Home | History | Annotate | Download | only in ia32
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions
      6 // are met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the
     14 // distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     31 // OF THE POSSIBILITY OF SUCH DAMAGE.
     32 
     33 // The original source code covered by the above license above has been modified
     34 // significantly by Google Inc.
     35 // Copyright 2012 the V8 project authors. All rights reserved.
     36 
     37 #include "src/ia32/assembler-ia32.h"
     38 
     39 #include <cstring>
     40 
     41 #if V8_TARGET_ARCH_IA32
     42 
     43 #if V8_LIBC_MSVCRT
     44 #include <intrin.h>  // _xgetbv()
     45 #endif
     46 #if V8_OS_MACOSX
     47 #include <sys/sysctl.h>
     48 #endif
     49 
     50 #include "src/assembler-inl.h"
     51 #include "src/base/bits.h"
     52 #include "src/base/cpu.h"
     53 #include "src/code-stubs.h"
     54 #include "src/conversions-inl.h"
     55 #include "src/deoptimizer.h"
     56 #include "src/disassembler.h"
     57 #include "src/macro-assembler.h"
     58 #include "src/v8.h"
     59 
     60 namespace v8 {
     61 namespace internal {
     62 
     63 Immediate Immediate::EmbeddedNumber(double value) {
     64   int32_t smi;
     65   if (DoubleToSmiInteger(value, &smi)) return Immediate(Smi::FromInt(smi));
     66   Immediate result(0, RelocInfo::EMBEDDED_OBJECT);
     67   result.is_heap_object_request_ = true;
     68   result.value_.heap_object_request = HeapObjectRequest(value);
     69   return result;
     70 }
     71 
     72 Immediate Immediate::EmbeddedCode(CodeStub* stub) {
     73   Immediate result(0, RelocInfo::CODE_TARGET);
     74   result.is_heap_object_request_ = true;
     75   result.value_.heap_object_request = HeapObjectRequest(stub);
     76   return result;
     77 }
     78 
     79 // -----------------------------------------------------------------------------
     80 // Implementation of CpuFeatures
     81 
     82 namespace {
     83 
     84 #if !V8_LIBC_MSVCRT
     85 
     86 V8_INLINE uint64_t _xgetbv(unsigned int xcr) {
     87   unsigned eax, edx;
     88   // Check xgetbv; this uses a .byte sequence instead of the instruction
     89   // directly because older assemblers do not include support for xgetbv and
     90   // there is no easy way to conditionally compile based on the assembler
     91   // used.
     92   __asm__ volatile(".byte 0x0F, 0x01, 0xD0" : "=a"(eax), "=d"(edx) : "c"(xcr));
     93   return static_cast<uint64_t>(eax) | (static_cast<uint64_t>(edx) << 32);
     94 }
     95 
     96 #define _XCR_XFEATURE_ENABLED_MASK 0
     97 
     98 #endif  // !V8_LIBC_MSVCRT
     99 
    100 
    101 bool OSHasAVXSupport() {
    102 #if V8_OS_MACOSX
    103   // Mac OS X up to 10.9 has a bug where AVX transitions were indeed being
    104   // caused by ISRs, so we detect that here and disable AVX in that case.
    105   char buffer[128];
    106   size_t buffer_size = arraysize(buffer);
    107   int ctl_name[] = {CTL_KERN, KERN_OSRELEASE};
    108   if (sysctl(ctl_name, 2, buffer, &buffer_size, nullptr, 0) != 0) {
    109     FATAL("V8 failed to get kernel version");
    110   }
    111   // The buffer now contains a string of the form XX.YY.ZZ, where
    112   // XX is the major kernel version component.
    113   char* period_pos = strchr(buffer, '.');
    114   DCHECK_NOT_NULL(period_pos);
    115   *period_pos = '\0';
    116   long kernel_version_major = strtol(buffer, nullptr, 10);  // NOLINT
    117   if (kernel_version_major <= 13) return false;
    118 #endif  // V8_OS_MACOSX
    119   // Check whether OS claims to support AVX.
    120   uint64_t feature_mask = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
    121   return (feature_mask & 0x6) == 0x6;
    122 }
    123 
    124 }  // namespace
    125 
    126 
    127 void CpuFeatures::ProbeImpl(bool cross_compile) {
    128   base::CPU cpu;
    129   CHECK(cpu.has_sse2());  // SSE2 support is mandatory.
    130   CHECK(cpu.has_cmov());  // CMOV support is mandatory.
    131 
    132   // Only use statically determined features for cross compile (snapshot).
    133   if (cross_compile) return;
    134 
    135   if (cpu.has_sse41() && FLAG_enable_sse4_1) supported_ |= 1u << SSE4_1;
    136   if (cpu.has_ssse3() && FLAG_enable_ssse3) supported_ |= 1u << SSSE3;
    137   if (cpu.has_sse3() && FLAG_enable_sse3) supported_ |= 1u << SSE3;
    138   if (cpu.has_avx() && FLAG_enable_avx && cpu.has_osxsave() &&
    139       OSHasAVXSupport()) {
    140     supported_ |= 1u << AVX;
    141   }
    142   if (cpu.has_fma3() && FLAG_enable_fma3 && cpu.has_osxsave() &&
    143       OSHasAVXSupport()) {
    144     supported_ |= 1u << FMA3;
    145   }
    146   if (cpu.has_bmi1() && FLAG_enable_bmi1) supported_ |= 1u << BMI1;
    147   if (cpu.has_bmi2() && FLAG_enable_bmi2) supported_ |= 1u << BMI2;
    148   if (cpu.has_lzcnt() && FLAG_enable_lzcnt) supported_ |= 1u << LZCNT;
    149   if (cpu.has_popcnt() && FLAG_enable_popcnt) supported_ |= 1u << POPCNT;
    150   if (strcmp(FLAG_mcpu, "auto") == 0) {
    151     if (cpu.is_atom()) supported_ |= 1u << ATOM;
    152   } else if (strcmp(FLAG_mcpu, "atom") == 0) {
    153     supported_ |= 1u << ATOM;
    154   }
    155 }
    156 
    157 
    158 void CpuFeatures::PrintTarget() { }
    159 void CpuFeatures::PrintFeatures() {
    160   printf(
    161       "SSE3=%d SSSE3=%d SSE4_1=%d AVX=%d FMA3=%d BMI1=%d BMI2=%d LZCNT=%d "
    162       "POPCNT=%d ATOM=%d\n",
    163       CpuFeatures::IsSupported(SSE3), CpuFeatures::IsSupported(SSSE3),
    164       CpuFeatures::IsSupported(SSE4_1), CpuFeatures::IsSupported(AVX),
    165       CpuFeatures::IsSupported(FMA3), CpuFeatures::IsSupported(BMI1),
    166       CpuFeatures::IsSupported(BMI2), CpuFeatures::IsSupported(LZCNT),
    167       CpuFeatures::IsSupported(POPCNT), CpuFeatures::IsSupported(ATOM));
    168 }
    169 
    170 
    171 // -----------------------------------------------------------------------------
    172 // Implementation of Displacement
    173 
    174 void Displacement::init(Label* L, Type type) {
    175   DCHECK(!L->is_bound());
    176   int next = 0;
    177   if (L->is_linked()) {
    178     next = L->pos();
    179     DCHECK_GT(next, 0);  // Displacements must be at positions > 0
    180   }
    181   // Ensure that we _never_ overflow the next field.
    182   DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
    183   data_ = NextField::encode(next) | TypeField::encode(type);
    184 }
    185 
    186 
    187 // -----------------------------------------------------------------------------
    188 // Implementation of RelocInfo
    189 
    190 const int RelocInfo::kApplyMask =
    191     RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
    192     RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
    193     RelocInfo::ModeMask(RelocInfo::JS_TO_WASM_CALL) |
    194     RelocInfo::ModeMask(RelocInfo::OFF_HEAP_TARGET) |
    195     RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
    196 
    197 bool RelocInfo::IsCodedSpecially() {
    198   // The deserializer needs to know whether a pointer is specially coded.  Being
    199   // specially coded on IA32 means that it is a relative address, as used by
    200   // branch instructions.  These are also the ones that need changing when a
    201   // code object moves.
    202   return RelocInfo::ModeMask(rmode_) & kApplyMask;
    203 }
    204 
    205 
    206 bool RelocInfo::IsInConstantPool() {
    207   return false;
    208 }
    209 
    210 int RelocInfo::GetDeoptimizationId(Isolate* isolate, DeoptimizeKind kind) {
    211   DCHECK(IsRuntimeEntry(rmode_));
    212   return Deoptimizer::GetDeoptimizationId(isolate, target_address(), kind);
    213 }
    214 
    215 void RelocInfo::set_js_to_wasm_address(Address address,
    216                                        ICacheFlushMode icache_flush_mode) {
    217   DCHECK_EQ(rmode_, JS_TO_WASM_CALL);
    218   Assembler::set_target_address_at(pc_, constant_pool_, address,
    219                                    icache_flush_mode);
    220 }
    221 
    222 Address RelocInfo::js_to_wasm_address() const {
    223   DCHECK_EQ(rmode_, JS_TO_WASM_CALL);
    224   return Assembler::target_address_at(pc_, constant_pool_);
    225 }
    226 
    227 uint32_t RelocInfo::wasm_call_tag() const {
    228   DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
    229   return Memory<uint32_t>(pc_);
    230 }
    231 
    232 // -----------------------------------------------------------------------------
    233 // Implementation of Operand
    234 
    235 Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
    236   // [base + disp/r]
    237   if (disp == 0 && RelocInfo::IsNone(rmode) && base != ebp) {
    238     // [base]
    239     set_modrm(0, base);
    240     if (base == esp) set_sib(times_1, esp, base);
    241   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
    242     // [base + disp8]
    243     set_modrm(1, base);
    244     if (base == esp) set_sib(times_1, esp, base);
    245     set_disp8(disp);
    246   } else {
    247     // [base + disp/r]
    248     set_modrm(2, base);
    249     if (base == esp) set_sib(times_1, esp, base);
    250     set_dispr(disp, rmode);
    251   }
    252 }
    253 
    254 
    255 Operand::Operand(Register base,
    256                  Register index,
    257                  ScaleFactor scale,
    258                  int32_t disp,
    259                  RelocInfo::Mode rmode) {
    260   DCHECK(index != esp);  // illegal addressing mode
    261   // [base + index*scale + disp/r]
    262   if (disp == 0 && RelocInfo::IsNone(rmode) && base != ebp) {
    263     // [base + index*scale]
    264     set_modrm(0, esp);
    265     set_sib(scale, index, base);
    266   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
    267     // [base + index*scale + disp8]
    268     set_modrm(1, esp);
    269     set_sib(scale, index, base);
    270     set_disp8(disp);
    271   } else {
    272     // [base + index*scale + disp/r]
    273     set_modrm(2, esp);
    274     set_sib(scale, index, base);
    275     set_dispr(disp, rmode);
    276   }
    277 }
    278 
    279 
    280 Operand::Operand(Register index,
    281                  ScaleFactor scale,
    282                  int32_t disp,
    283                  RelocInfo::Mode rmode) {
    284   DCHECK(index != esp);  // illegal addressing mode
    285   // [index*scale + disp/r]
    286   set_modrm(0, esp);
    287   set_sib(scale, index, ebp);
    288   set_dispr(disp, rmode);
    289 }
    290 
    291 
    292 bool Operand::is_reg_only() const {
    293   return (buf_[0] & 0xF8) == 0xC0;  // Addressing mode is register only.
    294 }
    295 
    296 
    297 Register Operand::reg() const {
    298   DCHECK(is_reg_only());
    299   return Register::from_code(buf_[0] & 0x07);
    300 }
    301 
    302 void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
    303   for (auto& request : heap_object_requests_) {
    304     Handle<HeapObject> object;
    305     switch (request.kind()) {
    306       case HeapObjectRequest::kHeapNumber:
    307         object =
    308             isolate->factory()->NewHeapNumber(request.heap_number(), TENURED);
    309         break;
    310       case HeapObjectRequest::kCodeStub:
    311         request.code_stub()->set_isolate(isolate);
    312         object = request.code_stub()->GetCode();
    313         break;
    314     }
    315     Address pc = reinterpret_cast<Address>(buffer_) + request.offset();
    316     Memory<Handle<Object>>(pc) = object;
    317   }
    318 }
    319 
    320 // -----------------------------------------------------------------------------
    321 // Implementation of Assembler.
    322 
    323 // Emit a single byte. Must always be inlined.
    324 #define EMIT(x)                                 \
    325   *pc_++ = (x)
    326 
    327 Assembler::Assembler(const AssemblerOptions& options, void* buffer,
    328                      int buffer_size)
    329     : AssemblerBase(options, buffer, buffer_size) {
    330 // Clear the buffer in debug mode unless it was provided by the
    331 // caller in which case we can't be sure it's okay to overwrite
    332 // existing code in it.
    333 #ifdef DEBUG
    334   if (own_buffer_) ZapCode(reinterpret_cast<Address>(buffer_), buffer_size_);
    335 #endif
    336 
    337   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
    338 }
    339 
    340 void Assembler::GetCode(Isolate* isolate, CodeDesc* desc) {
    341   // Finalize code (at this point overflow() may be true, but the gap ensures
    342   // that we are still not overlapping instructions and relocation info).
    343   DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
    344 
    345   AllocateAndInstallRequestedHeapObjects(isolate);
    346 
    347   // Set up code descriptor.
    348   desc->buffer = buffer_;
    349   desc->buffer_size = buffer_size_;
    350   desc->instr_size = pc_offset();
    351   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
    352   desc->origin = this;
    353   desc->constant_pool_size = 0;
    354   desc->unwinding_info_size = 0;
    355   desc->unwinding_info = nullptr;
    356 
    357   // Collection stage
    358   auto jump_opt = jump_optimization_info();
    359   if (jump_opt && jump_opt->is_collecting()) {
    360     auto& bitmap = jump_opt->farjmp_bitmap();
    361     int num = static_cast<int>(farjmp_positions_.size());
    362     if (num && bitmap.empty()) {
    363       bool can_opt = false;
    364 
    365       bitmap.resize((num + 31) / 32, 0);
    366       for (int i = 0; i < num; i++) {
    367         int disp_pos = farjmp_positions_[i];
    368         int disp = long_at(disp_pos);
    369         if (is_int8(disp)) {
    370           bitmap[i / 32] |= 1 << (i & 31);
    371           can_opt = true;
    372         }
    373       }
    374       if (can_opt) {
    375         jump_opt->set_optimizable();
    376       }
    377     }
    378   }
    379 }
    380 
    381 
    382 void Assembler::Align(int m) {
    383   DCHECK(base::bits::IsPowerOfTwo(m));
    384   int mask = m - 1;
    385   int addr = pc_offset();
    386   Nop((m - (addr & mask)) & mask);
    387 }
    388 
    389 
    390 bool Assembler::IsNop(Address addr) {
    391   byte* a = reinterpret_cast<byte*>(addr);
    392   while (*a == 0x66) a++;
    393   if (*a == 0x90) return true;
    394   if (a[0] == 0xF && a[1] == 0x1F) return true;
    395   return false;
    396 }
    397 
    398 
    399 void Assembler::Nop(int bytes) {
    400   EnsureSpace ensure_space(this);
    401 
    402   // Multi byte nops from http://support.amd.com/us/Processor_TechDocs/40546.pdf
    403   while (bytes > 0) {
    404     switch (bytes) {
    405       case 2:
    406         EMIT(0x66);
    407         V8_FALLTHROUGH;
    408       case 1:
    409         EMIT(0x90);
    410         return;
    411       case 3:
    412         EMIT(0xF);
    413         EMIT(0x1F);
    414         EMIT(0);
    415         return;
    416       case 4:
    417         EMIT(0xF);
    418         EMIT(0x1F);
    419         EMIT(0x40);
    420         EMIT(0);
    421         return;
    422       case 6:
    423         EMIT(0x66);
    424         V8_FALLTHROUGH;
    425       case 5:
    426         EMIT(0xF);
    427         EMIT(0x1F);
    428         EMIT(0x44);
    429         EMIT(0);
    430         EMIT(0);
    431         return;
    432       case 7:
    433         EMIT(0xF);
    434         EMIT(0x1F);
    435         EMIT(0x80);
    436         EMIT(0);
    437         EMIT(0);
    438         EMIT(0);
    439         EMIT(0);
    440         return;
    441       default:
    442       case 11:
    443         EMIT(0x66);
    444         bytes--;
    445         V8_FALLTHROUGH;
    446       case 10:
    447         EMIT(0x66);
    448         bytes--;
    449         V8_FALLTHROUGH;
    450       case 9:
    451         EMIT(0x66);
    452         bytes--;
    453         V8_FALLTHROUGH;
    454       case 8:
    455         EMIT(0xF);
    456         EMIT(0x1F);
    457         EMIT(0x84);
    458         EMIT(0);
    459         EMIT(0);
    460         EMIT(0);
    461         EMIT(0);
    462         EMIT(0);
    463         bytes -= 8;
    464     }
    465   }
    466 }
    467 
    468 
    469 void Assembler::CodeTargetAlign() {
    470   Align(16);  // Preferred alignment of jump targets on ia32.
    471 }
    472 
    473 
    474 void Assembler::cpuid() {
    475   EnsureSpace ensure_space(this);
    476   EMIT(0x0F);
    477   EMIT(0xA2);
    478 }
    479 
    480 
    481 void Assembler::pushad() {
    482   EnsureSpace ensure_space(this);
    483   EMIT(0x60);
    484 }
    485 
    486 
    487 void Assembler::popad() {
    488   EnsureSpace ensure_space(this);
    489   EMIT(0x61);
    490 }
    491 
    492 
    493 void Assembler::pushfd() {
    494   EnsureSpace ensure_space(this);
    495   EMIT(0x9C);
    496 }
    497 
    498 
    499 void Assembler::popfd() {
    500   EnsureSpace ensure_space(this);
    501   EMIT(0x9D);
    502 }
    503 
    504 
    505 void Assembler::push(const Immediate& x) {
    506   EnsureSpace ensure_space(this);
    507   if (x.is_int8()) {
    508     EMIT(0x6A);
    509     EMIT(x.immediate());
    510   } else {
    511     EMIT(0x68);
    512     emit(x);
    513   }
    514 }
    515 
    516 
    517 void Assembler::push_imm32(int32_t imm32) {
    518   EnsureSpace ensure_space(this);
    519   EMIT(0x68);
    520   emit(imm32);
    521 }
    522 
    523 
    524 void Assembler::push(Register src) {
    525   EnsureSpace ensure_space(this);
    526   EMIT(0x50 | src.code());
    527 }
    528 
    529 void Assembler::push(Operand src) {
    530   EnsureSpace ensure_space(this);
    531   EMIT(0xFF);
    532   emit_operand(esi, src);
    533 }
    534 
    535 
    536 void Assembler::pop(Register dst) {
    537   DCHECK_NOT_NULL(reloc_info_writer.last_pc());
    538   EnsureSpace ensure_space(this);
    539   EMIT(0x58 | dst.code());
    540 }
    541 
    542 void Assembler::pop(Operand dst) {
    543   EnsureSpace ensure_space(this);
    544   EMIT(0x8F);
    545   emit_operand(eax, dst);
    546 }
    547 
    548 
    549 void Assembler::enter(const Immediate& size) {
    550   EnsureSpace ensure_space(this);
    551   EMIT(0xC8);
    552   emit_w(size);
    553   EMIT(0);
    554 }
    555 
    556 
    557 void Assembler::leave() {
    558   EnsureSpace ensure_space(this);
    559   EMIT(0xC9);
    560 }
    561 
    562 void Assembler::mov_b(Register dst, Operand src) {
    563   CHECK(dst.is_byte_register());
    564   EnsureSpace ensure_space(this);
    565   EMIT(0x8A);
    566   emit_operand(dst, src);
    567 }
    568 
    569 void Assembler::mov_b(Operand dst, const Immediate& src) {
    570   EnsureSpace ensure_space(this);
    571   EMIT(0xC6);
    572   emit_operand(eax, dst);
    573   EMIT(static_cast<int8_t>(src.immediate()));
    574 }
    575 
    576 void Assembler::mov_b(Operand dst, Register src) {
    577   CHECK(src.is_byte_register());
    578   EnsureSpace ensure_space(this);
    579   EMIT(0x88);
    580   emit_operand(src, dst);
    581 }
    582 
    583 void Assembler::mov_w(Register dst, Operand src) {
    584   EnsureSpace ensure_space(this);
    585   EMIT(0x66);
    586   EMIT(0x8B);
    587   emit_operand(dst, src);
    588 }
    589 
    590 void Assembler::mov_w(Operand dst, Register src) {
    591   EnsureSpace ensure_space(this);
    592   EMIT(0x66);
    593   EMIT(0x89);
    594   emit_operand(src, dst);
    595 }
    596 
    597 void Assembler::mov_w(Operand dst, const Immediate& src) {
    598   EnsureSpace ensure_space(this);
    599   EMIT(0x66);
    600   EMIT(0xC7);
    601   emit_operand(eax, dst);
    602   EMIT(static_cast<int8_t>(src.immediate() & 0xFF));
    603   EMIT(static_cast<int8_t>(src.immediate() >> 8));
    604 }
    605 
    606 
    607 void Assembler::mov(Register dst, int32_t imm32) {
    608   EnsureSpace ensure_space(this);
    609   EMIT(0xB8 | dst.code());
    610   emit(imm32);
    611 }
    612 
    613 
    614 void Assembler::mov(Register dst, const Immediate& x) {
    615   EnsureSpace ensure_space(this);
    616   EMIT(0xB8 | dst.code());
    617   emit(x);
    618 }
    619 
    620 void Assembler::mov(Register dst, Handle<HeapObject> handle) {
    621   EnsureSpace ensure_space(this);
    622   EMIT(0xB8 | dst.code());
    623   emit(handle);
    624 }
    625 
    626 void Assembler::mov(Register dst, Operand src) {
    627   EnsureSpace ensure_space(this);
    628   EMIT(0x8B);
    629   emit_operand(dst, src);
    630 }
    631 
    632 
    633 void Assembler::mov(Register dst, Register src) {
    634   EnsureSpace ensure_space(this);
    635   EMIT(0x89);
    636   EMIT(0xC0 | src.code() << 3 | dst.code());
    637 }
    638 
    639 void Assembler::mov(Operand dst, const Immediate& x) {
    640   EnsureSpace ensure_space(this);
    641   EMIT(0xC7);
    642   emit_operand(eax, dst);
    643   emit(x);
    644 }
    645 
    646 void Assembler::mov(Operand dst, Address src, RelocInfo::Mode rmode) {
    647   EnsureSpace ensure_space(this);
    648   EMIT(0xC7);
    649   emit_operand(eax, dst);
    650   emit(src, rmode);
    651 }
    652 
    653 void Assembler::mov(Operand dst, Handle<HeapObject> handle) {
    654   EnsureSpace ensure_space(this);
    655   EMIT(0xC7);
    656   emit_operand(eax, dst);
    657   emit(handle);
    658 }
    659 
    660 void Assembler::mov(Operand dst, Register src) {
    661   EnsureSpace ensure_space(this);
    662   EMIT(0x89);
    663   emit_operand(src, dst);
    664 }
    665 
    666 void Assembler::movsx_b(Register dst, Operand src) {
    667   EnsureSpace ensure_space(this);
    668   EMIT(0x0F);
    669   EMIT(0xBE);
    670   emit_operand(dst, src);
    671 }
    672 
    673 void Assembler::movsx_w(Register dst, Operand src) {
    674   EnsureSpace ensure_space(this);
    675   EMIT(0x0F);
    676   EMIT(0xBF);
    677   emit_operand(dst, src);
    678 }
    679 
    680 void Assembler::movzx_b(Register dst, Operand src) {
    681   EnsureSpace ensure_space(this);
    682   EMIT(0x0F);
    683   EMIT(0xB6);
    684   emit_operand(dst, src);
    685 }
    686 
    687 void Assembler::movzx_w(Register dst, Operand src) {
    688   EnsureSpace ensure_space(this);
    689   EMIT(0x0F);
    690   EMIT(0xB7);
    691   emit_operand(dst, src);
    692 }
    693 
    694 void Assembler::movq(XMMRegister dst, Operand src) {
    695   EnsureSpace ensure_space(this);
    696   EMIT(0xF3);
    697   EMIT(0x0F);
    698   EMIT(0x7E);
    699   emit_operand(dst, src);
    700 }
    701 
    702 void Assembler::cmov(Condition cc, Register dst, Operand src) {
    703   EnsureSpace ensure_space(this);
    704   // Opcode: 0f 40 + cc /r.
    705   EMIT(0x0F);
    706   EMIT(0x40 + cc);
    707   emit_operand(dst, src);
    708 }
    709 
    710 
    711 void Assembler::cld() {
    712   EnsureSpace ensure_space(this);
    713   EMIT(0xFC);
    714 }
    715 
    716 
    717 void Assembler::rep_movs() {
    718   EnsureSpace ensure_space(this);
    719   EMIT(0xF3);
    720   EMIT(0xA5);
    721 }
    722 
    723 
    724 void Assembler::rep_stos() {
    725   EnsureSpace ensure_space(this);
    726   EMIT(0xF3);
    727   EMIT(0xAB);
    728 }
    729 
    730 
    731 void Assembler::stos() {
    732   EnsureSpace ensure_space(this);
    733   EMIT(0xAB);
    734 }
    735 
    736 
    737 void Assembler::xchg(Register dst, Register src) {
    738   EnsureSpace ensure_space(this);
    739   if (src == eax || dst == eax) {  // Single-byte encoding.
    740     EMIT(0x90 | (src == eax ? dst.code() : src.code()));
    741   } else {
    742     EMIT(0x87);
    743     EMIT(0xC0 | src.code() << 3 | dst.code());
    744   }
    745 }
    746 
    747 void Assembler::xchg(Register dst, Operand src) {
    748   EnsureSpace ensure_space(this);
    749   EMIT(0x87);
    750   emit_operand(dst, src);
    751 }
    752 
    753 void Assembler::xchg_b(Register reg, Operand op) {
    754   DCHECK(reg.is_byte_register());
    755   EnsureSpace ensure_space(this);
    756   EMIT(0x86);
    757   emit_operand(reg, op);
    758 }
    759 
    760 void Assembler::xchg_w(Register reg, Operand op) {
    761   EnsureSpace ensure_space(this);
    762   EMIT(0x66);
    763   EMIT(0x87);
    764   emit_operand(reg, op);
    765 }
    766 
    767 void Assembler::lock() {
    768   EnsureSpace ensure_space(this);
    769   EMIT(0xF0);
    770 }
    771 
    772 void Assembler::cmpxchg(Operand dst, Register src) {
    773   EnsureSpace ensure_space(this);
    774   EMIT(0x0F);
    775   EMIT(0xB1);
    776   emit_operand(src, dst);
    777 }
    778 
    779 void Assembler::cmpxchg_b(Operand dst, Register src) {
    780   DCHECK(src.is_byte_register());
    781   EnsureSpace ensure_space(this);
    782   EMIT(0x0F);
    783   EMIT(0xB0);
    784   emit_operand(src, dst);
    785 }
    786 
    787 void Assembler::cmpxchg_w(Operand dst, Register src) {
    788   EnsureSpace ensure_space(this);
    789   EMIT(0x66);
    790   EMIT(0x0F);
    791   EMIT(0xB1);
    792   emit_operand(src, dst);
    793 }
    794 
    795 void Assembler::cmpxchg8b(Operand dst) {
    796   EnsureSpace enure_space(this);
    797   EMIT(0x0F);
    798   EMIT(0xC7);
    799   emit_operand(ecx, dst);
    800 }
    801 
    802 void Assembler::lfence() {
    803   EnsureSpace ensure_space(this);
    804   EMIT(0x0F);
    805   EMIT(0xAE);
    806   EMIT(0xE8);
    807 }
    808 
    809 void Assembler::pause() {
    810   EnsureSpace ensure_space(this);
    811   EMIT(0xF3);
    812   EMIT(0x90);
    813 }
    814 
    815 void Assembler::adc(Register dst, int32_t imm32) {
    816   EnsureSpace ensure_space(this);
    817   emit_arith(2, Operand(dst), Immediate(imm32));
    818 }
    819 
    820 void Assembler::adc(Register dst, Operand src) {
    821   EnsureSpace ensure_space(this);
    822   EMIT(0x13);
    823   emit_operand(dst, src);
    824 }
    825 
    826 void Assembler::add(Register dst, Operand src) {
    827   EnsureSpace ensure_space(this);
    828   EMIT(0x03);
    829   emit_operand(dst, src);
    830 }
    831 
    832 void Assembler::add(Operand dst, Register src) {
    833   EnsureSpace ensure_space(this);
    834   EMIT(0x01);
    835   emit_operand(src, dst);
    836 }
    837 
    838 void Assembler::add(Operand dst, const Immediate& x) {
    839   DCHECK_NOT_NULL(reloc_info_writer.last_pc());
    840   EnsureSpace ensure_space(this);
    841   emit_arith(0, dst, x);
    842 }
    843 
    844 
    845 void Assembler::and_(Register dst, int32_t imm32) {
    846   and_(dst, Immediate(imm32));
    847 }
    848 
    849 
    850 void Assembler::and_(Register dst, const Immediate& x) {
    851   EnsureSpace ensure_space(this);
    852   emit_arith(4, Operand(dst), x);
    853 }
    854 
    855 void Assembler::and_(Register dst, Operand src) {
    856   EnsureSpace ensure_space(this);
    857   EMIT(0x23);
    858   emit_operand(dst, src);
    859 }
    860 
    861 void Assembler::and_(Operand dst, const Immediate& x) {
    862   EnsureSpace ensure_space(this);
    863   emit_arith(4, dst, x);
    864 }
    865 
    866 void Assembler::and_(Operand dst, Register src) {
    867   EnsureSpace ensure_space(this);
    868   EMIT(0x21);
    869   emit_operand(src, dst);
    870 }
    871 
    872 void Assembler::cmpb(Operand op, Immediate imm8) {
    873   DCHECK(imm8.is_int8() || imm8.is_uint8());
    874   EnsureSpace ensure_space(this);
    875   if (op.is_reg(eax)) {
    876     EMIT(0x3C);
    877   } else {
    878     EMIT(0x80);
    879     emit_operand(edi, op);  // edi == 7
    880   }
    881   emit_b(imm8);
    882 }
    883 
    884 void Assembler::cmpb(Operand op, Register reg) {
    885   CHECK(reg.is_byte_register());
    886   EnsureSpace ensure_space(this);
    887   EMIT(0x38);
    888   emit_operand(reg, op);
    889 }
    890 
    891 void Assembler::cmpb(Register reg, Operand op) {
    892   CHECK(reg.is_byte_register());
    893   EnsureSpace ensure_space(this);
    894   EMIT(0x3A);
    895   emit_operand(reg, op);
    896 }
    897 
    898 void Assembler::cmpw(Operand op, Immediate imm16) {
    899   DCHECK(imm16.is_int16() || imm16.is_uint16());
    900   EnsureSpace ensure_space(this);
    901   EMIT(0x66);
    902   EMIT(0x81);
    903   emit_operand(edi, op);
    904   emit_w(imm16);
    905 }
    906 
    907 void Assembler::cmpw(Register reg, Operand op) {
    908   EnsureSpace ensure_space(this);
    909   EMIT(0x66);
    910   EMIT(0x3B);
    911   emit_operand(reg, op);
    912 }
    913 
    914 void Assembler::cmpw(Operand op, Register reg) {
    915   EnsureSpace ensure_space(this);
    916   EMIT(0x66);
    917   EMIT(0x39);
    918   emit_operand(reg, op);
    919 }
    920 
    921 void Assembler::cmp(Register reg, int32_t imm32) {
    922   EnsureSpace ensure_space(this);
    923   emit_arith(7, Operand(reg), Immediate(imm32));
    924 }
    925 
    926 void Assembler::cmp(Register reg, Handle<HeapObject> handle) {
    927   EnsureSpace ensure_space(this);
    928   emit_arith(7, Operand(reg), Immediate(handle));
    929 }
    930 
    931 void Assembler::cmp(Register reg, Operand op) {
    932   EnsureSpace ensure_space(this);
    933   EMIT(0x3B);
    934   emit_operand(reg, op);
    935 }
    936 
    937 void Assembler::cmp(Operand op, Register reg) {
    938   EnsureSpace ensure_space(this);
    939   EMIT(0x39);
    940   emit_operand(reg, op);
    941 }
    942 
    943 void Assembler::cmp(Operand op, const Immediate& imm) {
    944   EnsureSpace ensure_space(this);
    945   emit_arith(7, op, imm);
    946 }
    947 
    948 void Assembler::cmp(Operand op, Handle<HeapObject> handle) {
    949   EnsureSpace ensure_space(this);
    950   emit_arith(7, op, Immediate(handle));
    951 }
    952 
    953 void Assembler::cmpb_al(Operand op) {
    954   EnsureSpace ensure_space(this);
    955   EMIT(0x38);  // CMP r/m8, r8
    956   emit_operand(eax, op);  // eax has same code as register al.
    957 }
    958 
    959 void Assembler::cmpw_ax(Operand op) {
    960   EnsureSpace ensure_space(this);
    961   EMIT(0x66);
    962   EMIT(0x39);  // CMP r/m16, r16
    963   emit_operand(eax, op);  // eax has same code as register ax.
    964 }
    965 
    966 
    967 void Assembler::dec_b(Register dst) {
    968   CHECK(dst.is_byte_register());
    969   EnsureSpace ensure_space(this);
    970   EMIT(0xFE);
    971   EMIT(0xC8 | dst.code());
    972 }
    973 
    974 void Assembler::dec_b(Operand dst) {
    975   EnsureSpace ensure_space(this);
    976   EMIT(0xFE);
    977   emit_operand(ecx, dst);
    978 }
    979 
    980 
    981 void Assembler::dec(Register dst) {
    982   EnsureSpace ensure_space(this);
    983   EMIT(0x48 | dst.code());
    984 }
    985 
    986 void Assembler::dec(Operand dst) {
    987   EnsureSpace ensure_space(this);
    988   EMIT(0xFF);
    989   emit_operand(ecx, dst);
    990 }
    991 
    992 
    993 void Assembler::cdq() {
    994   EnsureSpace ensure_space(this);
    995   EMIT(0x99);
    996 }
    997 
    998 void Assembler::idiv(Operand src) {
    999   EnsureSpace ensure_space(this);
   1000   EMIT(0xF7);
   1001   emit_operand(edi, src);
   1002 }
   1003 
   1004 void Assembler::div(Operand src) {
   1005   EnsureSpace ensure_space(this);
   1006   EMIT(0xF7);
   1007   emit_operand(esi, src);
   1008 }
   1009 
   1010 
   1011 void Assembler::imul(Register reg) {
   1012   EnsureSpace ensure_space(this);
   1013   EMIT(0xF7);
   1014   EMIT(0xE8 | reg.code());
   1015 }
   1016 
   1017 void Assembler::imul(Register dst, Operand src) {
   1018   EnsureSpace ensure_space(this);
   1019   EMIT(0x0F);
   1020   EMIT(0xAF);
   1021   emit_operand(dst, src);
   1022 }
   1023 
   1024 
   1025 void Assembler::imul(Register dst, Register src, int32_t imm32) {
   1026   imul(dst, Operand(src), imm32);
   1027 }
   1028 
   1029 void Assembler::imul(Register dst, Operand src, int32_t imm32) {
   1030   EnsureSpace ensure_space(this);
   1031   if (is_int8(imm32)) {
   1032     EMIT(0x6B);
   1033     emit_operand(dst, src);
   1034     EMIT(imm32);
   1035   } else {
   1036     EMIT(0x69);
   1037     emit_operand(dst, src);
   1038     emit(imm32);
   1039   }
   1040 }
   1041 
   1042 
   1043 void Assembler::inc(Register dst) {
   1044   EnsureSpace ensure_space(this);
   1045   EMIT(0x40 | dst.code());
   1046 }
   1047 
   1048 void Assembler::inc(Operand dst) {
   1049   EnsureSpace ensure_space(this);
   1050   EMIT(0xFF);
   1051   emit_operand(eax, dst);
   1052 }
   1053 
   1054 void Assembler::lea(Register dst, Operand src) {
   1055   EnsureSpace ensure_space(this);
   1056   EMIT(0x8D);
   1057   emit_operand(dst, src);
   1058 }
   1059 
   1060 
   1061 void Assembler::mul(Register src) {
   1062   EnsureSpace ensure_space(this);
   1063   EMIT(0xF7);
   1064   EMIT(0xE0 | src.code());
   1065 }
   1066 
   1067 
   1068 void Assembler::neg(Register dst) {
   1069   EnsureSpace ensure_space(this);
   1070   EMIT(0xF7);
   1071   EMIT(0xD8 | dst.code());
   1072 }
   1073 
   1074 void Assembler::neg(Operand dst) {
   1075   EnsureSpace ensure_space(this);
   1076   EMIT(0xF7);
   1077   emit_operand(ebx, dst);
   1078 }
   1079 
   1080 
   1081 void Assembler::not_(Register dst) {
   1082   EnsureSpace ensure_space(this);
   1083   EMIT(0xF7);
   1084   EMIT(0xD0 | dst.code());
   1085 }
   1086 
   1087 void Assembler::not_(Operand dst) {
   1088   EnsureSpace ensure_space(this);
   1089   EMIT(0xF7);
   1090   emit_operand(edx, dst);
   1091 }
   1092 
   1093 
   1094 void Assembler::or_(Register dst, int32_t imm32) {
   1095   EnsureSpace ensure_space(this);
   1096   emit_arith(1, Operand(dst), Immediate(imm32));
   1097 }
   1098 
   1099 void Assembler::or_(Register dst, Operand src) {
   1100   EnsureSpace ensure_space(this);
   1101   EMIT(0x0B);
   1102   emit_operand(dst, src);
   1103 }
   1104 
   1105 void Assembler::or_(Operand dst, const Immediate& x) {
   1106   EnsureSpace ensure_space(this);
   1107   emit_arith(1, dst, x);
   1108 }
   1109 
   1110 void Assembler::or_(Operand dst, Register src) {
   1111   EnsureSpace ensure_space(this);
   1112   EMIT(0x09);
   1113   emit_operand(src, dst);
   1114 }
   1115 
   1116 
   1117 void Assembler::rcl(Register dst, uint8_t imm8) {
   1118   EnsureSpace ensure_space(this);
   1119   DCHECK(is_uint5(imm8));  // illegal shift count
   1120   if (imm8 == 1) {
   1121     EMIT(0xD1);
   1122     EMIT(0xD0 | dst.code());
   1123   } else {
   1124     EMIT(0xC1);
   1125     EMIT(0xD0 | dst.code());
   1126     EMIT(imm8);
   1127   }
   1128 }
   1129 
   1130 
   1131 void Assembler::rcr(Register dst, uint8_t imm8) {
   1132   EnsureSpace ensure_space(this);
   1133   DCHECK(is_uint5(imm8));  // illegal shift count
   1134   if (imm8 == 1) {
   1135     EMIT(0xD1);
   1136     EMIT(0xD8 | dst.code());
   1137   } else {
   1138     EMIT(0xC1);
   1139     EMIT(0xD8 | dst.code());
   1140     EMIT(imm8);
   1141   }
   1142 }
   1143 
   1144 void Assembler::ror(Operand dst, uint8_t imm8) {
   1145   EnsureSpace ensure_space(this);
   1146   DCHECK(is_uint5(imm8));  // illegal shift count
   1147   if (imm8 == 1) {
   1148     EMIT(0xD1);
   1149     emit_operand(ecx, dst);
   1150   } else {
   1151     EMIT(0xC1);
   1152     emit_operand(ecx, dst);
   1153     EMIT(imm8);
   1154   }
   1155 }
   1156 
   1157 void Assembler::ror_cl(Operand dst) {
   1158   EnsureSpace ensure_space(this);
   1159   EMIT(0xD3);
   1160   emit_operand(ecx, dst);
   1161 }
   1162 
   1163 void Assembler::sar(Operand dst, uint8_t imm8) {
   1164   EnsureSpace ensure_space(this);
   1165   DCHECK(is_uint5(imm8));  // illegal shift count
   1166   if (imm8 == 1) {
   1167     EMIT(0xD1);
   1168     emit_operand(edi, dst);
   1169   } else {
   1170     EMIT(0xC1);
   1171     emit_operand(edi, dst);
   1172     EMIT(imm8);
   1173   }
   1174 }
   1175 
   1176 void Assembler::sar_cl(Operand dst) {
   1177   EnsureSpace ensure_space(this);
   1178   EMIT(0xD3);
   1179   emit_operand(edi, dst);
   1180 }
   1181 
   1182 void Assembler::sbb(Register dst, Operand src) {
   1183   EnsureSpace ensure_space(this);
   1184   EMIT(0x1B);
   1185   emit_operand(dst, src);
   1186 }
   1187 
   1188 void Assembler::shld(Register dst, Register src, uint8_t shift) {
   1189   DCHECK(is_uint5(shift));
   1190   EnsureSpace ensure_space(this);
   1191   EMIT(0x0F);
   1192   EMIT(0xA4);
   1193   emit_operand(src, Operand(dst));
   1194   EMIT(shift);
   1195 }
   1196 
   1197 void Assembler::shld_cl(Register dst, Register src) {
   1198   EnsureSpace ensure_space(this);
   1199   EMIT(0x0F);
   1200   EMIT(0xA5);
   1201   emit_operand(src, Operand(dst));
   1202 }
   1203 
   1204 void Assembler::shl(Operand dst, uint8_t imm8) {
   1205   EnsureSpace ensure_space(this);
   1206   DCHECK(is_uint5(imm8));  // illegal shift count
   1207   if (imm8 == 1) {
   1208     EMIT(0xD1);
   1209     emit_operand(esp, dst);
   1210   } else {
   1211     EMIT(0xC1);
   1212     emit_operand(esp, dst);
   1213     EMIT(imm8);
   1214   }
   1215 }
   1216 
   1217 void Assembler::shl_cl(Operand dst) {
   1218   EnsureSpace ensure_space(this);
   1219   EMIT(0xD3);
   1220   emit_operand(esp, dst);
   1221 }
   1222 
   1223 void Assembler::shr(Operand dst, uint8_t imm8) {
   1224   EnsureSpace ensure_space(this);
   1225   DCHECK(is_uint5(imm8));  // illegal shift count
   1226   if (imm8 == 1) {
   1227     EMIT(0xD1);
   1228     emit_operand(ebp, dst);
   1229   } else {
   1230     EMIT(0xC1);
   1231     emit_operand(ebp, dst);
   1232     EMIT(imm8);
   1233   }
   1234 }
   1235 
   1236 void Assembler::shr_cl(Operand dst) {
   1237   EnsureSpace ensure_space(this);
   1238   EMIT(0xD3);
   1239   emit_operand(ebp, dst);
   1240 }
   1241 
   1242 void Assembler::shrd(Register dst, Register src, uint8_t shift) {
   1243   DCHECK(is_uint5(shift));
   1244   EnsureSpace ensure_space(this);
   1245   EMIT(0x0F);
   1246   EMIT(0xAC);
   1247   emit_operand(dst, Operand(src));
   1248   EMIT(shift);
   1249 }
   1250 
   1251 void Assembler::shrd_cl(Operand dst, Register src) {
   1252   EnsureSpace ensure_space(this);
   1253   EMIT(0x0F);
   1254   EMIT(0xAD);
   1255   emit_operand(src, dst);
   1256 }
   1257 
   1258 void Assembler::sub(Operand dst, const Immediate& x) {
   1259   EnsureSpace ensure_space(this);
   1260   emit_arith(5, dst, x);
   1261 }
   1262 
   1263 void Assembler::sub(Register dst, Operand src) {
   1264   EnsureSpace ensure_space(this);
   1265   EMIT(0x2B);
   1266   emit_operand(dst, src);
   1267 }
   1268 
   1269 void Assembler::sub(Operand dst, Register src) {
   1270   EnsureSpace ensure_space(this);
   1271   EMIT(0x29);
   1272   emit_operand(src, dst);
   1273 }
   1274 
   1275 void Assembler::sub_sp_32(uint32_t imm) {
   1276   EnsureSpace ensure_space(this);
   1277   EMIT(0x81);  // using a literal 32-bit immediate.
   1278   static constexpr Register ireg = Register::from_code<5>();
   1279   emit_operand(ireg, Operand(esp));
   1280   emit(imm);
   1281 }
   1282 
   1283 void Assembler::test(Register reg, const Immediate& imm) {
   1284   if (imm.is_uint8()) {
   1285     test_b(reg, imm);
   1286     return;
   1287   }
   1288 
   1289   EnsureSpace ensure_space(this);
   1290   // This is not using emit_arith because test doesn't support
   1291   // sign-extension of 8-bit operands.
   1292   if (reg == eax) {
   1293     EMIT(0xA9);
   1294   } else {
   1295     EMIT(0xF7);
   1296     EMIT(0xC0 | reg.code());
   1297   }
   1298   emit(imm);
   1299 }
   1300 
   1301 void Assembler::test(Register reg, Operand op) {
   1302   EnsureSpace ensure_space(this);
   1303   EMIT(0x85);
   1304   emit_operand(reg, op);
   1305 }
   1306 
   1307 void Assembler::test_b(Register reg, Operand op) {
   1308   CHECK(reg.is_byte_register());
   1309   EnsureSpace ensure_space(this);
   1310   EMIT(0x84);
   1311   emit_operand(reg, op);
   1312 }
   1313 
   1314 void Assembler::test(Operand op, const Immediate& imm) {
   1315   if (op.is_reg_only()) {
   1316     test(op.reg(), imm);
   1317     return;
   1318   }
   1319   if (imm.is_uint8()) {
   1320     return test_b(op, imm);
   1321   }
   1322   EnsureSpace ensure_space(this);
   1323   EMIT(0xF7);
   1324   emit_operand(eax, op);
   1325   emit(imm);
   1326 }
   1327 
   1328 void Assembler::test_b(Register reg, Immediate imm8) {
   1329   DCHECK(imm8.is_uint8());
   1330   EnsureSpace ensure_space(this);
   1331   // Only use test against byte for registers that have a byte
   1332   // variant: eax, ebx, ecx, and edx.
   1333   if (reg == eax) {
   1334     EMIT(0xA8);
   1335     emit_b(imm8);
   1336   } else if (reg.is_byte_register()) {
   1337     emit_arith_b(0xF6, 0xC0, reg, static_cast<uint8_t>(imm8.immediate()));
   1338   } else {
   1339     EMIT(0x66);
   1340     EMIT(0xF7);
   1341     EMIT(0xC0 | reg.code());
   1342     emit_w(imm8);
   1343   }
   1344 }
   1345 
   1346 void Assembler::test_b(Operand op, Immediate imm8) {
   1347   if (op.is_reg_only()) {
   1348     test_b(op.reg(), imm8);
   1349     return;
   1350   }
   1351   EnsureSpace ensure_space(this);
   1352   EMIT(0xF6);
   1353   emit_operand(eax, op);
   1354   emit_b(imm8);
   1355 }
   1356 
   1357 void Assembler::test_w(Register reg, Immediate imm16) {
   1358   DCHECK(imm16.is_int16() || imm16.is_uint16());
   1359   EnsureSpace ensure_space(this);
   1360   if (reg == eax) {
   1361     EMIT(0xA9);
   1362     emit_w(imm16);
   1363   } else {
   1364     EMIT(0x66);
   1365     EMIT(0xF7);
   1366     EMIT(0xC0 | reg.code());
   1367     emit_w(imm16);
   1368   }
   1369 }
   1370 
   1371 void Assembler::test_w(Register reg, Operand op) {
   1372   EnsureSpace ensure_space(this);
   1373   EMIT(0x66);
   1374   EMIT(0x85);
   1375   emit_operand(reg, op);
   1376 }
   1377 
   1378 void Assembler::test_w(Operand op, Immediate imm16) {
   1379   DCHECK(imm16.is_int16() || imm16.is_uint16());
   1380   if (op.is_reg_only()) {
   1381     test_w(op.reg(), imm16);
   1382     return;
   1383   }
   1384   EnsureSpace ensure_space(this);
   1385   EMIT(0x66);
   1386   EMIT(0xF7);
   1387   emit_operand(eax, op);
   1388   emit_w(imm16);
   1389 }
   1390 
   1391 void Assembler::xor_(Register dst, int32_t imm32) {
   1392   EnsureSpace ensure_space(this);
   1393   emit_arith(6, Operand(dst), Immediate(imm32));
   1394 }
   1395 
   1396 void Assembler::xor_(Register dst, Operand src) {
   1397   EnsureSpace ensure_space(this);
   1398   EMIT(0x33);
   1399   emit_operand(dst, src);
   1400 }
   1401 
   1402 void Assembler::xor_(Operand dst, Register src) {
   1403   EnsureSpace ensure_space(this);
   1404   EMIT(0x31);
   1405   emit_operand(src, dst);
   1406 }
   1407 
   1408 void Assembler::xor_(Operand dst, const Immediate& x) {
   1409   EnsureSpace ensure_space(this);
   1410   emit_arith(6, dst, x);
   1411 }
   1412 
   1413 void Assembler::bswap(Register dst) {
   1414   EnsureSpace ensure_space(this);
   1415   EMIT(0x0F);
   1416   EMIT(0xC8 + dst.code());
   1417 }
   1418 
   1419 void Assembler::bt(Operand dst, Register src) {
   1420   EnsureSpace ensure_space(this);
   1421   EMIT(0x0F);
   1422   EMIT(0xA3);
   1423   emit_operand(src, dst);
   1424 }
   1425 
   1426 void Assembler::bts(Operand dst, Register src) {
   1427   EnsureSpace ensure_space(this);
   1428   EMIT(0x0F);
   1429   EMIT(0xAB);
   1430   emit_operand(src, dst);
   1431 }
   1432 
   1433 void Assembler::bsr(Register dst, Operand src) {
   1434   EnsureSpace ensure_space(this);
   1435   EMIT(0x0F);
   1436   EMIT(0xBD);
   1437   emit_operand(dst, src);
   1438 }
   1439 
   1440 void Assembler::bsf(Register dst, Operand src) {
   1441   EnsureSpace ensure_space(this);
   1442   EMIT(0x0F);
   1443   EMIT(0xBC);
   1444   emit_operand(dst, src);
   1445 }
   1446 
   1447 
   1448 void Assembler::hlt() {
   1449   EnsureSpace ensure_space(this);
   1450   EMIT(0xF4);
   1451 }
   1452 
   1453 
   1454 void Assembler::int3() {
   1455   EnsureSpace ensure_space(this);
   1456   EMIT(0xCC);
   1457 }
   1458 
   1459 
   1460 void Assembler::nop() {
   1461   EnsureSpace ensure_space(this);
   1462   EMIT(0x90);
   1463 }
   1464 
   1465 
   1466 void Assembler::ret(int imm16) {
   1467   EnsureSpace ensure_space(this);
   1468   DCHECK(is_uint16(imm16));
   1469   if (imm16 == 0) {
   1470     EMIT(0xC3);
   1471   } else {
   1472     EMIT(0xC2);
   1473     EMIT(imm16 & 0xFF);
   1474     EMIT((imm16 >> 8) & 0xFF);
   1475   }
   1476 }
   1477 
   1478 
   1479 void Assembler::ud2() {
   1480   EnsureSpace ensure_space(this);
   1481   EMIT(0x0F);
   1482   EMIT(0x0B);
   1483 }
   1484 
   1485 
   1486 // Labels refer to positions in the (to be) generated code.
   1487 // There are bound, linked, and unused labels.
   1488 //
   1489 // Bound labels refer to known positions in the already
   1490 // generated code. pos() is the position the label refers to.
   1491 //
   1492 // Linked labels refer to unknown positions in the code
   1493 // to be generated; pos() is the position of the 32bit
   1494 // Displacement of the last instruction using the label.
   1495 
   1496 void Assembler::print(const Label* L) {
   1497   if (L->is_unused()) {
   1498     PrintF("unused label\n");
   1499   } else if (L->is_bound()) {
   1500     PrintF("bound label to %d\n", L->pos());
   1501   } else if (L->is_linked()) {
   1502     Label l;
   1503     l.link_to(L->pos());
   1504     PrintF("unbound label");
   1505     while (l.is_linked()) {
   1506       Displacement disp = disp_at(&l);
   1507       PrintF("@ %d ", l.pos());
   1508       disp.print();
   1509       PrintF("\n");
   1510       disp.next(&l);
   1511     }
   1512   } else {
   1513     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
   1514   }
   1515 }
   1516 
   1517 
   1518 void Assembler::bind_to(Label* L, int pos) {
   1519   EnsureSpace ensure_space(this);
   1520   DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
   1521   while (L->is_linked()) {
   1522     Displacement disp = disp_at(L);
   1523     int fixup_pos = L->pos();
   1524     if (disp.type() == Displacement::CODE_ABSOLUTE) {
   1525       long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
   1526       internal_reference_positions_.push_back(fixup_pos);
   1527     } else if (disp.type() == Displacement::CODE_RELATIVE) {
   1528       // Relative to Code* heap object pointer.
   1529       long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
   1530     } else {
   1531       if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
   1532         DCHECK_EQ(byte_at(fixup_pos - 1), 0xE9);  // jmp expected
   1533       }
   1534       // Relative address, relative to point after address.
   1535       int imm32 = pos - (fixup_pos + sizeof(int32_t));
   1536       long_at_put(fixup_pos, imm32);
   1537     }
   1538     disp.next(L);
   1539   }
   1540   while (L->is_near_linked()) {
   1541     int fixup_pos = L->near_link_pos();
   1542     int offset_to_next =
   1543         static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
   1544     DCHECK_LE(offset_to_next, 0);
   1545     // Relative address, relative to point after address.
   1546     int disp = pos - fixup_pos - sizeof(int8_t);
   1547     CHECK(0 <= disp && disp <= 127);
   1548     set_byte_at(fixup_pos, disp);
   1549     if (offset_to_next < 0) {
   1550       L->link_to(fixup_pos + offset_to_next, Label::kNear);
   1551     } else {
   1552       L->UnuseNear();
   1553     }
   1554   }
   1555 
   1556   // Optimization stage
   1557   auto jump_opt = jump_optimization_info();
   1558   if (jump_opt && jump_opt->is_optimizing()) {
   1559     auto it = label_farjmp_maps_.find(L);
   1560     if (it != label_farjmp_maps_.end()) {
   1561       auto& pos_vector = it->second;
   1562       for (auto fixup_pos : pos_vector) {
   1563         int disp = pos - (fixup_pos + sizeof(int8_t));
   1564         CHECK(is_int8(disp));
   1565         set_byte_at(fixup_pos, disp);
   1566       }
   1567       label_farjmp_maps_.erase(it);
   1568     }
   1569   }
   1570   L->bind_to(pos);
   1571 }
   1572 
   1573 
   1574 void Assembler::bind(Label* L) {
   1575   EnsureSpace ensure_space(this);
   1576   DCHECK(!L->is_bound());  // label can only be bound once
   1577   bind_to(L, pc_offset());
   1578 }
   1579 
   1580 void Assembler::record_farjmp_position(Label* L, int pos) {
   1581   auto& pos_vector = label_farjmp_maps_[L];
   1582   pos_vector.push_back(pos);
   1583 }
   1584 
   1585 bool Assembler::is_optimizable_farjmp(int idx) {
   1586   if (predictable_code_size()) return false;
   1587 
   1588   auto jump_opt = jump_optimization_info();
   1589   CHECK(jump_opt->is_optimizing());
   1590 
   1591   auto& bitmap = jump_opt->farjmp_bitmap();
   1592   CHECK(idx < static_cast<int>(bitmap.size() * 32));
   1593   return !!(bitmap[idx / 32] & (1 << (idx & 31)));
   1594 }
   1595 
   1596 void Assembler::call(Label* L) {
   1597   EnsureSpace ensure_space(this);
   1598   if (L->is_bound()) {
   1599     const int long_size = 5;
   1600     int offs = L->pos() - pc_offset();
   1601     DCHECK_LE(offs, 0);
   1602     // 1110 1000 #32-bit disp.
   1603     EMIT(0xE8);
   1604     emit(offs - long_size);
   1605   } else {
   1606     // 1110 1000 #32-bit disp.
   1607     EMIT(0xE8);
   1608     emit_disp(L, Displacement::OTHER);
   1609   }
   1610 }
   1611 
   1612 void Assembler::call(Address entry, RelocInfo::Mode rmode) {
   1613   EnsureSpace ensure_space(this);
   1614   DCHECK(!RelocInfo::IsCodeTarget(rmode));
   1615   EMIT(0xE8);
   1616   if (RelocInfo::IsRuntimeEntry(rmode)) {
   1617     emit(entry, rmode);
   1618   } else {
   1619     emit(entry - (reinterpret_cast<Address>(pc_) + sizeof(int32_t)), rmode);
   1620   }
   1621 }
   1622 
   1623 void Assembler::wasm_call(Address entry, RelocInfo::Mode rmode) {
   1624   EnsureSpace ensure_space(this);
   1625   EMIT(0xE8);
   1626   emit(entry, rmode);
   1627 }
   1628 
   1629 void Assembler::call(Operand adr) {
   1630   EnsureSpace ensure_space(this);
   1631   EMIT(0xFF);
   1632   emit_operand(edx, adr);
   1633 }
   1634 
   1635 void Assembler::call(Handle<Code> code, RelocInfo::Mode rmode) {
   1636   EnsureSpace ensure_space(this);
   1637   DCHECK(RelocInfo::IsCodeTarget(rmode));
   1638   EMIT(0xE8);
   1639   emit(code, rmode);
   1640 }
   1641 
   1642 void Assembler::call(CodeStub* stub) {
   1643   EnsureSpace ensure_space(this);
   1644   EMIT(0xE8);
   1645   emit(Immediate::EmbeddedCode(stub));
   1646 }
   1647 
   1648 void Assembler::jmp_rel(int offset) {
   1649   EnsureSpace ensure_space(this);
   1650   const int short_size = 2;
   1651   const int long_size = 5;
   1652   if (is_int8(offset - short_size)) {
   1653     // 1110 1011 #8-bit disp.
   1654     EMIT(0xEB);
   1655     EMIT((offset - short_size) & 0xFF);
   1656   } else {
   1657     // 1110 1001 #32-bit disp.
   1658     EMIT(0xE9);
   1659     emit(offset - long_size);
   1660   }
   1661 }
   1662 
   1663 void Assembler::jmp(Label* L, Label::Distance distance) {
   1664   if (L->is_bound()) {
   1665     int offset = L->pos() - pc_offset();
   1666     DCHECK_LE(offset, 0);  // backward jump.
   1667     jmp_rel(offset);
   1668     return;
   1669   }
   1670 
   1671   EnsureSpace ensure_space(this);
   1672   if (distance == Label::kNear) {
   1673     EMIT(0xEB);
   1674     emit_near_disp(L);
   1675   } else {
   1676     auto jump_opt = jump_optimization_info();
   1677     if (V8_UNLIKELY(jump_opt)) {
   1678       if (jump_opt->is_optimizing() && is_optimizable_farjmp(farjmp_num_++)) {
   1679         EMIT(0xEB);
   1680         record_farjmp_position(L, pc_offset());
   1681         EMIT(0);
   1682         return;
   1683       }
   1684       if (jump_opt->is_collecting()) {
   1685         farjmp_positions_.push_back(pc_offset() + 1);
   1686       }
   1687     }
   1688     // 1110 1001 #32-bit disp.
   1689     EMIT(0xE9);
   1690     emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
   1691   }
   1692 }
   1693 
   1694 void Assembler::jmp(Address entry, RelocInfo::Mode rmode) {
   1695   EnsureSpace ensure_space(this);
   1696   DCHECK(!RelocInfo::IsCodeTarget(rmode));
   1697   EMIT(0xE9);
   1698   if (RelocInfo::IsRuntimeEntry(rmode)) {
   1699     emit(entry, rmode);
   1700   } else {
   1701     emit(entry - (reinterpret_cast<Address>(pc_) + sizeof(int32_t)), rmode);
   1702   }
   1703 }
   1704 
   1705 void Assembler::jmp(Operand adr) {
   1706   EnsureSpace ensure_space(this);
   1707   EMIT(0xFF);
   1708   emit_operand(esp, adr);
   1709 }
   1710 
   1711 
   1712 void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
   1713   EnsureSpace ensure_space(this);
   1714   DCHECK(RelocInfo::IsCodeTarget(rmode));
   1715   EMIT(0xE9);
   1716   emit(code, rmode);
   1717 }
   1718 
   1719 
   1720 void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
   1721   EnsureSpace ensure_space(this);
   1722   DCHECK(0 <= cc && static_cast<int>(cc) < 16);
   1723   if (L->is_bound()) {
   1724     const int short_size = 2;
   1725     const int long_size  = 6;
   1726     int offs = L->pos() - pc_offset();
   1727     DCHECK_LE(offs, 0);
   1728     if (is_int8(offs - short_size)) {
   1729       // 0111 tttn #8-bit disp
   1730       EMIT(0x70 | cc);
   1731       EMIT((offs - short_size) & 0xFF);
   1732     } else {
   1733       // 0000 1111 1000 tttn #32-bit disp
   1734       EMIT(0x0F);
   1735       EMIT(0x80 | cc);
   1736       emit(offs - long_size);
   1737     }
   1738   } else if (distance == Label::kNear) {
   1739     EMIT(0x70 | cc);
   1740     emit_near_disp(L);
   1741   } else {
   1742     auto jump_opt = jump_optimization_info();
   1743     if (V8_UNLIKELY(jump_opt)) {
   1744       if (jump_opt->is_optimizing() && is_optimizable_farjmp(farjmp_num_++)) {
   1745         // 0111 tttn #8-bit disp
   1746         EMIT(0x70 | cc);
   1747         record_farjmp_position(L, pc_offset());
   1748         EMIT(0);
   1749         return;
   1750       }
   1751       if (jump_opt->is_collecting()) {
   1752         farjmp_positions_.push_back(pc_offset() + 2);
   1753       }
   1754     }
   1755     // 0000 1111 1000 tttn #32-bit disp
   1756     // Note: could eliminate cond. jumps to this jump if condition
   1757     //       is the same however, seems to be rather unlikely case.
   1758     EMIT(0x0F);
   1759     EMIT(0x80 | cc);
   1760     emit_disp(L, Displacement::OTHER);
   1761   }
   1762 }
   1763 
   1764 
   1765 void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
   1766   EnsureSpace ensure_space(this);
   1767   DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
   1768   // 0000 1111 1000 tttn #32-bit disp.
   1769   EMIT(0x0F);
   1770   EMIT(0x80 | cc);
   1771   if (RelocInfo::IsRuntimeEntry(rmode)) {
   1772     emit(reinterpret_cast<uint32_t>(entry), rmode);
   1773   } else {
   1774     emit(entry - (pc_ + sizeof(int32_t)), rmode);
   1775   }
   1776 }
   1777 
   1778 
   1779 void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
   1780   EnsureSpace ensure_space(this);
   1781   // 0000 1111 1000 tttn #32-bit disp
   1782   EMIT(0x0F);
   1783   EMIT(0x80 | cc);
   1784   emit(code, rmode);
   1785 }
   1786 
   1787 
   1788 // FPU instructions.
   1789 
   1790 void Assembler::fld(int i) {
   1791   EnsureSpace ensure_space(this);
   1792   emit_farith(0xD9, 0xC0, i);
   1793 }
   1794 
   1795 
   1796 void Assembler::fstp(int i) {
   1797   EnsureSpace ensure_space(this);
   1798   emit_farith(0xDD, 0xD8, i);
   1799 }
   1800 
   1801 
   1802 void Assembler::fld1() {
   1803   EnsureSpace ensure_space(this);
   1804   EMIT(0xD9);
   1805   EMIT(0xE8);
   1806 }
   1807 
   1808 
   1809 void Assembler::fldpi() {
   1810   EnsureSpace ensure_space(this);
   1811   EMIT(0xD9);
   1812   EMIT(0xEB);
   1813 }
   1814 
   1815 
   1816 void Assembler::fldz() {
   1817   EnsureSpace ensure_space(this);
   1818   EMIT(0xD9);
   1819   EMIT(0xEE);
   1820 }
   1821 
   1822 
   1823 void Assembler::fldln2() {
   1824   EnsureSpace ensure_space(this);
   1825   EMIT(0xD9);
   1826   EMIT(0xED);
   1827 }
   1828 
   1829 void Assembler::fld_s(Operand adr) {
   1830   EnsureSpace ensure_space(this);
   1831   EMIT(0xD9);
   1832   emit_operand(eax, adr);
   1833 }
   1834 
   1835 void Assembler::fld_d(Operand adr) {
   1836   EnsureSpace ensure_space(this);
   1837   EMIT(0xDD);
   1838   emit_operand(eax, adr);
   1839 }
   1840 
   1841 void Assembler::fstp_s(Operand adr) {
   1842   EnsureSpace ensure_space(this);
   1843   EMIT(0xD9);
   1844   emit_operand(ebx, adr);
   1845 }
   1846 
   1847 void Assembler::fst_s(Operand adr) {
   1848   EnsureSpace ensure_space(this);
   1849   EMIT(0xD9);
   1850   emit_operand(edx, adr);
   1851 }
   1852 
   1853 void Assembler::fstp_d(Operand adr) {
   1854   EnsureSpace ensure_space(this);
   1855   EMIT(0xDD);
   1856   emit_operand(ebx, adr);
   1857 }
   1858 
   1859 void Assembler::fst_d(Operand adr) {
   1860   EnsureSpace ensure_space(this);
   1861   EMIT(0xDD);
   1862   emit_operand(edx, adr);
   1863 }
   1864 
   1865 void Assembler::fild_s(Operand adr) {
   1866   EnsureSpace ensure_space(this);
   1867   EMIT(0xDB);
   1868   emit_operand(eax, adr);
   1869 }
   1870 
   1871 void Assembler::fild_d(Operand adr) {
   1872   EnsureSpace ensure_space(this);
   1873   EMIT(0xDF);
   1874   emit_operand(ebp, adr);
   1875 }
   1876 
   1877 void Assembler::fistp_s(Operand adr) {
   1878   EnsureSpace ensure_space(this);
   1879   EMIT(0xDB);
   1880   emit_operand(ebx, adr);
   1881 }
   1882 
   1883 void Assembler::fisttp_s(Operand adr) {
   1884   DCHECK(IsEnabled(SSE3));
   1885   EnsureSpace ensure_space(this);
   1886   EMIT(0xDB);
   1887   emit_operand(ecx, adr);
   1888 }
   1889 
   1890 void Assembler::fisttp_d(Operand adr) {
   1891   DCHECK(IsEnabled(SSE3));
   1892   EnsureSpace ensure_space(this);
   1893   EMIT(0xDD);
   1894   emit_operand(ecx, adr);
   1895 }
   1896 
   1897 void Assembler::fist_s(Operand adr) {
   1898   EnsureSpace ensure_space(this);
   1899   EMIT(0xDB);
   1900   emit_operand(edx, adr);
   1901 }
   1902 
   1903 void Assembler::fistp_d(Operand adr) {
   1904   EnsureSpace ensure_space(this);
   1905   EMIT(0xDF);
   1906   emit_operand(edi, adr);
   1907 }
   1908 
   1909 
   1910 void Assembler::fabs() {
   1911   EnsureSpace ensure_space(this);
   1912   EMIT(0xD9);
   1913   EMIT(0xE1);
   1914 }
   1915 
   1916 
   1917 void Assembler::fchs() {
   1918   EnsureSpace ensure_space(this);
   1919   EMIT(0xD9);
   1920   EMIT(0xE0);
   1921 }
   1922 
   1923 
   1924 void Assembler::fcos() {
   1925   EnsureSpace ensure_space(this);
   1926   EMIT(0xD9);
   1927   EMIT(0xFF);
   1928 }
   1929 
   1930 
   1931 void Assembler::fsin() {
   1932   EnsureSpace ensure_space(this);
   1933   EMIT(0xD9);
   1934   EMIT(0xFE);
   1935 }
   1936 
   1937 
   1938 void Assembler::fptan() {
   1939   EnsureSpace ensure_space(this);
   1940   EMIT(0xD9);
   1941   EMIT(0xF2);
   1942 }
   1943 
   1944 
   1945 void Assembler::fyl2x() {
   1946   EnsureSpace ensure_space(this);
   1947   EMIT(0xD9);
   1948   EMIT(0xF1);
   1949 }
   1950 
   1951 
   1952 void Assembler::f2xm1() {
   1953   EnsureSpace ensure_space(this);
   1954   EMIT(0xD9);
   1955   EMIT(0xF0);
   1956 }
   1957 
   1958 
   1959 void Assembler::fscale() {
   1960   EnsureSpace ensure_space(this);
   1961   EMIT(0xD9);
   1962   EMIT(0xFD);
   1963 }
   1964 
   1965 
   1966 void Assembler::fninit() {
   1967   EnsureSpace ensure_space(this);
   1968   EMIT(0xDB);
   1969   EMIT(0xE3);
   1970 }
   1971 
   1972 
   1973 void Assembler::fadd(int i) {
   1974   EnsureSpace ensure_space(this);
   1975   emit_farith(0xDC, 0xC0, i);
   1976 }
   1977 
   1978 
   1979 void Assembler::fadd_i(int i) {
   1980   EnsureSpace ensure_space(this);
   1981   emit_farith(0xD8, 0xC0, i);
   1982 }
   1983 
   1984 
   1985 void Assembler::fsub(int i) {
   1986   EnsureSpace ensure_space(this);
   1987   emit_farith(0xDC, 0xE8, i);
   1988 }
   1989 
   1990 
   1991 void Assembler::fsub_i(int i) {
   1992   EnsureSpace ensure_space(this);
   1993   emit_farith(0xD8, 0xE0, i);
   1994 }
   1995 
   1996 void Assembler::fisub_s(Operand adr) {
   1997   EnsureSpace ensure_space(this);
   1998   EMIT(0xDA);
   1999   emit_operand(esp, adr);
   2000 }
   2001 
   2002 
   2003 void Assembler::fmul_i(int i) {
   2004   EnsureSpace ensure_space(this);
   2005   emit_farith(0xD8, 0xC8, i);
   2006 }
   2007 
   2008 
   2009 void Assembler::fmul(int i) {
   2010   EnsureSpace ensure_space(this);
   2011   emit_farith(0xDC, 0xC8, i);
   2012 }
   2013 
   2014 
   2015 void Assembler::fdiv(int i) {
   2016   EnsureSpace ensure_space(this);
   2017   emit_farith(0xDC, 0xF8, i);
   2018 }
   2019 
   2020 
   2021 void Assembler::fdiv_i(int i) {
   2022   EnsureSpace ensure_space(this);
   2023   emit_farith(0xD8, 0xF0, i);
   2024 }
   2025 
   2026 
   2027 void Assembler::faddp(int i) {
   2028   EnsureSpace ensure_space(this);
   2029   emit_farith(0xDE, 0xC0, i);
   2030 }
   2031 
   2032 
   2033 void Assembler::fsubp(int i) {
   2034   EnsureSpace ensure_space(this);
   2035   emit_farith(0xDE, 0xE8, i);
   2036 }
   2037 
   2038 
   2039 void Assembler::fsubrp(int i) {
   2040   EnsureSpace ensure_space(this);
   2041   emit_farith(0xDE, 0xE0, i);
   2042 }
   2043 
   2044 
   2045 void Assembler::fmulp(int i) {
   2046   EnsureSpace ensure_space(this);
   2047   emit_farith(0xDE, 0xC8, i);
   2048 }
   2049 
   2050 
   2051 void Assembler::fdivp(int i) {
   2052   EnsureSpace ensure_space(this);
   2053   emit_farith(0xDE, 0xF8, i);
   2054 }
   2055 
   2056 
   2057 void Assembler::fprem() {
   2058   EnsureSpace ensure_space(this);
   2059   EMIT(0xD9);
   2060   EMIT(0xF8);
   2061 }
   2062 
   2063 
   2064 void Assembler::fprem1() {
   2065   EnsureSpace ensure_space(this);
   2066   EMIT(0xD9);
   2067   EMIT(0xF5);
   2068 }
   2069 
   2070 
   2071 void Assembler::fxch(int i) {
   2072   EnsureSpace ensure_space(this);
   2073   emit_farith(0xD9, 0xC8, i);
   2074 }
   2075 
   2076 
   2077 void Assembler::fincstp() {
   2078   EnsureSpace ensure_space(this);
   2079   EMIT(0xD9);
   2080   EMIT(0xF7);
   2081 }
   2082 
   2083 
   2084 void Assembler::ffree(int i) {
   2085   EnsureSpace ensure_space(this);
   2086   emit_farith(0xDD, 0xC0, i);
   2087 }
   2088 
   2089 
   2090 void Assembler::ftst() {
   2091   EnsureSpace ensure_space(this);
   2092   EMIT(0xD9);
   2093   EMIT(0xE4);
   2094 }
   2095 
   2096 
   2097 void Assembler::fucomp(int i) {
   2098   EnsureSpace ensure_space(this);
   2099   emit_farith(0xDD, 0xE8, i);
   2100 }
   2101 
   2102 
   2103 void Assembler::fucompp() {
   2104   EnsureSpace ensure_space(this);
   2105   EMIT(0xDA);
   2106   EMIT(0xE9);
   2107 }
   2108 
   2109 
   2110 void Assembler::fucomi(int i) {
   2111   EnsureSpace ensure_space(this);
   2112   EMIT(0xDB);
   2113   EMIT(0xE8 + i);
   2114 }
   2115 
   2116 
   2117 void Assembler::fucomip() {
   2118   EnsureSpace ensure_space(this);
   2119   EMIT(0xDF);
   2120   EMIT(0xE9);
   2121 }
   2122 
   2123 
   2124 void Assembler::fcompp() {
   2125   EnsureSpace ensure_space(this);
   2126   EMIT(0xDE);
   2127   EMIT(0xD9);
   2128 }
   2129 
   2130 
   2131 void Assembler::fnstsw_ax() {
   2132   EnsureSpace ensure_space(this);
   2133   EMIT(0xDF);
   2134   EMIT(0xE0);
   2135 }
   2136 
   2137 
   2138 void Assembler::fwait() {
   2139   EnsureSpace ensure_space(this);
   2140   EMIT(0x9B);
   2141 }
   2142 
   2143 
   2144 void Assembler::frndint() {
   2145   EnsureSpace ensure_space(this);
   2146   EMIT(0xD9);
   2147   EMIT(0xFC);
   2148 }
   2149 
   2150 
   2151 void Assembler::fnclex() {
   2152   EnsureSpace ensure_space(this);
   2153   EMIT(0xDB);
   2154   EMIT(0xE2);
   2155 }
   2156 
   2157 
   2158 void Assembler::sahf() {
   2159   EnsureSpace ensure_space(this);
   2160   EMIT(0x9E);
   2161 }
   2162 
   2163 
   2164 void Assembler::setcc(Condition cc, Register reg) {
   2165   DCHECK(reg.is_byte_register());
   2166   EnsureSpace ensure_space(this);
   2167   EMIT(0x0F);
   2168   EMIT(0x90 | cc);
   2169   EMIT(0xC0 | reg.code());
   2170 }
   2171 
   2172 void Assembler::cvttss2si(Register dst, Operand src) {
   2173   EnsureSpace ensure_space(this);
   2174   EMIT(0xF3);
   2175   EMIT(0x0F);
   2176   EMIT(0x2C);
   2177   emit_operand(dst, src);
   2178 }
   2179 
   2180 void Assembler::cvttsd2si(Register dst, Operand src) {
   2181   EnsureSpace ensure_space(this);
   2182   EMIT(0xF2);
   2183   EMIT(0x0F);
   2184   EMIT(0x2C);
   2185   emit_operand(dst, src);
   2186 }
   2187 
   2188 
   2189 void Assembler::cvtsd2si(Register dst, XMMRegister src) {
   2190   EnsureSpace ensure_space(this);
   2191   EMIT(0xF2);
   2192   EMIT(0x0F);
   2193   EMIT(0x2D);
   2194   emit_sse_operand(dst, src);
   2195 }
   2196 
   2197 void Assembler::cvtsi2ss(XMMRegister dst, Operand src) {
   2198   EnsureSpace ensure_space(this);
   2199   EMIT(0xF3);
   2200   EMIT(0x0F);
   2201   EMIT(0x2A);
   2202   emit_sse_operand(dst, src);
   2203 }
   2204 
   2205 void Assembler::cvtsi2sd(XMMRegister dst, Operand src) {
   2206   EnsureSpace ensure_space(this);
   2207   EMIT(0xF2);
   2208   EMIT(0x0F);
   2209   EMIT(0x2A);
   2210   emit_sse_operand(dst, src);
   2211 }
   2212 
   2213 void Assembler::cvtss2sd(XMMRegister dst, Operand src) {
   2214   EnsureSpace ensure_space(this);
   2215   EMIT(0xF3);
   2216   EMIT(0x0F);
   2217   EMIT(0x5A);
   2218   emit_sse_operand(dst, src);
   2219 }
   2220 
   2221 void Assembler::cvtsd2ss(XMMRegister dst, Operand src) {
   2222   EnsureSpace ensure_space(this);
   2223   EMIT(0xF2);
   2224   EMIT(0x0F);
   2225   EMIT(0x5A);
   2226   emit_sse_operand(dst, src);
   2227 }
   2228 
   2229 void Assembler::cvtdq2ps(XMMRegister dst, Operand src) {
   2230   EnsureSpace ensure_space(this);
   2231   EMIT(0x0F);
   2232   EMIT(0x5B);
   2233   emit_sse_operand(dst, src);
   2234 }
   2235 
   2236 void Assembler::cvttps2dq(XMMRegister dst, Operand src) {
   2237   EnsureSpace ensure_space(this);
   2238   EMIT(0xF3);
   2239   EMIT(0x0F);
   2240   EMIT(0x5B);
   2241   emit_sse_operand(dst, src);
   2242 }
   2243 
   2244 void Assembler::addsd(XMMRegister dst, Operand src) {
   2245   EnsureSpace ensure_space(this);
   2246   EMIT(0xF2);
   2247   EMIT(0x0F);
   2248   EMIT(0x58);
   2249   emit_sse_operand(dst, src);
   2250 }
   2251 
   2252 void Assembler::mulsd(XMMRegister dst, Operand src) {
   2253   EnsureSpace ensure_space(this);
   2254   EMIT(0xF2);
   2255   EMIT(0x0F);
   2256   EMIT(0x59);
   2257   emit_sse_operand(dst, src);
   2258 }
   2259 
   2260 void Assembler::subsd(XMMRegister dst, Operand src) {
   2261   EnsureSpace ensure_space(this);
   2262   EMIT(0xF2);
   2263   EMIT(0x0F);
   2264   EMIT(0x5C);
   2265   emit_sse_operand(dst, src);
   2266 }
   2267 
   2268 void Assembler::divsd(XMMRegister dst, Operand src) {
   2269   EnsureSpace ensure_space(this);
   2270   EMIT(0xF2);
   2271   EMIT(0x0F);
   2272   EMIT(0x5E);
   2273   emit_sse_operand(dst, src);
   2274 }
   2275 
   2276 void Assembler::xorpd(XMMRegister dst, Operand src) {
   2277   EnsureSpace ensure_space(this);
   2278   EMIT(0x66);
   2279   EMIT(0x0F);
   2280   EMIT(0x57);
   2281   emit_sse_operand(dst, src);
   2282 }
   2283 
   2284 void Assembler::andps(XMMRegister dst, Operand src) {
   2285   EnsureSpace ensure_space(this);
   2286   EMIT(0x0F);
   2287   EMIT(0x54);
   2288   emit_sse_operand(dst, src);
   2289 }
   2290 
   2291 void Assembler::orps(XMMRegister dst, Operand src) {
   2292   EnsureSpace ensure_space(this);
   2293   EMIT(0x0F);
   2294   EMIT(0x56);
   2295   emit_sse_operand(dst, src);
   2296 }
   2297 
   2298 void Assembler::xorps(XMMRegister dst, Operand src) {
   2299   EnsureSpace ensure_space(this);
   2300   EMIT(0x0F);
   2301   EMIT(0x57);
   2302   emit_sse_operand(dst, src);
   2303 }
   2304 
   2305 void Assembler::addps(XMMRegister dst, Operand src) {
   2306   EnsureSpace ensure_space(this);
   2307   EMIT(0x0F);
   2308   EMIT(0x58);
   2309   emit_sse_operand(dst, src);
   2310 }
   2311 
   2312 void Assembler::subps(XMMRegister dst, Operand src) {
   2313   EnsureSpace ensure_space(this);
   2314   EMIT(0x0F);
   2315   EMIT(0x5C);
   2316   emit_sse_operand(dst, src);
   2317 }
   2318 
   2319 void Assembler::mulps(XMMRegister dst, Operand src) {
   2320   EnsureSpace ensure_space(this);
   2321   EMIT(0x0F);
   2322   EMIT(0x59);
   2323   emit_sse_operand(dst, src);
   2324 }
   2325 
   2326 void Assembler::divps(XMMRegister dst, Operand src) {
   2327   EnsureSpace ensure_space(this);
   2328   EMIT(0x0F);
   2329   EMIT(0x5E);
   2330   emit_sse_operand(dst, src);
   2331 }
   2332 
   2333 void Assembler::rcpps(XMMRegister dst, Operand src) {
   2334   EnsureSpace ensure_space(this);
   2335   EMIT(0x0F);
   2336   EMIT(0x53);
   2337   emit_sse_operand(dst, src);
   2338 }
   2339 
   2340 void Assembler::rsqrtps(XMMRegister dst, Operand src) {
   2341   EnsureSpace ensure_space(this);
   2342   EMIT(0x0F);
   2343   EMIT(0x52);
   2344   emit_sse_operand(dst, src);
   2345 }
   2346 
   2347 void Assembler::minps(XMMRegister dst, Operand src) {
   2348   EnsureSpace ensure_space(this);
   2349   EMIT(0x0F);
   2350   EMIT(0x5D);
   2351   emit_sse_operand(dst, src);
   2352 }
   2353 
   2354 void Assembler::maxps(XMMRegister dst, Operand src) {
   2355   EnsureSpace ensure_space(this);
   2356   EMIT(0x0F);
   2357   EMIT(0x5F);
   2358   emit_sse_operand(dst, src);
   2359 }
   2360 
   2361 void Assembler::cmpps(XMMRegister dst, Operand src, int8_t cmp) {
   2362   EnsureSpace ensure_space(this);
   2363   EMIT(0x0F);
   2364   EMIT(0xC2);
   2365   emit_sse_operand(dst, src);
   2366   EMIT(cmp);
   2367 }
   2368 
   2369 void Assembler::sqrtsd(XMMRegister dst, Operand src) {
   2370   EnsureSpace ensure_space(this);
   2371   EMIT(0xF2);
   2372   EMIT(0x0F);
   2373   EMIT(0x51);
   2374   emit_sse_operand(dst, src);
   2375 }
   2376 
   2377 void Assembler::haddps(XMMRegister dst, Operand src) {
   2378   DCHECK(IsEnabled(SSE3));
   2379   EnsureSpace ensure_space(this);
   2380   EMIT(0xF2);
   2381   EMIT(0x0F);
   2382   EMIT(0x7C);
   2383   emit_sse_operand(dst, src);
   2384 }
   2385 
   2386 void Assembler::andpd(XMMRegister dst, Operand src) {
   2387   EnsureSpace ensure_space(this);
   2388   EMIT(0x66);
   2389   EMIT(0x0F);
   2390   EMIT(0x54);
   2391   emit_sse_operand(dst, src);
   2392 }
   2393 
   2394 void Assembler::orpd(XMMRegister dst, Operand src) {
   2395   EnsureSpace ensure_space(this);
   2396   EMIT(0x66);
   2397   EMIT(0x0F);
   2398   EMIT(0x56);
   2399   emit_sse_operand(dst, src);
   2400 }
   2401 
   2402 void Assembler::ucomisd(XMMRegister dst, Operand src) {
   2403   EnsureSpace ensure_space(this);
   2404   EMIT(0x66);
   2405   EMIT(0x0F);
   2406   EMIT(0x2E);
   2407   emit_sse_operand(dst, src);
   2408 }
   2409 
   2410 
   2411 void Assembler::roundss(XMMRegister dst, XMMRegister src, RoundingMode mode) {
   2412   DCHECK(IsEnabled(SSE4_1));
   2413   EnsureSpace ensure_space(this);
   2414   EMIT(0x66);
   2415   EMIT(0x0F);
   2416   EMIT(0x3A);
   2417   EMIT(0x0A);
   2418   emit_sse_operand(dst, src);
   2419   // Mask precision exeption.
   2420   EMIT(static_cast<byte>(mode) | 0x8);
   2421 }
   2422 
   2423 
   2424 void Assembler::roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
   2425   DCHECK(IsEnabled(SSE4_1));
   2426   EnsureSpace ensure_space(this);
   2427   EMIT(0x66);
   2428   EMIT(0x0F);
   2429   EMIT(0x3A);
   2430   EMIT(0x0B);
   2431   emit_sse_operand(dst, src);
   2432   // Mask precision exeption.
   2433   EMIT(static_cast<byte>(mode) | 0x8);
   2434 }
   2435 
   2436 
   2437 void Assembler::movmskpd(Register dst, XMMRegister src) {
   2438   EnsureSpace ensure_space(this);
   2439   EMIT(0x66);
   2440   EMIT(0x0F);
   2441   EMIT(0x50);
   2442   emit_sse_operand(dst, src);
   2443 }
   2444 
   2445 
   2446 void Assembler::movmskps(Register dst, XMMRegister src) {
   2447   EnsureSpace ensure_space(this);
   2448   EMIT(0x0F);
   2449   EMIT(0x50);
   2450   emit_sse_operand(dst, src);
   2451 }
   2452 
   2453 void Assembler::maxsd(XMMRegister dst, Operand src) {
   2454   EnsureSpace ensure_space(this);
   2455   EMIT(0xF2);
   2456   EMIT(0x0F);
   2457   EMIT(0x5F);
   2458   emit_sse_operand(dst, src);
   2459 }
   2460 
   2461 void Assembler::minsd(XMMRegister dst, Operand src) {
   2462   EnsureSpace ensure_space(this);
   2463   EMIT(0xF2);
   2464   EMIT(0x0F);
   2465   EMIT(0x5D);
   2466   emit_sse_operand(dst, src);
   2467 }
   2468 
   2469 
   2470 void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) {
   2471   EnsureSpace ensure_space(this);
   2472   EMIT(0xF2);
   2473   EMIT(0x0F);
   2474   EMIT(0xC2);
   2475   emit_sse_operand(dst, src);
   2476   EMIT(1);  // LT == 1
   2477 }
   2478 
   2479 
   2480 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
   2481   EnsureSpace ensure_space(this);
   2482   EMIT(0x0F);
   2483   EMIT(0x28);
   2484   emit_sse_operand(dst, src);
   2485 }
   2486 
   2487 void Assembler::movups(XMMRegister dst, XMMRegister src) {
   2488   EnsureSpace ensure_space(this);
   2489   EMIT(0x0F);
   2490   EMIT(0x10);
   2491   emit_sse_operand(dst, src);
   2492 }
   2493 
   2494 void Assembler::movups(XMMRegister dst, Operand src) {
   2495   EnsureSpace ensure_space(this);
   2496   EMIT(0x0F);
   2497   EMIT(0x10);
   2498   emit_sse_operand(dst, src);
   2499 }
   2500 
   2501 void Assembler::movups(Operand dst, XMMRegister src) {
   2502   EnsureSpace ensure_space(this);
   2503   EMIT(0x0F);
   2504   EMIT(0x11);
   2505   emit_sse_operand(src, dst);
   2506 }
   2507 
   2508 void Assembler::shufps(XMMRegister dst, XMMRegister src, byte imm8) {
   2509   DCHECK(is_uint8(imm8));
   2510   EnsureSpace ensure_space(this);
   2511   EMIT(0x0F);
   2512   EMIT(0xC6);
   2513   emit_sse_operand(dst, src);
   2514   EMIT(imm8);
   2515 }
   2516 
   2517 void Assembler::movdqa(Operand dst, XMMRegister src) {
   2518   EnsureSpace ensure_space(this);
   2519   EMIT(0x66);
   2520   EMIT(0x0F);
   2521   EMIT(0x7F);
   2522   emit_sse_operand(src, dst);
   2523 }
   2524 
   2525 void Assembler::movdqa(XMMRegister dst, Operand src) {
   2526   EnsureSpace ensure_space(this);
   2527   EMIT(0x66);
   2528   EMIT(0x0F);
   2529   EMIT(0x6F);
   2530   emit_sse_operand(dst, src);
   2531 }
   2532 
   2533 void Assembler::movdqu(Operand dst, XMMRegister src) {
   2534   EnsureSpace ensure_space(this);
   2535   EMIT(0xF3);
   2536   EMIT(0x0F);
   2537   EMIT(0x7F);
   2538   emit_sse_operand(src, dst);
   2539 }
   2540 
   2541 void Assembler::movdqu(XMMRegister dst, Operand src) {
   2542   EnsureSpace ensure_space(this);
   2543   EMIT(0xF3);
   2544   EMIT(0x0F);
   2545   EMIT(0x6F);
   2546   emit_sse_operand(dst, src);
   2547 }
   2548 
   2549 void Assembler::prefetch(Operand src, int level) {
   2550   DCHECK(is_uint2(level));
   2551   EnsureSpace ensure_space(this);
   2552   EMIT(0x0F);
   2553   EMIT(0x18);
   2554   // Emit hint number in Reg position of RegR/M.
   2555   XMMRegister code = XMMRegister::from_code(level);
   2556   emit_sse_operand(code, src);
   2557 }
   2558 
   2559 void Assembler::movsd(Operand dst, XMMRegister src) {
   2560   EnsureSpace ensure_space(this);
   2561   EMIT(0xF2);  // double
   2562   EMIT(0x0F);
   2563   EMIT(0x11);  // store
   2564   emit_sse_operand(src, dst);
   2565 }
   2566 
   2567 void Assembler::movsd(XMMRegister dst, Operand src) {
   2568   EnsureSpace ensure_space(this);
   2569   EMIT(0xF2);  // double
   2570   EMIT(0x0F);
   2571   EMIT(0x10);  // load
   2572   emit_sse_operand(dst, src);
   2573 }
   2574 
   2575 void Assembler::movss(Operand dst, XMMRegister src) {
   2576   EnsureSpace ensure_space(this);
   2577   EMIT(0xF3);  // float
   2578   EMIT(0x0F);
   2579   EMIT(0x11);  // store
   2580   emit_sse_operand(src, dst);
   2581 }
   2582 
   2583 void Assembler::movss(XMMRegister dst, Operand src) {
   2584   EnsureSpace ensure_space(this);
   2585   EMIT(0xF3);  // float
   2586   EMIT(0x0F);
   2587   EMIT(0x10);  // load
   2588   emit_sse_operand(dst, src);
   2589 }
   2590 
   2591 void Assembler::movd(XMMRegister dst, Operand src) {
   2592   EnsureSpace ensure_space(this);
   2593   EMIT(0x66);
   2594   EMIT(0x0F);
   2595   EMIT(0x6E);
   2596   emit_sse_operand(dst, src);
   2597 }
   2598 
   2599 void Assembler::movd(Operand dst, XMMRegister src) {
   2600   EnsureSpace ensure_space(this);
   2601   EMIT(0x66);
   2602   EMIT(0x0F);
   2603   EMIT(0x7E);
   2604   emit_sse_operand(src, dst);
   2605 }
   2606 
   2607 
   2608 void Assembler::extractps(Register dst, XMMRegister src, byte imm8) {
   2609   DCHECK(IsEnabled(SSE4_1));
   2610   DCHECK(is_uint8(imm8));
   2611   EnsureSpace ensure_space(this);
   2612   EMIT(0x66);
   2613   EMIT(0x0F);
   2614   EMIT(0x3A);
   2615   EMIT(0x17);
   2616   emit_sse_operand(src, dst);
   2617   EMIT(imm8);
   2618 }
   2619 
   2620 void Assembler::psllw(XMMRegister reg, int8_t shift) {
   2621   EnsureSpace ensure_space(this);
   2622   EMIT(0x66);
   2623   EMIT(0x0F);
   2624   EMIT(0x71);
   2625   emit_sse_operand(esi, reg);  // esi == 6
   2626   EMIT(shift);
   2627 }
   2628 
   2629 void Assembler::pslld(XMMRegister reg, int8_t shift) {
   2630   EnsureSpace ensure_space(this);
   2631   EMIT(0x66);
   2632   EMIT(0x0F);
   2633   EMIT(0x72);
   2634   emit_sse_operand(esi, reg);  // esi == 6
   2635   EMIT(shift);
   2636 }
   2637 
   2638 void Assembler::psrlw(XMMRegister reg, int8_t shift) {
   2639   EnsureSpace ensure_space(this);
   2640   EMIT(0x66);
   2641   EMIT(0x0F);
   2642   EMIT(0x71);
   2643   emit_sse_operand(edx, reg);  // edx == 2
   2644   EMIT(shift);
   2645 }
   2646 
   2647 void Assembler::psrld(XMMRegister reg, int8_t shift) {
   2648   EnsureSpace ensure_space(this);
   2649   EMIT(0x66);
   2650   EMIT(0x0F);
   2651   EMIT(0x72);
   2652   emit_sse_operand(edx, reg);  // edx == 2
   2653   EMIT(shift);
   2654 }
   2655 
   2656 void Assembler::psraw(XMMRegister reg, int8_t shift) {
   2657   EnsureSpace ensure_space(this);
   2658   EMIT(0x66);
   2659   EMIT(0x0F);
   2660   EMIT(0x71);
   2661   emit_sse_operand(esp, reg);  // esp == 4
   2662   EMIT(shift);
   2663 }
   2664 
   2665 void Assembler::psrad(XMMRegister reg, int8_t shift) {
   2666   EnsureSpace ensure_space(this);
   2667   EMIT(0x66);
   2668   EMIT(0x0F);
   2669   EMIT(0x72);
   2670   emit_sse_operand(esp, reg);  // esp == 4
   2671   EMIT(shift);
   2672 }
   2673 
   2674 void Assembler::psllq(XMMRegister reg, int8_t shift) {
   2675   EnsureSpace ensure_space(this);
   2676   EMIT(0x66);
   2677   EMIT(0x0F);
   2678   EMIT(0x73);
   2679   emit_sse_operand(esi, reg);  // esi == 6
   2680   EMIT(shift);
   2681 }
   2682 
   2683 
   2684 void Assembler::psllq(XMMRegister dst, XMMRegister src) {
   2685   EnsureSpace ensure_space(this);
   2686   EMIT(0x66);
   2687   EMIT(0x0F);
   2688   EMIT(0xF3);
   2689   emit_sse_operand(dst, src);
   2690 }
   2691 
   2692 
   2693 void Assembler::psrlq(XMMRegister reg, int8_t shift) {
   2694   EnsureSpace ensure_space(this);
   2695   EMIT(0x66);
   2696   EMIT(0x0F);
   2697   EMIT(0x73);
   2698   emit_sse_operand(edx, reg);  // edx == 2
   2699   EMIT(shift);
   2700 }
   2701 
   2702 
   2703 void Assembler::psrlq(XMMRegister dst, XMMRegister src) {
   2704   EnsureSpace ensure_space(this);
   2705   EMIT(0x66);
   2706   EMIT(0x0F);
   2707   EMIT(0xD3);
   2708   emit_sse_operand(dst, src);
   2709 }
   2710 
   2711 void Assembler::pshufhw(XMMRegister dst, Operand src, uint8_t shuffle) {
   2712   EnsureSpace ensure_space(this);
   2713   EMIT(0xF3);
   2714   EMIT(0x0F);
   2715   EMIT(0x70);
   2716   emit_sse_operand(dst, src);
   2717   EMIT(shuffle);
   2718 }
   2719 
   2720 void Assembler::pshuflw(XMMRegister dst, Operand src, uint8_t shuffle) {
   2721   EnsureSpace ensure_space(this);
   2722   EMIT(0xF2);
   2723   EMIT(0x0F);
   2724   EMIT(0x70);
   2725   emit_sse_operand(dst, src);
   2726   EMIT(shuffle);
   2727 }
   2728 
   2729 void Assembler::pshufd(XMMRegister dst, Operand src, uint8_t shuffle) {
   2730   EnsureSpace ensure_space(this);
   2731   EMIT(0x66);
   2732   EMIT(0x0F);
   2733   EMIT(0x70);
   2734   emit_sse_operand(dst, src);
   2735   EMIT(shuffle);
   2736 }
   2737 
   2738 void Assembler::pblendw(XMMRegister dst, Operand src, uint8_t mask) {
   2739   DCHECK(IsEnabled(SSE4_1));
   2740   EnsureSpace ensure_space(this);
   2741   EMIT(0x66);
   2742   EMIT(0x0F);
   2743   EMIT(0x3A);
   2744   EMIT(0x0E);
   2745   emit_sse_operand(dst, src);
   2746   EMIT(mask);
   2747 }
   2748 
   2749 void Assembler::palignr(XMMRegister dst, Operand src, uint8_t mask) {
   2750   DCHECK(IsEnabled(SSSE3));
   2751   EnsureSpace ensure_space(this);
   2752   EMIT(0x66);
   2753   EMIT(0x0F);
   2754   EMIT(0x3A);
   2755   EMIT(0x0F);
   2756   emit_sse_operand(dst, src);
   2757   EMIT(mask);
   2758 }
   2759 
   2760 void Assembler::pextrb(Operand dst, XMMRegister src, int8_t offset) {
   2761   DCHECK(IsEnabled(SSE4_1));
   2762   EnsureSpace ensure_space(this);
   2763   EMIT(0x66);
   2764   EMIT(0x0F);
   2765   EMIT(0x3A);
   2766   EMIT(0x14);
   2767   emit_sse_operand(src, dst);
   2768   EMIT(offset);
   2769 }
   2770 
   2771 void Assembler::pextrw(Operand dst, XMMRegister src, int8_t offset) {
   2772   DCHECK(IsEnabled(SSE4_1));
   2773   EnsureSpace ensure_space(this);
   2774   EMIT(0x66);
   2775   EMIT(0x0F);
   2776   EMIT(0x3A);
   2777   EMIT(0x15);
   2778   emit_sse_operand(src, dst);
   2779   EMIT(offset);
   2780 }
   2781 
   2782 void Assembler::pextrd(Operand dst, XMMRegister src, int8_t offset) {
   2783   DCHECK(IsEnabled(SSE4_1));
   2784   EnsureSpace ensure_space(this);
   2785   EMIT(0x66);
   2786   EMIT(0x0F);
   2787   EMIT(0x3A);
   2788   EMIT(0x16);
   2789   emit_sse_operand(src, dst);
   2790   EMIT(offset);
   2791 }
   2792 
   2793 void Assembler::insertps(XMMRegister dst, Operand src, int8_t offset) {
   2794   DCHECK(IsEnabled(SSE4_1));
   2795   EnsureSpace ensure_space(this);
   2796   EMIT(0x66);
   2797   EMIT(0x0F);
   2798   EMIT(0x3A);
   2799   EMIT(0x21);
   2800   emit_sse_operand(dst, src);
   2801   EMIT(offset);
   2802 }
   2803 
   2804 void Assembler::pinsrb(XMMRegister dst, Operand src, int8_t offset) {
   2805   DCHECK(IsEnabled(SSE4_1));
   2806   EnsureSpace ensure_space(this);
   2807   EMIT(0x66);
   2808   EMIT(0x0F);
   2809   EMIT(0x3A);
   2810   EMIT(0x20);
   2811   emit_sse_operand(dst, src);
   2812   EMIT(offset);
   2813 }
   2814 
   2815 void Assembler::pinsrw(XMMRegister dst, Operand src, int8_t offset) {
   2816   DCHECK(is_uint8(offset));
   2817   EnsureSpace ensure_space(this);
   2818   EMIT(0x66);
   2819   EMIT(0x0F);
   2820   EMIT(0xC4);
   2821   emit_sse_operand(dst, src);
   2822   EMIT(offset);
   2823 }
   2824 
   2825 void Assembler::pinsrd(XMMRegister dst, Operand src, int8_t offset) {
   2826   DCHECK(IsEnabled(SSE4_1));
   2827   EnsureSpace ensure_space(this);
   2828   EMIT(0x66);
   2829   EMIT(0x0F);
   2830   EMIT(0x3A);
   2831   EMIT(0x22);
   2832   emit_sse_operand(dst, src);
   2833   EMIT(offset);
   2834 }
   2835 
   2836 void Assembler::addss(XMMRegister dst, Operand src) {
   2837   EnsureSpace ensure_space(this);
   2838   EMIT(0xF3);
   2839   EMIT(0x0F);
   2840   EMIT(0x58);
   2841   emit_sse_operand(dst, src);
   2842 }
   2843 
   2844 void Assembler::subss(XMMRegister dst, Operand src) {
   2845   EnsureSpace ensure_space(this);
   2846   EMIT(0xF3);
   2847   EMIT(0x0F);
   2848   EMIT(0x5C);
   2849   emit_sse_operand(dst, src);
   2850 }
   2851 
   2852 void Assembler::mulss(XMMRegister dst, Operand src) {
   2853   EnsureSpace ensure_space(this);
   2854   EMIT(0xF3);
   2855   EMIT(0x0F);
   2856   EMIT(0x59);
   2857   emit_sse_operand(dst, src);
   2858 }
   2859 
   2860 void Assembler::divss(XMMRegister dst, Operand src) {
   2861   EnsureSpace ensure_space(this);
   2862   EMIT(0xF3);
   2863   EMIT(0x0F);
   2864   EMIT(0x5E);
   2865   emit_sse_operand(dst, src);
   2866 }
   2867 
   2868 void Assembler::sqrtss(XMMRegister dst, Operand src) {
   2869   EnsureSpace ensure_space(this);
   2870   EMIT(0xF3);
   2871   EMIT(0x0F);
   2872   EMIT(0x51);
   2873   emit_sse_operand(dst, src);
   2874 }
   2875 
   2876 void Assembler::ucomiss(XMMRegister dst, Operand src) {
   2877   EnsureSpace ensure_space(this);
   2878   EMIT(0x0F);
   2879   EMIT(0x2E);
   2880   emit_sse_operand(dst, src);
   2881 }
   2882 
   2883 void Assembler::maxss(XMMRegister dst, Operand src) {
   2884   EnsureSpace ensure_space(this);
   2885   EMIT(0xF3);
   2886   EMIT(0x0F);
   2887   EMIT(0x5F);
   2888   emit_sse_operand(dst, src);
   2889 }
   2890 
   2891 void Assembler::minss(XMMRegister dst, Operand src) {
   2892   EnsureSpace ensure_space(this);
   2893   EMIT(0xF3);
   2894   EMIT(0x0F);
   2895   EMIT(0x5D);
   2896   emit_sse_operand(dst, src);
   2897 }
   2898 
   2899 
   2900 // AVX instructions
   2901 void Assembler::vfmasd(byte op, XMMRegister dst, XMMRegister src1,
   2902                        Operand src2) {
   2903   DCHECK(IsEnabled(FMA3));
   2904   EnsureSpace ensure_space(this);
   2905   emit_vex_prefix(src1, kLIG, k66, k0F38, kW1);
   2906   EMIT(op);
   2907   emit_sse_operand(dst, src2);
   2908 }
   2909 
   2910 void Assembler::vfmass(byte op, XMMRegister dst, XMMRegister src1,
   2911                        Operand src2) {
   2912   DCHECK(IsEnabled(FMA3));
   2913   EnsureSpace ensure_space(this);
   2914   emit_vex_prefix(src1, kLIG, k66, k0F38, kW0);
   2915   EMIT(op);
   2916   emit_sse_operand(dst, src2);
   2917 }
   2918 
   2919 void Assembler::vsd(byte op, XMMRegister dst, XMMRegister src1, Operand src2) {
   2920   vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
   2921 }
   2922 
   2923 void Assembler::vss(byte op, XMMRegister dst, XMMRegister src1, Operand src2) {
   2924   vinstr(op, dst, src1, src2, kF3, k0F, kWIG);
   2925 }
   2926 
   2927 void Assembler::vps(byte op, XMMRegister dst, XMMRegister src1, Operand src2) {
   2928   vinstr(op, dst, src1, src2, kNone, k0F, kWIG);
   2929 }
   2930 
   2931 void Assembler::vpd(byte op, XMMRegister dst, XMMRegister src1, Operand src2) {
   2932   vinstr(op, dst, src1, src2, k66, k0F, kWIG);
   2933 }
   2934 
   2935 void Assembler::vcmpps(XMMRegister dst, XMMRegister src1, Operand src2,
   2936                        int8_t cmp) {
   2937   vps(0xC2, dst, src1, src2);
   2938   EMIT(cmp);
   2939 }
   2940 
   2941 void Assembler::vshufps(XMMRegister dst, XMMRegister src1, Operand src2,
   2942                         byte imm8) {
   2943   DCHECK(is_uint8(imm8));
   2944   vps(0xC6, dst, src1, src2);
   2945   EMIT(imm8);
   2946 }
   2947 
   2948 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int8_t imm8) {
   2949   XMMRegister iop = XMMRegister::from_code(6);
   2950   vinstr(0x71, iop, dst, Operand(src), k66, k0F, kWIG);
   2951   EMIT(imm8);
   2952 }
   2953 
   2954 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int8_t imm8) {
   2955   XMMRegister iop = XMMRegister::from_code(6);
   2956   vinstr(0x72, iop, dst, Operand(src), k66, k0F, kWIG);
   2957   EMIT(imm8);
   2958 }
   2959 
   2960 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int8_t imm8) {
   2961   XMMRegister iop = XMMRegister::from_code(2);
   2962   vinstr(0x71, iop, dst, Operand(src), k66, k0F, kWIG);
   2963   EMIT(imm8);
   2964 }
   2965 
   2966 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int8_t imm8) {
   2967   XMMRegister iop = XMMRegister::from_code(2);
   2968   vinstr(0x72, iop, dst, Operand(src), k66, k0F, kWIG);
   2969   EMIT(imm8);
   2970 }
   2971 
   2972 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int8_t imm8) {
   2973   XMMRegister iop = XMMRegister::from_code(4);
   2974   vinstr(0x71, iop, dst, Operand(src), k66, k0F, kWIG);
   2975   EMIT(imm8);
   2976 }
   2977 
   2978 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int8_t imm8) {
   2979   XMMRegister iop = XMMRegister::from_code(4);
   2980   vinstr(0x72, iop, dst, Operand(src), k66, k0F, kWIG);
   2981   EMIT(imm8);
   2982 }
   2983 
   2984 void Assembler::vpshufhw(XMMRegister dst, Operand src, uint8_t shuffle) {
   2985   vinstr(0x70, dst, xmm0, src, kF3, k0F, kWIG);
   2986   EMIT(shuffle);
   2987 }
   2988 
   2989 void Assembler::vpshuflw(XMMRegister dst, Operand src, uint8_t shuffle) {
   2990   vinstr(0x70, dst, xmm0, src, kF2, k0F, kWIG);
   2991   EMIT(shuffle);
   2992 }
   2993 
   2994 void Assembler::vpshufd(XMMRegister dst, Operand src, uint8_t shuffle) {
   2995   vinstr(0x70, dst, xmm0, src, k66, k0F, kWIG);
   2996   EMIT(shuffle);
   2997 }
   2998 
   2999 void Assembler::vpblendw(XMMRegister dst, XMMRegister src1, Operand src2,
   3000                          uint8_t mask) {
   3001   vinstr(0x0E, dst, src1, src2, k66, k0F3A, kWIG);
   3002   EMIT(mask);
   3003 }
   3004 
   3005 void Assembler::vpalignr(XMMRegister dst, XMMRegister src1, Operand src2,
   3006                          uint8_t mask) {
   3007   vinstr(0x0F, dst, src1, src2, k66, k0F3A, kWIG);
   3008   EMIT(mask);
   3009 }
   3010 
   3011 void Assembler::vpextrb(Operand dst, XMMRegister src, int8_t offset) {
   3012   vinstr(0x14, src, xmm0, dst, k66, k0F3A, kWIG);
   3013   EMIT(offset);
   3014 }
   3015 
   3016 void Assembler::vpextrw(Operand dst, XMMRegister src, int8_t offset) {
   3017   vinstr(0x15, src, xmm0, dst, k66, k0F3A, kWIG);
   3018   EMIT(offset);
   3019 }
   3020 
   3021 void Assembler::vpextrd(Operand dst, XMMRegister src, int8_t offset) {
   3022   vinstr(0x16, src, xmm0, dst, k66, k0F3A, kWIG);
   3023   EMIT(offset);
   3024 }
   3025 
   3026 void Assembler::vinsertps(XMMRegister dst, XMMRegister src1, Operand src2,
   3027                           int8_t offset) {
   3028   vinstr(0x21, dst, src1, src2, k66, k0F3A, kWIG);
   3029   EMIT(offset);
   3030 }
   3031 
   3032 void Assembler::vpinsrb(XMMRegister dst, XMMRegister src1, Operand src2,
   3033                         int8_t offset) {
   3034   vinstr(0x20, dst, src1, src2, k66, k0F3A, kWIG);
   3035   EMIT(offset);
   3036 }
   3037 
   3038 void Assembler::vpinsrw(XMMRegister dst, XMMRegister src1, Operand src2,
   3039                         int8_t offset) {
   3040   vinstr(0xC4, dst, src1, src2, k66, k0F, kWIG);
   3041   EMIT(offset);
   3042 }
   3043 
   3044 void Assembler::vpinsrd(XMMRegister dst, XMMRegister src1, Operand src2,
   3045                         int8_t offset) {
   3046   vinstr(0x22, dst, src1, src2, k66, k0F3A, kWIG);
   3047   EMIT(offset);
   3048 }
   3049 
   3050 void Assembler::bmi1(byte op, Register reg, Register vreg, Operand rm) {
   3051   DCHECK(IsEnabled(BMI1));
   3052   EnsureSpace ensure_space(this);
   3053   emit_vex_prefix(vreg, kLZ, kNone, k0F38, kW0);
   3054   EMIT(op);
   3055   emit_operand(reg, rm);
   3056 }
   3057 
   3058 void Assembler::tzcnt(Register dst, Operand src) {
   3059   DCHECK(IsEnabled(BMI1));
   3060   EnsureSpace ensure_space(this);
   3061   EMIT(0xF3);
   3062   EMIT(0x0F);
   3063   EMIT(0xBC);
   3064   emit_operand(dst, src);
   3065 }
   3066 
   3067 void Assembler::lzcnt(Register dst, Operand src) {
   3068   DCHECK(IsEnabled(LZCNT));
   3069   EnsureSpace ensure_space(this);
   3070   EMIT(0xF3);
   3071   EMIT(0x0F);
   3072   EMIT(0xBD);
   3073   emit_operand(dst, src);
   3074 }
   3075 
   3076 void Assembler::popcnt(Register dst, Operand src) {
   3077   DCHECK(IsEnabled(POPCNT));
   3078   EnsureSpace ensure_space(this);
   3079   EMIT(0xF3);
   3080   EMIT(0x0F);
   3081   EMIT(0xB8);
   3082   emit_operand(dst, src);
   3083 }
   3084 
   3085 void Assembler::bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
   3086                      Operand rm) {
   3087   DCHECK(IsEnabled(BMI2));
   3088   EnsureSpace ensure_space(this);
   3089   emit_vex_prefix(vreg, kLZ, pp, k0F38, kW0);
   3090   EMIT(op);
   3091   emit_operand(reg, rm);
   3092 }
   3093 
   3094 void Assembler::rorx(Register dst, Operand src, byte imm8) {
   3095   DCHECK(IsEnabled(BMI2));
   3096   DCHECK(is_uint8(imm8));
   3097   Register vreg = Register::from_code<0>();  // VEX.vvvv unused
   3098   EnsureSpace ensure_space(this);
   3099   emit_vex_prefix(vreg, kLZ, kF2, k0F3A, kW0);
   3100   EMIT(0xF0);
   3101   emit_operand(dst, src);
   3102   EMIT(imm8);
   3103 }
   3104 
   3105 void Assembler::sse2_instr(XMMRegister dst, Operand src, byte prefix,
   3106                            byte escape, byte opcode) {
   3107   EnsureSpace ensure_space(this);
   3108   EMIT(prefix);
   3109   EMIT(escape);
   3110   EMIT(opcode);
   3111   emit_sse_operand(dst, src);
   3112 }
   3113 
   3114 void Assembler::ssse3_instr(XMMRegister dst, Operand src, byte prefix,
   3115                             byte escape1, byte escape2, byte opcode) {
   3116   DCHECK(IsEnabled(SSSE3));
   3117   EnsureSpace ensure_space(this);
   3118   EMIT(prefix);
   3119   EMIT(escape1);
   3120   EMIT(escape2);
   3121   EMIT(opcode);
   3122   emit_sse_operand(dst, src);
   3123 }
   3124 
   3125 void Assembler::sse4_instr(XMMRegister dst, Operand src, byte prefix,
   3126                            byte escape1, byte escape2, byte opcode) {
   3127   DCHECK(IsEnabled(SSE4_1));
   3128   EnsureSpace ensure_space(this);
   3129   EMIT(prefix);
   3130   EMIT(escape1);
   3131   EMIT(escape2);
   3132   EMIT(opcode);
   3133   emit_sse_operand(dst, src);
   3134 }
   3135 
   3136 void Assembler::vinstr(byte op, XMMRegister dst, XMMRegister src1, Operand src2,
   3137                        SIMDPrefix pp, LeadingOpcode m, VexW w) {
   3138   DCHECK(IsEnabled(AVX));
   3139   EnsureSpace ensure_space(this);
   3140   emit_vex_prefix(src1, kL128, pp, m, w);
   3141   EMIT(op);
   3142   emit_sse_operand(dst, src2);
   3143 }
   3144 
   3145 void Assembler::emit_sse_operand(XMMRegister reg, Operand adr) {
   3146   Register ireg = Register::from_code(reg.code());
   3147   emit_operand(ireg, adr);
   3148 }
   3149 
   3150 
   3151 void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
   3152   EMIT(0xC0 | dst.code() << 3 | src.code());
   3153 }
   3154 
   3155 
   3156 void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
   3157   EMIT(0xC0 | dst.code() << 3 | src.code());
   3158 }
   3159 
   3160 
   3161 void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
   3162   EMIT(0xC0 | (dst.code() << 3) | src.code());
   3163 }
   3164 
   3165 
   3166 void Assembler::emit_vex_prefix(XMMRegister vreg, VectorLength l, SIMDPrefix pp,
   3167                                 LeadingOpcode mm, VexW w) {
   3168   if (mm != k0F || w != kW0) {
   3169     EMIT(0xC4);
   3170     // Change RXB from "110" to "111" to align with gdb disassembler.
   3171     EMIT(0xE0 | mm);
   3172     EMIT(w | ((~vreg.code() & 0xF) << 3) | l | pp);
   3173   } else {
   3174     EMIT(0xC5);
   3175     EMIT(((~vreg.code()) << 3) | l | pp);
   3176   }
   3177 }
   3178 
   3179 
   3180 void Assembler::emit_vex_prefix(Register vreg, VectorLength l, SIMDPrefix pp,
   3181                                 LeadingOpcode mm, VexW w) {
   3182   XMMRegister ivreg = XMMRegister::from_code(vreg.code());
   3183   emit_vex_prefix(ivreg, l, pp, mm, w);
   3184 }
   3185 
   3186 
   3187 void Assembler::GrowBuffer() {
   3188   DCHECK(buffer_overflow());
   3189   if (!own_buffer_) FATAL("external code buffer is too small");
   3190 
   3191   // Compute new buffer size.
   3192   CodeDesc desc;  // the new buffer
   3193   desc.buffer_size = 2 * buffer_size_;
   3194 
   3195   // Some internal data structures overflow for very large buffers,
   3196   // they must ensure that kMaximalBufferSize is not too large.
   3197   if (desc.buffer_size > kMaximalBufferSize) {
   3198     V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
   3199   }
   3200 
   3201   // Set up new buffer.
   3202   desc.buffer = NewArray<byte>(desc.buffer_size);
   3203   desc.origin = this;
   3204   desc.instr_size = pc_offset();
   3205   desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
   3206 
   3207   // Clear the buffer in debug mode. Use 'int3' instructions to make
   3208   // sure to get into problems if we ever run uninitialized code.
   3209 #ifdef DEBUG
   3210   ZapCode(reinterpret_cast<Address>(desc.buffer), desc.buffer_size);
   3211 #endif
   3212 
   3213   // Copy the data.
   3214   int pc_delta = desc.buffer - buffer_;
   3215   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
   3216   MemMove(desc.buffer, buffer_, desc.instr_size);
   3217   MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
   3218           desc.reloc_size);
   3219 
   3220   // Switch buffers.
   3221   DeleteArray(buffer_);
   3222   buffer_ = desc.buffer;
   3223   buffer_size_ = desc.buffer_size;
   3224   pc_ += pc_delta;
   3225   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
   3226                                reloc_info_writer.last_pc() + pc_delta);
   3227 
   3228   // Relocate internal references.
   3229   for (auto pos : internal_reference_positions_) {
   3230     int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
   3231     *p += pc_delta;
   3232   }
   3233 
   3234   // Relocate pc-relative references.
   3235   int mode_mask = RelocInfo::ModeMask(RelocInfo::JS_TO_WASM_CALL) |
   3236                   RelocInfo::ModeMask(RelocInfo::OFF_HEAP_TARGET);
   3237   DCHECK_EQ(mode_mask, RelocInfo::kApplyMask & mode_mask);
   3238   for (RelocIterator it(desc, mode_mask); !it.done(); it.next()) {
   3239     it.rinfo()->apply(pc_delta);
   3240   }
   3241 
   3242   DCHECK(!buffer_overflow());
   3243 }
   3244 
   3245 
   3246 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   3247   DCHECK(is_uint8(op1) && is_uint8(op2));  // wrong opcode
   3248   DCHECK(is_uint8(imm8));
   3249   DCHECK_EQ(op1 & 0x01, 0);  // should be 8bit operation
   3250   EMIT(op1);
   3251   EMIT(op2 | dst.code());
   3252   EMIT(imm8);
   3253 }
   3254 
   3255 
   3256 void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
   3257   DCHECK((0 <= sel) && (sel <= 7));
   3258   Register ireg = Register::from_code(sel);
   3259   if (x.is_int8()) {
   3260     EMIT(0x83);  // using a sign-extended 8-bit immediate.
   3261     emit_operand(ireg, dst);
   3262     EMIT(x.immediate() & 0xFF);
   3263   } else if (dst.is_reg(eax)) {
   3264     EMIT((sel << 3) | 0x05);  // short form if the destination is eax.
   3265     emit(x);
   3266   } else {
   3267     EMIT(0x81);  // using a literal 32-bit immediate.
   3268     emit_operand(ireg, dst);
   3269     emit(x);
   3270   }
   3271 }
   3272 
   3273 void Assembler::emit_operand(Register reg, Operand adr) {
   3274   emit_operand(reg.code(), adr);
   3275 }
   3276 
   3277 void Assembler::emit_operand(XMMRegister reg, Operand adr) {
   3278   Register ireg = Register::from_code(reg.code());
   3279   emit_operand(ireg, adr);
   3280 }
   3281 
   3282 void Assembler::emit_operand(int code, Operand adr) {
   3283   // Isolate-independent code may not embed relocatable addresses.
   3284   DCHECK(!options().isolate_independent_code ||
   3285          adr.rmode_ != RelocInfo::CODE_TARGET);
   3286   DCHECK(!options().isolate_independent_code ||
   3287          adr.rmode_ != RelocInfo::EMBEDDED_OBJECT);
   3288   // TODO(jgruber,v8:6666): Enable once kRootRegister exists.
   3289   //  DCHECK(!options().isolate_independent_code ||
   3290   //         adr.rmode_ != RelocInfo::EXTERNAL_REFERENCE);
   3291 
   3292   const unsigned length = adr.len_;
   3293   DCHECK_GT(length, 0);
   3294 
   3295   // Emit updated ModRM byte containing the given register.
   3296   pc_[0] = (adr.buf_[0] & ~0x38) | (code << 3);
   3297 
   3298   // Emit the rest of the encoded operand.
   3299   for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
   3300   pc_ += length;
   3301 
   3302   // Emit relocation information if necessary.
   3303   if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
   3304     pc_ -= sizeof(int32_t);  // pc_ must be *at* disp32
   3305     RecordRelocInfo(adr.rmode_);
   3306     if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) {  // Fixup for labels
   3307       emit_label(*reinterpret_cast<Label**>(pc_));
   3308     } else {
   3309       pc_ += sizeof(int32_t);
   3310     }
   3311   }
   3312 }
   3313 
   3314 
   3315 void Assembler::emit_label(Label* label) {
   3316   if (label->is_bound()) {
   3317     internal_reference_positions_.push_back(pc_offset());
   3318     emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
   3319   } else {
   3320     emit_disp(label, Displacement::CODE_ABSOLUTE);
   3321   }
   3322 }
   3323 
   3324 
   3325 void Assembler::emit_farith(int b1, int b2, int i) {
   3326   DCHECK(is_uint8(b1) && is_uint8(b2));  // wrong opcode
   3327   DCHECK(0 <= i &&  i < 8);  // illegal stack offset
   3328   EMIT(b1);
   3329   EMIT(b2 + i);
   3330 }
   3331 
   3332 
   3333 void Assembler::db(uint8_t data) {
   3334   EnsureSpace ensure_space(this);
   3335   EMIT(data);
   3336 }
   3337 
   3338 
   3339 void Assembler::dd(uint32_t data) {
   3340   EnsureSpace ensure_space(this);
   3341   emit(data);
   3342 }
   3343 
   3344 
   3345 void Assembler::dq(uint64_t data) {
   3346   EnsureSpace ensure_space(this);
   3347   emit_q(data);
   3348 }
   3349 
   3350 
   3351 void Assembler::dd(Label* label) {
   3352   EnsureSpace ensure_space(this);
   3353   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
   3354   emit_label(label);
   3355 }
   3356 
   3357 
   3358 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
   3359   DCHECK(!RelocInfo::IsNone(rmode));
   3360   if (options().disable_reloc_info_for_patching) return;
   3361   // Don't record external references unless the heap will be serialized.
   3362   if (RelocInfo::IsOnlyForSerializer(rmode) &&
   3363       !options().record_reloc_info_for_serialization && !emit_debug_code()) {
   3364     return;
   3365   }
   3366   RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, nullptr);
   3367   reloc_info_writer.Write(&rinfo);
   3368 }
   3369 
   3370 
   3371 }  // namespace internal
   3372 }  // namespace v8
   3373 
   3374 #endif  // V8_TARGET_ARCH_IA32
   3375