Home | History | Annotate | Download | only in BitWriter_2_9_func
      1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Bitcode writer implementation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ReaderWriter_2_9_func.h"
     15 #include "legacy_bitcode.h"
     16 #include "ValueEnumerator.h"
     17 #include "llvm/ADT/Triple.h"
     18 #include "llvm/Bitcode/BitstreamWriter.h"
     19 #include "llvm/Bitcode/LLVMBitCodes.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DebugInfoMetadata.h"
     22 #include "llvm/IR/DerivedTypes.h"
     23 #include "llvm/IR/InlineAsm.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/IR/Operator.h"
     27 #include "llvm/IR/ValueSymbolTable.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/MathExtras.h"
     30 #include "llvm/Support/Program.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include <cctype>
     33 #include <map>
     34 using namespace llvm;
     35 
     36 /// These are manifest constants used by the bitcode writer. They do not need to
     37 /// be kept in sync with the reader, but need to be consistent within this file.
     38 enum {
     39   CurVersion = 0,
     40 
     41   // VALUE_SYMTAB_BLOCK abbrev id's.
     42   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     43   VST_ENTRY_7_ABBREV,
     44   VST_ENTRY_6_ABBREV,
     45   VST_BBENTRY_6_ABBREV,
     46 
     47   // CONSTANTS_BLOCK abbrev id's.
     48   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     49   CONSTANTS_INTEGER_ABBREV,
     50   CONSTANTS_CE_CAST_Abbrev,
     51   CONSTANTS_NULL_Abbrev,
     52 
     53   // FUNCTION_BLOCK abbrev id's.
     54   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     55   FUNCTION_INST_BINOP_ABBREV,
     56   FUNCTION_INST_BINOP_FLAGS_ABBREV,
     57   FUNCTION_INST_CAST_ABBREV,
     58   FUNCTION_INST_RET_VOID_ABBREV,
     59   FUNCTION_INST_RET_VAL_ABBREV,
     60   FUNCTION_INST_UNREACHABLE_ABBREV
     61 };
     62 
     63 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
     64   switch (Opcode) {
     65   default: llvm_unreachable("Unknown cast instruction!");
     66   case Instruction::Trunc   : return bitc::CAST_TRUNC;
     67   case Instruction::ZExt    : return bitc::CAST_ZEXT;
     68   case Instruction::SExt    : return bitc::CAST_SEXT;
     69   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
     70   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
     71   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
     72   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
     73   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
     74   case Instruction::FPExt   : return bitc::CAST_FPEXT;
     75   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
     76   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
     77   case Instruction::BitCast : return bitc::CAST_BITCAST;
     78   }
     79 }
     80 
     81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
     82   switch (Opcode) {
     83   default: llvm_unreachable("Unknown binary instruction!");
     84   case Instruction::Add:
     85   case Instruction::FAdd: return bitc::BINOP_ADD;
     86   case Instruction::Sub:
     87   case Instruction::FSub: return bitc::BINOP_SUB;
     88   case Instruction::Mul:
     89   case Instruction::FMul: return bitc::BINOP_MUL;
     90   case Instruction::UDiv: return bitc::BINOP_UDIV;
     91   case Instruction::FDiv:
     92   case Instruction::SDiv: return bitc::BINOP_SDIV;
     93   case Instruction::URem: return bitc::BINOP_UREM;
     94   case Instruction::FRem:
     95   case Instruction::SRem: return bitc::BINOP_SREM;
     96   case Instruction::Shl:  return bitc::BINOP_SHL;
     97   case Instruction::LShr: return bitc::BINOP_LSHR;
     98   case Instruction::AShr: return bitc::BINOP_ASHR;
     99   case Instruction::And:  return bitc::BINOP_AND;
    100   case Instruction::Or:   return bitc::BINOP_OR;
    101   case Instruction::Xor:  return bitc::BINOP_XOR;
    102   }
    103 }
    104 
    105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
    106   switch (Op) {
    107   default: llvm_unreachable("Unknown RMW operation!");
    108   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
    109   case AtomicRMWInst::Add: return bitc::RMW_ADD;
    110   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
    111   case AtomicRMWInst::And: return bitc::RMW_AND;
    112   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
    113   case AtomicRMWInst::Or: return bitc::RMW_OR;
    114   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
    115   case AtomicRMWInst::Max: return bitc::RMW_MAX;
    116   case AtomicRMWInst::Min: return bitc::RMW_MIN;
    117   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
    118   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
    119   }
    120 }
    121 
    122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
    123   switch (Ordering) {
    124   default: llvm_unreachable("Unknown atomic ordering");
    125   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
    126   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
    127   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
    128   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
    129   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
    130   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
    131   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
    132   }
    133 }
    134 
    135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
    136   switch (SynchScope) {
    137   default: llvm_unreachable("Unknown synchronization scope");
    138   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
    139   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
    140   }
    141 }
    142 
    143 static void WriteStringRecord(unsigned Code, StringRef Str,
    144                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
    145   SmallVector<unsigned, 64> Vals;
    146 
    147   // Code: [strchar x N]
    148   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    149     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
    150       AbbrevToUse = 0;
    151     Vals.push_back(Str[i]);
    152   }
    153 
    154   // Emit the finished record.
    155   Stream.EmitRecord(Code, Vals, AbbrevToUse);
    156 }
    157 
    158 // Emit information about parameter attributes.
    159 static void WriteAttributeTable(const llvm_2_9_func::ValueEnumerator &VE,
    160                                 BitstreamWriter &Stream) {
    161   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
    162   if (Attrs.empty()) return;
    163 
    164   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
    165 
    166   SmallVector<uint64_t, 64> Record;
    167   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    168     const AttributeSet &A = Attrs[i];
    169     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
    170       Record.push_back(A.getSlotIndex(i));
    171       Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i)));
    172     }
    173 
    174     // This needs to use the 3.2 entry type
    175     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
    176     Record.clear();
    177   }
    178 
    179   Stream.ExitBlock();
    180 }
    181 
    182 /// WriteTypeTable - Write out the type table for a module.
    183 static void WriteTypeTable(const llvm_2_9_func::ValueEnumerator &VE,
    184                            BitstreamWriter &Stream) {
    185   const llvm_2_9_func::ValueEnumerator::TypeList &TypeList = VE.getTypes();
    186 
    187   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
    188   SmallVector<uint64_t, 64> TypeVals;
    189 
    190   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
    191 
    192   // Abbrev for TYPE_CODE_POINTER.
    193   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    194   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
    195   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    196   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
    197   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
    198 
    199   // Abbrev for TYPE_CODE_FUNCTION.
    200   Abbv = new BitCodeAbbrev();
    201   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
    202   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
    203   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
    204   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    205   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    206   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
    207 
    208   // Abbrev for TYPE_CODE_STRUCT_ANON.
    209   Abbv = new BitCodeAbbrev();
    210   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
    211   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    212   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    213   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    214   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
    215 
    216   // Abbrev for TYPE_CODE_STRUCT_NAME.
    217   Abbv = new BitCodeAbbrev();
    218   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
    219   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    220   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    221   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
    222 
    223   // Abbrev for TYPE_CODE_STRUCT_NAMED.
    224   Abbv = new BitCodeAbbrev();
    225   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
    226   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    227   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    228   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    229   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
    230 
    231   // Abbrev for TYPE_CODE_ARRAY.
    232   Abbv = new BitCodeAbbrev();
    233   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
    234   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
    235   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    236 
    237   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
    238 
    239   // Emit an entry count so the reader can reserve space.
    240   TypeVals.push_back(TypeList.size());
    241   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
    242   TypeVals.clear();
    243 
    244   // Loop over all of the types, emitting each in turn.
    245   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    246     Type *T = TypeList[i];
    247     int AbbrevToUse = 0;
    248     unsigned Code = 0;
    249 
    250     switch (T->getTypeID()) {
    251     default: llvm_unreachable("Unknown type!");
    252     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
    253     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
    254     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
    255     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
    256     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
    257     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
    258     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
    259     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
    260     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
    261     case Type::IntegerTyID:
    262       // INTEGER: [width]
    263       Code = bitc::TYPE_CODE_INTEGER;
    264       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
    265       break;
    266     case Type::PointerTyID: {
    267       PointerType *PTy = cast<PointerType>(T);
    268       // POINTER: [pointee type, address space]
    269       Code = bitc::TYPE_CODE_POINTER;
    270       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
    271       unsigned AddressSpace = PTy->getAddressSpace();
    272       TypeVals.push_back(AddressSpace);
    273       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
    274       break;
    275     }
    276     case Type::FunctionTyID: {
    277       FunctionType *FT = cast<FunctionType>(T);
    278       // FUNCTION: [isvararg, attrid, retty, paramty x N]
    279       Code = bitc::TYPE_CODE_FUNCTION_OLD;
    280       TypeVals.push_back(FT->isVarArg());
    281       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
    282       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
    283       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
    284         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
    285       AbbrevToUse = FunctionAbbrev;
    286       break;
    287     }
    288     case Type::StructTyID: {
    289       StructType *ST = cast<StructType>(T);
    290       // STRUCT: [ispacked, eltty x N]
    291       TypeVals.push_back(ST->isPacked());
    292       // Output all of the element types.
    293       for (StructType::element_iterator I = ST->element_begin(),
    294            E = ST->element_end(); I != E; ++I)
    295         TypeVals.push_back(VE.getTypeID(*I));
    296 
    297       if (ST->isLiteral()) {
    298         Code = bitc::TYPE_CODE_STRUCT_ANON;
    299         AbbrevToUse = StructAnonAbbrev;
    300       } else {
    301         if (ST->isOpaque()) {
    302           Code = bitc::TYPE_CODE_OPAQUE;
    303         } else {
    304           Code = bitc::TYPE_CODE_STRUCT_NAMED;
    305           AbbrevToUse = StructNamedAbbrev;
    306         }
    307 
    308         // Emit the name if it is present.
    309         if (!ST->getName().empty())
    310           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
    311                             StructNameAbbrev, Stream);
    312       }
    313       break;
    314     }
    315     case Type::ArrayTyID: {
    316       ArrayType *AT = cast<ArrayType>(T);
    317       // ARRAY: [numelts, eltty]
    318       Code = bitc::TYPE_CODE_ARRAY;
    319       TypeVals.push_back(AT->getNumElements());
    320       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
    321       AbbrevToUse = ArrayAbbrev;
    322       break;
    323     }
    324     case Type::VectorTyID: {
    325       VectorType *VT = cast<VectorType>(T);
    326       // VECTOR [numelts, eltty]
    327       Code = bitc::TYPE_CODE_VECTOR;
    328       TypeVals.push_back(VT->getNumElements());
    329       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
    330       break;
    331     }
    332     }
    333 
    334     // Emit the finished record.
    335     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
    336     TypeVals.clear();
    337   }
    338 
    339   Stream.ExitBlock();
    340 }
    341 
    342 static unsigned getEncodedLinkage(const GlobalValue &GV) {
    343   switch (GV.getLinkage()) {
    344   case GlobalValue::ExternalLinkage:
    345     return 0;
    346   case GlobalValue::WeakAnyLinkage:
    347     return 1;
    348   case GlobalValue::AppendingLinkage:
    349     return 2;
    350   case GlobalValue::InternalLinkage:
    351     return 3;
    352   case GlobalValue::LinkOnceAnyLinkage:
    353     return 4;
    354   case GlobalValue::ExternalWeakLinkage:
    355     return 7;
    356   case GlobalValue::CommonLinkage:
    357     return 8;
    358   case GlobalValue::PrivateLinkage:
    359     return 9;
    360   case GlobalValue::WeakODRLinkage:
    361     return 10;
    362   case GlobalValue::LinkOnceODRLinkage:
    363     return 11;
    364   case GlobalValue::AvailableExternallyLinkage:
    365     return 12;
    366   }
    367   llvm_unreachable("Invalid linkage");
    368 }
    369 
    370 static unsigned getEncodedVisibility(const GlobalValue &GV) {
    371   switch (GV.getVisibility()) {
    372   case GlobalValue::DefaultVisibility:   return 0;
    373   case GlobalValue::HiddenVisibility:    return 1;
    374   case GlobalValue::ProtectedVisibility: return 2;
    375   }
    376   llvm_unreachable("Invalid visibility");
    377 }
    378 
    379 // Emit top-level description of module, including target triple, inline asm,
    380 // descriptors for global variables, and function prototype info.
    381 static void WriteModuleInfo(const Module *M,
    382                             const llvm_2_9_func::ValueEnumerator &VE,
    383                             BitstreamWriter &Stream) {
    384   // Emit various pieces of data attached to a module.
    385   if (!M->getTargetTriple().empty())
    386     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
    387                       0/*TODO*/, Stream);
    388   const std::string &DL = M->getDataLayoutStr();
    389   if (!DL.empty())
    390     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
    391   if (!M->getModuleInlineAsm().empty())
    392     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
    393                       0/*TODO*/, Stream);
    394 
    395   // Emit information about sections and GC, computing how many there are. Also
    396   // compute the maximum alignment value.
    397   std::map<std::string, unsigned> SectionMap;
    398   std::map<std::string, unsigned> GCMap;
    399   unsigned MaxAlignment = 0;
    400   unsigned MaxGlobalType = 0;
    401   for (const GlobalValue &GV : M->globals()) {
    402     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
    403     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
    404     if (GV.hasSection()) {
    405       // Give section names unique ID's.
    406       unsigned &Entry = SectionMap[GV.getSection()];
    407       if (!Entry) {
    408         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
    409                           0/*TODO*/, Stream);
    410         Entry = SectionMap.size();
    411       }
    412     }
    413   }
    414   for (const Function &F : *M) {
    415     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
    416     if (F.hasSection()) {
    417       // Give section names unique ID's.
    418       unsigned &Entry = SectionMap[F.getSection()];
    419       if (!Entry) {
    420         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
    421                           0/*TODO*/, Stream);
    422         Entry = SectionMap.size();
    423       }
    424     }
    425     if (F.hasGC()) {
    426       // Same for GC names.
    427       unsigned &Entry = GCMap[F.getGC()];
    428       if (!Entry) {
    429         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
    430                           0/*TODO*/, Stream);
    431         Entry = GCMap.size();
    432       }
    433     }
    434   }
    435 
    436   // Emit abbrev for globals, now that we know # sections and max alignment.
    437   unsigned SimpleGVarAbbrev = 0;
    438   if (!M->global_empty()) {
    439     // Add an abbrev for common globals with no visibility or thread localness.
    440     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    441     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
    442     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    443                               Log2_32_Ceil(MaxGlobalType+1)));
    444     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
    445     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
    446     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
    447     if (MaxAlignment == 0)                                      // Alignment.
    448       Abbv->Add(BitCodeAbbrevOp(0));
    449     else {
    450       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
    451       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    452                                Log2_32_Ceil(MaxEncAlignment+1)));
    453     }
    454     if (SectionMap.empty())                                    // Section.
    455       Abbv->Add(BitCodeAbbrevOp(0));
    456     else
    457       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    458                                Log2_32_Ceil(SectionMap.size()+1)));
    459     // Don't bother emitting vis + thread local.
    460     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
    461   }
    462 
    463   // Emit the global variable information.
    464   SmallVector<unsigned, 64> Vals;
    465   for (const GlobalVariable &GV : M->globals()) {
    466     unsigned AbbrevToUse = 0;
    467 
    468     // GLOBALVAR: [type, isconst, initid,
    469     //             linkage, alignment, section, visibility, threadlocal,
    470     //             unnamed_addr]
    471     Vals.push_back(VE.getTypeID(GV.getType()));
    472     Vals.push_back(GV.isConstant());
    473     Vals.push_back(GV.isDeclaration() ? 0 :
    474                    (VE.getValueID(GV.getInitializer()) + 1));
    475     Vals.push_back(getEncodedLinkage(GV));
    476     Vals.push_back(Log2_32(GV.getAlignment())+1);
    477     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
    478     if (GV.isThreadLocal() ||
    479         GV.getVisibility() != GlobalValue::DefaultVisibility ||
    480         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None) {
    481       Vals.push_back(getEncodedVisibility(GV));
    482       Vals.push_back(GV.isThreadLocal());
    483       Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
    484     } else {
    485       AbbrevToUse = SimpleGVarAbbrev;
    486     }
    487 
    488     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
    489     Vals.clear();
    490   }
    491 
    492   // Emit the function proto information.
    493   for (const Function &F : *M) {
    494     // FUNCTION:  [type, callingconv, isproto, paramattr,
    495     //             linkage, alignment, section, visibility, gc, unnamed_addr]
    496     Vals.push_back(VE.getTypeID(F.getType()));
    497     Vals.push_back(F.getCallingConv());
    498     Vals.push_back(F.isDeclaration());
    499     Vals.push_back(getEncodedLinkage(F));
    500     Vals.push_back(VE.getAttributeID(F.getAttributes()));
    501     Vals.push_back(Log2_32(F.getAlignment())+1);
    502     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
    503     Vals.push_back(getEncodedVisibility(F));
    504     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
    505     Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
    506 
    507     unsigned AbbrevToUse = 0;
    508     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
    509     Vals.clear();
    510   }
    511 
    512   // Emit the alias information.
    513   for (const GlobalAlias &A : M->aliases()) {
    514     Vals.push_back(VE.getTypeID(A.getType()));
    515     Vals.push_back(VE.getValueID(A.getAliasee()));
    516     Vals.push_back(getEncodedLinkage(A));
    517     Vals.push_back(getEncodedVisibility(A));
    518     unsigned AbbrevToUse = 0;
    519     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
    520     Vals.clear();
    521   }
    522 }
    523 
    524 static uint64_t GetOptimizationFlags(const Value *V) {
    525   uint64_t Flags = 0;
    526 
    527   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
    528     if (OBO->hasNoSignedWrap())
    529       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
    530     if (OBO->hasNoUnsignedWrap())
    531       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
    532   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
    533     if (PEO->isExact())
    534       Flags |= 1 << bitc::PEO_EXACT;
    535   }
    536 
    537   return Flags;
    538 }
    539 
    540 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
    541                                  const llvm_2_9_func::ValueEnumerator &VE,
    542                                  BitstreamWriter &Stream,
    543                                  SmallVectorImpl<uint64_t> &Record) {
    544   // Mimic an MDNode with a value as one operand.
    545   Value *V = MD->getValue();
    546   Record.push_back(VE.getTypeID(V->getType()));
    547   Record.push_back(VE.getValueID(V));
    548   Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, 0);
    549   Record.clear();
    550 }
    551 
    552 static void WriteMDTuple(const MDTuple *N, const llvm_2_9_func::ValueEnumerator &VE,
    553                          BitstreamWriter &Stream,
    554                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
    555   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    556     Metadata *MD = N->getOperand(i);
    557     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
    558            "Unexpected function-local metadata");
    559     if (!MD) {
    560       // TODO(srhines): I don't believe this case can exist for RS.
    561       Record.push_back(VE.getTypeID(llvm::Type::getVoidTy(N->getContext())));
    562       Record.push_back(0);
    563     } else if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
    564       Record.push_back(VE.getTypeID(MDC->getType()));
    565       Record.push_back(VE.getValueID(MDC->getValue()));
    566     } else {
    567       Record.push_back(VE.getTypeID(
    568           llvm::Type::getMetadataTy(N->getContext())));
    569       Record.push_back(VE.getMetadataID(MD));
    570     }
    571   }
    572   Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, Abbrev);
    573   Record.clear();
    574 }
    575 
    576 /*static void WriteMDLocation(const MDLocation *N, const llvm_2_9_func::ValueEnumerator &VE,
    577                             BitstreamWriter &Stream,
    578                             SmallVectorImpl<uint64_t> &Record,
    579                             unsigned Abbrev) {
    580   Record.push_back(N->isDistinct());
    581   Record.push_back(N->getLine());
    582   Record.push_back(N->getColumn());
    583   Record.push_back(VE.getMetadataID(N->getScope()));
    584   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
    585 
    586   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
    587   Record.clear();
    588 }
    589 
    590 static void WriteGenericDebugNode(const GenericDebugNode *,
    591                                   const llvm_2_9_func::ValueEnumerator &, BitstreamWriter &,
    592                                   SmallVectorImpl<uint64_t> &, unsigned) {
    593   llvm_unreachable("unimplemented");
    594 }*/
    595 
    596 static void WriteModuleMetadata(const Module *M,
    597                                 const llvm_2_9_func::ValueEnumerator &VE,
    598                                 BitstreamWriter &Stream) {
    599   const auto &MDs = VE.getMDs();
    600   if (MDs.empty() && M->named_metadata_empty())
    601     return;
    602 
    603   // RenderScript files *ALWAYS* have metadata!
    604   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    605 
    606   unsigned MDSAbbrev = 0;
    607   if (VE.hasMDString()) {
    608     // Abbrev for METADATA_STRING.
    609     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    610     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
    611     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    612     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    613     MDSAbbrev = Stream.EmitAbbrev(Abbv);
    614   }
    615 
    616   unsigned MDLocationAbbrev = 0;
    617   if (VE.hasDILocation()) {
    618     // TODO(srhines): Should be unreachable for RenderScript.
    619     // Abbrev for METADATA_LOCATION.
    620     //
    621     // Assume the column is usually under 128, and always output the inlined-at
    622     // location (it's never more expensive than building an array size 1).
    623     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    624     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
    625     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
    626     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
    627     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
    628     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
    629     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
    630     MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
    631   }
    632 
    633   unsigned NameAbbrev = 0;
    634   if (!M->named_metadata_empty()) {
    635     // Abbrev for METADATA_NAME.
    636     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    637     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
    638     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    639     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    640     NameAbbrev = Stream.EmitAbbrev(Abbv);
    641   }
    642 
    643   unsigned MDTupleAbbrev = 0;
    644   //unsigned GenericDebugNodeAbbrev = 0;
    645   SmallVector<uint64_t, 64> Record;
    646   for (const Metadata *MD : MDs) {
    647     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
    648       switch (N->getMetadataID()) {
    649       default:
    650         llvm_unreachable("Invalid MDNode subclass");
    651 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)
    652 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    653   case Metadata::CLASS##Kind:                                                  \
    654     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
    655     continue;
    656 #include "llvm/IR/Metadata.def"
    657       }
    658     }
    659     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
    660       WriteValueAsMetadata(MDC, VE, Stream, Record);
    661       continue;
    662     }
    663     const MDString *MDS = cast<MDString>(MD);
    664     // Code: [strchar x N]
    665     Record.append(MDS->bytes_begin(), MDS->bytes_end());
    666 
    667     // Emit the finished record.
    668     Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev);
    669     Record.clear();
    670   }
    671 
    672   // Write named metadata.
    673   for (const NamedMDNode &NMD : M->named_metadata()) {
    674     // Write name.
    675     StringRef Str = NMD.getName();
    676     Record.append(Str.bytes_begin(), Str.bytes_end());
    677     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
    678     Record.clear();
    679 
    680     // Write named metadata operands.
    681     for (const MDNode *N : NMD.operands())
    682       Record.push_back(VE.getMetadataID(N));
    683     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
    684     Record.clear();
    685   }
    686 
    687   Stream.ExitBlock();
    688 }
    689 
    690 static void WriteFunctionLocalMetadata(const Function &F,
    691                                        const llvm_2_9_func::ValueEnumerator &VE,
    692                                        BitstreamWriter &Stream) {
    693   bool StartedMetadataBlock = false;
    694   SmallVector<uint64_t, 64> Record;
    695   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
    696       VE.getFunctionLocalMDs();
    697   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
    698     assert(MDs[i] && "Expected valid function-local metadata");
    699     if (!StartedMetadataBlock) {
    700       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    701       StartedMetadataBlock = true;
    702     }
    703     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
    704   }
    705 
    706   if (StartedMetadataBlock)
    707     Stream.ExitBlock();
    708 }
    709 
    710 static void WriteMetadataAttachment(const Function &F,
    711                                     const llvm_2_9_func::ValueEnumerator &VE,
    712                                     BitstreamWriter &Stream) {
    713   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
    714 
    715   SmallVector<uint64_t, 64> Record;
    716 
    717   // Write metadata attachments
    718   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
    719   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
    720 
    721   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    722     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    723          I != E; ++I) {
    724       MDs.clear();
    725       I->getAllMetadataOtherThanDebugLoc(MDs);
    726 
    727       // If no metadata, ignore instruction.
    728       if (MDs.empty()) continue;
    729 
    730       Record.push_back(VE.getInstructionID(&*I));
    731 
    732       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
    733         Record.push_back(MDs[i].first);
    734         Record.push_back(VE.getMetadataID(MDs[i].second));
    735       }
    736       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
    737       Record.clear();
    738     }
    739 
    740   Stream.ExitBlock();
    741 }
    742 
    743 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
    744   SmallVector<uint64_t, 64> Record;
    745 
    746   // Write metadata kinds
    747   // METADATA_KIND - [n x [id, name]]
    748   SmallVector<StringRef, 4> Names;
    749   M->getMDKindNames(Names);
    750 
    751   if (Names.empty()) return;
    752 
    753   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    754 
    755   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
    756     Record.push_back(MDKindID);
    757     StringRef KName = Names[MDKindID];
    758     Record.append(KName.begin(), KName.end());
    759 
    760     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
    761     Record.clear();
    762   }
    763 
    764   Stream.ExitBlock();
    765 }
    766 
    767 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
    768                            const llvm_2_9_func::ValueEnumerator &VE,
    769                            BitstreamWriter &Stream, bool isGlobal) {
    770   if (FirstVal == LastVal) return;
    771 
    772   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
    773 
    774   unsigned AggregateAbbrev = 0;
    775   unsigned String8Abbrev = 0;
    776   unsigned CString7Abbrev = 0;
    777   unsigned CString6Abbrev = 0;
    778   // If this is a constant pool for the module, emit module-specific abbrevs.
    779   if (isGlobal) {
    780     // Abbrev for CST_CODE_AGGREGATE.
    781     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    782     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
    783     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    784     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
    785     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
    786 
    787     // Abbrev for CST_CODE_STRING.
    788     Abbv = new BitCodeAbbrev();
    789     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
    790     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    791     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    792     String8Abbrev = Stream.EmitAbbrev(Abbv);
    793     // Abbrev for CST_CODE_CSTRING.
    794     Abbv = new BitCodeAbbrev();
    795     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    796     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    797     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    798     CString7Abbrev = Stream.EmitAbbrev(Abbv);
    799     // Abbrev for CST_CODE_CSTRING.
    800     Abbv = new BitCodeAbbrev();
    801     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    802     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    803     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    804     CString6Abbrev = Stream.EmitAbbrev(Abbv);
    805   }
    806 
    807   SmallVector<uint64_t, 64> Record;
    808 
    809   const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
    810   Type *LastTy = nullptr;
    811   for (unsigned i = FirstVal; i != LastVal; ++i) {
    812     const Value *V = Vals[i].first;
    813     // If we need to switch types, do so now.
    814     if (V->getType() != LastTy) {
    815       LastTy = V->getType();
    816       Record.push_back(VE.getTypeID(LastTy));
    817       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
    818                         CONSTANTS_SETTYPE_ABBREV);
    819       Record.clear();
    820     }
    821 
    822     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
    823       Record.push_back(unsigned(IA->hasSideEffects()) |
    824                        unsigned(IA->isAlignStack()) << 1);
    825 
    826       // Add the asm string.
    827       const std::string &AsmStr = IA->getAsmString();
    828       Record.push_back(AsmStr.size());
    829       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
    830         Record.push_back(AsmStr[i]);
    831 
    832       // Add the constraint string.
    833       const std::string &ConstraintStr = IA->getConstraintString();
    834       Record.push_back(ConstraintStr.size());
    835       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
    836         Record.push_back(ConstraintStr[i]);
    837       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
    838       Record.clear();
    839       continue;
    840     }
    841     const Constant *C = cast<Constant>(V);
    842     unsigned Code = -1U;
    843     unsigned AbbrevToUse = 0;
    844     if (C->isNullValue()) {
    845       Code = bitc::CST_CODE_NULL;
    846     } else if (isa<UndefValue>(C)) {
    847       Code = bitc::CST_CODE_UNDEF;
    848     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
    849       if (IV->getBitWidth() <= 64) {
    850         uint64_t V = IV->getSExtValue();
    851         if ((int64_t)V >= 0)
    852           Record.push_back(V << 1);
    853         else
    854           Record.push_back((-V << 1) | 1);
    855         Code = bitc::CST_CODE_INTEGER;
    856         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
    857       } else {                             // Wide integers, > 64 bits in size.
    858         // We have an arbitrary precision integer value to write whose
    859         // bit width is > 64. However, in canonical unsigned integer
    860         // format it is likely that the high bits are going to be zero.
    861         // So, we only write the number of active words.
    862         unsigned NWords = IV->getValue().getActiveWords();
    863         const uint64_t *RawWords = IV->getValue().getRawData();
    864         for (unsigned i = 0; i != NWords; ++i) {
    865           int64_t V = RawWords[i];
    866           if (V >= 0)
    867             Record.push_back(V << 1);
    868           else
    869             Record.push_back((-V << 1) | 1);
    870         }
    871         Code = bitc::CST_CODE_WIDE_INTEGER;
    872       }
    873     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    874       Code = bitc::CST_CODE_FLOAT;
    875       Type *Ty = CFP->getType();
    876       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
    877         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    878       } else if (Ty->isX86_FP80Ty()) {
    879         // api needed to prevent premature destruction
    880         // bits are not in the same order as a normal i80 APInt, compensate.
    881         APInt api = CFP->getValueAPF().bitcastToAPInt();
    882         const uint64_t *p = api.getRawData();
    883         Record.push_back((p[1] << 48) | (p[0] >> 16));
    884         Record.push_back(p[0] & 0xffffLL);
    885       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
    886         APInt api = CFP->getValueAPF().bitcastToAPInt();
    887         const uint64_t *p = api.getRawData();
    888         Record.push_back(p[0]);
    889         Record.push_back(p[1]);
    890       } else {
    891         assert (0 && "Unknown FP type!");
    892       }
    893     } else if (isa<ConstantDataSequential>(C) &&
    894                cast<ConstantDataSequential>(C)->isString()) {
    895       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
    896       // Emit constant strings specially.
    897       unsigned NumElts = Str->getNumElements();
    898       // If this is a null-terminated string, use the denser CSTRING encoding.
    899       if (Str->isCString()) {
    900         Code = bitc::CST_CODE_CSTRING;
    901         --NumElts;  // Don't encode the null, which isn't allowed by char6.
    902       } else {
    903         Code = bitc::CST_CODE_STRING;
    904         AbbrevToUse = String8Abbrev;
    905       }
    906       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
    907       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
    908       for (unsigned i = 0; i != NumElts; ++i) {
    909         unsigned char V = Str->getElementAsInteger(i);
    910         Record.push_back(V);
    911         isCStr7 &= (V & 128) == 0;
    912         if (isCStrChar6)
    913           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
    914       }
    915 
    916       if (isCStrChar6)
    917         AbbrevToUse = CString6Abbrev;
    918       else if (isCStr7)
    919         AbbrevToUse = CString7Abbrev;
    920     } else if (const ConstantDataSequential *CDS =
    921                   dyn_cast<ConstantDataSequential>(C)) {
    922       // We must replace ConstantDataSequential's representation with the
    923       // legacy ConstantArray/ConstantVector/ConstantStruct version.
    924       // ValueEnumerator is similarly modified to mark the appropriate
    925       // Constants as used (so they are emitted).
    926       Code = bitc::CST_CODE_AGGREGATE;
    927       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
    928         Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
    929       AbbrevToUse = AggregateAbbrev;
    930     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
    931                isa<ConstantVector>(C)) {
    932       Code = bitc::CST_CODE_AGGREGATE;
    933       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
    934         Record.push_back(VE.getValueID(C->getOperand(i)));
    935       AbbrevToUse = AggregateAbbrev;
    936     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    937       switch (CE->getOpcode()) {
    938       default:
    939         if (Instruction::isCast(CE->getOpcode())) {
    940           Code = bitc::CST_CODE_CE_CAST;
    941           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
    942           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    943           Record.push_back(VE.getValueID(C->getOperand(0)));
    944           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
    945         } else {
    946           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
    947           Code = bitc::CST_CODE_CE_BINOP;
    948           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
    949           Record.push_back(VE.getValueID(C->getOperand(0)));
    950           Record.push_back(VE.getValueID(C->getOperand(1)));
    951           uint64_t Flags = GetOptimizationFlags(CE);
    952           if (Flags != 0)
    953             Record.push_back(Flags);
    954         }
    955         break;
    956       case Instruction::GetElementPtr:
    957         Code = bitc::CST_CODE_CE_GEP;
    958         if (cast<GEPOperator>(C)->isInBounds())
    959           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
    960         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
    961           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
    962           Record.push_back(VE.getValueID(C->getOperand(i)));
    963         }
    964         break;
    965       case Instruction::Select:
    966         Code = bitc::CST_CODE_CE_SELECT;
    967         Record.push_back(VE.getValueID(C->getOperand(0)));
    968         Record.push_back(VE.getValueID(C->getOperand(1)));
    969         Record.push_back(VE.getValueID(C->getOperand(2)));
    970         break;
    971       case Instruction::ExtractElement:
    972         Code = bitc::CST_CODE_CE_EXTRACTELT;
    973         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    974         Record.push_back(VE.getValueID(C->getOperand(0)));
    975         Record.push_back(VE.getValueID(C->getOperand(1)));
    976         break;
    977       case Instruction::InsertElement:
    978         Code = bitc::CST_CODE_CE_INSERTELT;
    979         Record.push_back(VE.getValueID(C->getOperand(0)));
    980         Record.push_back(VE.getValueID(C->getOperand(1)));
    981         Record.push_back(VE.getValueID(C->getOperand(2)));
    982         break;
    983       case Instruction::ShuffleVector:
    984         // If the return type and argument types are the same, this is a
    985         // standard shufflevector instruction.  If the types are different,
    986         // then the shuffle is widening or truncating the input vectors, and
    987         // the argument type must also be encoded.
    988         if (C->getType() == C->getOperand(0)->getType()) {
    989           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
    990         } else {
    991           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
    992           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    993         }
    994         Record.push_back(VE.getValueID(C->getOperand(0)));
    995         Record.push_back(VE.getValueID(C->getOperand(1)));
    996         Record.push_back(VE.getValueID(C->getOperand(2)));
    997         break;
    998       case Instruction::ICmp:
    999       case Instruction::FCmp:
   1000         Code = bitc::CST_CODE_CE_CMP;
   1001         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   1002         Record.push_back(VE.getValueID(C->getOperand(0)));
   1003         Record.push_back(VE.getValueID(C->getOperand(1)));
   1004         Record.push_back(CE->getPredicate());
   1005         break;
   1006       }
   1007     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
   1008       Code = bitc::CST_CODE_BLOCKADDRESS;
   1009       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
   1010       Record.push_back(VE.getValueID(BA->getFunction()));
   1011       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
   1012     } else {
   1013 #ifndef NDEBUG
   1014       C->dump();
   1015 #endif
   1016       llvm_unreachable("Unknown constant!");
   1017     }
   1018     Stream.EmitRecord(Code, Record, AbbrevToUse);
   1019     Record.clear();
   1020   }
   1021 
   1022   Stream.ExitBlock();
   1023 }
   1024 
   1025 static void WriteModuleConstants(const llvm_2_9_func::ValueEnumerator &VE,
   1026                                  BitstreamWriter &Stream) {
   1027   const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
   1028 
   1029   // Find the first constant to emit, which is the first non-globalvalue value.
   1030   // We know globalvalues have been emitted by WriteModuleInfo.
   1031   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
   1032     if (!isa<GlobalValue>(Vals[i].first)) {
   1033       WriteConstants(i, Vals.size(), VE, Stream, true);
   1034       return;
   1035     }
   1036   }
   1037 }
   1038 
   1039 /// PushValueAndType - The file has to encode both the value and type id for
   1040 /// many values, because we need to know what type to create for forward
   1041 /// references.  However, most operands are not forward references, so this type
   1042 /// field is not needed.
   1043 ///
   1044 /// This function adds V's value ID to Vals.  If the value ID is higher than the
   1045 /// instruction ID, then it is a forward reference, and it also includes the
   1046 /// type ID.
   1047 static bool PushValueAndType(const Value *V, unsigned InstID,
   1048                              SmallVector<unsigned, 64> &Vals,
   1049                              llvm_2_9_func::ValueEnumerator &VE) {
   1050   unsigned ValID = VE.getValueID(V);
   1051   Vals.push_back(ValID);
   1052   if (ValID >= InstID) {
   1053     Vals.push_back(VE.getTypeID(V->getType()));
   1054     return true;
   1055   }
   1056   return false;
   1057 }
   1058 
   1059 /// WriteInstruction - Emit an instruction to the specified stream.
   1060 static void WriteInstruction(const Instruction &I, unsigned InstID,
   1061                              llvm_2_9_func::ValueEnumerator &VE,
   1062                              BitstreamWriter &Stream,
   1063                              SmallVector<unsigned, 64> &Vals) {
   1064   unsigned Code = 0;
   1065   unsigned AbbrevToUse = 0;
   1066   VE.setInstructionID(&I);
   1067   switch (I.getOpcode()) {
   1068   default:
   1069     if (Instruction::isCast(I.getOpcode())) {
   1070       Code = bitc::FUNC_CODE_INST_CAST;
   1071       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1072         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
   1073       Vals.push_back(VE.getTypeID(I.getType()));
   1074       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
   1075     } else {
   1076       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
   1077       Code = bitc::FUNC_CODE_INST_BINOP;
   1078       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1079         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
   1080       Vals.push_back(VE.getValueID(I.getOperand(1)));
   1081       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
   1082       uint64_t Flags = GetOptimizationFlags(&I);
   1083       if (Flags != 0) {
   1084         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
   1085           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
   1086         Vals.push_back(Flags);
   1087       }
   1088     }
   1089     break;
   1090 
   1091   case Instruction::GetElementPtr:
   1092     Code = bitc::FUNC_CODE_INST_GEP_OLD;
   1093     if (cast<GEPOperator>(&I)->isInBounds())
   1094       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
   1095     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1096       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1097     break;
   1098   case Instruction::ExtractValue: {
   1099     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
   1100     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1101     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
   1102     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
   1103       Vals.push_back(*i);
   1104     break;
   1105   }
   1106   case Instruction::InsertValue: {
   1107     Code = bitc::FUNC_CODE_INST_INSERTVAL;
   1108     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1109     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1110     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
   1111     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
   1112       Vals.push_back(*i);
   1113     break;
   1114   }
   1115   case Instruction::Select:
   1116     Code = bitc::FUNC_CODE_INST_VSELECT;
   1117     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1118     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1119     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1120     break;
   1121   case Instruction::ExtractElement:
   1122     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
   1123     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1124     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1125     break;
   1126   case Instruction::InsertElement:
   1127     Code = bitc::FUNC_CODE_INST_INSERTELT;
   1128     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1129     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1130     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1131     break;
   1132   case Instruction::ShuffleVector:
   1133     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
   1134     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1135     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1136     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1137     break;
   1138   case Instruction::ICmp:
   1139   case Instruction::FCmp:
   1140     // compare returning Int1Ty or vector of Int1Ty
   1141     Code = bitc::FUNC_CODE_INST_CMP2;
   1142     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1143     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1144     Vals.push_back(cast<CmpInst>(I).getPredicate());
   1145     break;
   1146 
   1147   case Instruction::Ret:
   1148     {
   1149       Code = bitc::FUNC_CODE_INST_RET;
   1150       unsigned NumOperands = I.getNumOperands();
   1151       if (NumOperands == 0)
   1152         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
   1153       else if (NumOperands == 1) {
   1154         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1155           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
   1156       } else {
   1157         for (unsigned i = 0, e = NumOperands; i != e; ++i)
   1158           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1159       }
   1160     }
   1161     break;
   1162   case Instruction::Br:
   1163     {
   1164       Code = bitc::FUNC_CODE_INST_BR;
   1165       const BranchInst &II = cast<BranchInst>(I);
   1166       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
   1167       if (II.isConditional()) {
   1168         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
   1169         Vals.push_back(VE.getValueID(II.getCondition()));
   1170       }
   1171     }
   1172     break;
   1173   case Instruction::Switch:
   1174     {
   1175       Code = bitc::FUNC_CODE_INST_SWITCH;
   1176       const SwitchInst &SI = cast<SwitchInst>(I);
   1177       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
   1178       Vals.push_back(VE.getValueID(SI.getCondition()));
   1179       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
   1180       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
   1181            i != e; ++i) {
   1182         Vals.push_back(VE.getValueID(i.getCaseValue()));
   1183         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
   1184       }
   1185     }
   1186     break;
   1187   case Instruction::IndirectBr:
   1188     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
   1189     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1190     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1191       Vals.push_back(VE.getValueID(I.getOperand(i)));
   1192     break;
   1193 
   1194   case Instruction::Invoke: {
   1195     const InvokeInst *II = cast<InvokeInst>(&I);
   1196     const Value *Callee(II->getCalledValue());
   1197     PointerType *PTy = cast<PointerType>(Callee->getType());
   1198     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1199     Code = bitc::FUNC_CODE_INST_INVOKE;
   1200 
   1201     Vals.push_back(VE.getAttributeID(II->getAttributes()));
   1202     Vals.push_back(II->getCallingConv());
   1203     Vals.push_back(VE.getValueID(II->getNormalDest()));
   1204     Vals.push_back(VE.getValueID(II->getUnwindDest()));
   1205     PushValueAndType(Callee, InstID, Vals, VE);
   1206 
   1207     // Emit value #'s for the fixed parameters.
   1208     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1209       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
   1210 
   1211     // Emit type/value pairs for varargs params.
   1212     if (FTy->isVarArg()) {
   1213       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
   1214            i != e; ++i)
   1215         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
   1216     }
   1217     break;
   1218   }
   1219   case Instruction::Resume:
   1220     Code = bitc::FUNC_CODE_INST_RESUME;
   1221     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1222     break;
   1223   case Instruction::Unreachable:
   1224     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
   1225     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
   1226     break;
   1227 
   1228   case Instruction::PHI: {
   1229     const PHINode &PN = cast<PHINode>(I);
   1230     Code = bitc::FUNC_CODE_INST_PHI;
   1231     Vals.push_back(VE.getTypeID(PN.getType()));
   1232     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1233       Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
   1234       Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
   1235     }
   1236     break;
   1237   }
   1238 
   1239   case Instruction::LandingPad: {
   1240     const LandingPadInst &LP = cast<LandingPadInst>(I);
   1241     Code = bitc::FUNC_CODE_INST_LANDINGPAD_OLD;
   1242     Vals.push_back(VE.getTypeID(LP.getType()));
   1243     // TODO (rebase): is this fix enough?
   1244     // PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
   1245     Vals.push_back(LP.isCleanup());
   1246     Vals.push_back(LP.getNumClauses());
   1247     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
   1248       if (LP.isCatch(I))
   1249         Vals.push_back(LandingPadInst::Catch);
   1250       else
   1251         Vals.push_back(LandingPadInst::Filter);
   1252       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
   1253     }
   1254     break;
   1255   }
   1256 
   1257   case Instruction::Alloca:
   1258     Code = bitc::FUNC_CODE_INST_ALLOCA;
   1259     Vals.push_back(VE.getTypeID(I.getType()));
   1260     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1261     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
   1262     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
   1263     break;
   1264 
   1265   case Instruction::Load:
   1266     if (cast<LoadInst>(I).isAtomic()) {
   1267       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
   1268       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1269     } else {
   1270       Code = bitc::FUNC_CODE_INST_LOAD;
   1271       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
   1272         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
   1273     }
   1274     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
   1275     Vals.push_back(cast<LoadInst>(I).isVolatile());
   1276     if (cast<LoadInst>(I).isAtomic()) {
   1277       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
   1278       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
   1279     }
   1280     break;
   1281   case Instruction::Store:
   1282     if (cast<StoreInst>(I).isAtomic())
   1283       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
   1284     else
   1285       Code = bitc::FUNC_CODE_INST_STORE_OLD;
   1286     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
   1287     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
   1288     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
   1289     Vals.push_back(cast<StoreInst>(I).isVolatile());
   1290     if (cast<StoreInst>(I).isAtomic()) {
   1291       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
   1292       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
   1293     }
   1294     break;
   1295   case Instruction::AtomicCmpXchg:
   1296     Code = bitc::FUNC_CODE_INST_CMPXCHG;
   1297     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
   1298     Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
   1299     Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
   1300     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
   1301     Vals.push_back(GetEncodedOrdering(
   1302                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
   1303     Vals.push_back(GetEncodedSynchScope(
   1304                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
   1305     break;
   1306   case Instruction::AtomicRMW:
   1307     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
   1308     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
   1309     Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
   1310     Vals.push_back(GetEncodedRMWOperation(
   1311                      cast<AtomicRMWInst>(I).getOperation()));
   1312     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
   1313     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
   1314     Vals.push_back(GetEncodedSynchScope(
   1315                      cast<AtomicRMWInst>(I).getSynchScope()));
   1316     break;
   1317   case Instruction::Fence:
   1318     Code = bitc::FUNC_CODE_INST_FENCE;
   1319     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
   1320     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
   1321     break;
   1322   case Instruction::Call: {
   1323     const CallInst &CI = cast<CallInst>(I);
   1324     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
   1325     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1326 
   1327     Code = bitc::FUNC_CODE_INST_CALL;
   1328 
   1329     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
   1330     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
   1331     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
   1332 
   1333     // Emit value #'s for the fixed parameters.
   1334     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1335       Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
   1336 
   1337     // Emit type/value pairs for varargs params.
   1338     if (FTy->isVarArg()) {
   1339       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
   1340            i != e; ++i)
   1341         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
   1342     }
   1343     break;
   1344   }
   1345   case Instruction::VAArg:
   1346     Code = bitc::FUNC_CODE_INST_VAARG;
   1347     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
   1348     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
   1349     Vals.push_back(VE.getTypeID(I.getType())); // restype.
   1350     break;
   1351   }
   1352 
   1353   Stream.EmitRecord(Code, Vals, AbbrevToUse);
   1354   Vals.clear();
   1355 }
   1356 
   1357 // Emit names for globals/functions etc.
   1358 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
   1359                                   const llvm_2_9_func::ValueEnumerator &VE,
   1360                                   BitstreamWriter &Stream) {
   1361   if (VST.empty()) return;
   1362   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
   1363 
   1364   // FIXME: Set up the abbrev, we know how many values there are!
   1365   // FIXME: We know if the type names can use 7-bit ascii.
   1366   SmallVector<unsigned, 64> NameVals;
   1367 
   1368   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
   1369        SI != SE; ++SI) {
   1370 
   1371     const ValueName &Name = *SI;
   1372 
   1373     // Figure out the encoding to use for the name.
   1374     bool is7Bit = true;
   1375     bool isChar6 = true;
   1376     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
   1377          C != E; ++C) {
   1378       if (isChar6)
   1379         isChar6 = BitCodeAbbrevOp::isChar6(*C);
   1380       if ((unsigned char)*C & 128) {
   1381         is7Bit = false;
   1382         break;  // don't bother scanning the rest.
   1383       }
   1384     }
   1385 
   1386     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
   1387 
   1388     // VST_ENTRY:   [valueid, namechar x N]
   1389     // VST_BBENTRY: [bbid, namechar x N]
   1390     unsigned Code;
   1391     if (isa<BasicBlock>(SI->getValue())) {
   1392       Code = bitc::VST_CODE_BBENTRY;
   1393       if (isChar6)
   1394         AbbrevToUse = VST_BBENTRY_6_ABBREV;
   1395     } else {
   1396       Code = bitc::VST_CODE_ENTRY;
   1397       if (isChar6)
   1398         AbbrevToUse = VST_ENTRY_6_ABBREV;
   1399       else if (is7Bit)
   1400         AbbrevToUse = VST_ENTRY_7_ABBREV;
   1401     }
   1402 
   1403     NameVals.push_back(VE.getValueID(SI->getValue()));
   1404     for (const char *P = Name.getKeyData(),
   1405          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
   1406       NameVals.push_back((unsigned char)*P);
   1407 
   1408     // Emit the finished record.
   1409     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
   1410     NameVals.clear();
   1411   }
   1412   Stream.ExitBlock();
   1413 }
   1414 
   1415 /// WriteFunction - Emit a function body to the module stream.
   1416 static void WriteFunction(const Function &F, llvm_2_9_func::ValueEnumerator &VE,
   1417                           BitstreamWriter &Stream) {
   1418   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
   1419   VE.incorporateFunction(F);
   1420 
   1421   SmallVector<unsigned, 64> Vals;
   1422 
   1423   // Emit the number of basic blocks, so the reader can create them ahead of
   1424   // time.
   1425   Vals.push_back(VE.getBasicBlocks().size());
   1426   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
   1427   Vals.clear();
   1428 
   1429   // If there are function-local constants, emit them now.
   1430   unsigned CstStart, CstEnd;
   1431   VE.getFunctionConstantRange(CstStart, CstEnd);
   1432   WriteConstants(CstStart, CstEnd, VE, Stream, false);
   1433 
   1434   // If there is function-local metadata, emit it now.
   1435   WriteFunctionLocalMetadata(F, VE, Stream);
   1436 
   1437   // Keep a running idea of what the instruction ID is.
   1438   unsigned InstID = CstEnd;
   1439 
   1440   bool NeedsMetadataAttachment = false;
   1441 
   1442   DILocation *LastDL = nullptr;
   1443 
   1444   // Finally, emit all the instructions, in order.
   1445   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
   1446     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1447          I != E; ++I) {
   1448       WriteInstruction(*I, InstID, VE, Stream, Vals);
   1449 
   1450       if (!I->getType()->isVoidTy())
   1451         ++InstID;
   1452 
   1453       // If the instruction has metadata, write a metadata attachment later.
   1454       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
   1455 
   1456       // If the instruction has a debug location, emit it.
   1457       DILocation *DL = I->getDebugLoc();
   1458       if (!DL)
   1459         continue;
   1460 
   1461       if (DL == LastDL) {
   1462         // Just repeat the same debug loc as last time.
   1463         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
   1464         continue;
   1465       }
   1466 
   1467       Vals.push_back(DL->getLine());
   1468       Vals.push_back(DL->getColumn());
   1469       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
   1470       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
   1471       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
   1472       Vals.clear();
   1473 
   1474       // Fixme(pirama): The following line is missing from upstream
   1475       // https://llvm.org/bugs/show_bug.cgi?id=23436
   1476       LastDL = DL;
   1477     }
   1478 
   1479   // Emit names for all the instructions etc.
   1480   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
   1481 
   1482   if (NeedsMetadataAttachment)
   1483     WriteMetadataAttachment(F, VE, Stream);
   1484   VE.purgeFunction();
   1485   Stream.ExitBlock();
   1486 }
   1487 
   1488 // Emit blockinfo, which defines the standard abbreviations etc.
   1489 static void WriteBlockInfo(const llvm_2_9_func::ValueEnumerator &VE,
   1490                            BitstreamWriter &Stream) {
   1491   // We only want to emit block info records for blocks that have multiple
   1492   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
   1493   // blocks can defined their abbrevs inline.
   1494   Stream.EnterBlockInfoBlock(2);
   1495 
   1496   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
   1497     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1498     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
   1499     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1500     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1501     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   1502     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1503                                    Abbv) != VST_ENTRY_8_ABBREV)
   1504       llvm_unreachable("Unexpected abbrev ordering!");
   1505   }
   1506 
   1507   { // 7-bit fixed width VST_ENTRY strings.
   1508     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1509     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1510     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1511     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1512     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   1513     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1514                                    Abbv) != VST_ENTRY_7_ABBREV)
   1515       llvm_unreachable("Unexpected abbrev ordering!");
   1516   }
   1517   { // 6-bit char6 VST_ENTRY strings.
   1518     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1519     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1520     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1521     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1522     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1523     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1524                                    Abbv) != VST_ENTRY_6_ABBREV)
   1525       llvm_unreachable("Unexpected abbrev ordering!");
   1526   }
   1527   { // 6-bit char6 VST_BBENTRY strings.
   1528     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1529     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
   1530     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1531     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1532     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1533     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1534                                    Abbv) != VST_BBENTRY_6_ABBREV)
   1535       llvm_unreachable("Unexpected abbrev ordering!");
   1536   }
   1537 
   1538 
   1539 
   1540   { // SETTYPE abbrev for CONSTANTS_BLOCK.
   1541     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1542     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
   1543     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1544                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1545     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1546                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
   1547       llvm_unreachable("Unexpected abbrev ordering!");
   1548   }
   1549 
   1550   { // INTEGER abbrev for CONSTANTS_BLOCK.
   1551     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1552     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
   1553     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1554     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1555                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
   1556       llvm_unreachable("Unexpected abbrev ordering!");
   1557   }
   1558 
   1559   { // CE_CAST abbrev for CONSTANTS_BLOCK.
   1560     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1561     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
   1562     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
   1563     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
   1564                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1565     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
   1566 
   1567     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1568                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
   1569       llvm_unreachable("Unexpected abbrev ordering!");
   1570   }
   1571   { // NULL abbrev for CONSTANTS_BLOCK.
   1572     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1573     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
   1574     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1575                                    Abbv) != CONSTANTS_NULL_Abbrev)
   1576       llvm_unreachable("Unexpected abbrev ordering!");
   1577   }
   1578 
   1579   // FIXME: This should only use space for first class types!
   1580 
   1581   { // INST_LOAD abbrev for FUNCTION_BLOCK.
   1582     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1583     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
   1584     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
   1585     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
   1586     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
   1587     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1588                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
   1589       llvm_unreachable("Unexpected abbrev ordering!");
   1590   }
   1591   { // INST_BINOP abbrev for FUNCTION_BLOCK.
   1592     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1593     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1594     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1595     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1596     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1597     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1598                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
   1599       llvm_unreachable("Unexpected abbrev ordering!");
   1600   }
   1601   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
   1602     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1603     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1604     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1605     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1606     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1607     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
   1608     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1609                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
   1610       llvm_unreachable("Unexpected abbrev ordering!");
   1611   }
   1612   { // INST_CAST abbrev for FUNCTION_BLOCK.
   1613     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1614     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
   1615     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
   1616     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
   1617                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1618     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
   1619     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1620                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
   1621       llvm_unreachable("Unexpected abbrev ordering!");
   1622   }
   1623 
   1624   { // INST_RET abbrev for FUNCTION_BLOCK.
   1625     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1626     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1627     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1628                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
   1629       llvm_unreachable("Unexpected abbrev ordering!");
   1630   }
   1631   { // INST_RET abbrev for FUNCTION_BLOCK.
   1632     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1633     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1634     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
   1635     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1636                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
   1637       llvm_unreachable("Unexpected abbrev ordering!");
   1638   }
   1639   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
   1640     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1641     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
   1642     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1643                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
   1644       llvm_unreachable("Unexpected abbrev ordering!");
   1645   }
   1646 
   1647   Stream.ExitBlock();
   1648 }
   1649 
   1650 /// WriteModule - Emit the specified module to the bitstream.
   1651 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
   1652   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   1653 
   1654   // Emit the version number if it is non-zero.
   1655   if (CurVersion) {
   1656     SmallVector<unsigned, 1> Vals;
   1657     Vals.push_back(CurVersion);
   1658     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
   1659   }
   1660 
   1661   // Analyze the module, enumerating globals, functions, etc.
   1662   llvm_2_9_func::ValueEnumerator VE(*M);
   1663 
   1664   // Emit blockinfo, which defines the standard abbreviations etc.
   1665   WriteBlockInfo(VE, Stream);
   1666 
   1667   // Emit information about parameter attributes.
   1668   WriteAttributeTable(VE, Stream);
   1669 
   1670   // Emit information describing all of the types in the module.
   1671   WriteTypeTable(VE, Stream);
   1672 
   1673   // Emit top-level description of module, including target triple, inline asm,
   1674   // descriptors for global variables, and function prototype info.
   1675   WriteModuleInfo(M, VE, Stream);
   1676 
   1677   // Emit constants.
   1678   WriteModuleConstants(VE, Stream);
   1679 
   1680   // Emit metadata.
   1681   WriteModuleMetadata(M, VE, Stream);
   1682 
   1683   // Emit function bodies.
   1684   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
   1685     if (!F->isDeclaration())
   1686       WriteFunction(*F, VE, Stream);
   1687 
   1688   // Emit metadata.
   1689   WriteModuleMetadataStore(M, Stream);
   1690 
   1691   // Emit names for globals/functions etc.
   1692   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
   1693 
   1694   Stream.ExitBlock();
   1695 }
   1696 
   1697 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
   1698 /// header and trailer to make it compatible with the system archiver.  To do
   1699 /// this we emit the following header, and then emit a trailer that pads the
   1700 /// file out to be a multiple of 16 bytes.
   1701 ///
   1702 /// struct bc_header {
   1703 ///   uint32_t Magic;         // 0x0B17C0DE
   1704 ///   uint32_t Version;       // Version, currently always 0.
   1705 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
   1706 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
   1707 ///   uint32_t CPUType;       // CPU specifier.
   1708 ///   ... potentially more later ...
   1709 /// };
   1710 enum {
   1711   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
   1712   DarwinBCHeaderSize = 5*4
   1713 };
   1714 
   1715 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
   1716                                uint32_t &Position) {
   1717   Buffer[Position + 0] = (unsigned char) (Value >>  0);
   1718   Buffer[Position + 1] = (unsigned char) (Value >>  8);
   1719   Buffer[Position + 2] = (unsigned char) (Value >> 16);
   1720   Buffer[Position + 3] = (unsigned char) (Value >> 24);
   1721   Position += 4;
   1722 }
   1723 
   1724 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
   1725                                          const Triple &TT) {
   1726   unsigned CPUType = ~0U;
   1727 
   1728   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
   1729   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
   1730   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
   1731   // specific constants here because they are implicitly part of the Darwin ABI.
   1732   enum {
   1733     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
   1734     DARWIN_CPU_TYPE_X86        = 7,
   1735     DARWIN_CPU_TYPE_ARM        = 12,
   1736     DARWIN_CPU_TYPE_POWERPC    = 18
   1737   };
   1738 
   1739   Triple::ArchType Arch = TT.getArch();
   1740   if (Arch == Triple::x86_64)
   1741     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
   1742   else if (Arch == Triple::x86)
   1743     CPUType = DARWIN_CPU_TYPE_X86;
   1744   else if (Arch == Triple::ppc)
   1745     CPUType = DARWIN_CPU_TYPE_POWERPC;
   1746   else if (Arch == Triple::ppc64)
   1747     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
   1748   else if (Arch == Triple::arm || Arch == Triple::thumb)
   1749     CPUType = DARWIN_CPU_TYPE_ARM;
   1750 
   1751   // Traditional Bitcode starts after header.
   1752   assert(Buffer.size() >= DarwinBCHeaderSize &&
   1753          "Expected header size to be reserved");
   1754   unsigned BCOffset = DarwinBCHeaderSize;
   1755   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
   1756 
   1757   // Write the magic and version.
   1758   unsigned Position = 0;
   1759   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
   1760   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
   1761   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
   1762   WriteInt32ToBuffer(BCSize     , Buffer, Position);
   1763   WriteInt32ToBuffer(CPUType    , Buffer, Position);
   1764 
   1765   // If the file is not a multiple of 16 bytes, insert dummy padding.
   1766   while (Buffer.size() & 15)
   1767     Buffer.push_back(0);
   1768 }
   1769 
   1770 /// WriteBitcodeToFile - Write the specified module to the specified output
   1771 /// stream.
   1772 void llvm_2_9_func::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
   1773   SmallVector<char, 1024> Buffer;
   1774   Buffer.reserve(256*1024);
   1775 
   1776   // If this is darwin or another generic macho target, reserve space for the
   1777   // header.
   1778   Triple TT(M->getTargetTriple());
   1779   if (TT.isOSDarwin())
   1780     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
   1781 
   1782   // Emit the module into the buffer.
   1783   {
   1784     BitstreamWriter Stream(Buffer);
   1785 
   1786     // Emit the file header.
   1787     Stream.Emit((unsigned)'B', 8);
   1788     Stream.Emit((unsigned)'C', 8);
   1789     Stream.Emit(0x0, 4);
   1790     Stream.Emit(0xC, 4);
   1791     Stream.Emit(0xE, 4);
   1792     Stream.Emit(0xD, 4);
   1793 
   1794     // Emit the module.
   1795     WriteModule(M, Stream);
   1796   }
   1797 
   1798   if (TT.isOSDarwin())
   1799     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
   1800 
   1801   // Write the generated bitstream to "Out".
   1802   Out.write((char*)&Buffer.front(), Buffer.size());
   1803 }
   1804