Home | History | Annotate | Download | only in ubifs
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * This file is part of UBIFS.
      4  *
      5  * Copyright (C) 2006-2008 Nokia Corporation.
      6  *
      7  * Authors: Adrian Hunter
      8  *          Artem Bityutskiy ( )
      9  */
     10 
     11 /*
     12  * This file implements the functions that access LEB properties and their
     13  * categories. LEBs are categorized based on the needs of UBIFS, and the
     14  * categories are stored as either heaps or lists to provide a fast way of
     15  * finding a LEB in a particular category. For example, UBIFS may need to find
     16  * an empty LEB for the journal, or a very dirty LEB for garbage collection.
     17  */
     18 
     19 #ifdef __UBOOT__
     20 #include <linux/err.h>
     21 #endif
     22 #include "ubifs.h"
     23 
     24 /**
     25  * get_heap_comp_val - get the LEB properties value for heap comparisons.
     26  * @lprops: LEB properties
     27  * @cat: LEB category
     28  */
     29 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
     30 {
     31 	switch (cat) {
     32 	case LPROPS_FREE:
     33 		return lprops->free;
     34 	case LPROPS_DIRTY_IDX:
     35 		return lprops->free + lprops->dirty;
     36 	default:
     37 		return lprops->dirty;
     38 	}
     39 }
     40 
     41 /**
     42  * move_up_lpt_heap - move a new heap entry up as far as possible.
     43  * @c: UBIFS file-system description object
     44  * @heap: LEB category heap
     45  * @lprops: LEB properties to move
     46  * @cat: LEB category
     47  *
     48  * New entries to a heap are added at the bottom and then moved up until the
     49  * parent's value is greater.  In the case of LPT's category heaps, the value
     50  * is either the amount of free space or the amount of dirty space, depending
     51  * on the category.
     52  */
     53 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
     54 			     struct ubifs_lprops *lprops, int cat)
     55 {
     56 	int val1, val2, hpos;
     57 
     58 	hpos = lprops->hpos;
     59 	if (!hpos)
     60 		return; /* Already top of the heap */
     61 	val1 = get_heap_comp_val(lprops, cat);
     62 	/* Compare to parent and, if greater, move up the heap */
     63 	do {
     64 		int ppos = (hpos - 1) / 2;
     65 
     66 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
     67 		if (val2 >= val1)
     68 			return;
     69 		/* Greater than parent so move up */
     70 		heap->arr[ppos]->hpos = hpos;
     71 		heap->arr[hpos] = heap->arr[ppos];
     72 		heap->arr[ppos] = lprops;
     73 		lprops->hpos = ppos;
     74 		hpos = ppos;
     75 	} while (hpos);
     76 }
     77 
     78 /**
     79  * adjust_lpt_heap - move a changed heap entry up or down the heap.
     80  * @c: UBIFS file-system description object
     81  * @heap: LEB category heap
     82  * @lprops: LEB properties to move
     83  * @hpos: heap position of @lprops
     84  * @cat: LEB category
     85  *
     86  * Changed entries in a heap are moved up or down until the parent's value is
     87  * greater.  In the case of LPT's category heaps, the value is either the amount
     88  * of free space or the amount of dirty space, depending on the category.
     89  */
     90 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
     91 			    struct ubifs_lprops *lprops, int hpos, int cat)
     92 {
     93 	int val1, val2, val3, cpos;
     94 
     95 	val1 = get_heap_comp_val(lprops, cat);
     96 	/* Compare to parent and, if greater than parent, move up the heap */
     97 	if (hpos) {
     98 		int ppos = (hpos - 1) / 2;
     99 
    100 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
    101 		if (val1 > val2) {
    102 			/* Greater than parent so move up */
    103 			while (1) {
    104 				heap->arr[ppos]->hpos = hpos;
    105 				heap->arr[hpos] = heap->arr[ppos];
    106 				heap->arr[ppos] = lprops;
    107 				lprops->hpos = ppos;
    108 				hpos = ppos;
    109 				if (!hpos)
    110 					return;
    111 				ppos = (hpos - 1) / 2;
    112 				val2 = get_heap_comp_val(heap->arr[ppos], cat);
    113 				if (val1 <= val2)
    114 					return;
    115 				/* Still greater than parent so keep going */
    116 			}
    117 		}
    118 	}
    119 
    120 	/* Not greater than parent, so compare to children */
    121 	while (1) {
    122 		/* Compare to left child */
    123 		cpos = hpos * 2 + 1;
    124 		if (cpos >= heap->cnt)
    125 			return;
    126 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
    127 		if (val1 < val2) {
    128 			/* Less than left child, so promote biggest child */
    129 			if (cpos + 1 < heap->cnt) {
    130 				val3 = get_heap_comp_val(heap->arr[cpos + 1],
    131 							 cat);
    132 				if (val3 > val2)
    133 					cpos += 1; /* Right child is bigger */
    134 			}
    135 			heap->arr[cpos]->hpos = hpos;
    136 			heap->arr[hpos] = heap->arr[cpos];
    137 			heap->arr[cpos] = lprops;
    138 			lprops->hpos = cpos;
    139 			hpos = cpos;
    140 			continue;
    141 		}
    142 		/* Compare to right child */
    143 		cpos += 1;
    144 		if (cpos >= heap->cnt)
    145 			return;
    146 		val3 = get_heap_comp_val(heap->arr[cpos], cat);
    147 		if (val1 < val3) {
    148 			/* Less than right child, so promote right child */
    149 			heap->arr[cpos]->hpos = hpos;
    150 			heap->arr[hpos] = heap->arr[cpos];
    151 			heap->arr[cpos] = lprops;
    152 			lprops->hpos = cpos;
    153 			hpos = cpos;
    154 			continue;
    155 		}
    156 		return;
    157 	}
    158 }
    159 
    160 /**
    161  * add_to_lpt_heap - add LEB properties to a LEB category heap.
    162  * @c: UBIFS file-system description object
    163  * @lprops: LEB properties to add
    164  * @cat: LEB category
    165  *
    166  * This function returns %1 if @lprops is added to the heap for LEB category
    167  * @cat, otherwise %0 is returned because the heap is full.
    168  */
    169 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
    170 			   int cat)
    171 {
    172 	struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
    173 
    174 	if (heap->cnt >= heap->max_cnt) {
    175 		const int b = LPT_HEAP_SZ / 2 - 1;
    176 		int cpos, val1, val2;
    177 
    178 		/* Compare to some other LEB on the bottom of heap */
    179 		/* Pick a position kind of randomly */
    180 		cpos = (((size_t)lprops >> 4) & b) + b;
    181 		ubifs_assert(cpos >= b);
    182 		ubifs_assert(cpos < LPT_HEAP_SZ);
    183 		ubifs_assert(cpos < heap->cnt);
    184 
    185 		val1 = get_heap_comp_val(lprops, cat);
    186 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
    187 		if (val1 > val2) {
    188 			struct ubifs_lprops *lp;
    189 
    190 			lp = heap->arr[cpos];
    191 			lp->flags &= ~LPROPS_CAT_MASK;
    192 			lp->flags |= LPROPS_UNCAT;
    193 			list_add(&lp->list, &c->uncat_list);
    194 			lprops->hpos = cpos;
    195 			heap->arr[cpos] = lprops;
    196 			move_up_lpt_heap(c, heap, lprops, cat);
    197 			dbg_check_heap(c, heap, cat, lprops->hpos);
    198 			return 1; /* Added to heap */
    199 		}
    200 		dbg_check_heap(c, heap, cat, -1);
    201 		return 0; /* Not added to heap */
    202 	} else {
    203 		lprops->hpos = heap->cnt++;
    204 		heap->arr[lprops->hpos] = lprops;
    205 		move_up_lpt_heap(c, heap, lprops, cat);
    206 		dbg_check_heap(c, heap, cat, lprops->hpos);
    207 		return 1; /* Added to heap */
    208 	}
    209 }
    210 
    211 /**
    212  * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
    213  * @c: UBIFS file-system description object
    214  * @lprops: LEB properties to remove
    215  * @cat: LEB category
    216  */
    217 static void remove_from_lpt_heap(struct ubifs_info *c,
    218 				 struct ubifs_lprops *lprops, int cat)
    219 {
    220 	struct ubifs_lpt_heap *heap;
    221 	int hpos = lprops->hpos;
    222 
    223 	heap = &c->lpt_heap[cat - 1];
    224 	ubifs_assert(hpos >= 0 && hpos < heap->cnt);
    225 	ubifs_assert(heap->arr[hpos] == lprops);
    226 	heap->cnt -= 1;
    227 	if (hpos < heap->cnt) {
    228 		heap->arr[hpos] = heap->arr[heap->cnt];
    229 		heap->arr[hpos]->hpos = hpos;
    230 		adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
    231 	}
    232 	dbg_check_heap(c, heap, cat, -1);
    233 }
    234 
    235 /**
    236  * lpt_heap_replace - replace lprops in a category heap.
    237  * @c: UBIFS file-system description object
    238  * @old_lprops: LEB properties to replace
    239  * @new_lprops: LEB properties with which to replace
    240  * @cat: LEB category
    241  *
    242  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
    243  * and the lprops that the pnode contains.  When that happens, references in
    244  * the category heaps to those lprops must be updated to point to the new
    245  * lprops.  This function does that.
    246  */
    247 static void lpt_heap_replace(struct ubifs_info *c,
    248 			     struct ubifs_lprops *old_lprops,
    249 			     struct ubifs_lprops *new_lprops, int cat)
    250 {
    251 	struct ubifs_lpt_heap *heap;
    252 	int hpos = new_lprops->hpos;
    253 
    254 	heap = &c->lpt_heap[cat - 1];
    255 	heap->arr[hpos] = new_lprops;
    256 }
    257 
    258 /**
    259  * ubifs_add_to_cat - add LEB properties to a category list or heap.
    260  * @c: UBIFS file-system description object
    261  * @lprops: LEB properties to add
    262  * @cat: LEB category to which to add
    263  *
    264  * LEB properties are categorized to enable fast find operations.
    265  */
    266 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
    267 		      int cat)
    268 {
    269 	switch (cat) {
    270 	case LPROPS_DIRTY:
    271 	case LPROPS_DIRTY_IDX:
    272 	case LPROPS_FREE:
    273 		if (add_to_lpt_heap(c, lprops, cat))
    274 			break;
    275 		/* No more room on heap so make it un-categorized */
    276 		cat = LPROPS_UNCAT;
    277 		/* Fall through */
    278 	case LPROPS_UNCAT:
    279 		list_add(&lprops->list, &c->uncat_list);
    280 		break;
    281 	case LPROPS_EMPTY:
    282 		list_add(&lprops->list, &c->empty_list);
    283 		break;
    284 	case LPROPS_FREEABLE:
    285 		list_add(&lprops->list, &c->freeable_list);
    286 		c->freeable_cnt += 1;
    287 		break;
    288 	case LPROPS_FRDI_IDX:
    289 		list_add(&lprops->list, &c->frdi_idx_list);
    290 		break;
    291 	default:
    292 		ubifs_assert(0);
    293 	}
    294 
    295 	lprops->flags &= ~LPROPS_CAT_MASK;
    296 	lprops->flags |= cat;
    297 	c->in_a_category_cnt += 1;
    298 	ubifs_assert(c->in_a_category_cnt <= c->main_lebs);
    299 }
    300 
    301 /**
    302  * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
    303  * @c: UBIFS file-system description object
    304  * @lprops: LEB properties to remove
    305  * @cat: LEB category from which to remove
    306  *
    307  * LEB properties are categorized to enable fast find operations.
    308  */
    309 static void ubifs_remove_from_cat(struct ubifs_info *c,
    310 				  struct ubifs_lprops *lprops, int cat)
    311 {
    312 	switch (cat) {
    313 	case LPROPS_DIRTY:
    314 	case LPROPS_DIRTY_IDX:
    315 	case LPROPS_FREE:
    316 		remove_from_lpt_heap(c, lprops, cat);
    317 		break;
    318 	case LPROPS_FREEABLE:
    319 		c->freeable_cnt -= 1;
    320 		ubifs_assert(c->freeable_cnt >= 0);
    321 		/* Fall through */
    322 	case LPROPS_UNCAT:
    323 	case LPROPS_EMPTY:
    324 	case LPROPS_FRDI_IDX:
    325 		ubifs_assert(!list_empty(&lprops->list));
    326 		list_del(&lprops->list);
    327 		break;
    328 	default:
    329 		ubifs_assert(0);
    330 	}
    331 
    332 	c->in_a_category_cnt -= 1;
    333 	ubifs_assert(c->in_a_category_cnt >= 0);
    334 }
    335 
    336 /**
    337  * ubifs_replace_cat - replace lprops in a category list or heap.
    338  * @c: UBIFS file-system description object
    339  * @old_lprops: LEB properties to replace
    340  * @new_lprops: LEB properties with which to replace
    341  *
    342  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
    343  * and the lprops that the pnode contains. When that happens, references in
    344  * category lists and heaps must be replaced. This function does that.
    345  */
    346 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
    347 		       struct ubifs_lprops *new_lprops)
    348 {
    349 	int cat;
    350 
    351 	cat = new_lprops->flags & LPROPS_CAT_MASK;
    352 	switch (cat) {
    353 	case LPROPS_DIRTY:
    354 	case LPROPS_DIRTY_IDX:
    355 	case LPROPS_FREE:
    356 		lpt_heap_replace(c, old_lprops, new_lprops, cat);
    357 		break;
    358 	case LPROPS_UNCAT:
    359 	case LPROPS_EMPTY:
    360 	case LPROPS_FREEABLE:
    361 	case LPROPS_FRDI_IDX:
    362 		list_replace(&old_lprops->list, &new_lprops->list);
    363 		break;
    364 	default:
    365 		ubifs_assert(0);
    366 	}
    367 }
    368 
    369 /**
    370  * ubifs_ensure_cat - ensure LEB properties are categorized.
    371  * @c: UBIFS file-system description object
    372  * @lprops: LEB properties
    373  *
    374  * A LEB may have fallen off of the bottom of a heap, and ended up as
    375  * un-categorized even though it has enough space for us now. If that is the
    376  * case this function will put the LEB back onto a heap.
    377  */
    378 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
    379 {
    380 	int cat = lprops->flags & LPROPS_CAT_MASK;
    381 
    382 	if (cat != LPROPS_UNCAT)
    383 		return;
    384 	cat = ubifs_categorize_lprops(c, lprops);
    385 	if (cat == LPROPS_UNCAT)
    386 		return;
    387 	ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
    388 	ubifs_add_to_cat(c, lprops, cat);
    389 }
    390 
    391 /**
    392  * ubifs_categorize_lprops - categorize LEB properties.
    393  * @c: UBIFS file-system description object
    394  * @lprops: LEB properties to categorize
    395  *
    396  * LEB properties are categorized to enable fast find operations. This function
    397  * returns the LEB category to which the LEB properties belong. Note however
    398  * that if the LEB category is stored as a heap and the heap is full, the
    399  * LEB properties may have their category changed to %LPROPS_UNCAT.
    400  */
    401 int ubifs_categorize_lprops(const struct ubifs_info *c,
    402 			    const struct ubifs_lprops *lprops)
    403 {
    404 	if (lprops->flags & LPROPS_TAKEN)
    405 		return LPROPS_UNCAT;
    406 
    407 	if (lprops->free == c->leb_size) {
    408 		ubifs_assert(!(lprops->flags & LPROPS_INDEX));
    409 		return LPROPS_EMPTY;
    410 	}
    411 
    412 	if (lprops->free + lprops->dirty == c->leb_size) {
    413 		if (lprops->flags & LPROPS_INDEX)
    414 			return LPROPS_FRDI_IDX;
    415 		else
    416 			return LPROPS_FREEABLE;
    417 	}
    418 
    419 	if (lprops->flags & LPROPS_INDEX) {
    420 		if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
    421 			return LPROPS_DIRTY_IDX;
    422 	} else {
    423 		if (lprops->dirty >= c->dead_wm &&
    424 		    lprops->dirty > lprops->free)
    425 			return LPROPS_DIRTY;
    426 		if (lprops->free > 0)
    427 			return LPROPS_FREE;
    428 	}
    429 
    430 	return LPROPS_UNCAT;
    431 }
    432 
    433 /**
    434  * change_category - change LEB properties category.
    435  * @c: UBIFS file-system description object
    436  * @lprops: LEB properties to re-categorize
    437  *
    438  * LEB properties are categorized to enable fast find operations. When the LEB
    439  * properties change they must be re-categorized.
    440  */
    441 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
    442 {
    443 	int old_cat = lprops->flags & LPROPS_CAT_MASK;
    444 	int new_cat = ubifs_categorize_lprops(c, lprops);
    445 
    446 	if (old_cat == new_cat) {
    447 		struct ubifs_lpt_heap *heap;
    448 
    449 		/* lprops on a heap now must be moved up or down */
    450 		if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
    451 			return; /* Not on a heap */
    452 		heap = &c->lpt_heap[new_cat - 1];
    453 		adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
    454 	} else {
    455 		ubifs_remove_from_cat(c, lprops, old_cat);
    456 		ubifs_add_to_cat(c, lprops, new_cat);
    457 	}
    458 }
    459 
    460 /**
    461  * ubifs_calc_dark - calculate LEB dark space size.
    462  * @c: the UBIFS file-system description object
    463  * @spc: amount of free and dirty space in the LEB
    464  *
    465  * This function calculates and returns amount of dark space in an LEB which
    466  * has @spc bytes of free and dirty space.
    467  *
    468  * UBIFS is trying to account the space which might not be usable, and this
    469  * space is called "dark space". For example, if an LEB has only %512 free
    470  * bytes, it is dark space, because it cannot fit a large data node.
    471  */
    472 int ubifs_calc_dark(const struct ubifs_info *c, int spc)
    473 {
    474 	ubifs_assert(!(spc & 7));
    475 
    476 	if (spc < c->dark_wm)
    477 		return spc;
    478 
    479 	/*
    480 	 * If we have slightly more space then the dark space watermark, we can
    481 	 * anyway safely assume it we'll be able to write a node of the
    482 	 * smallest size there.
    483 	 */
    484 	if (spc - c->dark_wm < MIN_WRITE_SZ)
    485 		return spc - MIN_WRITE_SZ;
    486 
    487 	return c->dark_wm;
    488 }
    489 
    490 /**
    491  * is_lprops_dirty - determine if LEB properties are dirty.
    492  * @c: the UBIFS file-system description object
    493  * @lprops: LEB properties to test
    494  */
    495 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
    496 {
    497 	struct ubifs_pnode *pnode;
    498 	int pos;
    499 
    500 	pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
    501 	pnode = (struct ubifs_pnode *)container_of(lprops - pos,
    502 						   struct ubifs_pnode,
    503 						   lprops[0]);
    504 	return !test_bit(COW_CNODE, &pnode->flags) &&
    505 	       test_bit(DIRTY_CNODE, &pnode->flags);
    506 }
    507 
    508 /**
    509  * ubifs_change_lp - change LEB properties.
    510  * @c: the UBIFS file-system description object
    511  * @lp: LEB properties to change
    512  * @free: new free space amount
    513  * @dirty: new dirty space amount
    514  * @flags: new flags
    515  * @idx_gc_cnt: change to the count of @idx_gc list
    516  *
    517  * This function changes LEB properties (@free, @dirty or @flag). However, the
    518  * property which has the %LPROPS_NC value is not changed. Returns a pointer to
    519  * the updated LEB properties on success and a negative error code on failure.
    520  *
    521  * Note, the LEB properties may have had to be copied (due to COW) and
    522  * consequently the pointer returned may not be the same as the pointer
    523  * passed.
    524  */
    525 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
    526 					   const struct ubifs_lprops *lp,
    527 					   int free, int dirty, int flags,
    528 					   int idx_gc_cnt)
    529 {
    530 	/*
    531 	 * This is the only function that is allowed to change lprops, so we
    532 	 * discard the "const" qualifier.
    533 	 */
    534 	struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
    535 
    536 	dbg_lp("LEB %d, free %d, dirty %d, flags %d",
    537 	       lprops->lnum, free, dirty, flags);
    538 
    539 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
    540 	ubifs_assert(c->lst.empty_lebs >= 0 &&
    541 		     c->lst.empty_lebs <= c->main_lebs);
    542 	ubifs_assert(c->freeable_cnt >= 0);
    543 	ubifs_assert(c->freeable_cnt <= c->main_lebs);
    544 	ubifs_assert(c->lst.taken_empty_lebs >= 0);
    545 	ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
    546 	ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
    547 	ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
    548 	ubifs_assert(!(c->lst.total_used & 7));
    549 	ubifs_assert(free == LPROPS_NC || free >= 0);
    550 	ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
    551 
    552 	if (!is_lprops_dirty(c, lprops)) {
    553 		lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
    554 		if (IS_ERR(lprops))
    555 			return lprops;
    556 	} else
    557 		ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
    558 
    559 	ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
    560 
    561 	spin_lock(&c->space_lock);
    562 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
    563 		c->lst.taken_empty_lebs -= 1;
    564 
    565 	if (!(lprops->flags & LPROPS_INDEX)) {
    566 		int old_spc;
    567 
    568 		old_spc = lprops->free + lprops->dirty;
    569 		if (old_spc < c->dead_wm)
    570 			c->lst.total_dead -= old_spc;
    571 		else
    572 			c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
    573 
    574 		c->lst.total_used -= c->leb_size - old_spc;
    575 	}
    576 
    577 	if (free != LPROPS_NC) {
    578 		free = ALIGN(free, 8);
    579 		c->lst.total_free += free - lprops->free;
    580 
    581 		/* Increase or decrease empty LEBs counter if needed */
    582 		if (free == c->leb_size) {
    583 			if (lprops->free != c->leb_size)
    584 				c->lst.empty_lebs += 1;
    585 		} else if (lprops->free == c->leb_size)
    586 			c->lst.empty_lebs -= 1;
    587 		lprops->free = free;
    588 	}
    589 
    590 	if (dirty != LPROPS_NC) {
    591 		dirty = ALIGN(dirty, 8);
    592 		c->lst.total_dirty += dirty - lprops->dirty;
    593 		lprops->dirty = dirty;
    594 	}
    595 
    596 	if (flags != LPROPS_NC) {
    597 		/* Take care about indexing LEBs counter if needed */
    598 		if ((lprops->flags & LPROPS_INDEX)) {
    599 			if (!(flags & LPROPS_INDEX))
    600 				c->lst.idx_lebs -= 1;
    601 		} else if (flags & LPROPS_INDEX)
    602 			c->lst.idx_lebs += 1;
    603 		lprops->flags = flags;
    604 	}
    605 
    606 	if (!(lprops->flags & LPROPS_INDEX)) {
    607 		int new_spc;
    608 
    609 		new_spc = lprops->free + lprops->dirty;
    610 		if (new_spc < c->dead_wm)
    611 			c->lst.total_dead += new_spc;
    612 		else
    613 			c->lst.total_dark += ubifs_calc_dark(c, new_spc);
    614 
    615 		c->lst.total_used += c->leb_size - new_spc;
    616 	}
    617 
    618 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
    619 		c->lst.taken_empty_lebs += 1;
    620 
    621 	change_category(c, lprops);
    622 	c->idx_gc_cnt += idx_gc_cnt;
    623 	spin_unlock(&c->space_lock);
    624 	return lprops;
    625 }
    626 
    627 /**
    628  * ubifs_get_lp_stats - get lprops statistics.
    629  * @c: UBIFS file-system description object
    630  * @st: return statistics
    631  */
    632 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
    633 {
    634 	spin_lock(&c->space_lock);
    635 	memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
    636 	spin_unlock(&c->space_lock);
    637 }
    638 
    639 /**
    640  * ubifs_change_one_lp - change LEB properties.
    641  * @c: the UBIFS file-system description object
    642  * @lnum: LEB to change properties for
    643  * @free: amount of free space
    644  * @dirty: amount of dirty space
    645  * @flags_set: flags to set
    646  * @flags_clean: flags to clean
    647  * @idx_gc_cnt: change to the count of idx_gc list
    648  *
    649  * This function changes properties of LEB @lnum. It is a helper wrapper over
    650  * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
    651  * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
    652  * a negative error code in case of failure.
    653  */
    654 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
    655 			int flags_set, int flags_clean, int idx_gc_cnt)
    656 {
    657 	int err = 0, flags;
    658 	const struct ubifs_lprops *lp;
    659 
    660 	ubifs_get_lprops(c);
    661 
    662 	lp = ubifs_lpt_lookup_dirty(c, lnum);
    663 	if (IS_ERR(lp)) {
    664 		err = PTR_ERR(lp);
    665 		goto out;
    666 	}
    667 
    668 	flags = (lp->flags | flags_set) & ~flags_clean;
    669 	lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
    670 	if (IS_ERR(lp))
    671 		err = PTR_ERR(lp);
    672 
    673 out:
    674 	ubifs_release_lprops(c);
    675 	if (err)
    676 		ubifs_err(c, "cannot change properties of LEB %d, error %d",
    677 			  lnum, err);
    678 	return err;
    679 }
    680 
    681 /**
    682  * ubifs_update_one_lp - update LEB properties.
    683  * @c: the UBIFS file-system description object
    684  * @lnum: LEB to change properties for
    685  * @free: amount of free space
    686  * @dirty: amount of dirty space to add
    687  * @flags_set: flags to set
    688  * @flags_clean: flags to clean
    689  *
    690  * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
    691  * current dirty space, not substitutes it.
    692  */
    693 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
    694 			int flags_set, int flags_clean)
    695 {
    696 	int err = 0, flags;
    697 	const struct ubifs_lprops *lp;
    698 
    699 	ubifs_get_lprops(c);
    700 
    701 	lp = ubifs_lpt_lookup_dirty(c, lnum);
    702 	if (IS_ERR(lp)) {
    703 		err = PTR_ERR(lp);
    704 		goto out;
    705 	}
    706 
    707 	flags = (lp->flags | flags_set) & ~flags_clean;
    708 	lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
    709 	if (IS_ERR(lp))
    710 		err = PTR_ERR(lp);
    711 
    712 out:
    713 	ubifs_release_lprops(c);
    714 	if (err)
    715 		ubifs_err(c, "cannot update properties of LEB %d, error %d",
    716 			  lnum, err);
    717 	return err;
    718 }
    719 
    720 /**
    721  * ubifs_read_one_lp - read LEB properties.
    722  * @c: the UBIFS file-system description object
    723  * @lnum: LEB to read properties for
    724  * @lp: where to store read properties
    725  *
    726  * This helper function reads properties of a LEB @lnum and stores them in @lp.
    727  * Returns zero in case of success and a negative error code in case of
    728  * failure.
    729  */
    730 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
    731 {
    732 	int err = 0;
    733 	const struct ubifs_lprops *lpp;
    734 
    735 	ubifs_get_lprops(c);
    736 
    737 	lpp = ubifs_lpt_lookup(c, lnum);
    738 	if (IS_ERR(lpp)) {
    739 		err = PTR_ERR(lpp);
    740 		ubifs_err(c, "cannot read properties of LEB %d, error %d",
    741 			  lnum, err);
    742 		goto out;
    743 	}
    744 
    745 	memcpy(lp, lpp, sizeof(struct ubifs_lprops));
    746 
    747 out:
    748 	ubifs_release_lprops(c);
    749 	return err;
    750 }
    751 
    752 /**
    753  * ubifs_fast_find_free - try to find a LEB with free space quickly.
    754  * @c: the UBIFS file-system description object
    755  *
    756  * This function returns LEB properties for a LEB with free space or %NULL if
    757  * the function is unable to find a LEB quickly.
    758  */
    759 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
    760 {
    761 	struct ubifs_lprops *lprops;
    762 	struct ubifs_lpt_heap *heap;
    763 
    764 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
    765 
    766 	heap = &c->lpt_heap[LPROPS_FREE - 1];
    767 	if (heap->cnt == 0)
    768 		return NULL;
    769 
    770 	lprops = heap->arr[0];
    771 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
    772 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
    773 	return lprops;
    774 }
    775 
    776 /**
    777  * ubifs_fast_find_empty - try to find an empty LEB quickly.
    778  * @c: the UBIFS file-system description object
    779  *
    780  * This function returns LEB properties for an empty LEB or %NULL if the
    781  * function is unable to find an empty LEB quickly.
    782  */
    783 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
    784 {
    785 	struct ubifs_lprops *lprops;
    786 
    787 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
    788 
    789 	if (list_empty(&c->empty_list))
    790 		return NULL;
    791 
    792 	lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
    793 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
    794 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
    795 	ubifs_assert(lprops->free == c->leb_size);
    796 	return lprops;
    797 }
    798 
    799 /**
    800  * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
    801  * @c: the UBIFS file-system description object
    802  *
    803  * This function returns LEB properties for a freeable LEB or %NULL if the
    804  * function is unable to find a freeable LEB quickly.
    805  */
    806 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
    807 {
    808 	struct ubifs_lprops *lprops;
    809 
    810 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
    811 
    812 	if (list_empty(&c->freeable_list))
    813 		return NULL;
    814 
    815 	lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
    816 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
    817 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
    818 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
    819 	ubifs_assert(c->freeable_cnt > 0);
    820 	return lprops;
    821 }
    822 
    823 /**
    824  * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
    825  * @c: the UBIFS file-system description object
    826  *
    827  * This function returns LEB properties for a freeable index LEB or %NULL if the
    828  * function is unable to find a freeable index LEB quickly.
    829  */
    830 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
    831 {
    832 	struct ubifs_lprops *lprops;
    833 
    834 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
    835 
    836 	if (list_empty(&c->frdi_idx_list))
    837 		return NULL;
    838 
    839 	lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
    840 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
    841 	ubifs_assert((lprops->flags & LPROPS_INDEX));
    842 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
    843 	return lprops;
    844 }
    845 
    846 /*
    847  * Everything below is related to debugging.
    848  */
    849 
    850 /**
    851  * dbg_check_cats - check category heaps and lists.
    852  * @c: UBIFS file-system description object
    853  *
    854  * This function returns %0 on success and a negative error code on failure.
    855  */
    856 int dbg_check_cats(struct ubifs_info *c)
    857 {
    858 	struct ubifs_lprops *lprops;
    859 	struct list_head *pos;
    860 	int i, cat;
    861 
    862 	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
    863 		return 0;
    864 
    865 	list_for_each_entry(lprops, &c->empty_list, list) {
    866 		if (lprops->free != c->leb_size) {
    867 			ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)",
    868 				  lprops->lnum, lprops->free, lprops->dirty,
    869 				  lprops->flags);
    870 			return -EINVAL;
    871 		}
    872 		if (lprops->flags & LPROPS_TAKEN) {
    873 			ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)",
    874 				  lprops->lnum, lprops->free, lprops->dirty,
    875 				  lprops->flags);
    876 			return -EINVAL;
    877 		}
    878 	}
    879 
    880 	i = 0;
    881 	list_for_each_entry(lprops, &c->freeable_list, list) {
    882 		if (lprops->free + lprops->dirty != c->leb_size) {
    883 			ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
    884 				  lprops->lnum, lprops->free, lprops->dirty,
    885 				  lprops->flags);
    886 			return -EINVAL;
    887 		}
    888 		if (lprops->flags & LPROPS_TAKEN) {
    889 			ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)",
    890 				  lprops->lnum, lprops->free, lprops->dirty,
    891 				  lprops->flags);
    892 			return -EINVAL;
    893 		}
    894 		i += 1;
    895 	}
    896 	if (i != c->freeable_cnt) {
    897 		ubifs_err(c, "freeable list count %d expected %d", i,
    898 			  c->freeable_cnt);
    899 		return -EINVAL;
    900 	}
    901 
    902 	i = 0;
    903 	list_for_each(pos, &c->idx_gc)
    904 		i += 1;
    905 	if (i != c->idx_gc_cnt) {
    906 		ubifs_err(c, "idx_gc list count %d expected %d", i,
    907 			  c->idx_gc_cnt);
    908 		return -EINVAL;
    909 	}
    910 
    911 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
    912 		if (lprops->free + lprops->dirty != c->leb_size) {
    913 			ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
    914 				  lprops->lnum, lprops->free, lprops->dirty,
    915 				  lprops->flags);
    916 			return -EINVAL;
    917 		}
    918 		if (lprops->flags & LPROPS_TAKEN) {
    919 			ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
    920 				  lprops->lnum, lprops->free, lprops->dirty,
    921 				  lprops->flags);
    922 			return -EINVAL;
    923 		}
    924 		if (!(lprops->flags & LPROPS_INDEX)) {
    925 			ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
    926 				  lprops->lnum, lprops->free, lprops->dirty,
    927 				  lprops->flags);
    928 			return -EINVAL;
    929 		}
    930 	}
    931 
    932 	for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
    933 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
    934 
    935 		for (i = 0; i < heap->cnt; i++) {
    936 			lprops = heap->arr[i];
    937 			if (!lprops) {
    938 				ubifs_err(c, "null ptr in LPT heap cat %d", cat);
    939 				return -EINVAL;
    940 			}
    941 			if (lprops->hpos != i) {
    942 				ubifs_err(c, "bad ptr in LPT heap cat %d", cat);
    943 				return -EINVAL;
    944 			}
    945 			if (lprops->flags & LPROPS_TAKEN) {
    946 				ubifs_err(c, "taken LEB in LPT heap cat %d", cat);
    947 				return -EINVAL;
    948 			}
    949 		}
    950 	}
    951 
    952 	return 0;
    953 }
    954 
    955 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
    956 		    int add_pos)
    957 {
    958 	int i = 0, j, err = 0;
    959 
    960 	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
    961 		return;
    962 
    963 	for (i = 0; i < heap->cnt; i++) {
    964 		struct ubifs_lprops *lprops = heap->arr[i];
    965 		struct ubifs_lprops *lp;
    966 
    967 		if (i != add_pos)
    968 			if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
    969 				err = 1;
    970 				goto out;
    971 			}
    972 		if (lprops->hpos != i) {
    973 			err = 2;
    974 			goto out;
    975 		}
    976 		lp = ubifs_lpt_lookup(c, lprops->lnum);
    977 		if (IS_ERR(lp)) {
    978 			err = 3;
    979 			goto out;
    980 		}
    981 		if (lprops != lp) {
    982 			ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
    983 				  (size_t)lprops, (size_t)lp, lprops->lnum,
    984 				  lp->lnum);
    985 			err = 4;
    986 			goto out;
    987 		}
    988 		for (j = 0; j < i; j++) {
    989 			lp = heap->arr[j];
    990 			if (lp == lprops) {
    991 				err = 5;
    992 				goto out;
    993 			}
    994 			if (lp->lnum == lprops->lnum) {
    995 				err = 6;
    996 				goto out;
    997 			}
    998 		}
    999 	}
   1000 out:
   1001 	if (err) {
   1002 		ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err);
   1003 		dump_stack();
   1004 		ubifs_dump_heap(c, heap, cat);
   1005 	}
   1006 }
   1007 
   1008 /**
   1009  * scan_check_cb - scan callback.
   1010  * @c: the UBIFS file-system description object
   1011  * @lp: LEB properties to scan
   1012  * @in_tree: whether the LEB properties are in main memory
   1013  * @lst: lprops statistics to update
   1014  *
   1015  * This function returns a code that indicates whether the scan should continue
   1016  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
   1017  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
   1018  * (%LPT_SCAN_STOP).
   1019  */
   1020 static int scan_check_cb(struct ubifs_info *c,
   1021 			 const struct ubifs_lprops *lp, int in_tree,
   1022 			 struct ubifs_lp_stats *lst)
   1023 {
   1024 	struct ubifs_scan_leb *sleb;
   1025 	struct ubifs_scan_node *snod;
   1026 	int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
   1027 	void *buf = NULL;
   1028 
   1029 	cat = lp->flags & LPROPS_CAT_MASK;
   1030 	if (cat != LPROPS_UNCAT) {
   1031 		cat = ubifs_categorize_lprops(c, lp);
   1032 		if (cat != (lp->flags & LPROPS_CAT_MASK)) {
   1033 			ubifs_err(c, "bad LEB category %d expected %d",
   1034 				  (lp->flags & LPROPS_CAT_MASK), cat);
   1035 			return -EINVAL;
   1036 		}
   1037 	}
   1038 
   1039 	/* Check lp is on its category list (if it has one) */
   1040 	if (in_tree) {
   1041 		struct list_head *list = NULL;
   1042 
   1043 		switch (cat) {
   1044 		case LPROPS_EMPTY:
   1045 			list = &c->empty_list;
   1046 			break;
   1047 		case LPROPS_FREEABLE:
   1048 			list = &c->freeable_list;
   1049 			break;
   1050 		case LPROPS_FRDI_IDX:
   1051 			list = &c->frdi_idx_list;
   1052 			break;
   1053 		case LPROPS_UNCAT:
   1054 			list = &c->uncat_list;
   1055 			break;
   1056 		}
   1057 		if (list) {
   1058 			struct ubifs_lprops *lprops;
   1059 			int found = 0;
   1060 
   1061 			list_for_each_entry(lprops, list, list) {
   1062 				if (lprops == lp) {
   1063 					found = 1;
   1064 					break;
   1065 				}
   1066 			}
   1067 			if (!found) {
   1068 				ubifs_err(c, "bad LPT list (category %d)", cat);
   1069 				return -EINVAL;
   1070 			}
   1071 		}
   1072 	}
   1073 
   1074 	/* Check lp is on its category heap (if it has one) */
   1075 	if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
   1076 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
   1077 
   1078 		if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
   1079 		    lp != heap->arr[lp->hpos]) {
   1080 			ubifs_err(c, "bad LPT heap (category %d)", cat);
   1081 			return -EINVAL;
   1082 		}
   1083 	}
   1084 
   1085 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
   1086 	if (!buf)
   1087 		return -ENOMEM;
   1088 
   1089 	/*
   1090 	 * After an unclean unmount, empty and freeable LEBs
   1091 	 * may contain garbage - do not scan them.
   1092 	 */
   1093 	if (lp->free == c->leb_size) {
   1094 		lst->empty_lebs += 1;
   1095 		lst->total_free += c->leb_size;
   1096 		lst->total_dark += ubifs_calc_dark(c, c->leb_size);
   1097 		return LPT_SCAN_CONTINUE;
   1098 	}
   1099 	if (lp->free + lp->dirty == c->leb_size &&
   1100 	    !(lp->flags & LPROPS_INDEX)) {
   1101 		lst->total_free  += lp->free;
   1102 		lst->total_dirty += lp->dirty;
   1103 		lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
   1104 		return LPT_SCAN_CONTINUE;
   1105 	}
   1106 
   1107 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
   1108 	if (IS_ERR(sleb)) {
   1109 		ret = PTR_ERR(sleb);
   1110 		if (ret == -EUCLEAN) {
   1111 			ubifs_dump_lprops(c);
   1112 			ubifs_dump_budg(c, &c->bi);
   1113 		}
   1114 		goto out;
   1115 	}
   1116 
   1117 	is_idx = -1;
   1118 	list_for_each_entry(snod, &sleb->nodes, list) {
   1119 		int found, level = 0;
   1120 
   1121 		cond_resched();
   1122 
   1123 		if (is_idx == -1)
   1124 			is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
   1125 
   1126 		if (is_idx && snod->type != UBIFS_IDX_NODE) {
   1127 			ubifs_err(c, "indexing node in data LEB %d:%d",
   1128 				  lnum, snod->offs);
   1129 			goto out_destroy;
   1130 		}
   1131 
   1132 		if (snod->type == UBIFS_IDX_NODE) {
   1133 			struct ubifs_idx_node *idx = snod->node;
   1134 
   1135 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
   1136 			level = le16_to_cpu(idx->level);
   1137 		}
   1138 
   1139 		found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
   1140 					   snod->offs, is_idx);
   1141 		if (found) {
   1142 			if (found < 0)
   1143 				goto out_destroy;
   1144 			used += ALIGN(snod->len, 8);
   1145 		}
   1146 	}
   1147 
   1148 	free = c->leb_size - sleb->endpt;
   1149 	dirty = sleb->endpt - used;
   1150 
   1151 	if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
   1152 	    dirty < 0) {
   1153 		ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d",
   1154 			  lnum, free, dirty);
   1155 		goto out_destroy;
   1156 	}
   1157 
   1158 	if (lp->free + lp->dirty == c->leb_size &&
   1159 	    free + dirty == c->leb_size)
   1160 		if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
   1161 		    (!is_idx && free == c->leb_size) ||
   1162 		    lp->free == c->leb_size) {
   1163 			/*
   1164 			 * Empty or freeable LEBs could contain index
   1165 			 * nodes from an uncompleted commit due to an
   1166 			 * unclean unmount. Or they could be empty for
   1167 			 * the same reason. Or it may simply not have been
   1168 			 * unmapped.
   1169 			 */
   1170 			free = lp->free;
   1171 			dirty = lp->dirty;
   1172 			is_idx = 0;
   1173 		    }
   1174 
   1175 	if (is_idx && lp->free + lp->dirty == free + dirty &&
   1176 	    lnum != c->ihead_lnum) {
   1177 		/*
   1178 		 * After an unclean unmount, an index LEB could have a different
   1179 		 * amount of free space than the value recorded by lprops. That
   1180 		 * is because the in-the-gaps method may use free space or
   1181 		 * create free space (as a side-effect of using ubi_leb_change
   1182 		 * and not writing the whole LEB). The incorrect free space
   1183 		 * value is not a problem because the index is only ever
   1184 		 * allocated empty LEBs, so there will never be an attempt to
   1185 		 * write to the free space at the end of an index LEB - except
   1186 		 * by the in-the-gaps method for which it is not a problem.
   1187 		 */
   1188 		free = lp->free;
   1189 		dirty = lp->dirty;
   1190 	}
   1191 
   1192 	if (lp->free != free || lp->dirty != dirty)
   1193 		goto out_print;
   1194 
   1195 	if (is_idx && !(lp->flags & LPROPS_INDEX)) {
   1196 		if (free == c->leb_size)
   1197 			/* Free but not unmapped LEB, it's fine */
   1198 			is_idx = 0;
   1199 		else {
   1200 			ubifs_err(c, "indexing node without indexing flag");
   1201 			goto out_print;
   1202 		}
   1203 	}
   1204 
   1205 	if (!is_idx && (lp->flags & LPROPS_INDEX)) {
   1206 		ubifs_err(c, "data node with indexing flag");
   1207 		goto out_print;
   1208 	}
   1209 
   1210 	if (free == c->leb_size)
   1211 		lst->empty_lebs += 1;
   1212 
   1213 	if (is_idx)
   1214 		lst->idx_lebs += 1;
   1215 
   1216 	if (!(lp->flags & LPROPS_INDEX))
   1217 		lst->total_used += c->leb_size - free - dirty;
   1218 	lst->total_free += free;
   1219 	lst->total_dirty += dirty;
   1220 
   1221 	if (!(lp->flags & LPROPS_INDEX)) {
   1222 		int spc = free + dirty;
   1223 
   1224 		if (spc < c->dead_wm)
   1225 			lst->total_dead += spc;
   1226 		else
   1227 			lst->total_dark += ubifs_calc_dark(c, spc);
   1228 	}
   1229 
   1230 	ubifs_scan_destroy(sleb);
   1231 	vfree(buf);
   1232 	return LPT_SCAN_CONTINUE;
   1233 
   1234 out_print:
   1235 	ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
   1236 		  lnum, lp->free, lp->dirty, lp->flags, free, dirty);
   1237 	ubifs_dump_leb(c, lnum);
   1238 out_destroy:
   1239 	ubifs_scan_destroy(sleb);
   1240 	ret = -EINVAL;
   1241 out:
   1242 	vfree(buf);
   1243 	return ret;
   1244 }
   1245 
   1246 /**
   1247  * dbg_check_lprops - check all LEB properties.
   1248  * @c: UBIFS file-system description object
   1249  *
   1250  * This function checks all LEB properties and makes sure they are all correct.
   1251  * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
   1252  * and other negative error codes in case of other errors. This function is
   1253  * called while the file system is locked (because of commit start), so no
   1254  * additional locking is required. Note that locking the LPT mutex would cause
   1255  * a circular lock dependency with the TNC mutex.
   1256  */
   1257 int dbg_check_lprops(struct ubifs_info *c)
   1258 {
   1259 	int i, err;
   1260 	struct ubifs_lp_stats lst;
   1261 
   1262 	if (!dbg_is_chk_lprops(c))
   1263 		return 0;
   1264 
   1265 	/*
   1266 	 * As we are going to scan the media, the write buffers have to be
   1267 	 * synchronized.
   1268 	 */
   1269 	for (i = 0; i < c->jhead_cnt; i++) {
   1270 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
   1271 		if (err)
   1272 			return err;
   1273 	}
   1274 
   1275 	memset(&lst, 0, sizeof(struct ubifs_lp_stats));
   1276 	err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
   1277 				    (ubifs_lpt_scan_callback)scan_check_cb,
   1278 				    &lst);
   1279 	if (err && err != -ENOSPC)
   1280 		goto out;
   1281 
   1282 	if (lst.empty_lebs != c->lst.empty_lebs ||
   1283 	    lst.idx_lebs != c->lst.idx_lebs ||
   1284 	    lst.total_free != c->lst.total_free ||
   1285 	    lst.total_dirty != c->lst.total_dirty ||
   1286 	    lst.total_used != c->lst.total_used) {
   1287 		ubifs_err(c, "bad overall accounting");
   1288 		ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
   1289 			  lst.empty_lebs, lst.idx_lebs, lst.total_free,
   1290 			  lst.total_dirty, lst.total_used);
   1291 		ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
   1292 			  c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
   1293 			  c->lst.total_dirty, c->lst.total_used);
   1294 		err = -EINVAL;
   1295 		goto out;
   1296 	}
   1297 
   1298 	if (lst.total_dead != c->lst.total_dead ||
   1299 	    lst.total_dark != c->lst.total_dark) {
   1300 		ubifs_err(c, "bad dead/dark space accounting");
   1301 		ubifs_err(c, "calculated: total_dead %lld, total_dark %lld",
   1302 			  lst.total_dead, lst.total_dark);
   1303 		ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld",
   1304 			  c->lst.total_dead, c->lst.total_dark);
   1305 		err = -EINVAL;
   1306 		goto out;
   1307 	}
   1308 
   1309 	err = dbg_check_cats(c);
   1310 out:
   1311 	return err;
   1312 }
   1313