLLPICODER0 : B0DLLPICODER0;
    241 	reg += ((byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    242 		channel * DDRIODQ_CH_OFFSET);
    243 	temp = msg_port_alt_read(DDRPHY, reg);
    244 	temp >>= 24;
    245 	temp &= 0x3f;
    246 
    247 	/* Adjust PI_COUNT */
    248 	pi_count += temp;
    249 
    250 	LEAVEFN();
    251 
    252 	return pi_count;
    253 }
    254 
    255 /*
    256  * This function will program the RDQS delays based on an absolute
    257  * amount of PIs.
    258  *
    259  * (currently doesn't comprehend rank)
    260  */
    261 void set_rdqs(uint8_t channel, uint8_t rank,
    262 	      uint8_t byte_lane, uint32_t pi_count)
    263 {
    264 	uint32_t reg;
    265 	uint32_t msk;
    266 	uint32_t temp;
    267 
    268 	ENTERFN();
    269 	DPF(D_TRN, "Rdqs ch%d rnk%d ln%d : pi=%03X\n",
    270 	    channel, rank, byte_lane, pi_count);
    271 
    272 	/*
    273 	 * PI (1/128 MCLK)
    274 	 * BL0 -> B0RXDQSPICODE[06:00] (0x00-0x47)
    275 	 * BL1 -> B1RXDQSPICODE[06:00] (0x00-0x47)
    276 	 */
    277 	reg = (byte_lane & 1) ? B1RXDQSPICODE : B0RXDQSPICODE;
    278 	reg += ((byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    279 		channel * DDRIODQ_CH_OFFSET);
    280 	msk = 0x7f;
    281 	temp = pi_count << 0;
    282 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    283 
    284 	/* error check (shouldn't go above 0x3F) */
    285 	if (pi_count > 0x47) {
    286 		training_message(channel, rank, byte_lane);
    287 		mrc_post_code(0xee, 0xe1);
    288 	}
    289 
    290 	LEAVEFN();
    291 }
    292 
    293 /*
    294  * This function will return the current RDQS delay on the given
    295  * channel, rank, byte_lane as an absolute PI count.
    296  *
    297  * (currently doesn't comprehend rank)
    298  */
    299 uint32_t get_rdqs(uint8_t channel, uint8_t rank, uint8_t byte_lane)
    300 {
    301 	uint32_t reg;
    302 	uint32_t temp;
    303 	uint32_t pi_count;
    304 
    305 	ENTERFN();
    306 
    307 	/*
    308 	 * PI (1/128 MCLK)
    309 	 * BL0 -> B0RXDQSPICODE[06:00] (0x00-0x47)
    310 	 * BL1 -> B1RXDQSPICODE[06:00] (0x00-0x47)
    311 	 */
    312 	reg = (byte_lane & 1) ? B1RXDQSPICODE : B0RXDQSPICODE;
    313 	reg += ((byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    314 		channel * DDRIODQ_CH_OFFSET);
    315 	temp = msg_port_alt_read(DDRPHY, reg);
    316 
    317 	/* Adjust PI_COUNT */
    318 	pi_count = temp & 0x7f;
    319 
    320 	LEAVEFN();
    321 
    322 	return pi_count;
    323 }
    324 
    325 /*
    326  * This function will program the WDQS delays based on an absolute
    327  * amount of PIs.
    328  *
    329  * (currently doesn't comprehend rank)
    330  */
    331 void set_wdqs(uint8_t channel, uint8_t rank,
    332 	      uint8_t byte_lane, uint32_t pi_count)
    333 {
    334 	uint32_t reg;
    335 	uint32_t msk;
    336 	uint32_t temp;
    337 
    338 	ENTERFN();
    339 
    340 	DPF(D_TRN, "Wdqs ch%d rnk%d ln%d : pi=%03X\n",
    341 	    channel, rank, byte_lane, pi_count);
    342 
    343 	/*
    344 	 * RDPTR (1/2 MCLK, 64 PIs)
    345 	 * BL0 -> B01PTRCTL0[07:04] (0x0-0xF)
    346 	 * BL1 -> B01PTRCTL0[19:16] (0x0-0xF)
    347 	 */
    348 	reg = B01PTRCTL0 + (byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    349 		channel * DDRIODQ_CH_OFFSET;
    350 	msk = (byte_lane & 1) ? 0xf0000 : 0xf0;
    351 	temp = pi_count / HALF_CLK;
    352 	temp <<= (byte_lane & 1) ? 16 : 4;
    353 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    354 
    355 	/* Adjust PI_COUNT */
    356 	pi_count -= ((pi_count / HALF_CLK) & 0xf) * HALF_CLK;
    357 
    358 	/*
    359 	 * PI (1/64 MCLK, 1 PIs)
    360 	 * BL0 -> B0DLLPICODER0[21:16] (0x00-0x3F)
    361 	 * BL1 -> B1DLLPICODER0[21:16] (0x00-0x3F)
    362 	 */
    363 	reg = (byte_lane & 1) ? B1DLLPICODER0 : B0DLLPICODER0;
    364 	reg += ((byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    365 		channel * DDRIODQ_CH_OFFSET);
    366 	msk = 0x3f0000;
    367 	temp = pi_count << 16;
    368 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    369 
    370 	/*
    371 	 * DEADBAND
    372 	 * BL0/1 -> B01DBCTL1[07/10] (+1 select)
    373 	 * BL0/1 -> B01DBCTL1[01/04] (enable)
    374 	 */
    375 	reg = B01DBCTL1 + (byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    376 		channel * DDRIODQ_CH_OFFSET;
    377 	msk = 0x00;
    378 	temp = 0x00;
    379 
    380 	/* enable */
    381 	msk |= (byte_lane & 1) ? (1 << 4) : (1 << 1);
    382 	if ((pi_count < EARLY_DB) || (pi_count > LATE_DB))
    383 		temp |= msk;
    384 
    385 	/* select */
    386 	msk |= (byte_lane & 1) ? (1 << 10) : (1 << 7);
    387 	if (pi_count < EARLY_DB)
    388 		temp |= msk;
    389 
    390 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    391 
    392 	/* error check */
    393 	if (pi_count > 0x3f) {
    394 		training_message(channel, rank, byte_lane);
    395 		mrc_post_code(0xee, 0xe2);
    396 	}
    397 
    398 	LEAVEFN();
    399 }
    400 
    401 /*
    402  * This function will return the amount of WDQS delay on the given
    403  * channel, rank, byte_lane as an absolute PI count.
    404  *
    405  * (currently doesn't comprehend rank)
    406  */
    407 uint32_t get_wdqs(uint8_t channel, uint8_t rank, uint8_t byte_lane)
    408 {
    409 	uint32_t reg;
    410 	uint32_t temp;
    411 	uint32_t pi_count;
    412 
    413 	ENTERFN();
    414 
    415 	/*
    416 	 * RDPTR (1/2 MCLK, 64 PIs)
    417 	 * BL0 -> B01PTRCTL0[07:04] (0x0-0xF)
    418 	 * BL1 -> B01PTRCTL0[19:16] (0x0-0xF)
    419 	 */
    420 	reg = B01PTRCTL0 + (byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    421 		channel * DDRIODQ_CH_OFFSET;
    422 	temp = msg_port_alt_read(DDRPHY, reg);
    423 	temp >>= (byte_lane & 1) ? 16 : 4;
    424 	temp &= 0xf;
    425 
    426 	/* Adjust PI_COUNT */
    427 	pi_count = (temp * HALF_CLK);
    428 
    429 	/*
    430 	 * PI (1/64 MCLK, 1 PIs)
    431 	 * BL0 -> B0DLLPICODER0[21:16] (0x00-0x3F)
    432 	 * BL1 -> B1DLLPICODER0[21:16] (0x00-0x3F)
    433 	 */
    434 	reg = (byte_lane & 1) ? B1DLLPICODER0 : B0DLLPICODER0;
    435 	reg += ((byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    436 		channel * DDRIODQ_CH_OFFSET);
    437 	temp = msg_port_alt_read(DDRPHY, reg);
    438 	temp >>= 16;
    439 	temp &= 0x3f;
    440 
    441 	/* Adjust PI_COUNT */
    442 	pi_count += temp;
    443 
    444 	LEAVEFN();
    445 
    446 	return pi_count;
    447 }
    448 
    449 /*
    450  * This function will program the WDQ delays based on an absolute
    451  * number of PIs.
    452  *
    453  * (currently doesn't comprehend rank)
    454  */
    455 void set_wdq(uint8_t channel, uint8_t rank,
    456 	     uint8_t byte_lane, uint32_t pi_count)
    457 {
    458 	uint32_t reg;
    459 	uint32_t msk;
    460 	uint32_t temp;
    461 
    462 	ENTERFN();
    463 
    464 	DPF(D_TRN, "Wdq ch%d rnk%d ln%d : pi=%03X\n",
    465 	    channel, rank, byte_lane, pi_count);
    466 
    467 	/*
    468 	 * RDPTR (1/2 MCLK, 64 PIs)
    469 	 * BL0 -> B01PTRCTL0[03:00] (0x0-0xF)
    470 	 * BL1 -> B01PTRCTL0[15:12] (0x0-0xF)
    471 	 */
    472 	reg = B01PTRCTL0 + (byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    473 		channel * DDRIODQ_CH_OFFSET;
    474 	msk = (byte_lane & 1) ? 0xf000 : 0xf;
    475 	temp = pi_count / HALF_CLK;
    476 	temp <<= (byte_lane & 1) ? 12 : 0;
    477 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    478 
    479 	/* Adjust PI_COUNT */
    480 	pi_count -= ((pi_count / HALF_CLK) & 0xf) * HALF_CLK;
    481 
    482 	/*
    483 	 * PI (1/64 MCLK, 1 PIs)
    484 	 * BL0 -> B0DLLPICODER0[13:08] (0x00-0x3F)
    485 	 * BL1 -> B1DLLPICODER0[13:08] (0x00-0x3F)
    486 	 */
    487 	reg = (byte_lane & 1) ? B1DLLPICODER0 : B0DLLPICODER0;
    488 	reg += ((byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    489 		channel * DDRIODQ_CH_OFFSET);
    490 	msk = 0x3f00;
    491 	temp = pi_count << 8;
    492 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    493 
    494 	/*
    495 	 * DEADBAND
    496 	 * BL0/1 -> B01DBCTL1[06/09] (+1 select)
    497 	 * BL0/1 -> B01DBCTL1[00/03] (enable)
    498 	 */
    499 	reg = B01DBCTL1 + (byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    500 		channel * DDRIODQ_CH_OFFSET;
    501 	msk = 0x00;
    502 	temp = 0x00;
    503 
    504 	/* enable */
    505 	msk |= (byte_lane & 1) ? (1 << 3) : (1 << 0);
    506 	if ((pi_count < EARLY_DB) || (pi_count > LATE_DB))
    507 		temp |= msk;
    508 
    509 	/* select */
    510 	msk |= (byte_lane & 1) ? (1 << 9) : (1 << 6);
    511 	if (pi_count < EARLY_DB)
    512 		temp |= msk;
    513 
    514 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    515 
    516 	/* error check */
    517 	if (pi_count > 0x3f) {
    518 		training_message(channel, rank, byte_lane);
    519 		mrc_post_code(0xee, 0xe3);
    520 	}
    521 
    522 	LEAVEFN();
    523 }
    524 
    525 /*
    526  * This function will return the amount of WDQ delay on the given
    527  * channel, rank, byte_lane as an absolute PI count.
    528  *
    529  * (currently doesn't comprehend rank)
    530  */
    531 uint32_t get_wdq(uint8_t channel, uint8_t rank, uint8_t byte_lane)
    532 {
    533 	uint32_t reg;
    534 	uint32_t temp;
    535 	uint32_t pi_count;
    536 
    537 	ENTERFN();
    538 
    539 	/*
    540 	 * RDPTR (1/2 MCLK, 64 PIs)
    541 	 * BL0 -> B01PTRCTL0[03:00] (0x0-0xF)
    542 	 * BL1 -> B01PTRCTL0[15:12] (0x0-0xF)
    543 	 */
    544 	reg = B01PTRCTL0 + (byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    545 		channel * DDRIODQ_CH_OFFSET;
    546 	temp = msg_port_alt_read(DDRPHY, reg);
    547 	temp >>= (byte_lane & 1) ? 12 : 0;
    548 	temp &= 0xf;
    549 
    550 	/* Adjust PI_COUNT */
    551 	pi_count = temp * HALF_CLK;
    552 
    553 	/*
    554 	 * PI (1/64 MCLK, 1 PIs)
    555 	 * BL0 -> B0DLLPICODER0[13:08] (0x00-0x3F)
    556 	 * BL1 -> B1DLLPICODER0[13:08] (0x00-0x3F)
    557 	 */
    558 	reg = (byte_lane & 1) ? B1DLLPICODER0 : B0DLLPICODER0;
    559 	reg += ((byte_lane >> 1) * DDRIODQ_BL_OFFSET +
    560 		channel * DDRIODQ_CH_OFFSET);
    561 	temp = msg_port_alt_read(DDRPHY, reg);
    562 	temp >>= 8;
    563 	temp &= 0x3f;
    564 
    565 	/* Adjust PI_COUNT */
    566 	pi_count += temp;
    567 
    568 	LEAVEFN();
    569 
    570 	return pi_count;
    571 }
    572 
    573 /*
    574  * This function will program the WCMD delays based on an absolute
    575  * number of PIs.
    576  */
    577 void set_wcmd(uint8_t channel, uint32_t pi_count)
    578 {
    579 	uint32_t reg;
    580 	uint32_t msk;
    581 	uint32_t temp;
    582 
    583 	ENTERFN();
    584 
    585 	/*
    586 	 * RDPTR (1/2 MCLK, 64 PIs)
    587 	 * CMDPTRREG[11:08] (0x0-0xF)
    588 	 */
    589 	reg = CMDPTRREG + channel * DDRIOCCC_CH_OFFSET;
    590 	msk = 0xf00;
    591 	temp = pi_count / HALF_CLK;
    592 	temp <<= 8;
    593 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    594 
    595 	/* Adjust PI_COUNT */
    596 	pi_count -= ((pi_count / HALF_CLK) & 0xf) * HALF_CLK;
    597 
    598 	/*
    599 	 * PI (1/64 MCLK, 1 PIs)
    600 	 * CMDDLLPICODER0[29:24] -> CMDSLICE R3 (unused)
    601 	 * CMDDLLPICODER0[21:16] -> CMDSLICE L3 (unused)
    602 	 * CMDDLLPICODER0[13:08] -> CMDSLICE R2 (unused)
    603 	 * CMDDLLPICODER0[05:00] -> CMDSLICE L2 (unused)
    604 	 * CMDDLLPICODER1[29:24] -> CMDSLICE R1 (unused)
    605 	 * CMDDLLPICODER1[21:16] -> CMDSLICE L1 (0x00-0x3F)
    606 	 * CMDDLLPICODER1[13:08] -> CMDSLICE R0 (unused)
    607 	 * CMDDLLPICODER1[05:00] -> CMDSLICE L0 (unused)
    608 	 */
    609 	reg = CMDDLLPICODER1 + channel * DDRIOCCC_CH_OFFSET;
    610 	msk = 0x3f3f3f3f;
    611 	temp = (pi_count << 24) | (pi_count << 16) |
    612 		(pi_count << 8) | (pi_count << 0);
    613 
    614 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    615 	reg = CMDDLLPICODER0 + channel * DDRIOCCC_CH_OFFSET;	/* PO */
    616 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    617 
    618 	/*
    619 	 * DEADBAND
    620 	 * CMDCFGREG0[17] (+1 select)
    621 	 * CMDCFGREG0[16] (enable)
    622 	 */
    623 	reg = CMDCFGREG0 + channel * DDRIOCCC_CH_OFFSET;
    624 	msk = 0x00;
    625 	temp = 0x00;
    626 
    627 	/* enable */
    628 	msk |= (1 << 16);
    629 	if ((pi_count < EARLY_DB) || (pi_count > LATE_DB))
    630 		temp |= msk;
    631 
    632 	/* select */
    633 	msk |= (1 << 17);
    634 	if (pi_count < EARLY_DB)
    635 		temp |= msk;
    636 
    637 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    638 
    639 	/* error check */
    640 	if (pi_count > 0x3f)
    641 		mrc_post_code(0xee, 0xe4);
    642 
    643 	LEAVEFN();
    644 }
    645 
    646 /*
    647  * This function will return the amount of WCMD delay on the given
    648  * channel as an absolute PI count.
    649  */
    650 uint32_t get_wcmd(uint8_t channel)
    651 {
    652 	uint32_t reg;
    653 	uint32_t temp;
    654 	uint32_t pi_count;
    655 
    656 	ENTERFN();
    657 
    658 	/*
    659 	 * RDPTR (1/2 MCLK, 64 PIs)
    660 	 * CMDPTRREG[11:08] (0x0-0xF)
    661 	 */
    662 	reg = CMDPTRREG + channel * DDRIOCCC_CH_OFFSET;
    663 	temp = msg_port_alt_read(DDRPHY, reg);
    664 	temp >>= 8;
    665 	temp &= 0xf;
    666 
    667 	/* Adjust PI_COUNT */
    668 	pi_count = temp * HALF_CLK;
    669 
    670 	/*
    671 	 * PI (1/64 MCLK, 1 PIs)
    672 	 * CMDDLLPICODER0[29:24] -> CMDSLICE R3 (unused)
    673 	 * CMDDLLPICODER0[21:16] -> CMDSLICE L3 (unused)
    674 	 * CMDDLLPICODER0[13:08] -> CMDSLICE R2 (unused)
    675 	 * CMDDLLPICODER0[05:00] -> CMDSLICE L2 (unused)
    676 	 * CMDDLLPICODER1[29:24] -> CMDSLICE R1 (unused)
    677 	 * CMDDLLPICODER1[21:16] -> CMDSLICE L1 (0x00-0x3F)
    678 	 * CMDDLLPICODER1[13:08] -> CMDSLICE R0 (unused)
    679 	 * CMDDLLPICODER1[05:00] -> CMDSLICE L0 (unused)
    680 	 */
    681 	reg = CMDDLLPICODER1 + channel * DDRIOCCC_CH_OFFSET;
    682 	temp = msg_port_alt_read(DDRPHY, reg);
    683 	temp >>= 16;
    684 	temp &= 0x3f;
    685 
    686 	/* Adjust PI_COUNT */
    687 	pi_count += temp;
    688 
    689 	LEAVEFN();
    690 
    691 	return pi_count;
    692 }
    693 
    694 /*
    695  * This function will program the WCLK delays based on an absolute
    696  * number of PIs.
    697  */
    698 void set_wclk(uint8_t channel, uint8_t rank, uint32_t pi_count)
    699 {
    700 	uint32_t reg;
    701 	uint32_t msk;
    702 	uint32_t temp;
    703 
    704 	ENTERFN();
    705 
    706 	/*
    707 	 * RDPTR (1/2 MCLK, 64 PIs)
    708 	 * CCPTRREG[15:12] -> CLK1 (0x0-0xF)
    709 	 * CCPTRREG[11:08] -> CLK0 (0x0-0xF)
    710 	 */
    711 	reg = CCPTRREG + channel * DDRIOCCC_CH_OFFSET;
    712 	msk = 0xff00;
    713 	temp = ((pi_count / HALF_CLK) << 12) | ((pi_count / HALF_CLK) << 8);
    714 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    715 
    716 	/* Adjust PI_COUNT */
    717 	pi_count -= ((pi_count / HALF_CLK) & 0xf) * HALF_CLK;
    718 
    719 	/*
    720 	 * PI (1/64 MCLK, 1 PIs)
    721 	 * ECCB1DLLPICODER0[13:08] -> CLK0 (0x00-0x3F)
    722 	 * ECCB1DLLPICODER0[21:16] -> CLK1 (0x00-0x3F)
    723 	 */
    724 	reg = rank ? ECCB1DLLPICODER0 : ECCB1DLLPICODER0;
    725 	reg += (channel * DDRIOCCC_CH_OFFSET);
    726 	msk = 0x3f3f00;
    727 	temp = (pi_count << 16) | (pi_count << 8);
    728 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    729 
    730 	reg = rank ? ECCB1DLLPICODER1 : ECCB1DLLPICODER1;
    731 	reg += (channel * DDRIOCCC_CH_OFFSET);
    732 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    733 
    734 	reg = rank ? ECCB1DLLPICODER2 : ECCB1DLLPICODER2;
    735 	reg += (channel * DDRIOCCC_CH_OFFSET);
    736 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    737 
    738 	reg = rank ? ECCB1DLLPICODER3 : ECCB1DLLPICODER3;
    739 	reg += (channel * DDRIOCCC_CH_OFFSET);
    740 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    741 
    742 	/*
    743 	 * DEADBAND
    744 	 * CCCFGREG1[11:08] (+1 select)
    745 	 * CCCFGREG1[03:00] (enable)
    746 	 */
    747 	reg = CCCFGREG1 + channel * DDRIOCCC_CH_OFFSET;
    748 	msk = 0x00;
    749 	temp = 0x00;
    750 
    751 	/* enable */
    752 	msk |= 0xf;
    753 	if ((pi_count < EARLY_DB) || (pi_count > LATE_DB))
    754 		temp |= msk;
    755 
    756 	/* select */
    757 	msk |= 0xf00;
    758 	if (pi_count < EARLY_DB)
    759 		temp |= msk;
    760 
    761 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    762 
    763 	/* error check */
    764 	if (pi_count > 0x3f)
    765 		mrc_post_code(0xee, 0xe5);
    766 
    767 	LEAVEFN();
    768 }
    769 
    770 /*
    771  * This function will return the amout of WCLK delay on the given
    772  * channel, rank as an absolute PI count.
    773  */
    774 uint32_t get_wclk(uint8_t channel, uint8_t rank)
    775 {
    776 	uint32_t reg;
    777 	uint32_t temp;
    778 	uint32_t pi_count;
    779 
    780 	ENTERFN();
    781 
    782 	/*
    783 	 * RDPTR (1/2 MCLK, 64 PIs)
    784 	 * CCPTRREG[15:12] -> CLK1 (0x0-0xF)
    785 	 * CCPTRREG[11:08] -> CLK0 (0x0-0xF)
    786 	 */
    787 	reg = CCPTRREG + channel * DDRIOCCC_CH_OFFSET;
    788 	temp = msg_port_alt_read(DDRPHY, reg);
    789 	temp >>= rank ? 12 : 8;
    790 	temp &= 0xf;
    791 
    792 	/* Adjust PI_COUNT */
    793 	pi_count = temp * HALF_CLK;
    794 
    795 	/*
    796 	 * PI (1/64 MCLK, 1 PIs)
    797 	 * ECCB1DLLPICODER0[13:08] -> CLK0 (0x00-0x3F)
    798 	 * ECCB1DLLPICODER0[21:16] -> CLK1 (0x00-0x3F)
    799 	 */
    800 	reg = rank ? ECCB1DLLPICODER0 : ECCB1DLLPICODER0;
    801 	reg += (channel * DDRIOCCC_CH_OFFSET);
    802 	temp = msg_port_alt_read(DDRPHY, reg);
    803 	temp >>= rank ? 16 : 8;
    804 	temp &= 0x3f;
    805 
    806 	pi_count += temp;
    807 
    808 	LEAVEFN();
    809 
    810 	return pi_count;
    811 }
    812 
    813 /*
    814  * This function will program the WCTL delays based on an absolute
    815  * number of PIs.
    816  *
    817  * (currently doesn't comprehend rank)
    818  */
    819 void set_wctl(uint8_t channel, uint8_t rank, uint32_t pi_count)
    820 {
    821 	uint32_t reg;
    822 	uint32_t msk;
    823 	uint32_t temp;
    824 
    825 	ENTERFN();
    826 
    827 	/*
    828 	 * RDPTR (1/2 MCLK, 64 PIs)
    829 	 * CCPTRREG[31:28] (0x0-0xF)
    830 	 * CCPTRREG[27:24] (0x0-0xF)
    831 	 */
    832 	reg = CCPTRREG + channel * DDRIOCCC_CH_OFFSET;
    833 	msk = 0xff000000;
    834 	temp = ((pi_count / HALF_CLK) << 28) | ((pi_count / HALF_CLK) << 24);
    835 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    836 
    837 	/* Adjust PI_COUNT */
    838 	pi_count -= ((pi_count / HALF_CLK) & 0xf) * HALF_CLK;
    839 
    840 	/*
    841 	 * PI (1/64 MCLK, 1 PIs)
    842 	 * ECCB1DLLPICODER?[29:24] (0x00-0x3F)
    843 	 * ECCB1DLLPICODER?[29:24] (0x00-0x3F)
    844 	 */
    845 	reg = ECCB1DLLPICODER0 + channel * DDRIOCCC_CH_OFFSET;
    846 	msk = 0x3f000000;
    847 	temp = (pi_count << 24);
    848 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    849 
    850 	reg = ECCB1DLLPICODER1 + channel * DDRIOCCC_CH_OFFSET;
    851 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    852 
    853 	reg = ECCB1DLLPICODER2 + channel * DDRIOCCC_CH_OFFSET;
    854 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    855 
    856 	reg = ECCB1DLLPICODER3 + channel * DDRIOCCC_CH_OFFSET;
    857 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    858 
    859 	/*
    860 	 * DEADBAND
    861 	 * CCCFGREG1[13:12] (+1 select)
    862 	 * CCCFGREG1[05:04] (enable)
    863 	 */
    864 	reg = CCCFGREG1 + channel * DDRIOCCC_CH_OFFSET;
    865 	msk = 0x00;
    866 	temp = 0x00;
    867 
    868 	/* enable */
    869 	msk |= 0x30;
    870 	if ((pi_count < EARLY_DB) || (pi_count > LATE_DB))
    871 		temp |= msk;
    872 
    873 	/* select */
    874 	msk |= 0x3000;
    875 	if (pi_count < EARLY_DB)
    876 		temp |= msk;
    877 
    878 	mrc_alt_write_mask(DDRPHY, reg, temp, msk);
    879 
    880 	/* error check */
    881 	if (pi_count > 0x3f)
    882 		mrc_post_code(0xee, 0xe6);
    883 
    884 	LEAVEFN();
    885 }
    886 
    887 /*
    888  * This function will return the amount of WCTL delay on the given
    889  * channel, rank as an absolute PI count.
    890  *
    891  * (currently doesn't comprehend rank)
    892  */
    893 uint32_t get_wctl(uint8_t channel, uint8_t rank)
    894 {
    895 	uint32_t reg;
    896 	uint32_t temp;
    897 	uint32_t pi_count;
    898 
    899 	ENTERFN();
    900 
    901 	/*
    902 	 * RDPTR (1/2 MCLK, 64 PIs)
    903 	 * CCPTRREG[31:28] (0x0-0xF)
    904 	 * CCPTRREG[27:24] (0x0-0xF)
    905 	 */
    906 	reg = CCPTRREG + channel * DDRIOCCC_CH_OFFSET;
    907 	temp = msg_port_alt_read(DDRPHY, reg);
    908 	temp >>= 24;
    909 	temp &= 0xf;
    910 
    911 	/* Adjust PI_COUNT */
    912 	pi_count = temp * HALF_CLK;
    913 
    914 	/*
    915 	 * PI (1/64 MCLK, 1 PIs)
    916 	 * ECCB1DLLPICODER?[29:24] (0x00-0x3F)
    917 	 * ECCB1DLLPICODER?[29:24] (0x00-0x3F)
    918 	 */
    919 	reg = ECCB1DLLPICODER0 + channel * DDRIOCCC_CH_OFFSET;
    920 	temp = msg_port_alt_read(DDRPHY, reg);
    921 	temp >>= 24;
    922 	temp &= 0x3f;
    923 
    924 	/* Adjust PI_COUNT */
    925 	pi_count += temp;
    926 
    927 	LEAVEFN();
    928 
    929 	return pi_count;
    930 }
    931 
    932 /*
    933  * This function will program the internal Vref setting in a given
    934  * byte lane in a given channel.
    935  */
    936 void set_vref(uint8_t channel, uint8_t byte_lane, uint32_t setting)
    937 {
    938 	uint32_t reg = (byte_lane & 0x1) ? B1VREFCTL : B0VREFCTL;
    939 
    940 	ENTERFN();
    941 
    942 	DPF(D_TRN, "Vref ch%d ln%d : val=%03X\n",
    943 	    channel, byte_lane, setting);
    944 
    945 	mrc_alt_write_mask(DDRPHY, reg + channel * DDRIODQ_CH_OFFSET +
    946 		(byte_lane >> 1) * DDRIODQ_BL_OFFSET,
    947 		vref_codes[setting] << 2, 0xfc);
    948 
    949 	/*
    950 	 * need to wait ~300ns for Vref to settle
    951 	 * (check that this is necessary)
    952 	 */
    953 	delay_n(300);
    954 
    955 	/* ??? may need to clear pointers ??? */
    956 
    957 	LEAVEFN();
    958 }
    959 
    960 /*
    961  * This function will return the internal Vref setting for the given
    962  * channel, byte_lane.
    963  */
    964 uint32_t get_vref(uint8_t channel, uint8_t byte_lane)
    965 {
    966 	uint8_t j;
    967 	uint32_t ret_val = sizeof(vref_codes) / 2;
    968 	uint32_t reg = (byte_lane & 0x1) ? B1VREFCTL : B0VREFCTL;
    969 	uint32_t temp;
    970 
    971 	ENTERFN();
    972 
    973 	temp = msg_port_alt_read(DDRPHY, reg + channel * DDRIODQ_CH_OFFSET +
    974 		(byte_lane >> 1) * DDRIODQ_BL_OFFSET);
    975 	temp >>= 2;
    976 	temp &= 0x3f;
    977 
    978 	for (j = 0; j < sizeof(vref_codes); j++) {
    979 		if (vref_codes[j] == temp) {
    980 			ret_val = j;
    981 			break;
    982 		}
    983 	}
    984 
    985 	LEAVEFN();
    986 
    987 	return ret_val;
    988 }
    989 
    990 /*
    991  * This function will return a 32-bit address in the desired
    992  * channel and rank.
    993  */
    994 uint32_t get_addr(uint8_t channel, uint8_t rank)
    995 {
    996 	uint32_t offset = 32 * 1024 * 1024;	/* 32MB */
    997 
    998 	/* Begin product specific code */
    999 	if (channel > 0) {
   1000 		DPF(D_ERROR, "ILLEGAL CHANNEL\n");
   1001 		DEAD_LOOP();
   1002 	}
   1003 
   1004 	if (rank > 1) {
   1005 		DPF(D_ERROR, "ILLEGAL RANK\n");
   1006 		DEAD_LOOP();
   1007 	}
   1008 
   1009 	/* use 256MB lowest density as per DRP == 0x0003 */
   1010 	offset += rank * (256 * 1024 * 1024);
   1011 
   1012 	return offset;
   1013 }
   1014 
   1015 /*
   1016  * This function will sample the DQTRAINSTS registers in the given
   1017  * channel/rank SAMPLE_SIZE times looking for a valid '0' or '1'.
   1018  *
   1019  * It will return an encoded 32-bit date in which each bit corresponds to
   1020  * the sampled value on the byte lane.
   1021  */
   1022 uint32_t sample_dqs(struct mrc_params *mrc_params, uint8_t channel,
   1023 		    uint8_t rank, bool rcvn)
   1024 {
   1025 	uint8_t j;	/* just a counter */
   1026 	uint8_t bl;	/* which BL in the module (always 2 per module) */
   1027 	uint8_t bl_grp;	/* which BL module */
   1028 	/* byte lane divisor */
   1029 	uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1;
   1030 	uint32_t msk[2];	/* BLx in module */
   1031 	/* DQTRAINSTS register contents for each sample */
   1032 	uint32_t sampled_val[SAMPLE_SIZE];
   1033 	uint32_t num_0s;	/* tracks the number of '0' samples */
   1034 	uint32_t num_1s;	/* tracks the number of '1' samples */
   1035 	uint32_t ret_val = 0x00;	/* assume all '0' samples */
   1036 	uint32_t address = get_addr(channel, rank);
   1037 
   1038 	/* initialise msk[] */
   1039 	msk[0] = rcvn ? (1 << 1) : (1 << 9);	/* BL0 */
   1040 	msk[1] = rcvn ? (1 << 0) : (1 << 8);	/* BL1 */
   1041 
   1042 	/* cycle through each byte lane group */
   1043 	for (bl_grp = 0; bl_grp < (NUM_BYTE_LANES / bl_divisor) / 2; bl_grp++) {
   1044 		/* take SAMPLE_SIZE samples */
   1045 		for (j = 0; j < SAMPLE_SIZE; j++) {
   1046 			hte_mem_op(address, mrc_params->first_run,
   1047 				   rcvn ? 0 : 1);
   1048 			mrc_params->first_run = 0;
   1049 
   1050 			/*
   1051 			 * record the contents of the proper
   1052 			 * DQTRAINSTS register
   1053 			 */
   1054 			sampled_val[j] = msg_port_alt_read(DDRPHY,
   1055 				DQTRAINSTS +
   1056 				bl_grp * DDRIODQ_BL_OFFSET +
   1057 				channel * DDRIODQ_CH_OFFSET);
   1058 		}
   1059 
   1060 		/*
   1061 		 * look for a majority value (SAMPLE_SIZE / 2) + 1
   1062 		 * on the byte lane and set that value in the corresponding
   1063 		 * ret_val bit
   1064 		 */
   1065 		for (bl = 0; bl < 2; bl++) {
   1066 			num_0s = 0x00;	/* reset '0' tracker for byte lane */
   1067 			num_1s = 0x00;	/* reset '1' tracker for byte lane */
   1068 			for (j = 0; j < SAMPLE_SIZE; j++) {
   1069 				if (sampled_val[j] & msk[bl])
   1070 					num_1s++;
   1071 				else
   1072 					num_0s++;
   1073 			}
   1074 		if (num_1s > num_0s)
   1075 			ret_val |= (1 << (bl + bl_grp * 2));
   1076 		}
   1077 	}
   1078 
   1079 	/*
   1080 	 * "ret_val.0" contains the status of BL0
   1081 	 * "ret_val.1" contains the status of BL1
   1082 	 * "ret_val.2" contains the status of BL2
   1083 	 * etc.
   1084 	 */
   1085 	return ret_val;
   1086 }
   1087 
   1088 /* This function will find the rising edge transition on RCVN or WDQS */
   1089 void find_rising_edge(struct mrc_params *mrc_params, uint32_t delay[],
   1090 		      uint8_t channel, uint8_t rank, bool rcvn)
   1091 {
   1092 	bool all_edges_found;	/* determines stop condition */
   1093 	bool direction[NUM_BYTE_LANES];	/* direction indicator */
   1094 	uint8_t sample;	/* sample counter */
   1095 	uint8_t bl;	/* byte lane counter */
   1096 	/* byte lane divisor */
   1097 	uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1;
   1098 	uint32_t sample_result[SAMPLE_CNT];	/* results of sample_dqs() */
   1099 	uint32_t temp;
   1100 	uint32_t transition_pattern;
   1101 
   1102 	ENTERFN();
   1103 
   1104 	/* select hte and request initial configuration */
   1105 	select_hte();
   1106 	mrc_params->first_run = 1;
   1107 
   1108 	/* Take 3 sample points (T1,T2,T3) to obtain a transition pattern */
   1109 	for (sample = 0; sample < SAMPLE_CNT; sample++) {
   1110 		/* program the desired delays for sample */
   1111 		for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
   1112 			/* increase sample delay by 26 PI (0.2 CLK) */
   1113 			if (rcvn) {
   1114 				set_rcvn(channel, rank, bl,
   1115 					 delay[bl] + sample * SAMPLE_DLY);
   1116 			} else {
   1117 				set_wdqs(channel, rank, bl,
   1118 					 delay[bl] + sample * SAMPLE_DLY);
   1119 			}
   1120 		}
   1121 
   1122 		/* take samples (Tsample_i) */
   1123 		sample_result[sample] = sample_dqs(mrc_params,
   1124 			channel, rank, rcvn);
   1125 
   1126 		DPF(D_TRN,
   1127 		    "Find rising edge %s ch%d rnk%d: #%d dly=%d dqs=%02X\n",
   1128 		    rcvn ? "RCVN" : "WDQS", channel, rank, sample,
   1129 		    sample * SAMPLE_DLY, sample_result[sample]);
   1130 	}
   1131 
   1132 	/*
   1133 	 * This pattern will help determine where we landed and ultimately
   1134 	 * how to place RCVEN/WDQS.
   1135 	 */
   1136 	for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) {
   1137 		/* build transition_pattern (MSB is 1st sample) */
   1138 		transition_pattern = 0;
   1139 		for (sample = 0; sample < SAMPLE_CNT; sample++) {
   1140 			transition_pattern |=
   1141 				((sample_result[sample] & (1 << bl)) >> bl) <<
   1142 				(SAMPLE_CNT - 1 - sample);
   1143 		}
   1144 
   1145 		DPF(D_TRN, "=== transition pattern %d\n", transition_pattern);
   1146 
   1147 		/*
   1148 		 * set up to look for rising edge based on
   1149 		 * transition_pattern
   1150 		 */
   1151 		switch (transition_pattern) {
   1152 		case 0:	/* sampled 0->0->0 */
   1153 			/* move forward from T3 looking for 0->1 */
   1154 			delay[bl] += 2 * SAMPLE_DLY;
   1155 			direction[bl] = FORWARD;
   1156 			break;
   1157 		case 1:	/* sampled 0->0->1 */
   1158 		case 5:	/* sampled 1->0->1 (bad duty cycle) *HSD#237503* */
   1159 			/* move forward from T2 looking for 0->1 */
   1160 			delay[bl] += 1 * SAMPLE_DLY;
   1161 			direction[bl] = FORWARD;
   1162 			break;
   1163 		case 2:	/* sampled 0->1->0 (bad duty cycle) *HSD#237503* */
   1164 		case 3:	/* sampled 0->1->1 */
   1165 			/* move forward from T1 looking for 0->1 */
   1166 			delay[bl] += 0 * SAMPLE_DLY;
   1167 			direction[bl] = FORWARD;
   1168 			break;
   1169 		case 4:	/* sampled 1->0->0 (assumes BL8, HSD#234975) */
   1170 			/* move forward from T3 looking for 0->1 */
   1171 			delay[bl] += 2 * SAMPLE_DLY;
   1172 			direction[bl] = FORWARD;
   1173 			break;
   1174 		case 6:	/* sampled 1->1->0 */
   1175 		case 7:	/* sampled 1->1->1 */
   1176 			/* move backward from T1 looking for 1->0 */
   1177 			delay[bl] += 0 * SAMPLE_DLY;
   1178 			direction[bl] = BACKWARD;
   1179 			break;
   1180 		default:
   1181 			mrc_post_code(0xee, 0xee);
   1182 			break;
   1183 		}
   1184 
   1185 		/* program delays */
   1186 		if (rcvn)
   1187 			set_rcvn(channel, rank, bl, delay[bl]);
   1188 		else
   1189 			set_wdqs(channel, rank, bl, delay[bl]);
   1190 	}
   1191 
   1192 	/*
   1193 	 * Based on the observed transition pattern on the byte lane,
   1194 	 * begin looking for a rising edge with single PI granularity.
   1195 	 */
   1196 	do {
   1197 		all_edges_found = true;	/* assume all byte lanes passed */
   1198 		/* take a sample */
   1199 		temp = sample_dqs(mrc_params, channel, rank, rcvn);
   1200 		/* check all each byte lane for proper edge */
   1201 		for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) {
   1202 			if (temp & (1 << bl)) {
   1203 				/* sampled "1" */
   1204 				if (direction[bl] == BACKWARD) {
   1205 					/*
   1206 					 * keep looking for edge
   1207 					 * on this byte lane
   1208 					 */
   1209 					all_edges_found = false;
   1210 					delay[bl] -= 1;
   1211 					if (rcvn) {
   1212 						set_rcvn(channel, rank,
   1213 							 bl, delay[bl]);
   1214 					} else {
   1215 						set_wdqs(channel, rank,
   1216 							 bl, delay[bl]);
   1217 					}
   1218 				}
   1219 			} else {
   1220 				/* sampled "0" */
   1221 				if (direction[bl] == FORWARD) {
   1222 					/*
   1223 					 * keep looking for edge
   1224 					 * on this byte lane
   1225 					 */
   1226 					all_edges_found = false;
   1227 					delay[bl] += 1;
   1228 					if (rcvn) {
   1229 						set_rcvn(channel, rank,
   1230 							 bl, delay[bl]);
   1231 					} else {
   1232 						set_wdqs(channel, rank,
   1233 							 bl, delay[bl]);
   1234 					}
   1235 				}
   1236 			}
   1237 		}
   1238 	} while (!all_edges_found);
   1239 
   1240 	/* restore DDR idle state */
   1241 	dram_init_command(DCMD_PREA(rank));
   1242 
   1243 	DPF(D_TRN, "Delay %03X %03X %03X %03X\n",
   1244 	    delay[0], delay[1], delay[2], delay[3]);
   1245 
   1246 	LEAVEFN();
   1247 }
   1248 
   1249 /*
   1250  * This function will return a 32 bit mask that will be used to
   1251  * check for byte lane failures.
   1252  */
   1253 uint32_t byte_lane_mask(struct mrc_params *mrc_params)
   1254 {
   1255 	uint32_t j;
   1256 	uint32_t ret_val = 0x00;
   1257 
   1258 	/*
   1259 	 * set ret_val based on NUM_BYTE_LANES such that you will check
   1260 	 * only BL0 in result
   1261 	 *
   1262 	 * (each bit in result represents a byte lane)
   1263 	 */
   1264 	for (j = 0; j < MAX_BYTE_LANES; j += NUM_BYTE_LANES)
   1265 		ret_val |= (1 << ((j / NUM_BYTE_LANES) * NUM_BYTE_LANES));
   1266 
   1267 	/*
   1268 	 * HSD#235037
   1269 	 * need to adjust the mask for 16-bit mode
   1270 	 */
   1271 	if (mrc_params->channel_width == X16)
   1272 		ret_val |= (ret_val << 2);
   1273 
   1274 	return ret_val;
   1275 }
   1276 
   1277 /*
   1278  * Check memory executing simple write/read/verify at the specified address.
   1279  *
   1280  * Bits in the result indicate failure on specific byte lane.
   1281  */
   1282 uint32_t check_rw_coarse(struct mrc_params *mrc_params, uint32_t address)
   1283 {
   1284 	uint32_t result = 0;
   1285 	uint8_t first_run = 0;
   1286 
   1287 	if (mrc_params->hte_setup) {
   1288 		mrc_params->hte_setup = 0;
   1289 		first_run = 1;
   1290 		select_hte();
   1291 	}
   1292 
   1293 	result = hte_basic_write_read(mrc_params, address, first_run,
   1294 				      WRITE_TRAIN);
   1295 
   1296 	DPF(D_TRN, "check_rw_coarse result is %x\n", result);
   1297 
   1298 	return result;
   1299 }
   1300 
   1301 /*
   1302  * Check memory executing write/read/verify of many data patterns
   1303  * at the specified address. Bits in the result indicate failure
   1304  * on specific byte lane.
   1305  */
   1306 uint32_t check_bls_ex(struct mrc_params *mrc_params, uint32_t address)
   1307 {
   1308 	uint32_t result;
   1309 	uint8_t first_run = 0;
   1310 
   1311 	if (mrc_params->hte_setup) {
   1312 		mrc_params->hte_setup = 0;
   1313 		first_run = 1;
   1314 		select_hte();
   1315 	}
   1316 
   1317 	result = hte_write_stress_bit_lanes(mrc_params, address, first_run);
   1318 
   1319 	DPF(D_TRN, "check_bls_ex result is %x\n", result);
   1320 
   1321 	return result;
   1322 }
   1323 
   1324 /*
   1325  * 32-bit LFSR with characteristic polynomial: X^32 + X^22 +X^2 + X^1
   1326  *
   1327  * The function takes pointer to previous 32 bit value and
   1328  * modifies it to next value.
   1329  */
   1330 void lfsr32(uint32_t *lfsr_ptr)
   1331 {
   1332 	uint32_t bit;
   1333 	uint32_t lfsr;
   1334 	int i;
   1335 
   1336 	lfsr = *lfsr_ptr;
   1337 
   1338 	for (i = 0; i < 32; i++) {
   1339 		bit = 1 ^ (lfsr & 1);
   1340 		bit = bit ^ ((lfsr & 2) >> 1);
   1341 		bit = bit ^ ((lfsr & 4) >> 2);
   1342 		bit = bit ^ ((lfsr & 0x400000) >> 22);
   1343 
   1344 		lfsr = ((lfsr >> 1) | (bit << 31));
   1345 	}
   1346 
   1347 	*lfsr_ptr = lfsr;
   1348 }
   1349 
   1350 /* Clear the pointers in a given byte lane in a given channel */
   1351 void clear_pointers(void)
   1352 {
   1353 	uint8_t channel;
   1354 	uint8_t bl;
   1355 
   1356 	ENTERFN();
   1357 
   1358 	for (channel = 0; channel < NUM_CHANNELS; channel++) {
   1359 		for (bl = 0; bl < NUM_BYTE_LANES; bl++) {
   1360 			mrc_alt_write_mask(DDRPHY,
   1361 					   B01PTRCTL1 +
   1362 					   channel * DDRIODQ_CH_OFFSET +
   1363 					   (bl >> 1) * DDRIODQ_BL_OFFSET,
   1364 					   ~(1 << 8), (1 << 8));
   1365 
   1366 			mrc_alt_write_mask(DDRPHY,
   1367 					   B01PTRCTL1 +
   1368 					   channel * DDRIODQ_CH_OFFSET +
   1369 					   (bl >> 1) * DDRIODQ_BL_OFFSET,
   1370 					   (1 << 8), (1 << 8));
   1371 		}
   1372 	}
   1373 
   1374 	LEAVEFN();
   1375 }
   1376 
   1377 static void print_timings_internal(uint8_t algo, uint8_t channel, uint8_t rank,
   1378 				   uint8_t bl_divisor)
   1379 {
   1380 	uint8_t bl;
   1381 
   1382 	switch (algo) {
   1383 	case RCVN:
   1384 		DPF(D_INFO, "\nRCVN[%02d:%02d]", channel, rank);
   1385 		break;
   1386 	case WDQS:
   1387 		DPF(D_INFO, "\nWDQS[%02d:%02d]", channel, rank);
   1388 		break;
   1389 	case WDQX:
   1390 		DPF(D_INFO, "\nWDQx[%02d:%02d]", channel, rank);
   1391 		break;
   1392 	case RDQS:
   1393 		DPF(D_INFO, "\nRDQS[%02d:%02d]", channel, rank);
   1394 		break;
   1395 	case VREF:
   1396 		DPF(D_INFO, "\nVREF[%02d:%02d]", channel, rank);
   1397 		break;
   1398 	case WCMD:
   1399 		DPF(D_INFO, "\nWCMD[%02d:%02d]", channel, rank);
   1400 		break;
   1401 	case WCTL:
   1402 		DPF(D_INFO, "\nWCTL[%02d:%02d]", channel, rank);
   1403 		break;
   1404 	case WCLK:
   1405 		DPF(D_INFO, "\nWCLK[%02d:%02d]", channel, rank);
   1406 		break;
   1407 	default:
   1408 		break;
   1409 	}
   1410 
   1411 	for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) {
   1412 		switch (algo) {
   1413 		case RCVN:
   1414 			DPF(D_INFO, " %03d", get_rcvn(channel, rank, bl));
   1415 			break;
   1416 		case WDQS:
   1417 			DPF(D_INFO, " %03d", get_wdqs(channel, rank, bl));
   1418 			break;
   1419 		case WDQX:
   1420 			DPF(D_INFO, " %03d", get_wdq(channel, rank, bl));
   1421 			break;
   1422 		case RDQS:
   1423 			DPF(D_INFO, " %03d", get_rdqs(channel, rank, bl));
   1424 			break;
   1425 		case VREF:
   1426 			DPF(D_INFO, " %03d", get_vref(channel, bl));
   1427 			break;
   1428 		case WCMD:
   1429 			DPF(D_INFO, " %03d", get_wcmd(channel));
   1430 			break;
   1431 		case WCTL:
   1432 			DPF(D_INFO, " %03d", get_wctl(channel, rank));
   1433 			break;
   1434 		case WCLK:
   1435 			DPF(D_INFO, " %03d", get_wclk(channel, rank));
   1436 			break;
   1437 		default:
   1438 			break;
   1439 		}
   1440 	}
   1441 }
   1442 
   1443 void print_timings(struct mrc_params *mrc_params)
   1444 {
   1445 	uint8_t algo;
   1446 	uint8_t channel;
   1447 	uint8_t rank;
   1448 	uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1;
   1449 
   1450 	DPF(D_INFO, "\n---------------------------");
   1451 	DPF(D_INFO, "\nALGO[CH:RK] BL0 BL1 BL2 BL3");
   1452 	DPF(D_INFO, "\n===========================");
   1453 
   1454 	for (algo = 0; algo < MAX_ALGOS; algo++) {
   1455 		for (channel = 0; channel < NUM_CHANNELS; channel++) {
   1456 			if (mrc_params->channel_enables & (1 << channel)) {
   1457 				for (rank = 0; rank < NUM_RANKS; rank++) {
   1458 					if (mrc_params->rank_enables &
   1459 						(1 << rank)) {
   1460 						print_timings_internal(algo,
   1461 							channel, rank,
   1462 							bl_divisor);
   1463 					}
   1464 				}
   1465 			}
   1466 		}
   1467 	}
   1468 
   1469 	DPF(D_INFO, "\n---------------------------");
   1470 	DPF(D_INFO, "\n");
   1471 }
   1472