1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ReaderWriter_2_9_func.h" 15 #include "legacy_bitcode.h" 16 #include "ValueEnumerator.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/Program.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <cctype> 33 #include <map> 34 using namespace llvm; 35 36 /// These are manifest constants used by the bitcode writer. They do not need to 37 /// be kept in sync with the reader, but need to be consistent within this file. 38 enum { 39 CurVersion = 0, 40 41 // VALUE_SYMTAB_BLOCK abbrev id's. 42 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 43 VST_ENTRY_7_ABBREV, 44 VST_ENTRY_6_ABBREV, 45 VST_BBENTRY_6_ABBREV, 46 47 // CONSTANTS_BLOCK abbrev id's. 48 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 49 CONSTANTS_INTEGER_ABBREV, 50 CONSTANTS_CE_CAST_Abbrev, 51 CONSTANTS_NULL_Abbrev, 52 53 // FUNCTION_BLOCK abbrev id's. 54 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 55 FUNCTION_INST_BINOP_ABBREV, 56 FUNCTION_INST_BINOP_FLAGS_ABBREV, 57 FUNCTION_INST_CAST_ABBREV, 58 FUNCTION_INST_RET_VOID_ABBREV, 59 FUNCTION_INST_RET_VAL_ABBREV, 60 FUNCTION_INST_UNREACHABLE_ABBREV 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 default: llvm_unreachable("Unknown atomic ordering"); 125 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 127 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 128 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 129 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 130 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 131 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 default: llvm_unreachable("Unknown synchronization scope"); 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 // Emit information about parameter attributes. 159 static void WriteAttributeTable(const llvm_2_9_func::ValueEnumerator &VE, 160 BitstreamWriter &Stream) { 161 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 162 if (Attrs.empty()) return; 163 164 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 165 166 SmallVector<uint64_t, 64> Record; 167 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 168 const AttributeSet &A = Attrs[i]; 169 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 170 Record.push_back(A.getSlotIndex(i)); 171 Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i))); 172 } 173 174 // This needs to use the 3.2 entry type 175 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record); 176 Record.clear(); 177 } 178 179 Stream.ExitBlock(); 180 } 181 182 /// WriteTypeTable - Write out the type table for a module. 183 static void WriteTypeTable(const llvm_2_9_func::ValueEnumerator &VE, 184 BitstreamWriter &Stream) { 185 const llvm_2_9_func::ValueEnumerator::TypeList &TypeList = VE.getTypes(); 186 187 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 188 SmallVector<uint64_t, 64> TypeVals; 189 190 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 191 192 // Abbrev for TYPE_CODE_POINTER. 193 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 194 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 196 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 197 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 198 199 // Abbrev for TYPE_CODE_FUNCTION. 200 Abbv = new BitCodeAbbrev(); 201 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD)); 202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 203 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 206 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 207 208 // Abbrev for TYPE_CODE_STRUCT_ANON. 209 Abbv = new BitCodeAbbrev(); 210 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 214 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 215 216 // Abbrev for TYPE_CODE_STRUCT_NAME. 217 Abbv = new BitCodeAbbrev(); 218 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 221 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 222 223 // Abbrev for TYPE_CODE_STRUCT_NAMED. 224 Abbv = new BitCodeAbbrev(); 225 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 229 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 230 231 // Abbrev for TYPE_CODE_ARRAY. 232 Abbv = new BitCodeAbbrev(); 233 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 236 237 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 238 239 // Emit an entry count so the reader can reserve space. 240 TypeVals.push_back(TypeList.size()); 241 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 242 TypeVals.clear(); 243 244 // Loop over all of the types, emitting each in turn. 245 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 246 Type *T = TypeList[i]; 247 int AbbrevToUse = 0; 248 unsigned Code = 0; 249 250 switch (T->getTypeID()) { 251 default: llvm_unreachable("Unknown type!"); 252 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 253 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 254 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 255 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 256 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 257 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 258 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 259 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 260 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 261 case Type::IntegerTyID: 262 // INTEGER: [width] 263 Code = bitc::TYPE_CODE_INTEGER; 264 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 265 break; 266 case Type::PointerTyID: { 267 PointerType *PTy = cast<PointerType>(T); 268 // POINTER: [pointee type, address space] 269 Code = bitc::TYPE_CODE_POINTER; 270 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 271 unsigned AddressSpace = PTy->getAddressSpace(); 272 TypeVals.push_back(AddressSpace); 273 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 274 break; 275 } 276 case Type::FunctionTyID: { 277 FunctionType *FT = cast<FunctionType>(T); 278 // FUNCTION: [isvararg, attrid, retty, paramty x N] 279 Code = bitc::TYPE_CODE_FUNCTION_OLD; 280 TypeVals.push_back(FT->isVarArg()); 281 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 282 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 283 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 284 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 285 AbbrevToUse = FunctionAbbrev; 286 break; 287 } 288 case Type::StructTyID: { 289 StructType *ST = cast<StructType>(T); 290 // STRUCT: [ispacked, eltty x N] 291 TypeVals.push_back(ST->isPacked()); 292 // Output all of the element types. 293 for (StructType::element_iterator I = ST->element_begin(), 294 E = ST->element_end(); I != E; ++I) 295 TypeVals.push_back(VE.getTypeID(*I)); 296 297 if (ST->isLiteral()) { 298 Code = bitc::TYPE_CODE_STRUCT_ANON; 299 AbbrevToUse = StructAnonAbbrev; 300 } else { 301 if (ST->isOpaque()) { 302 Code = bitc::TYPE_CODE_OPAQUE; 303 } else { 304 Code = bitc::TYPE_CODE_STRUCT_NAMED; 305 AbbrevToUse = StructNamedAbbrev; 306 } 307 308 // Emit the name if it is present. 309 if (!ST->getName().empty()) 310 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 311 StructNameAbbrev, Stream); 312 } 313 break; 314 } 315 case Type::ArrayTyID: { 316 ArrayType *AT = cast<ArrayType>(T); 317 // ARRAY: [numelts, eltty] 318 Code = bitc::TYPE_CODE_ARRAY; 319 TypeVals.push_back(AT->getNumElements()); 320 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 321 AbbrevToUse = ArrayAbbrev; 322 break; 323 } 324 case Type::VectorTyID: { 325 VectorType *VT = cast<VectorType>(T); 326 // VECTOR [numelts, eltty] 327 Code = bitc::TYPE_CODE_VECTOR; 328 TypeVals.push_back(VT->getNumElements()); 329 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 330 break; 331 } 332 } 333 334 // Emit the finished record. 335 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 336 TypeVals.clear(); 337 } 338 339 Stream.ExitBlock(); 340 } 341 342 static unsigned getEncodedLinkage(const GlobalValue &GV) { 343 switch (GV.getLinkage()) { 344 case GlobalValue::ExternalLinkage: 345 return 0; 346 case GlobalValue::WeakAnyLinkage: 347 return 1; 348 case GlobalValue::AppendingLinkage: 349 return 2; 350 case GlobalValue::InternalLinkage: 351 return 3; 352 case GlobalValue::LinkOnceAnyLinkage: 353 return 4; 354 case GlobalValue::ExternalWeakLinkage: 355 return 7; 356 case GlobalValue::CommonLinkage: 357 return 8; 358 case GlobalValue::PrivateLinkage: 359 return 9; 360 case GlobalValue::WeakODRLinkage: 361 return 10; 362 case GlobalValue::LinkOnceODRLinkage: 363 return 11; 364 case GlobalValue::AvailableExternallyLinkage: 365 return 12; 366 } 367 llvm_unreachable("Invalid linkage"); 368 } 369 370 static unsigned getEncodedVisibility(const GlobalValue &GV) { 371 switch (GV.getVisibility()) { 372 case GlobalValue::DefaultVisibility: return 0; 373 case GlobalValue::HiddenVisibility: return 1; 374 case GlobalValue::ProtectedVisibility: return 2; 375 } 376 llvm_unreachable("Invalid visibility"); 377 } 378 379 // Emit top-level description of module, including target triple, inline asm, 380 // descriptors for global variables, and function prototype info. 381 static void WriteModuleInfo(const Module *M, 382 const llvm_2_9_func::ValueEnumerator &VE, 383 BitstreamWriter &Stream) { 384 // Emit various pieces of data attached to a module. 385 if (!M->getTargetTriple().empty()) 386 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 387 0/*TODO*/, Stream); 388 const std::string &DL = M->getDataLayoutStr(); 389 if (!DL.empty()) 390 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 391 if (!M->getModuleInlineAsm().empty()) 392 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 393 0/*TODO*/, Stream); 394 395 // Emit information about sections and GC, computing how many there are. Also 396 // compute the maximum alignment value. 397 std::map<std::string, unsigned> SectionMap; 398 std::map<std::string, unsigned> GCMap; 399 unsigned MaxAlignment = 0; 400 unsigned MaxGlobalType = 0; 401 for (const GlobalValue &GV : M->globals()) { 402 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 403 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 404 if (GV.hasSection()) { 405 // Give section names unique ID's. 406 unsigned &Entry = SectionMap[GV.getSection()]; 407 if (!Entry) { 408 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 409 0/*TODO*/, Stream); 410 Entry = SectionMap.size(); 411 } 412 } 413 } 414 for (const Function &F : *M) { 415 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 416 if (F.hasSection()) { 417 // Give section names unique ID's. 418 unsigned &Entry = SectionMap[F.getSection()]; 419 if (!Entry) { 420 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 421 0/*TODO*/, Stream); 422 Entry = SectionMap.size(); 423 } 424 } 425 if (F.hasGC()) { 426 // Same for GC names. 427 unsigned &Entry = GCMap[F.getGC()]; 428 if (!Entry) { 429 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 430 0/*TODO*/, Stream); 431 Entry = GCMap.size(); 432 } 433 } 434 } 435 436 // Emit abbrev for globals, now that we know # sections and max alignment. 437 unsigned SimpleGVarAbbrev = 0; 438 if (!M->global_empty()) { 439 // Add an abbrev for common globals with no visibility or thread localness. 440 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 441 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 443 Log2_32_Ceil(MaxGlobalType+1))); 444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 447 if (MaxAlignment == 0) // Alignment. 448 Abbv->Add(BitCodeAbbrevOp(0)); 449 else { 450 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 452 Log2_32_Ceil(MaxEncAlignment+1))); 453 } 454 if (SectionMap.empty()) // Section. 455 Abbv->Add(BitCodeAbbrevOp(0)); 456 else 457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 458 Log2_32_Ceil(SectionMap.size()+1))); 459 // Don't bother emitting vis + thread local. 460 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 461 } 462 463 // Emit the global variable information. 464 SmallVector<unsigned, 64> Vals; 465 for (const GlobalVariable &GV : M->globals()) { 466 unsigned AbbrevToUse = 0; 467 468 // GLOBALVAR: [type, isconst, initid, 469 // linkage, alignment, section, visibility, threadlocal, 470 // unnamed_addr] 471 Vals.push_back(VE.getTypeID(GV.getType())); 472 Vals.push_back(GV.isConstant()); 473 Vals.push_back(GV.isDeclaration() ? 0 : 474 (VE.getValueID(GV.getInitializer()) + 1)); 475 Vals.push_back(getEncodedLinkage(GV)); 476 Vals.push_back(Log2_32(GV.getAlignment())+1); 477 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 478 if (GV.isThreadLocal() || 479 GV.getVisibility() != GlobalValue::DefaultVisibility || 480 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None) { 481 Vals.push_back(getEncodedVisibility(GV)); 482 Vals.push_back(GV.isThreadLocal()); 483 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 484 } else { 485 AbbrevToUse = SimpleGVarAbbrev; 486 } 487 488 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 489 Vals.clear(); 490 } 491 492 // Emit the function proto information. 493 for (const Function &F : *M) { 494 // FUNCTION: [type, callingconv, isproto, paramattr, 495 // linkage, alignment, section, visibility, gc, unnamed_addr] 496 Vals.push_back(VE.getTypeID(F.getType())); 497 Vals.push_back(F.getCallingConv()); 498 Vals.push_back(F.isDeclaration()); 499 Vals.push_back(getEncodedLinkage(F)); 500 Vals.push_back(VE.getAttributeID(F.getAttributes())); 501 Vals.push_back(Log2_32(F.getAlignment())+1); 502 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 503 Vals.push_back(getEncodedVisibility(F)); 504 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 505 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 506 507 unsigned AbbrevToUse = 0; 508 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 509 Vals.clear(); 510 } 511 512 // Emit the alias information. 513 for (const GlobalAlias &A : M->aliases()) { 514 Vals.push_back(VE.getTypeID(A.getType())); 515 Vals.push_back(VE.getValueID(A.getAliasee())); 516 Vals.push_back(getEncodedLinkage(A)); 517 Vals.push_back(getEncodedVisibility(A)); 518 unsigned AbbrevToUse = 0; 519 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); 520 Vals.clear(); 521 } 522 } 523 524 static uint64_t GetOptimizationFlags(const Value *V) { 525 uint64_t Flags = 0; 526 527 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 528 if (OBO->hasNoSignedWrap()) 529 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 530 if (OBO->hasNoUnsignedWrap()) 531 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 532 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 533 if (PEO->isExact()) 534 Flags |= 1 << bitc::PEO_EXACT; 535 } 536 537 return Flags; 538 } 539 540 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 541 const llvm_2_9_func::ValueEnumerator &VE, 542 BitstreamWriter &Stream, 543 SmallVectorImpl<uint64_t> &Record) { 544 // Mimic an MDNode with a value as one operand. 545 Value *V = MD->getValue(); 546 Record.push_back(VE.getTypeID(V->getType())); 547 Record.push_back(VE.getValueID(V)); 548 Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, 0); 549 Record.clear(); 550 } 551 552 static void WriteMDTuple(const MDTuple *N, const llvm_2_9_func::ValueEnumerator &VE, 553 BitstreamWriter &Stream, 554 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 555 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 556 Metadata *MD = N->getOperand(i); 557 assert(!(MD && isa<LocalAsMetadata>(MD)) && 558 "Unexpected function-local metadata"); 559 if (!MD) { 560 // TODO(srhines): I don't believe this case can exist for RS. 561 Record.push_back(VE.getTypeID(llvm::Type::getVoidTy(N->getContext()))); 562 Record.push_back(0); 563 } else if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 564 Record.push_back(VE.getTypeID(MDC->getType())); 565 Record.push_back(VE.getValueID(MDC->getValue())); 566 } else { 567 Record.push_back(VE.getTypeID( 568 llvm::Type::getMetadataTy(N->getContext()))); 569 Record.push_back(VE.getMetadataID(MD)); 570 } 571 } 572 Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, Abbrev); 573 Record.clear(); 574 } 575 576 /*static void WriteMDLocation(const MDLocation *N, const llvm_2_9_func::ValueEnumerator &VE, 577 BitstreamWriter &Stream, 578 SmallVectorImpl<uint64_t> &Record, 579 unsigned Abbrev) { 580 Record.push_back(N->isDistinct()); 581 Record.push_back(N->getLine()); 582 Record.push_back(N->getColumn()); 583 Record.push_back(VE.getMetadataID(N->getScope())); 584 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 585 586 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 587 Record.clear(); 588 } 589 590 static void WriteGenericDebugNode(const GenericDebugNode *, 591 const llvm_2_9_func::ValueEnumerator &, BitstreamWriter &, 592 SmallVectorImpl<uint64_t> &, unsigned) { 593 llvm_unreachable("unimplemented"); 594 }*/ 595 596 static void WriteModuleMetadata(const Module *M, 597 const llvm_2_9_func::ValueEnumerator &VE, 598 BitstreamWriter &Stream) { 599 const auto &MDs = VE.getMDs(); 600 if (MDs.empty() && M->named_metadata_empty()) 601 return; 602 603 // RenderScript files *ALWAYS* have metadata! 604 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 605 606 unsigned MDSAbbrev = 0; 607 if (VE.hasMDString()) { 608 // Abbrev for METADATA_STRING. 609 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 610 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); 611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 613 MDSAbbrev = Stream.EmitAbbrev(Abbv); 614 } 615 616 unsigned MDLocationAbbrev = 0; 617 if (VE.hasDILocation()) { 618 // TODO(srhines): Should be unreachable for RenderScript. 619 // Abbrev for METADATA_LOCATION. 620 // 621 // Assume the column is usually under 128, and always output the inlined-at 622 // location (it's never more expensive than building an array size 1). 623 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 624 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 630 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 631 } 632 633 unsigned NameAbbrev = 0; 634 if (!M->named_metadata_empty()) { 635 // Abbrev for METADATA_NAME. 636 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 637 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 640 NameAbbrev = Stream.EmitAbbrev(Abbv); 641 } 642 643 unsigned MDTupleAbbrev = 0; 644 //unsigned GenericDebugNodeAbbrev = 0; 645 SmallVector<uint64_t, 64> Record; 646 for (const Metadata *MD : MDs) { 647 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 648 switch (N->getMetadataID()) { 649 default: 650 llvm_unreachable("Invalid MDNode subclass"); 651 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) 652 #define HANDLE_MDNODE_LEAF(CLASS) \ 653 case Metadata::CLASS##Kind: \ 654 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 655 continue; 656 #include "llvm/IR/Metadata.def" 657 } 658 } 659 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 660 WriteValueAsMetadata(MDC, VE, Stream, Record); 661 continue; 662 } 663 const MDString *MDS = cast<MDString>(MD); 664 // Code: [strchar x N] 665 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 666 667 // Emit the finished record. 668 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev); 669 Record.clear(); 670 } 671 672 // Write named metadata. 673 for (const NamedMDNode &NMD : M->named_metadata()) { 674 // Write name. 675 StringRef Str = NMD.getName(); 676 Record.append(Str.bytes_begin(), Str.bytes_end()); 677 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 678 Record.clear(); 679 680 // Write named metadata operands. 681 for (const MDNode *N : NMD.operands()) 682 Record.push_back(VE.getMetadataID(N)); 683 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 684 Record.clear(); 685 } 686 687 Stream.ExitBlock(); 688 } 689 690 static void WriteFunctionLocalMetadata(const Function &F, 691 const llvm_2_9_func::ValueEnumerator &VE, 692 BitstreamWriter &Stream) { 693 bool StartedMetadataBlock = false; 694 SmallVector<uint64_t, 64> Record; 695 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 696 VE.getFunctionLocalMDs(); 697 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 698 assert(MDs[i] && "Expected valid function-local metadata"); 699 if (!StartedMetadataBlock) { 700 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 701 StartedMetadataBlock = true; 702 } 703 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 704 } 705 706 if (StartedMetadataBlock) 707 Stream.ExitBlock(); 708 } 709 710 static void WriteMetadataAttachment(const Function &F, 711 const llvm_2_9_func::ValueEnumerator &VE, 712 BitstreamWriter &Stream) { 713 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 714 715 SmallVector<uint64_t, 64> Record; 716 717 // Write metadata attachments 718 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 719 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 720 721 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 722 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 723 I != E; ++I) { 724 MDs.clear(); 725 I->getAllMetadataOtherThanDebugLoc(MDs); 726 727 // If no metadata, ignore instruction. 728 if (MDs.empty()) continue; 729 730 Record.push_back(VE.getInstructionID(&*I)); 731 732 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 733 Record.push_back(MDs[i].first); 734 Record.push_back(VE.getMetadataID(MDs[i].second)); 735 } 736 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 737 Record.clear(); 738 } 739 740 Stream.ExitBlock(); 741 } 742 743 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 744 SmallVector<uint64_t, 64> Record; 745 746 // Write metadata kinds 747 // METADATA_KIND - [n x [id, name]] 748 SmallVector<StringRef, 4> Names; 749 M->getMDKindNames(Names); 750 751 if (Names.empty()) return; 752 753 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 754 755 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 756 Record.push_back(MDKindID); 757 StringRef KName = Names[MDKindID]; 758 Record.append(KName.begin(), KName.end()); 759 760 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 761 Record.clear(); 762 } 763 764 Stream.ExitBlock(); 765 } 766 767 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 768 const llvm_2_9_func::ValueEnumerator &VE, 769 BitstreamWriter &Stream, bool isGlobal) { 770 if (FirstVal == LastVal) return; 771 772 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 773 774 unsigned AggregateAbbrev = 0; 775 unsigned String8Abbrev = 0; 776 unsigned CString7Abbrev = 0; 777 unsigned CString6Abbrev = 0; 778 // If this is a constant pool for the module, emit module-specific abbrevs. 779 if (isGlobal) { 780 // Abbrev for CST_CODE_AGGREGATE. 781 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 782 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 785 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 786 787 // Abbrev for CST_CODE_STRING. 788 Abbv = new BitCodeAbbrev(); 789 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 792 String8Abbrev = Stream.EmitAbbrev(Abbv); 793 // Abbrev for CST_CODE_CSTRING. 794 Abbv = new BitCodeAbbrev(); 795 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 798 CString7Abbrev = Stream.EmitAbbrev(Abbv); 799 // Abbrev for CST_CODE_CSTRING. 800 Abbv = new BitCodeAbbrev(); 801 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 804 CString6Abbrev = Stream.EmitAbbrev(Abbv); 805 } 806 807 SmallVector<uint64_t, 64> Record; 808 809 const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues(); 810 Type *LastTy = nullptr; 811 for (unsigned i = FirstVal; i != LastVal; ++i) { 812 const Value *V = Vals[i].first; 813 // If we need to switch types, do so now. 814 if (V->getType() != LastTy) { 815 LastTy = V->getType(); 816 Record.push_back(VE.getTypeID(LastTy)); 817 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 818 CONSTANTS_SETTYPE_ABBREV); 819 Record.clear(); 820 } 821 822 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 823 Record.push_back(unsigned(IA->hasSideEffects()) | 824 unsigned(IA->isAlignStack()) << 1); 825 826 // Add the asm string. 827 const std::string &AsmStr = IA->getAsmString(); 828 Record.push_back(AsmStr.size()); 829 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 830 Record.push_back(AsmStr[i]); 831 832 // Add the constraint string. 833 const std::string &ConstraintStr = IA->getConstraintString(); 834 Record.push_back(ConstraintStr.size()); 835 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 836 Record.push_back(ConstraintStr[i]); 837 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 838 Record.clear(); 839 continue; 840 } 841 const Constant *C = cast<Constant>(V); 842 unsigned Code = -1U; 843 unsigned AbbrevToUse = 0; 844 if (C->isNullValue()) { 845 Code = bitc::CST_CODE_NULL; 846 } else if (isa<UndefValue>(C)) { 847 Code = bitc::CST_CODE_UNDEF; 848 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 849 if (IV->getBitWidth() <= 64) { 850 uint64_t V = IV->getSExtValue(); 851 if ((int64_t)V >= 0) 852 Record.push_back(V << 1); 853 else 854 Record.push_back((-V << 1) | 1); 855 Code = bitc::CST_CODE_INTEGER; 856 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 857 } else { // Wide integers, > 64 bits in size. 858 // We have an arbitrary precision integer value to write whose 859 // bit width is > 64. However, in canonical unsigned integer 860 // format it is likely that the high bits are going to be zero. 861 // So, we only write the number of active words. 862 unsigned NWords = IV->getValue().getActiveWords(); 863 const uint64_t *RawWords = IV->getValue().getRawData(); 864 for (unsigned i = 0; i != NWords; ++i) { 865 int64_t V = RawWords[i]; 866 if (V >= 0) 867 Record.push_back(V << 1); 868 else 869 Record.push_back((-V << 1) | 1); 870 } 871 Code = bitc::CST_CODE_WIDE_INTEGER; 872 } 873 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 874 Code = bitc::CST_CODE_FLOAT; 875 Type *Ty = CFP->getType(); 876 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 877 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 878 } else if (Ty->isX86_FP80Ty()) { 879 // api needed to prevent premature destruction 880 // bits are not in the same order as a normal i80 APInt, compensate. 881 APInt api = CFP->getValueAPF().bitcastToAPInt(); 882 const uint64_t *p = api.getRawData(); 883 Record.push_back((p[1] << 48) | (p[0] >> 16)); 884 Record.push_back(p[0] & 0xffffLL); 885 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 886 APInt api = CFP->getValueAPF().bitcastToAPInt(); 887 const uint64_t *p = api.getRawData(); 888 Record.push_back(p[0]); 889 Record.push_back(p[1]); 890 } else { 891 assert (0 && "Unknown FP type!"); 892 } 893 } else if (isa<ConstantDataSequential>(C) && 894 cast<ConstantDataSequential>(C)->isString()) { 895 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 896 // Emit constant strings specially. 897 unsigned NumElts = Str->getNumElements(); 898 // If this is a null-terminated string, use the denser CSTRING encoding. 899 if (Str->isCString()) { 900 Code = bitc::CST_CODE_CSTRING; 901 --NumElts; // Don't encode the null, which isn't allowed by char6. 902 } else { 903 Code = bitc::CST_CODE_STRING; 904 AbbrevToUse = String8Abbrev; 905 } 906 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 907 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 908 for (unsigned i = 0; i != NumElts; ++i) { 909 unsigned char V = Str->getElementAsInteger(i); 910 Record.push_back(V); 911 isCStr7 &= (V & 128) == 0; 912 if (isCStrChar6) 913 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 914 } 915 916 if (isCStrChar6) 917 AbbrevToUse = CString6Abbrev; 918 else if (isCStr7) 919 AbbrevToUse = CString7Abbrev; 920 } else if (const ConstantDataSequential *CDS = 921 dyn_cast<ConstantDataSequential>(C)) { 922 // We must replace ConstantDataSequential's representation with the 923 // legacy ConstantArray/ConstantVector/ConstantStruct version. 924 // ValueEnumerator is similarly modified to mark the appropriate 925 // Constants as used (so they are emitted). 926 Code = bitc::CST_CODE_AGGREGATE; 927 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 928 Record.push_back(VE.getValueID(CDS->getElementAsConstant(i))); 929 AbbrevToUse = AggregateAbbrev; 930 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 931 isa<ConstantVector>(C)) { 932 Code = bitc::CST_CODE_AGGREGATE; 933 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 934 Record.push_back(VE.getValueID(C->getOperand(i))); 935 AbbrevToUse = AggregateAbbrev; 936 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 937 switch (CE->getOpcode()) { 938 default: 939 if (Instruction::isCast(CE->getOpcode())) { 940 Code = bitc::CST_CODE_CE_CAST; 941 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 942 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 943 Record.push_back(VE.getValueID(C->getOperand(0))); 944 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 945 } else { 946 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 947 Code = bitc::CST_CODE_CE_BINOP; 948 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 949 Record.push_back(VE.getValueID(C->getOperand(0))); 950 Record.push_back(VE.getValueID(C->getOperand(1))); 951 uint64_t Flags = GetOptimizationFlags(CE); 952 if (Flags != 0) 953 Record.push_back(Flags); 954 } 955 break; 956 case Instruction::GetElementPtr: 957 Code = bitc::CST_CODE_CE_GEP; 958 if (cast<GEPOperator>(C)->isInBounds()) 959 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 960 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 961 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 962 Record.push_back(VE.getValueID(C->getOperand(i))); 963 } 964 break; 965 case Instruction::Select: 966 Code = bitc::CST_CODE_CE_SELECT; 967 Record.push_back(VE.getValueID(C->getOperand(0))); 968 Record.push_back(VE.getValueID(C->getOperand(1))); 969 Record.push_back(VE.getValueID(C->getOperand(2))); 970 break; 971 case Instruction::ExtractElement: 972 Code = bitc::CST_CODE_CE_EXTRACTELT; 973 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 974 Record.push_back(VE.getValueID(C->getOperand(0))); 975 Record.push_back(VE.getValueID(C->getOperand(1))); 976 break; 977 case Instruction::InsertElement: 978 Code = bitc::CST_CODE_CE_INSERTELT; 979 Record.push_back(VE.getValueID(C->getOperand(0))); 980 Record.push_back(VE.getValueID(C->getOperand(1))); 981 Record.push_back(VE.getValueID(C->getOperand(2))); 982 break; 983 case Instruction::ShuffleVector: 984 // If the return type and argument types are the same, this is a 985 // standard shufflevector instruction. If the types are different, 986 // then the shuffle is widening or truncating the input vectors, and 987 // the argument type must also be encoded. 988 if (C->getType() == C->getOperand(0)->getType()) { 989 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 990 } else { 991 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 992 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 993 } 994 Record.push_back(VE.getValueID(C->getOperand(0))); 995 Record.push_back(VE.getValueID(C->getOperand(1))); 996 Record.push_back(VE.getValueID(C->getOperand(2))); 997 break; 998 case Instruction::ICmp: 999 case Instruction::FCmp: 1000 Code = bitc::CST_CODE_CE_CMP; 1001 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1002 Record.push_back(VE.getValueID(C->getOperand(0))); 1003 Record.push_back(VE.getValueID(C->getOperand(1))); 1004 Record.push_back(CE->getPredicate()); 1005 break; 1006 } 1007 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1008 Code = bitc::CST_CODE_BLOCKADDRESS; 1009 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1010 Record.push_back(VE.getValueID(BA->getFunction())); 1011 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1012 } else { 1013 #ifndef NDEBUG 1014 C->dump(); 1015 #endif 1016 llvm_unreachable("Unknown constant!"); 1017 } 1018 Stream.EmitRecord(Code, Record, AbbrevToUse); 1019 Record.clear(); 1020 } 1021 1022 Stream.ExitBlock(); 1023 } 1024 1025 static void WriteModuleConstants(const llvm_2_9_func::ValueEnumerator &VE, 1026 BitstreamWriter &Stream) { 1027 const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues(); 1028 1029 // Find the first constant to emit, which is the first non-globalvalue value. 1030 // We know globalvalues have been emitted by WriteModuleInfo. 1031 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1032 if (!isa<GlobalValue>(Vals[i].first)) { 1033 WriteConstants(i, Vals.size(), VE, Stream, true); 1034 return; 1035 } 1036 } 1037 } 1038 1039 /// PushValueAndType - The file has to encode both the value and type id for 1040 /// many values, because we need to know what type to create for forward 1041 /// references. However, most operands are not forward references, so this type 1042 /// field is not needed. 1043 /// 1044 /// This function adds V's value ID to Vals. If the value ID is higher than the 1045 /// instruction ID, then it is a forward reference, and it also includes the 1046 /// type ID. 1047 static bool PushValueAndType(const Value *V, unsigned InstID, 1048 SmallVector<unsigned, 64> &Vals, 1049 llvm_2_9_func::ValueEnumerator &VE) { 1050 unsigned ValID = VE.getValueID(V); 1051 Vals.push_back(ValID); 1052 if (ValID >= InstID) { 1053 Vals.push_back(VE.getTypeID(V->getType())); 1054 return true; 1055 } 1056 return false; 1057 } 1058 1059 /// WriteInstruction - Emit an instruction to the specified stream. 1060 static void WriteInstruction(const Instruction &I, unsigned InstID, 1061 llvm_2_9_func::ValueEnumerator &VE, 1062 BitstreamWriter &Stream, 1063 SmallVector<unsigned, 64> &Vals) { 1064 unsigned Code = 0; 1065 unsigned AbbrevToUse = 0; 1066 VE.setInstructionID(&I); 1067 switch (I.getOpcode()) { 1068 default: 1069 if (Instruction::isCast(I.getOpcode())) { 1070 Code = bitc::FUNC_CODE_INST_CAST; 1071 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1072 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1073 Vals.push_back(VE.getTypeID(I.getType())); 1074 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1075 } else { 1076 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1077 Code = bitc::FUNC_CODE_INST_BINOP; 1078 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1079 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1080 Vals.push_back(VE.getValueID(I.getOperand(1))); 1081 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1082 uint64_t Flags = GetOptimizationFlags(&I); 1083 if (Flags != 0) { 1084 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1085 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1086 Vals.push_back(Flags); 1087 } 1088 } 1089 break; 1090 1091 case Instruction::GetElementPtr: 1092 Code = bitc::FUNC_CODE_INST_GEP_OLD; 1093 if (cast<GEPOperator>(&I)->isInBounds()) 1094 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 1095 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1096 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1097 break; 1098 case Instruction::ExtractValue: { 1099 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1100 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1101 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1102 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1103 Vals.push_back(*i); 1104 break; 1105 } 1106 case Instruction::InsertValue: { 1107 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1108 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1109 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1110 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1111 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1112 Vals.push_back(*i); 1113 break; 1114 } 1115 case Instruction::Select: 1116 Code = bitc::FUNC_CODE_INST_VSELECT; 1117 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1118 Vals.push_back(VE.getValueID(I.getOperand(2))); 1119 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1120 break; 1121 case Instruction::ExtractElement: 1122 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1123 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1124 Vals.push_back(VE.getValueID(I.getOperand(1))); 1125 break; 1126 case Instruction::InsertElement: 1127 Code = bitc::FUNC_CODE_INST_INSERTELT; 1128 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1129 Vals.push_back(VE.getValueID(I.getOperand(1))); 1130 Vals.push_back(VE.getValueID(I.getOperand(2))); 1131 break; 1132 case Instruction::ShuffleVector: 1133 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1134 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1135 Vals.push_back(VE.getValueID(I.getOperand(1))); 1136 Vals.push_back(VE.getValueID(I.getOperand(2))); 1137 break; 1138 case Instruction::ICmp: 1139 case Instruction::FCmp: 1140 // compare returning Int1Ty or vector of Int1Ty 1141 Code = bitc::FUNC_CODE_INST_CMP2; 1142 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1143 Vals.push_back(VE.getValueID(I.getOperand(1))); 1144 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1145 break; 1146 1147 case Instruction::Ret: 1148 { 1149 Code = bitc::FUNC_CODE_INST_RET; 1150 unsigned NumOperands = I.getNumOperands(); 1151 if (NumOperands == 0) 1152 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1153 else if (NumOperands == 1) { 1154 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1155 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1156 } else { 1157 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1158 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1159 } 1160 } 1161 break; 1162 case Instruction::Br: 1163 { 1164 Code = bitc::FUNC_CODE_INST_BR; 1165 const BranchInst &II = cast<BranchInst>(I); 1166 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1167 if (II.isConditional()) { 1168 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1169 Vals.push_back(VE.getValueID(II.getCondition())); 1170 } 1171 } 1172 break; 1173 case Instruction::Switch: 1174 { 1175 Code = bitc::FUNC_CODE_INST_SWITCH; 1176 const SwitchInst &SI = cast<SwitchInst>(I); 1177 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1178 Vals.push_back(VE.getValueID(SI.getCondition())); 1179 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1180 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1181 i != e; ++i) { 1182 Vals.push_back(VE.getValueID(i.getCaseValue())); 1183 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1184 } 1185 } 1186 break; 1187 case Instruction::IndirectBr: 1188 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1189 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1190 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1191 Vals.push_back(VE.getValueID(I.getOperand(i))); 1192 break; 1193 1194 case Instruction::Invoke: { 1195 const InvokeInst *II = cast<InvokeInst>(&I); 1196 const Value *Callee(II->getCalledValue()); 1197 PointerType *PTy = cast<PointerType>(Callee->getType()); 1198 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1199 Code = bitc::FUNC_CODE_INST_INVOKE; 1200 1201 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1202 Vals.push_back(II->getCallingConv()); 1203 Vals.push_back(VE.getValueID(II->getNormalDest())); 1204 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1205 PushValueAndType(Callee, InstID, Vals, VE); 1206 1207 // Emit value #'s for the fixed parameters. 1208 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1209 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1210 1211 // Emit type/value pairs for varargs params. 1212 if (FTy->isVarArg()) { 1213 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1214 i != e; ++i) 1215 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1216 } 1217 break; 1218 } 1219 case Instruction::Resume: 1220 Code = bitc::FUNC_CODE_INST_RESUME; 1221 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1222 break; 1223 case Instruction::Unreachable: 1224 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1225 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1226 break; 1227 1228 case Instruction::PHI: { 1229 const PHINode &PN = cast<PHINode>(I); 1230 Code = bitc::FUNC_CODE_INST_PHI; 1231 Vals.push_back(VE.getTypeID(PN.getType())); 1232 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1233 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1234 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1235 } 1236 break; 1237 } 1238 1239 case Instruction::LandingPad: { 1240 const LandingPadInst &LP = cast<LandingPadInst>(I); 1241 Code = bitc::FUNC_CODE_INST_LANDINGPAD_OLD; 1242 Vals.push_back(VE.getTypeID(LP.getType())); 1243 // TODO (rebase): is this fix enough? 1244 // PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1245 Vals.push_back(LP.isCleanup()); 1246 Vals.push_back(LP.getNumClauses()); 1247 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1248 if (LP.isCatch(I)) 1249 Vals.push_back(LandingPadInst::Catch); 1250 else 1251 Vals.push_back(LandingPadInst::Filter); 1252 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1253 } 1254 break; 1255 } 1256 1257 case Instruction::Alloca: 1258 Code = bitc::FUNC_CODE_INST_ALLOCA; 1259 Vals.push_back(VE.getTypeID(I.getType())); 1260 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1261 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1262 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1263 break; 1264 1265 case Instruction::Load: 1266 if (cast<LoadInst>(I).isAtomic()) { 1267 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1268 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1269 } else { 1270 Code = bitc::FUNC_CODE_INST_LOAD; 1271 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1272 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1273 } 1274 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1275 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1276 if (cast<LoadInst>(I).isAtomic()) { 1277 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1278 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1279 } 1280 break; 1281 case Instruction::Store: 1282 if (cast<StoreInst>(I).isAtomic()) 1283 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1284 else 1285 Code = bitc::FUNC_CODE_INST_STORE_OLD; 1286 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1287 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1288 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1289 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1290 if (cast<StoreInst>(I).isAtomic()) { 1291 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1292 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1293 } 1294 break; 1295 case Instruction::AtomicCmpXchg: 1296 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1297 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1298 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp. 1299 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval. 1300 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1301 Vals.push_back(GetEncodedOrdering( 1302 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1303 Vals.push_back(GetEncodedSynchScope( 1304 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1305 break; 1306 case Instruction::AtomicRMW: 1307 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1308 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1309 Vals.push_back(VE.getValueID(I.getOperand(1))); // val. 1310 Vals.push_back(GetEncodedRMWOperation( 1311 cast<AtomicRMWInst>(I).getOperation())); 1312 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1313 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1314 Vals.push_back(GetEncodedSynchScope( 1315 cast<AtomicRMWInst>(I).getSynchScope())); 1316 break; 1317 case Instruction::Fence: 1318 Code = bitc::FUNC_CODE_INST_FENCE; 1319 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1320 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1321 break; 1322 case Instruction::Call: { 1323 const CallInst &CI = cast<CallInst>(I); 1324 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1325 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1326 1327 Code = bitc::FUNC_CODE_INST_CALL; 1328 1329 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1330 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1331 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1332 1333 // Emit value #'s for the fixed parameters. 1334 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1335 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1336 1337 // Emit type/value pairs for varargs params. 1338 if (FTy->isVarArg()) { 1339 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1340 i != e; ++i) 1341 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1342 } 1343 break; 1344 } 1345 case Instruction::VAArg: 1346 Code = bitc::FUNC_CODE_INST_VAARG; 1347 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1348 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1349 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1350 break; 1351 } 1352 1353 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1354 Vals.clear(); 1355 } 1356 1357 // Emit names for globals/functions etc. 1358 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1359 const llvm_2_9_func::ValueEnumerator &VE, 1360 BitstreamWriter &Stream) { 1361 if (VST.empty()) return; 1362 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1363 1364 // FIXME: Set up the abbrev, we know how many values there are! 1365 // FIXME: We know if the type names can use 7-bit ascii. 1366 SmallVector<unsigned, 64> NameVals; 1367 1368 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1369 SI != SE; ++SI) { 1370 1371 const ValueName &Name = *SI; 1372 1373 // Figure out the encoding to use for the name. 1374 bool is7Bit = true; 1375 bool isChar6 = true; 1376 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1377 C != E; ++C) { 1378 if (isChar6) 1379 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1380 if ((unsigned char)*C & 128) { 1381 is7Bit = false; 1382 break; // don't bother scanning the rest. 1383 } 1384 } 1385 1386 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1387 1388 // VST_ENTRY: [valueid, namechar x N] 1389 // VST_BBENTRY: [bbid, namechar x N] 1390 unsigned Code; 1391 if (isa<BasicBlock>(SI->getValue())) { 1392 Code = bitc::VST_CODE_BBENTRY; 1393 if (isChar6) 1394 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1395 } else { 1396 Code = bitc::VST_CODE_ENTRY; 1397 if (isChar6) 1398 AbbrevToUse = VST_ENTRY_6_ABBREV; 1399 else if (is7Bit) 1400 AbbrevToUse = VST_ENTRY_7_ABBREV; 1401 } 1402 1403 NameVals.push_back(VE.getValueID(SI->getValue())); 1404 for (const char *P = Name.getKeyData(), 1405 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1406 NameVals.push_back((unsigned char)*P); 1407 1408 // Emit the finished record. 1409 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1410 NameVals.clear(); 1411 } 1412 Stream.ExitBlock(); 1413 } 1414 1415 /// WriteFunction - Emit a function body to the module stream. 1416 static void WriteFunction(const Function &F, llvm_2_9_func::ValueEnumerator &VE, 1417 BitstreamWriter &Stream) { 1418 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1419 VE.incorporateFunction(F); 1420 1421 SmallVector<unsigned, 64> Vals; 1422 1423 // Emit the number of basic blocks, so the reader can create them ahead of 1424 // time. 1425 Vals.push_back(VE.getBasicBlocks().size()); 1426 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1427 Vals.clear(); 1428 1429 // If there are function-local constants, emit them now. 1430 unsigned CstStart, CstEnd; 1431 VE.getFunctionConstantRange(CstStart, CstEnd); 1432 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1433 1434 // If there is function-local metadata, emit it now. 1435 WriteFunctionLocalMetadata(F, VE, Stream); 1436 1437 // Keep a running idea of what the instruction ID is. 1438 unsigned InstID = CstEnd; 1439 1440 bool NeedsMetadataAttachment = false; 1441 1442 DILocation *LastDL = nullptr; 1443 1444 // Finally, emit all the instructions, in order. 1445 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1446 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1447 I != E; ++I) { 1448 WriteInstruction(*I, InstID, VE, Stream, Vals); 1449 1450 if (!I->getType()->isVoidTy()) 1451 ++InstID; 1452 1453 // If the instruction has metadata, write a metadata attachment later. 1454 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1455 1456 // If the instruction has a debug location, emit it. 1457 DILocation *DL = I->getDebugLoc(); 1458 if (!DL) 1459 continue; 1460 1461 if (DL == LastDL) { 1462 // Just repeat the same debug loc as last time. 1463 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1464 continue; 1465 } 1466 1467 Vals.push_back(DL->getLine()); 1468 Vals.push_back(DL->getColumn()); 1469 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 1470 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 1471 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1472 Vals.clear(); 1473 1474 // Fixme(pirama): The following line is missing from upstream 1475 // https://llvm.org/bugs/show_bug.cgi?id=23436 1476 LastDL = DL; 1477 } 1478 1479 // Emit names for all the instructions etc. 1480 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1481 1482 if (NeedsMetadataAttachment) 1483 WriteMetadataAttachment(F, VE, Stream); 1484 VE.purgeFunction(); 1485 Stream.ExitBlock(); 1486 } 1487 1488 // Emit blockinfo, which defines the standard abbreviations etc. 1489 static void WriteBlockInfo(const llvm_2_9_func::ValueEnumerator &VE, 1490 BitstreamWriter &Stream) { 1491 // We only want to emit block info records for blocks that have multiple 1492 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1493 // blocks can defined their abbrevs inline. 1494 Stream.EnterBlockInfoBlock(2); 1495 1496 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1497 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1502 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1503 Abbv) != VST_ENTRY_8_ABBREV) 1504 llvm_unreachable("Unexpected abbrev ordering!"); 1505 } 1506 1507 { // 7-bit fixed width VST_ENTRY strings. 1508 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1509 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1513 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1514 Abbv) != VST_ENTRY_7_ABBREV) 1515 llvm_unreachable("Unexpected abbrev ordering!"); 1516 } 1517 { // 6-bit char6 VST_ENTRY strings. 1518 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1519 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1523 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1524 Abbv) != VST_ENTRY_6_ABBREV) 1525 llvm_unreachable("Unexpected abbrev ordering!"); 1526 } 1527 { // 6-bit char6 VST_BBENTRY strings. 1528 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1529 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1533 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1534 Abbv) != VST_BBENTRY_6_ABBREV) 1535 llvm_unreachable("Unexpected abbrev ordering!"); 1536 } 1537 1538 1539 1540 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1541 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1542 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1544 Log2_32_Ceil(VE.getTypes().size()+1))); 1545 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1546 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1547 llvm_unreachable("Unexpected abbrev ordering!"); 1548 } 1549 1550 { // INTEGER abbrev for CONSTANTS_BLOCK. 1551 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1552 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1554 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1555 Abbv) != CONSTANTS_INTEGER_ABBREV) 1556 llvm_unreachable("Unexpected abbrev ordering!"); 1557 } 1558 1559 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1560 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1561 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1564 Log2_32_Ceil(VE.getTypes().size()+1))); 1565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1566 1567 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1568 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1569 llvm_unreachable("Unexpected abbrev ordering!"); 1570 } 1571 { // NULL abbrev for CONSTANTS_BLOCK. 1572 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1573 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1574 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1575 Abbv) != CONSTANTS_NULL_Abbrev) 1576 llvm_unreachable("Unexpected abbrev ordering!"); 1577 } 1578 1579 // FIXME: This should only use space for first class types! 1580 1581 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1582 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1583 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1587 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1588 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1589 llvm_unreachable("Unexpected abbrev ordering!"); 1590 } 1591 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1592 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1593 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1597 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1598 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1599 llvm_unreachable("Unexpected abbrev ordering!"); 1600 } 1601 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1602 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1603 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1608 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1609 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1610 llvm_unreachable("Unexpected abbrev ordering!"); 1611 } 1612 { // INST_CAST abbrev for FUNCTION_BLOCK. 1613 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1614 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1617 Log2_32_Ceil(VE.getTypes().size()+1))); 1618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1619 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1620 Abbv) != FUNCTION_INST_CAST_ABBREV) 1621 llvm_unreachable("Unexpected abbrev ordering!"); 1622 } 1623 1624 { // INST_RET abbrev for FUNCTION_BLOCK. 1625 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1626 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1627 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1628 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1629 llvm_unreachable("Unexpected abbrev ordering!"); 1630 } 1631 { // INST_RET abbrev for FUNCTION_BLOCK. 1632 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1633 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1635 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1636 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1637 llvm_unreachable("Unexpected abbrev ordering!"); 1638 } 1639 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1640 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1641 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1642 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1643 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1644 llvm_unreachable("Unexpected abbrev ordering!"); 1645 } 1646 1647 Stream.ExitBlock(); 1648 } 1649 1650 /// WriteModule - Emit the specified module to the bitstream. 1651 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1652 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1653 1654 // Emit the version number if it is non-zero. 1655 if (CurVersion) { 1656 SmallVector<unsigned, 1> Vals; 1657 Vals.push_back(CurVersion); 1658 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1659 } 1660 1661 // Analyze the module, enumerating globals, functions, etc. 1662 llvm_2_9_func::ValueEnumerator VE(*M); 1663 1664 // Emit blockinfo, which defines the standard abbreviations etc. 1665 WriteBlockInfo(VE, Stream); 1666 1667 // Emit information about parameter attributes. 1668 WriteAttributeTable(VE, Stream); 1669 1670 // Emit information describing all of the types in the module. 1671 WriteTypeTable(VE, Stream); 1672 1673 // Emit top-level description of module, including target triple, inline asm, 1674 // descriptors for global variables, and function prototype info. 1675 WriteModuleInfo(M, VE, Stream); 1676 1677 // Emit constants. 1678 WriteModuleConstants(VE, Stream); 1679 1680 // Emit metadata. 1681 WriteModuleMetadata(M, VE, Stream); 1682 1683 // Emit function bodies. 1684 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1685 if (!F->isDeclaration()) 1686 WriteFunction(*F, VE, Stream); 1687 1688 // Emit metadata. 1689 WriteModuleMetadataStore(M, Stream); 1690 1691 // Emit names for globals/functions etc. 1692 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1693 1694 Stream.ExitBlock(); 1695 } 1696 1697 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1698 /// header and trailer to make it compatible with the system archiver. To do 1699 /// this we emit the following header, and then emit a trailer that pads the 1700 /// file out to be a multiple of 16 bytes. 1701 /// 1702 /// struct bc_header { 1703 /// uint32_t Magic; // 0x0B17C0DE 1704 /// uint32_t Version; // Version, currently always 0. 1705 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1706 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1707 /// uint32_t CPUType; // CPU specifier. 1708 /// ... potentially more later ... 1709 /// }; 1710 enum { 1711 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1712 DarwinBCHeaderSize = 5*4 1713 }; 1714 1715 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1716 uint32_t &Position) { 1717 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1718 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1719 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1720 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1721 Position += 4; 1722 } 1723 1724 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1725 const Triple &TT) { 1726 unsigned CPUType = ~0U; 1727 1728 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1729 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1730 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1731 // specific constants here because they are implicitly part of the Darwin ABI. 1732 enum { 1733 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1734 DARWIN_CPU_TYPE_X86 = 7, 1735 DARWIN_CPU_TYPE_ARM = 12, 1736 DARWIN_CPU_TYPE_POWERPC = 18 1737 }; 1738 1739 Triple::ArchType Arch = TT.getArch(); 1740 if (Arch == Triple::x86_64) 1741 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1742 else if (Arch == Triple::x86) 1743 CPUType = DARWIN_CPU_TYPE_X86; 1744 else if (Arch == Triple::ppc) 1745 CPUType = DARWIN_CPU_TYPE_POWERPC; 1746 else if (Arch == Triple::ppc64) 1747 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1748 else if (Arch == Triple::arm || Arch == Triple::thumb) 1749 CPUType = DARWIN_CPU_TYPE_ARM; 1750 1751 // Traditional Bitcode starts after header. 1752 assert(Buffer.size() >= DarwinBCHeaderSize && 1753 "Expected header size to be reserved"); 1754 unsigned BCOffset = DarwinBCHeaderSize; 1755 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1756 1757 // Write the magic and version. 1758 unsigned Position = 0; 1759 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1760 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1761 WriteInt32ToBuffer(BCOffset , Buffer, Position); 1762 WriteInt32ToBuffer(BCSize , Buffer, Position); 1763 WriteInt32ToBuffer(CPUType , Buffer, Position); 1764 1765 // If the file is not a multiple of 16 bytes, insert dummy padding. 1766 while (Buffer.size() & 15) 1767 Buffer.push_back(0); 1768 } 1769 1770 /// WriteBitcodeToFile - Write the specified module to the specified output 1771 /// stream. 1772 void llvm_2_9_func::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1773 SmallVector<char, 1024> Buffer; 1774 Buffer.reserve(256*1024); 1775 1776 // If this is darwin or another generic macho target, reserve space for the 1777 // header. 1778 Triple TT(M->getTargetTriple()); 1779 if (TT.isOSDarwin()) 1780 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 1781 1782 // Emit the module into the buffer. 1783 { 1784 BitstreamWriter Stream(Buffer); 1785 1786 // Emit the file header. 1787 Stream.Emit((unsigned)'B', 8); 1788 Stream.Emit((unsigned)'C', 8); 1789 Stream.Emit(0x0, 4); 1790 Stream.Emit(0xC, 4); 1791 Stream.Emit(0xE, 4); 1792 Stream.Emit(0xD, 4); 1793 1794 // Emit the module. 1795 WriteModule(M, Stream); 1796 } 1797 1798 if (TT.isOSDarwin()) 1799 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 1800 1801 // Write the generated bitstream to "Out". 1802 Out.write((char*)&Buffer.front(), Buffer.size()); 1803 } 1804