1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ReaderWriter_3_2.h" 15 #include "legacy_bitcode.h" 16 #include "ValueEnumerator.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/IR/UseListOrder.h" 28 #include "llvm/IR/ValueSymbolTable.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Support/Program.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <cctype> 35 #include <map> 36 using namespace llvm; 37 38 /// These are manifest constants used by the bitcode writer. They do not need to 39 /// be kept in sync with the reader, but need to be consistent within this file. 40 enum { 41 // VALUE_SYMTAB_BLOCK abbrev id's. 42 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 43 VST_ENTRY_7_ABBREV, 44 VST_ENTRY_6_ABBREV, 45 VST_BBENTRY_6_ABBREV, 46 47 // CONSTANTS_BLOCK abbrev id's. 48 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 49 CONSTANTS_INTEGER_ABBREV, 50 CONSTANTS_CE_CAST_Abbrev, 51 CONSTANTS_NULL_Abbrev, 52 53 // FUNCTION_BLOCK abbrev id's. 54 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 55 FUNCTION_INST_BINOP_ABBREV, 56 FUNCTION_INST_BINOP_FLAGS_ABBREV, 57 FUNCTION_INST_CAST_ABBREV, 58 FUNCTION_INST_RET_VOID_ABBREV, 59 FUNCTION_INST_RET_VAL_ABBREV, 60 FUNCTION_INST_UNREACHABLE_ABBREV 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 125 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 126 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 127 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 128 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 129 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 130 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 131 } 132 llvm_unreachable("Invalid ordering"); 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 139 } 140 llvm_unreachable("Invalid synch scope"); 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 // Emit information about parameter attributes. 159 static void WriteAttributeTable(const llvm_3_2::ValueEnumerator &VE, 160 BitstreamWriter &Stream) { 161 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 162 if (Attrs.empty()) return; 163 164 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 165 166 SmallVector<uint64_t, 64> Record; 167 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 168 const AttributeSet &A = Attrs[i]; 169 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 170 Record.push_back(A.getSlotIndex(i)); 171 Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i))); 172 } 173 174 // This needs to use the 3.2 entry type 175 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record); 176 Record.clear(); 177 } 178 179 Stream.ExitBlock(); 180 } 181 182 /// WriteTypeTable - Write out the type table for a module. 183 static void WriteTypeTable(const llvm_3_2::ValueEnumerator &VE, 184 BitstreamWriter &Stream) { 185 const llvm_3_2::ValueEnumerator::TypeList &TypeList = VE.getTypes(); 186 187 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 188 SmallVector<uint64_t, 64> TypeVals; 189 190 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 191 192 // Abbrev for TYPE_CODE_POINTER. 193 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 194 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 196 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 197 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 198 199 // Abbrev for TYPE_CODE_FUNCTION. 200 Abbv = new BitCodeAbbrev(); 201 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 205 206 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 207 208 // Abbrev for TYPE_CODE_STRUCT_ANON. 209 Abbv = new BitCodeAbbrev(); 210 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 214 215 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 216 217 // Abbrev for TYPE_CODE_STRUCT_NAME. 218 Abbv = new BitCodeAbbrev(); 219 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 222 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 223 224 // Abbrev for TYPE_CODE_STRUCT_NAMED. 225 Abbv = new BitCodeAbbrev(); 226 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 230 231 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 232 233 // Abbrev for TYPE_CODE_ARRAY. 234 Abbv = new BitCodeAbbrev(); 235 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 238 239 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 240 241 // Emit an entry count so the reader can reserve space. 242 TypeVals.push_back(TypeList.size()); 243 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 244 TypeVals.clear(); 245 246 // Loop over all of the types, emitting each in turn. 247 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 248 Type *T = TypeList[i]; 249 int AbbrevToUse = 0; 250 unsigned Code = 0; 251 252 switch (T->getTypeID()) { 253 default: llvm_unreachable("Unknown type!"); 254 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 255 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 256 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 257 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 258 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 259 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 260 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 261 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 262 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 263 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 264 case Type::IntegerTyID: 265 // INTEGER: [width] 266 Code = bitc::TYPE_CODE_INTEGER; 267 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 268 break; 269 case Type::PointerTyID: { 270 PointerType *PTy = cast<PointerType>(T); 271 // POINTER: [pointee type, address space] 272 Code = bitc::TYPE_CODE_POINTER; 273 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 274 unsigned AddressSpace = PTy->getAddressSpace(); 275 TypeVals.push_back(AddressSpace); 276 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 277 break; 278 } 279 case Type::FunctionTyID: { 280 FunctionType *FT = cast<FunctionType>(T); 281 // FUNCTION: [isvararg, retty, paramty x N] 282 Code = bitc::TYPE_CODE_FUNCTION; 283 TypeVals.push_back(FT->isVarArg()); 284 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 285 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 286 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 287 AbbrevToUse = FunctionAbbrev; 288 break; 289 } 290 case Type::StructTyID: { 291 StructType *ST = cast<StructType>(T); 292 // STRUCT: [ispacked, eltty x N] 293 TypeVals.push_back(ST->isPacked()); 294 // Output all of the element types. 295 for (StructType::element_iterator I = ST->element_begin(), 296 E = ST->element_end(); I != E; ++I) 297 TypeVals.push_back(VE.getTypeID(*I)); 298 299 if (ST->isLiteral()) { 300 Code = bitc::TYPE_CODE_STRUCT_ANON; 301 AbbrevToUse = StructAnonAbbrev; 302 } else { 303 if (ST->isOpaque()) { 304 Code = bitc::TYPE_CODE_OPAQUE; 305 } else { 306 Code = bitc::TYPE_CODE_STRUCT_NAMED; 307 AbbrevToUse = StructNamedAbbrev; 308 } 309 310 // Emit the name if it is present. 311 if (!ST->getName().empty()) 312 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 313 StructNameAbbrev, Stream); 314 } 315 break; 316 } 317 case Type::ArrayTyID: { 318 ArrayType *AT = cast<ArrayType>(T); 319 // ARRAY: [numelts, eltty] 320 Code = bitc::TYPE_CODE_ARRAY; 321 TypeVals.push_back(AT->getNumElements()); 322 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 323 AbbrevToUse = ArrayAbbrev; 324 break; 325 } 326 case Type::VectorTyID: { 327 VectorType *VT = cast<VectorType>(T); 328 // VECTOR [numelts, eltty] 329 Code = bitc::TYPE_CODE_VECTOR; 330 TypeVals.push_back(VT->getNumElements()); 331 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 332 break; 333 } 334 } 335 336 // Emit the finished record. 337 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 338 TypeVals.clear(); 339 } 340 341 Stream.ExitBlock(); 342 } 343 344 static unsigned getEncodedLinkage(const GlobalValue &GV) { 345 switch (GV.getLinkage()) { 346 case GlobalValue::ExternalLinkage: 347 return 0; 348 case GlobalValue::WeakAnyLinkage: 349 return 1; 350 case GlobalValue::AppendingLinkage: 351 return 2; 352 case GlobalValue::InternalLinkage: 353 return 3; 354 case GlobalValue::LinkOnceAnyLinkage: 355 return 4; 356 case GlobalValue::ExternalWeakLinkage: 357 return 7; 358 case GlobalValue::CommonLinkage: 359 return 8; 360 case GlobalValue::PrivateLinkage: 361 return 9; 362 case GlobalValue::WeakODRLinkage: 363 return 10; 364 case GlobalValue::LinkOnceODRLinkage: 365 return 11; 366 case GlobalValue::AvailableExternallyLinkage: 367 return 12; 368 } 369 llvm_unreachable("Invalid linkage"); 370 } 371 372 static unsigned getEncodedVisibility(const GlobalValue &GV) { 373 switch (GV.getVisibility()) { 374 case GlobalValue::DefaultVisibility: return 0; 375 case GlobalValue::HiddenVisibility: return 1; 376 case GlobalValue::ProtectedVisibility: return 2; 377 } 378 llvm_unreachable("Invalid visibility"); 379 } 380 381 static unsigned getEncodedThreadLocalMode(const GlobalVariable &GV) { 382 switch (GV.getThreadLocalMode()) { 383 case GlobalVariable::NotThreadLocal: return 0; 384 case GlobalVariable::GeneralDynamicTLSModel: return 1; 385 case GlobalVariable::LocalDynamicTLSModel: return 2; 386 case GlobalVariable::InitialExecTLSModel: return 3; 387 case GlobalVariable::LocalExecTLSModel: return 4; 388 } 389 llvm_unreachable("Invalid TLS model"); 390 } 391 392 // Emit top-level description of module, including target triple, inline asm, 393 // descriptors for global variables, and function prototype info. 394 static void WriteModuleInfo(const Module *M, 395 const llvm_3_2::ValueEnumerator &VE, 396 BitstreamWriter &Stream) { 397 // Emit various pieces of data attached to a module. 398 if (!M->getTargetTriple().empty()) 399 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 400 0/*TODO*/, Stream); 401 const std::string &DL = M->getDataLayoutStr(); 402 if (!DL.empty()) 403 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 404 if (!M->getModuleInlineAsm().empty()) 405 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 406 0/*TODO*/, Stream); 407 408 // Emit information about sections and GC, computing how many there are. Also 409 // compute the maximum alignment value. 410 std::map<std::string, unsigned> SectionMap; 411 std::map<std::string, unsigned> GCMap; 412 unsigned MaxAlignment = 0; 413 unsigned MaxGlobalType = 0; 414 for (const GlobalValue &GV : M->globals()) { 415 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 416 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 417 if (GV.hasSection()) { 418 // Give section names unique ID's. 419 unsigned &Entry = SectionMap[GV.getSection()]; 420 if (!Entry) { 421 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 422 0/*TODO*/, Stream); 423 Entry = SectionMap.size(); 424 } 425 } 426 } 427 for (const Function &F : *M) { 428 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 429 if (F.hasSection()) { 430 // Give section names unique ID's. 431 unsigned &Entry = SectionMap[F.getSection()]; 432 if (!Entry) { 433 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 434 0/*TODO*/, Stream); 435 Entry = SectionMap.size(); 436 } 437 } 438 if (F.hasGC()) { 439 // Same for GC names. 440 unsigned &Entry = GCMap[F.getGC()]; 441 if (!Entry) { 442 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 443 0/*TODO*/, Stream); 444 Entry = GCMap.size(); 445 } 446 } 447 } 448 449 // Emit abbrev for globals, now that we know # sections and max alignment. 450 unsigned SimpleGVarAbbrev = 0; 451 if (!M->global_empty()) { 452 // Add an abbrev for common globals with no visibility or thread localness. 453 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 454 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 456 Log2_32_Ceil(MaxGlobalType+1))); 457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 460 if (MaxAlignment == 0) // Alignment. 461 Abbv->Add(BitCodeAbbrevOp(0)); 462 else { 463 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 465 Log2_32_Ceil(MaxEncAlignment+1))); 466 } 467 if (SectionMap.empty()) // Section. 468 Abbv->Add(BitCodeAbbrevOp(0)); 469 else 470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 471 Log2_32_Ceil(SectionMap.size()+1))); 472 // Don't bother emitting vis + thread local. 473 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 474 } 475 476 // Emit the global variable information. 477 SmallVector<unsigned, 64> Vals; 478 for (const GlobalVariable &GV : M->globals()) { 479 unsigned AbbrevToUse = 0; 480 481 // GLOBALVAR: [type, isconst, initid, 482 // linkage, alignment, section, visibility, threadlocal, 483 // unnamed_addr] 484 Vals.push_back(VE.getTypeID(GV.getType())); 485 Vals.push_back(GV.isConstant()); 486 Vals.push_back(GV.isDeclaration() ? 0 : 487 (VE.getValueID(GV.getInitializer()) + 1)); 488 Vals.push_back(getEncodedLinkage(GV)); 489 Vals.push_back(Log2_32(GV.getAlignment())+1); 490 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 491 if (GV.isThreadLocal() || 492 GV.getVisibility() != GlobalValue::DefaultVisibility || 493 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 494 GV.isExternallyInitialized()) { 495 Vals.push_back(getEncodedVisibility(GV)); 496 Vals.push_back(getEncodedThreadLocalMode(GV)); 497 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 498 Vals.push_back(GV.isExternallyInitialized()); 499 } else { 500 AbbrevToUse = SimpleGVarAbbrev; 501 } 502 503 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 504 Vals.clear(); 505 } 506 507 // Emit the function proto information. 508 for (const Function &F : *M) { 509 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 510 // section, visibility, gc, unnamed_addr] 511 Vals.push_back(VE.getTypeID(F.getType())); 512 Vals.push_back(F.getCallingConv()); 513 Vals.push_back(F.isDeclaration()); 514 Vals.push_back(getEncodedLinkage(F)); 515 Vals.push_back(VE.getAttributeID(F.getAttributes())); 516 Vals.push_back(Log2_32(F.getAlignment())+1); 517 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 518 Vals.push_back(getEncodedVisibility(F)); 519 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 520 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 521 522 unsigned AbbrevToUse = 0; 523 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 524 Vals.clear(); 525 } 526 527 // Emit the alias information. 528 for (const GlobalAlias &A : M->aliases()) { 529 // ALIAS: [alias type, aliasee val#, linkage, visibility] 530 Vals.push_back(VE.getTypeID(A.getType())); 531 Vals.push_back(VE.getValueID(A.getAliasee())); 532 Vals.push_back(getEncodedLinkage(A)); 533 Vals.push_back(getEncodedVisibility(A)); 534 unsigned AbbrevToUse = 0; 535 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); 536 Vals.clear(); 537 } 538 } 539 540 static uint64_t GetOptimizationFlags(const Value *V) { 541 uint64_t Flags = 0; 542 543 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 544 if (OBO->hasNoSignedWrap()) 545 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 546 if (OBO->hasNoUnsignedWrap()) 547 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 548 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 549 if (PEO->isExact()) 550 Flags |= 1 << bitc::PEO_EXACT; 551 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 552 // FIXME(srhines): We don't handle fast math in llvm-rs-cc today. 553 if (false) { 554 if (FPMO->hasUnsafeAlgebra()) 555 Flags |= FastMathFlags::UnsafeAlgebra; 556 if (FPMO->hasNoNaNs()) 557 Flags |= FastMathFlags::NoNaNs; 558 if (FPMO->hasNoInfs()) 559 Flags |= FastMathFlags::NoInfs; 560 if (FPMO->hasNoSignedZeros()) 561 Flags |= FastMathFlags::NoSignedZeros; 562 if (FPMO->hasAllowReciprocal()) 563 Flags |= FastMathFlags::AllowReciprocal; 564 } 565 } 566 567 return Flags; 568 } 569 570 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 571 const llvm_3_2::ValueEnumerator &VE, 572 BitstreamWriter &Stream, 573 SmallVectorImpl<uint64_t> &Record) { 574 // Mimic an MDNode with a value as one operand. 575 Value *V = MD->getValue(); 576 Record.push_back(VE.getTypeID(V->getType())); 577 Record.push_back(VE.getValueID(V)); 578 Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, 0); 579 Record.clear(); 580 } 581 582 static void WriteMDTuple(const MDTuple *N, const llvm_3_2::ValueEnumerator &VE, 583 BitstreamWriter &Stream, 584 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 585 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 586 Metadata *MD = N->getOperand(i); 587 assert(!(MD && isa<LocalAsMetadata>(MD)) && 588 "Unexpected function-local metadata"); 589 if (!MD) { 590 // TODO(srhines): I don't believe this case can exist for RS. 591 Record.push_back(VE.getTypeID(llvm::Type::getVoidTy(N->getContext()))); 592 Record.push_back(0); 593 } else if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 594 Record.push_back(VE.getTypeID(MDC->getType())); 595 Record.push_back(VE.getValueID(MDC->getValue())); 596 } else { 597 Record.push_back(VE.getTypeID( 598 llvm::Type::getMetadataTy(N->getContext()))); 599 Record.push_back(VE.getMetadataID(MD)); 600 } 601 } 602 Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, Abbrev); 603 Record.clear(); 604 } 605 606 /*static void WriteMDLocation(const MDLocation *N, const llvm_3_2::ValueEnumerator &VE, 607 BitstreamWriter &Stream, 608 SmallVectorImpl<uint64_t> &Record, 609 unsigned Abbrev) { 610 Record.push_back(N->isDistinct()); 611 Record.push_back(N->getLine()); 612 Record.push_back(N->getColumn()); 613 Record.push_back(VE.getMetadataID(N->getScope())); 614 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 615 616 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 617 Record.clear(); 618 } 619 620 static void WriteGenericDebugNode(const GenericDebugNode *, 621 const llvm_3_2::ValueEnumerator &, BitstreamWriter &, 622 SmallVectorImpl<uint64_t> &, unsigned) { 623 llvm_unreachable("unimplemented"); 624 }*/ 625 626 static void WriteModuleMetadata(const Module *M, 627 const llvm_3_2::ValueEnumerator &VE, 628 BitstreamWriter &Stream) { 629 const auto &MDs = VE.getMDs(); 630 if (MDs.empty() && M->named_metadata_empty()) 631 return; 632 633 // RenderScript files *ALWAYS* have metadata! 634 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 635 636 unsigned MDSAbbrev = 0; 637 if (VE.hasMDString()) { 638 // Abbrev for METADATA_STRING. 639 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 640 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 643 MDSAbbrev = Stream.EmitAbbrev(Abbv); 644 } 645 646 unsigned MDLocationAbbrev = 0; 647 if (VE.hasDILocation()) { 648 // TODO(srhines): Should be unreachable for RenderScript. 649 // Abbrev for METADATA_LOCATION. 650 // 651 // Assume the column is usually under 128, and always output the inlined-at 652 // location (it's never more expensive than building an array size 1). 653 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 654 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 660 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 661 } 662 663 unsigned NameAbbrev = 0; 664 if (!M->named_metadata_empty()) { 665 // Abbrev for METADATA_NAME. 666 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 667 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 670 NameAbbrev = Stream.EmitAbbrev(Abbv); 671 } 672 673 unsigned MDTupleAbbrev = 0; 674 //unsigned GenericDebugNodeAbbrev = 0; 675 SmallVector<uint64_t, 64> Record; 676 for (const Metadata *MD : MDs) { 677 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 678 switch (N->getMetadataID()) { 679 default: 680 llvm_unreachable("Invalid MDNode subclass"); 681 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) 682 #define HANDLE_MDNODE_LEAF(CLASS) \ 683 case Metadata::CLASS##Kind: \ 684 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 685 continue; 686 #include "llvm/IR/Metadata.def" 687 } 688 } 689 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 690 WriteValueAsMetadata(MDC, VE, Stream, Record); 691 continue; 692 } 693 const MDString *MDS = cast<MDString>(MD); 694 // Code: [strchar x N] 695 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 696 697 // Emit the finished record. 698 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev); 699 Record.clear(); 700 } 701 702 // Write named metadata. 703 for (const NamedMDNode &NMD : M->named_metadata()) { 704 // Write name. 705 StringRef Str = NMD.getName(); 706 Record.append(Str.bytes_begin(), Str.bytes_end()); 707 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 708 Record.clear(); 709 710 // Write named metadata operands. 711 for (const MDNode *N : NMD.operands()) 712 Record.push_back(VE.getMetadataID(N)); 713 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 714 Record.clear(); 715 } 716 717 Stream.ExitBlock(); 718 } 719 720 static void WriteFunctionLocalMetadata(const Function &F, 721 const llvm_3_2::ValueEnumerator &VE, 722 BitstreamWriter &Stream) { 723 bool StartedMetadataBlock = false; 724 SmallVector<uint64_t, 64> Record; 725 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 726 VE.getFunctionLocalMDs(); 727 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 728 assert(MDs[i] && "Expected valid function-local metadata"); 729 if (!StartedMetadataBlock) { 730 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 731 StartedMetadataBlock = true; 732 } 733 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 734 } 735 736 if (StartedMetadataBlock) 737 Stream.ExitBlock(); 738 } 739 740 static void WriteMetadataAttachment(const Function &F, 741 const llvm_3_2::ValueEnumerator &VE, 742 BitstreamWriter &Stream) { 743 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 744 745 SmallVector<uint64_t, 64> Record; 746 747 // Write metadata attachments 748 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 749 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 750 751 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 752 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 753 I != E; ++I) { 754 MDs.clear(); 755 I->getAllMetadataOtherThanDebugLoc(MDs); 756 757 // If no metadata, ignore instruction. 758 if (MDs.empty()) continue; 759 760 Record.push_back(VE.getInstructionID(&*I)); 761 762 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 763 Record.push_back(MDs[i].first); 764 Record.push_back(VE.getMetadataID(MDs[i].second)); 765 } 766 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 767 Record.clear(); 768 } 769 770 Stream.ExitBlock(); 771 } 772 773 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 774 SmallVector<uint64_t, 64> Record; 775 776 // Write metadata kinds 777 // METADATA_KIND - [n x [id, name]] 778 SmallVector<StringRef, 4> Names; 779 M->getMDKindNames(Names); 780 781 if (Names.empty()) return; 782 783 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 784 785 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 786 Record.push_back(MDKindID); 787 StringRef KName = Names[MDKindID]; 788 Record.append(KName.begin(), KName.end()); 789 790 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 791 Record.clear(); 792 } 793 794 Stream.ExitBlock(); 795 } 796 797 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 798 if ((int64_t)V >= 0) 799 Vals.push_back(V << 1); 800 else 801 Vals.push_back((-V << 1) | 1); 802 } 803 804 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 805 const llvm_3_2::ValueEnumerator &VE, 806 BitstreamWriter &Stream, bool isGlobal) { 807 if (FirstVal == LastVal) return; 808 809 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 810 811 unsigned AggregateAbbrev = 0; 812 unsigned String8Abbrev = 0; 813 unsigned CString7Abbrev = 0; 814 unsigned CString6Abbrev = 0; 815 // If this is a constant pool for the module, emit module-specific abbrevs. 816 if (isGlobal) { 817 // Abbrev for CST_CODE_AGGREGATE. 818 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 819 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 822 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 823 824 // Abbrev for CST_CODE_STRING. 825 Abbv = new BitCodeAbbrev(); 826 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 829 String8Abbrev = Stream.EmitAbbrev(Abbv); 830 // Abbrev for CST_CODE_CSTRING. 831 Abbv = new BitCodeAbbrev(); 832 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 835 CString7Abbrev = Stream.EmitAbbrev(Abbv); 836 // Abbrev for CST_CODE_CSTRING. 837 Abbv = new BitCodeAbbrev(); 838 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 841 CString6Abbrev = Stream.EmitAbbrev(Abbv); 842 } 843 844 SmallVector<uint64_t, 64> Record; 845 846 const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues(); 847 Type *LastTy = nullptr; 848 for (unsigned i = FirstVal; i != LastVal; ++i) { 849 const Value *V = Vals[i].first; 850 // If we need to switch types, do so now. 851 if (V->getType() != LastTy) { 852 LastTy = V->getType(); 853 Record.push_back(VE.getTypeID(LastTy)); 854 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 855 CONSTANTS_SETTYPE_ABBREV); 856 Record.clear(); 857 } 858 859 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 860 Record.push_back(unsigned(IA->hasSideEffects()) | 861 unsigned(IA->isAlignStack()) << 1 | 862 unsigned(IA->getDialect()&1) << 2); 863 864 // Add the asm string. 865 const std::string &AsmStr = IA->getAsmString(); 866 Record.push_back(AsmStr.size()); 867 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 868 Record.push_back(AsmStr[i]); 869 870 // Add the constraint string. 871 const std::string &ConstraintStr = IA->getConstraintString(); 872 Record.push_back(ConstraintStr.size()); 873 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 874 Record.push_back(ConstraintStr[i]); 875 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 876 Record.clear(); 877 continue; 878 } 879 const Constant *C = cast<Constant>(V); 880 unsigned Code = -1U; 881 unsigned AbbrevToUse = 0; 882 if (C->isNullValue()) { 883 Code = bitc::CST_CODE_NULL; 884 } else if (isa<UndefValue>(C)) { 885 Code = bitc::CST_CODE_UNDEF; 886 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 887 if (IV->getBitWidth() <= 64) { 888 uint64_t V = IV->getSExtValue(); 889 emitSignedInt64(Record, V); 890 Code = bitc::CST_CODE_INTEGER; 891 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 892 } else { // Wide integers, > 64 bits in size. 893 // We have an arbitrary precision integer value to write whose 894 // bit width is > 64. However, in canonical unsigned integer 895 // format it is likely that the high bits are going to be zero. 896 // So, we only write the number of active words. 897 unsigned NWords = IV->getValue().getActiveWords(); 898 const uint64_t *RawWords = IV->getValue().getRawData(); 899 for (unsigned i = 0; i != NWords; ++i) { 900 emitSignedInt64(Record, RawWords[i]); 901 } 902 Code = bitc::CST_CODE_WIDE_INTEGER; 903 } 904 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 905 Code = bitc::CST_CODE_FLOAT; 906 Type *Ty = CFP->getType(); 907 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 908 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 909 } else if (Ty->isX86_FP80Ty()) { 910 // api needed to prevent premature destruction 911 // bits are not in the same order as a normal i80 APInt, compensate. 912 APInt api = CFP->getValueAPF().bitcastToAPInt(); 913 const uint64_t *p = api.getRawData(); 914 Record.push_back((p[1] << 48) | (p[0] >> 16)); 915 Record.push_back(p[0] & 0xffffLL); 916 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 917 APInt api = CFP->getValueAPF().bitcastToAPInt(); 918 const uint64_t *p = api.getRawData(); 919 Record.push_back(p[0]); 920 Record.push_back(p[1]); 921 } else { 922 assert (0 && "Unknown FP type!"); 923 } 924 } else if (isa<ConstantDataSequential>(C) && 925 cast<ConstantDataSequential>(C)->isString()) { 926 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 927 // Emit constant strings specially. 928 unsigned NumElts = Str->getNumElements(); 929 // If this is a null-terminated string, use the denser CSTRING encoding. 930 if (Str->isCString()) { 931 Code = bitc::CST_CODE_CSTRING; 932 --NumElts; // Don't encode the null, which isn't allowed by char6. 933 } else { 934 Code = bitc::CST_CODE_STRING; 935 AbbrevToUse = String8Abbrev; 936 } 937 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 938 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 939 for (unsigned i = 0; i != NumElts; ++i) { 940 unsigned char V = Str->getElementAsInteger(i); 941 Record.push_back(V); 942 isCStr7 &= (V & 128) == 0; 943 if (isCStrChar6) 944 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 945 } 946 947 if (isCStrChar6) 948 AbbrevToUse = CString6Abbrev; 949 else if (isCStr7) 950 AbbrevToUse = CString7Abbrev; 951 } else if (const ConstantDataSequential *CDS = 952 dyn_cast<ConstantDataSequential>(C)) { 953 Code = bitc::CST_CODE_DATA; 954 Type *EltTy = CDS->getType()->getElementType(); 955 if (isa<IntegerType>(EltTy)) { 956 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 957 Record.push_back(CDS->getElementAsInteger(i)); 958 } else { 959 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 960 Record.push_back( 961 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 962 } 963 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 964 isa<ConstantVector>(C)) { 965 Code = bitc::CST_CODE_AGGREGATE; 966 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 967 Record.push_back(VE.getValueID(C->getOperand(i))); 968 AbbrevToUse = AggregateAbbrev; 969 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 970 switch (CE->getOpcode()) { 971 default: 972 if (Instruction::isCast(CE->getOpcode())) { 973 Code = bitc::CST_CODE_CE_CAST; 974 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 975 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 976 Record.push_back(VE.getValueID(C->getOperand(0))); 977 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 978 } else { 979 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 980 Code = bitc::CST_CODE_CE_BINOP; 981 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 982 Record.push_back(VE.getValueID(C->getOperand(0))); 983 Record.push_back(VE.getValueID(C->getOperand(1))); 984 uint64_t Flags = GetOptimizationFlags(CE); 985 if (Flags != 0) 986 Record.push_back(Flags); 987 } 988 break; 989 case Instruction::GetElementPtr: 990 Code = bitc::CST_CODE_CE_GEP; 991 if (cast<GEPOperator>(C)->isInBounds()) 992 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 993 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 994 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 995 Record.push_back(VE.getValueID(C->getOperand(i))); 996 } 997 break; 998 case Instruction::Select: 999 Code = bitc::CST_CODE_CE_SELECT; 1000 Record.push_back(VE.getValueID(C->getOperand(0))); 1001 Record.push_back(VE.getValueID(C->getOperand(1))); 1002 Record.push_back(VE.getValueID(C->getOperand(2))); 1003 break; 1004 case Instruction::ExtractElement: 1005 Code = bitc::CST_CODE_CE_EXTRACTELT; 1006 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1007 Record.push_back(VE.getValueID(C->getOperand(0))); 1008 Record.push_back(VE.getValueID(C->getOperand(1))); 1009 break; 1010 case Instruction::InsertElement: 1011 Code = bitc::CST_CODE_CE_INSERTELT; 1012 Record.push_back(VE.getValueID(C->getOperand(0))); 1013 Record.push_back(VE.getValueID(C->getOperand(1))); 1014 Record.push_back(VE.getValueID(C->getOperand(2))); 1015 break; 1016 case Instruction::ShuffleVector: 1017 // If the return type and argument types are the same, this is a 1018 // standard shufflevector instruction. If the types are different, 1019 // then the shuffle is widening or truncating the input vectors, and 1020 // the argument type must also be encoded. 1021 if (C->getType() == C->getOperand(0)->getType()) { 1022 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1023 } else { 1024 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1025 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1026 } 1027 Record.push_back(VE.getValueID(C->getOperand(0))); 1028 Record.push_back(VE.getValueID(C->getOperand(1))); 1029 Record.push_back(VE.getValueID(C->getOperand(2))); 1030 break; 1031 case Instruction::ICmp: 1032 case Instruction::FCmp: 1033 Code = bitc::CST_CODE_CE_CMP; 1034 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1035 Record.push_back(VE.getValueID(C->getOperand(0))); 1036 Record.push_back(VE.getValueID(C->getOperand(1))); 1037 Record.push_back(CE->getPredicate()); 1038 break; 1039 } 1040 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1041 Code = bitc::CST_CODE_BLOCKADDRESS; 1042 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1043 Record.push_back(VE.getValueID(BA->getFunction())); 1044 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1045 } else { 1046 #ifndef NDEBUG 1047 C->dump(); 1048 #endif 1049 llvm_unreachable("Unknown constant!"); 1050 } 1051 Stream.EmitRecord(Code, Record, AbbrevToUse); 1052 Record.clear(); 1053 } 1054 1055 Stream.ExitBlock(); 1056 } 1057 1058 static void WriteModuleConstants(const llvm_3_2::ValueEnumerator &VE, 1059 BitstreamWriter &Stream) { 1060 const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues(); 1061 1062 // Find the first constant to emit, which is the first non-globalvalue value. 1063 // We know globalvalues have been emitted by WriteModuleInfo. 1064 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1065 if (!isa<GlobalValue>(Vals[i].first)) { 1066 WriteConstants(i, Vals.size(), VE, Stream, true); 1067 return; 1068 } 1069 } 1070 } 1071 1072 /// PushValueAndType - The file has to encode both the value and type id for 1073 /// many values, because we need to know what type to create for forward 1074 /// references. However, most operands are not forward references, so this type 1075 /// field is not needed. 1076 /// 1077 /// This function adds V's value ID to Vals. If the value ID is higher than the 1078 /// instruction ID, then it is a forward reference, and it also includes the 1079 /// type ID. 1080 static bool PushValueAndType(const Value *V, unsigned InstID, 1081 SmallVector<unsigned, 64> &Vals, 1082 llvm_3_2::ValueEnumerator &VE) { 1083 unsigned ValID = VE.getValueID(V); 1084 Vals.push_back(ValID); 1085 if (ValID >= InstID) { 1086 Vals.push_back(VE.getTypeID(V->getType())); 1087 return true; 1088 } 1089 return false; 1090 } 1091 1092 /// WriteInstruction - Emit an instruction to the specified stream. 1093 static void WriteInstruction(const Instruction &I, unsigned InstID, 1094 llvm_3_2::ValueEnumerator &VE, 1095 BitstreamWriter &Stream, 1096 SmallVector<unsigned, 64> &Vals) { 1097 unsigned Code = 0; 1098 unsigned AbbrevToUse = 0; 1099 VE.setInstructionID(&I); 1100 switch (I.getOpcode()) { 1101 default: 1102 if (Instruction::isCast(I.getOpcode())) { 1103 Code = bitc::FUNC_CODE_INST_CAST; 1104 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1105 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1106 Vals.push_back(VE.getTypeID(I.getType())); 1107 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1108 } else { 1109 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1110 Code = bitc::FUNC_CODE_INST_BINOP; 1111 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1112 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1113 Vals.push_back(VE.getValueID(I.getOperand(1))); 1114 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1115 uint64_t Flags = GetOptimizationFlags(&I); 1116 if (Flags != 0) { 1117 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1118 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1119 Vals.push_back(Flags); 1120 } 1121 } 1122 break; 1123 1124 case Instruction::GetElementPtr: 1125 Code = bitc::FUNC_CODE_INST_GEP_OLD; 1126 if (cast<GEPOperator>(&I)->isInBounds()) 1127 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 1128 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1129 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1130 break; 1131 case Instruction::ExtractValue: { 1132 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1133 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1134 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1135 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1136 Vals.push_back(*i); 1137 break; 1138 } 1139 case Instruction::InsertValue: { 1140 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1141 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1142 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1143 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1144 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1145 Vals.push_back(*i); 1146 break; 1147 } 1148 case Instruction::Select: 1149 Code = bitc::FUNC_CODE_INST_VSELECT; 1150 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1151 Vals.push_back(VE.getValueID(I.getOperand(2))); 1152 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1153 break; 1154 case Instruction::ExtractElement: 1155 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1156 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1157 Vals.push_back(VE.getValueID(I.getOperand(1))); 1158 break; 1159 case Instruction::InsertElement: 1160 Code = bitc::FUNC_CODE_INST_INSERTELT; 1161 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1162 Vals.push_back(VE.getValueID(I.getOperand(1))); 1163 Vals.push_back(VE.getValueID(I.getOperand(2))); 1164 break; 1165 case Instruction::ShuffleVector: 1166 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1167 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1168 Vals.push_back(VE.getValueID(I.getOperand(1))); 1169 Vals.push_back(VE.getValueID(I.getOperand(2))); 1170 break; 1171 case Instruction::ICmp: 1172 case Instruction::FCmp: 1173 // compare returning Int1Ty or vector of Int1Ty 1174 Code = bitc::FUNC_CODE_INST_CMP2; 1175 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1176 Vals.push_back(VE.getValueID(I.getOperand(1))); 1177 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1178 break; 1179 1180 case Instruction::Ret: 1181 { 1182 Code = bitc::FUNC_CODE_INST_RET; 1183 unsigned NumOperands = I.getNumOperands(); 1184 if (NumOperands == 0) 1185 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1186 else if (NumOperands == 1) { 1187 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1188 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1189 } else { 1190 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1191 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1192 } 1193 } 1194 break; 1195 case Instruction::Br: 1196 { 1197 Code = bitc::FUNC_CODE_INST_BR; 1198 const BranchInst &II = cast<BranchInst>(I); 1199 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1200 if (II.isConditional()) { 1201 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1202 Vals.push_back(VE.getValueID(II.getCondition())); 1203 } 1204 } 1205 break; 1206 case Instruction::Switch: 1207 { 1208 Code = bitc::FUNC_CODE_INST_SWITCH; 1209 const SwitchInst &SI = cast<SwitchInst>(I); 1210 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1211 Vals.push_back(VE.getValueID(SI.getCondition())); 1212 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1213 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1214 i != e; ++i) { 1215 Vals.push_back(VE.getValueID(i.getCaseValue())); 1216 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1217 } 1218 } 1219 break; 1220 case Instruction::IndirectBr: 1221 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1222 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1223 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1224 Vals.push_back(VE.getValueID(I.getOperand(i))); 1225 break; 1226 1227 case Instruction::Invoke: { 1228 const InvokeInst *II = cast<InvokeInst>(&I); 1229 const Value *Callee(II->getCalledValue()); 1230 PointerType *PTy = cast<PointerType>(Callee->getType()); 1231 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1232 Code = bitc::FUNC_CODE_INST_INVOKE; 1233 1234 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1235 Vals.push_back(II->getCallingConv()); 1236 Vals.push_back(VE.getValueID(II->getNormalDest())); 1237 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1238 PushValueAndType(Callee, InstID, Vals, VE); 1239 1240 // Emit value #'s for the fixed parameters. 1241 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1242 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1243 1244 // Emit type/value pairs for varargs params. 1245 if (FTy->isVarArg()) { 1246 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1247 i != e; ++i) 1248 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1249 } 1250 break; 1251 } 1252 case Instruction::Resume: 1253 Code = bitc::FUNC_CODE_INST_RESUME; 1254 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1255 break; 1256 case Instruction::Unreachable: 1257 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1258 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1259 break; 1260 1261 case Instruction::PHI: { 1262 const PHINode &PN = cast<PHINode>(I); 1263 Code = bitc::FUNC_CODE_INST_PHI; 1264 Vals.push_back(VE.getTypeID(PN.getType())); 1265 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1266 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1267 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1268 } 1269 break; 1270 } 1271 1272 case Instruction::LandingPad: { 1273 const LandingPadInst &LP = cast<LandingPadInst>(I); 1274 Code = bitc::FUNC_CODE_INST_LANDINGPAD_OLD; 1275 Vals.push_back(VE.getTypeID(LP.getType())); 1276 // TODO (rebase): is this fix enough? 1277 // PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1278 Vals.push_back(LP.isCleanup()); 1279 Vals.push_back(LP.getNumClauses()); 1280 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1281 if (LP.isCatch(I)) 1282 Vals.push_back(LandingPadInst::Catch); 1283 else 1284 Vals.push_back(LandingPadInst::Filter); 1285 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1286 } 1287 break; 1288 } 1289 1290 case Instruction::Alloca: { 1291 Code = bitc::FUNC_CODE_INST_ALLOCA; 1292 Vals.push_back(VE.getTypeID(I.getType())); 1293 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1294 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1295 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1296 break; 1297 } 1298 1299 case Instruction::Load: 1300 if (cast<LoadInst>(I).isAtomic()) { 1301 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1302 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1303 } else { 1304 Code = bitc::FUNC_CODE_INST_LOAD; 1305 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1306 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1307 } 1308 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1309 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1310 if (cast<LoadInst>(I).isAtomic()) { 1311 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1312 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1313 } 1314 break; 1315 case Instruction::Store: 1316 if (cast<StoreInst>(I).isAtomic()) 1317 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1318 else 1319 Code = bitc::FUNC_CODE_INST_STORE_OLD; 1320 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1321 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1322 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1323 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1324 if (cast<StoreInst>(I).isAtomic()) { 1325 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1326 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1327 } 1328 break; 1329 case Instruction::AtomicCmpXchg: 1330 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1331 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1332 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp. 1333 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval. 1334 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1335 Vals.push_back(GetEncodedOrdering( 1336 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1337 Vals.push_back(GetEncodedSynchScope( 1338 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1339 break; 1340 case Instruction::AtomicRMW: 1341 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1342 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1343 Vals.push_back(VE.getValueID(I.getOperand(1))); // val. 1344 Vals.push_back(GetEncodedRMWOperation( 1345 cast<AtomicRMWInst>(I).getOperation())); 1346 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1347 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1348 Vals.push_back(GetEncodedSynchScope( 1349 cast<AtomicRMWInst>(I).getSynchScope())); 1350 break; 1351 case Instruction::Fence: 1352 Code = bitc::FUNC_CODE_INST_FENCE; 1353 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1354 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1355 break; 1356 case Instruction::Call: { 1357 const CallInst &CI = cast<CallInst>(I); 1358 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1359 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1360 1361 Code = bitc::FUNC_CODE_INST_CALL; 1362 1363 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1364 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1365 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1366 1367 // Emit value #'s for the fixed parameters. 1368 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1369 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1370 1371 // Emit type/value pairs for varargs params. 1372 if (FTy->isVarArg()) { 1373 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1374 i != e; ++i) 1375 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1376 } 1377 break; 1378 } 1379 case Instruction::VAArg: 1380 Code = bitc::FUNC_CODE_INST_VAARG; 1381 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1382 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1383 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1384 break; 1385 } 1386 1387 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1388 Vals.clear(); 1389 } 1390 1391 // Emit names for globals/functions etc. 1392 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1393 const llvm_3_2::ValueEnumerator &VE, 1394 BitstreamWriter &Stream) { 1395 if (VST.empty()) return; 1396 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1397 1398 // FIXME: Set up the abbrev, we know how many values there are! 1399 // FIXME: We know if the type names can use 7-bit ascii. 1400 SmallVector<unsigned, 64> NameVals; 1401 1402 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1403 SI != SE; ++SI) { 1404 1405 const ValueName &Name = *SI; 1406 1407 // Figure out the encoding to use for the name. 1408 bool is7Bit = true; 1409 bool isChar6 = true; 1410 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1411 C != E; ++C) { 1412 if (isChar6) 1413 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1414 if ((unsigned char)*C & 128) { 1415 is7Bit = false; 1416 break; // don't bother scanning the rest. 1417 } 1418 } 1419 1420 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1421 1422 // VST_ENTRY: [valueid, namechar x N] 1423 // VST_BBENTRY: [bbid, namechar x N] 1424 unsigned Code; 1425 if (isa<BasicBlock>(SI->getValue())) { 1426 Code = bitc::VST_CODE_BBENTRY; 1427 if (isChar6) 1428 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1429 } else { 1430 Code = bitc::VST_CODE_ENTRY; 1431 if (isChar6) 1432 AbbrevToUse = VST_ENTRY_6_ABBREV; 1433 else if (is7Bit) 1434 AbbrevToUse = VST_ENTRY_7_ABBREV; 1435 } 1436 1437 NameVals.push_back(VE.getValueID(SI->getValue())); 1438 for (const char *P = Name.getKeyData(), 1439 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1440 NameVals.push_back((unsigned char)*P); 1441 1442 // Emit the finished record. 1443 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1444 NameVals.clear(); 1445 } 1446 Stream.ExitBlock(); 1447 } 1448 1449 static void WriteUseList(llvm_3_2::ValueEnumerator &VE, UseListOrder &&Order, 1450 BitstreamWriter &Stream) { 1451 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1452 unsigned Code; 1453 if (isa<BasicBlock>(Order.V)) 1454 Code = bitc::USELIST_CODE_BB; 1455 else 1456 Code = bitc::USELIST_CODE_DEFAULT; 1457 1458 SmallVector<uint64_t, 64> Record; 1459 for (unsigned I : Order.Shuffle) 1460 Record.push_back(I); 1461 Record.push_back(VE.getValueID(Order.V)); 1462 Stream.EmitRecord(Code, Record); 1463 } 1464 1465 static void WriteUseListBlock(const Function *F, llvm_3_2::ValueEnumerator &VE, 1466 BitstreamWriter &Stream) { 1467 auto hasMore = [&]() { 1468 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1469 }; 1470 if (!hasMore()) 1471 // Nothing to do. 1472 return; 1473 1474 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1475 while (hasMore()) { 1476 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1477 VE.UseListOrders.pop_back(); 1478 } 1479 Stream.ExitBlock(); 1480 } 1481 1482 /// WriteFunction - Emit a function body to the module stream. 1483 static void WriteFunction(const Function &F, llvm_3_2::ValueEnumerator &VE, 1484 BitstreamWriter &Stream) { 1485 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1486 VE.incorporateFunction(F); 1487 1488 SmallVector<unsigned, 64> Vals; 1489 1490 // Emit the number of basic blocks, so the reader can create them ahead of 1491 // time. 1492 Vals.push_back(VE.getBasicBlocks().size()); 1493 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1494 Vals.clear(); 1495 1496 // If there are function-local constants, emit them now. 1497 unsigned CstStart, CstEnd; 1498 VE.getFunctionConstantRange(CstStart, CstEnd); 1499 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1500 1501 // If there is function-local metadata, emit it now. 1502 WriteFunctionLocalMetadata(F, VE, Stream); 1503 1504 // Keep a running idea of what the instruction ID is. 1505 unsigned InstID = CstEnd; 1506 1507 bool NeedsMetadataAttachment = false; 1508 1509 DILocation *LastDL = nullptr; 1510 1511 // Finally, emit all the instructions, in order. 1512 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1513 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1514 I != E; ++I) { 1515 WriteInstruction(*I, InstID, VE, Stream, Vals); 1516 1517 if (!I->getType()->isVoidTy()) 1518 ++InstID; 1519 1520 // If the instruction has metadata, write a metadata attachment later. 1521 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1522 1523 // If the instruction has a debug location, emit it. 1524 DILocation *DL = I->getDebugLoc(); 1525 if (!DL) 1526 continue; 1527 1528 if (DL == LastDL) { 1529 // Just repeat the same debug loc as last time. 1530 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1531 continue; 1532 } 1533 1534 Vals.push_back(DL->getLine()); 1535 Vals.push_back(DL->getColumn()); 1536 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 1537 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 1538 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1539 Vals.clear(); 1540 1541 // Fixme(pirama): The following line is missing from upstream 1542 // https://llvm.org/bugs/show_bug.cgi?id=23436 1543 LastDL = DL; 1544 } 1545 1546 // Emit names for all the instructions etc. 1547 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1548 1549 if (NeedsMetadataAttachment) 1550 WriteMetadataAttachment(F, VE, Stream); 1551 if (false) 1552 WriteUseListBlock(&F, VE, Stream); 1553 VE.purgeFunction(); 1554 Stream.ExitBlock(); 1555 } 1556 1557 // Emit blockinfo, which defines the standard abbreviations etc. 1558 static void WriteBlockInfo(const llvm_3_2::ValueEnumerator &VE, 1559 BitstreamWriter &Stream) { 1560 // We only want to emit block info records for blocks that have multiple 1561 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1562 // blocks can defined their abbrevs inline. 1563 Stream.EnterBlockInfoBlock(2); 1564 1565 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1566 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1571 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1572 Abbv) != VST_ENTRY_8_ABBREV) 1573 llvm_unreachable("Unexpected abbrev ordering!"); 1574 } 1575 1576 { // 7-bit fixed width VST_ENTRY strings. 1577 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1578 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1582 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1583 Abbv) != VST_ENTRY_7_ABBREV) 1584 llvm_unreachable("Unexpected abbrev ordering!"); 1585 } 1586 { // 6-bit char6 VST_ENTRY strings. 1587 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1588 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1592 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1593 Abbv) != VST_ENTRY_6_ABBREV) 1594 llvm_unreachable("Unexpected abbrev ordering!"); 1595 } 1596 { // 6-bit char6 VST_BBENTRY strings. 1597 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1598 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1602 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1603 Abbv) != VST_BBENTRY_6_ABBREV) 1604 llvm_unreachable("Unexpected abbrev ordering!"); 1605 } 1606 1607 1608 1609 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1610 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1611 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1613 Log2_32_Ceil(VE.getTypes().size()+1))); 1614 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1615 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1616 llvm_unreachable("Unexpected abbrev ordering!"); 1617 } 1618 1619 { // INTEGER abbrev for CONSTANTS_BLOCK. 1620 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1621 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1623 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1624 Abbv) != CONSTANTS_INTEGER_ABBREV) 1625 llvm_unreachable("Unexpected abbrev ordering!"); 1626 } 1627 1628 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1629 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1630 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1633 Log2_32_Ceil(VE.getTypes().size()+1))); 1634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1635 1636 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1637 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1638 llvm_unreachable("Unexpected abbrev ordering!"); 1639 } 1640 { // NULL abbrev for CONSTANTS_BLOCK. 1641 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1642 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1643 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1644 Abbv) != CONSTANTS_NULL_Abbrev) 1645 llvm_unreachable("Unexpected abbrev ordering!"); 1646 } 1647 1648 // FIXME: This should only use space for first class types! 1649 1650 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1651 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1652 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1656 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1657 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1658 llvm_unreachable("Unexpected abbrev ordering!"); 1659 } 1660 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1661 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1662 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1666 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1667 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1668 llvm_unreachable("Unexpected abbrev ordering!"); 1669 } 1670 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1671 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1672 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1677 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1678 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1679 llvm_unreachable("Unexpected abbrev ordering!"); 1680 } 1681 { // INST_CAST abbrev for FUNCTION_BLOCK. 1682 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1683 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1686 Log2_32_Ceil(VE.getTypes().size()+1))); 1687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1688 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1689 Abbv) != FUNCTION_INST_CAST_ABBREV) 1690 llvm_unreachable("Unexpected abbrev ordering!"); 1691 } 1692 1693 { // INST_RET abbrev for FUNCTION_BLOCK. 1694 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1695 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1696 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1697 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1698 llvm_unreachable("Unexpected abbrev ordering!"); 1699 } 1700 { // INST_RET abbrev for FUNCTION_BLOCK. 1701 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1702 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1704 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1705 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1706 llvm_unreachable("Unexpected abbrev ordering!"); 1707 } 1708 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1709 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1710 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1711 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1712 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1713 llvm_unreachable("Unexpected abbrev ordering!"); 1714 } 1715 1716 Stream.ExitBlock(); 1717 } 1718 1719 /// WriteModule - Emit the specified module to the bitstream. 1720 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1721 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1722 1723 SmallVector<unsigned, 1> Vals; 1724 // TODO(srhines): RenderScript is always version 0 for now. 1725 unsigned CurVersion = 0; 1726 if (CurVersion) { 1727 Vals.push_back(CurVersion); 1728 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1729 } 1730 1731 // Analyze the module, enumerating globals, functions, etc. 1732 llvm_3_2::ValueEnumerator VE(*M); 1733 1734 // Emit blockinfo, which defines the standard abbreviations etc. 1735 WriteBlockInfo(VE, Stream); 1736 1737 // Emit information about parameter attributes. 1738 WriteAttributeTable(VE, Stream); 1739 1740 // Emit information describing all of the types in the module. 1741 WriteTypeTable(VE, Stream); 1742 1743 // Emit top-level description of module, including target triple, inline asm, 1744 // descriptors for global variables, and function prototype info. 1745 WriteModuleInfo(M, VE, Stream); 1746 1747 // Emit constants. 1748 WriteModuleConstants(VE, Stream); 1749 1750 // Emit metadata. 1751 WriteModuleMetadata(M, VE, Stream); 1752 1753 // Emit metadata. 1754 WriteModuleMetadataStore(M, Stream); 1755 1756 // Emit names for globals/functions etc. 1757 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1758 1759 // Emit module-level use-lists. 1760 if (false) 1761 WriteUseListBlock(nullptr, VE, Stream); 1762 1763 // Emit function bodies. 1764 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1765 if (!F->isDeclaration()) 1766 WriteFunction(*F, VE, Stream); 1767 1768 Stream.ExitBlock(); 1769 } 1770 1771 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1772 /// header and trailer to make it compatible with the system archiver. To do 1773 /// this we emit the following header, and then emit a trailer that pads the 1774 /// file out to be a multiple of 16 bytes. 1775 /// 1776 /// struct bc_header { 1777 /// uint32_t Magic; // 0x0B17C0DE 1778 /// uint32_t Version; // Version, currently always 0. 1779 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1780 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1781 /// uint32_t CPUType; // CPU specifier. 1782 /// ... potentially more later ... 1783 /// }; 1784 enum { 1785 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1786 DarwinBCHeaderSize = 5*4 1787 }; 1788 1789 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1790 uint32_t &Position) { 1791 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1792 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1793 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1794 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1795 Position += 4; 1796 } 1797 1798 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1799 const Triple &TT) { 1800 unsigned CPUType = ~0U; 1801 1802 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1803 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1804 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1805 // specific constants here because they are implicitly part of the Darwin ABI. 1806 enum { 1807 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1808 DARWIN_CPU_TYPE_X86 = 7, 1809 DARWIN_CPU_TYPE_ARM = 12, 1810 DARWIN_CPU_TYPE_POWERPC = 18 1811 }; 1812 1813 Triple::ArchType Arch = TT.getArch(); 1814 if (Arch == Triple::x86_64) 1815 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1816 else if (Arch == Triple::x86) 1817 CPUType = DARWIN_CPU_TYPE_X86; 1818 else if (Arch == Triple::ppc) 1819 CPUType = DARWIN_CPU_TYPE_POWERPC; 1820 else if (Arch == Triple::ppc64) 1821 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1822 else if (Arch == Triple::arm || Arch == Triple::thumb) 1823 CPUType = DARWIN_CPU_TYPE_ARM; 1824 1825 // Traditional Bitcode starts after header. 1826 assert(Buffer.size() >= DarwinBCHeaderSize && 1827 "Expected header size to be reserved"); 1828 unsigned BCOffset = DarwinBCHeaderSize; 1829 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1830 1831 // Write the magic and version. 1832 unsigned Position = 0; 1833 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1834 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1835 WriteInt32ToBuffer(BCOffset , Buffer, Position); 1836 WriteInt32ToBuffer(BCSize , Buffer, Position); 1837 WriteInt32ToBuffer(CPUType , Buffer, Position); 1838 1839 // If the file is not a multiple of 16 bytes, insert dummy padding. 1840 while (Buffer.size() & 15) 1841 Buffer.push_back(0); 1842 } 1843 1844 /// WriteBitcodeToFile - Write the specified module to the specified output 1845 /// stream. 1846 void llvm_3_2::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1847 SmallVector<char, 0> Buffer; 1848 Buffer.reserve(256*1024); 1849 1850 // If this is darwin or another generic macho target, reserve space for the 1851 // header. 1852 Triple TT(M->getTargetTriple()); 1853 if (TT.isOSDarwin()) 1854 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 1855 1856 // Emit the module into the buffer. 1857 { 1858 BitstreamWriter Stream(Buffer); 1859 1860 // Emit the file header. 1861 Stream.Emit((unsigned)'B', 8); 1862 Stream.Emit((unsigned)'C', 8); 1863 Stream.Emit(0x0, 4); 1864 Stream.Emit(0xC, 4); 1865 Stream.Emit(0xE, 4); 1866 Stream.Emit(0xD, 4); 1867 1868 // Emit the module. 1869 WriteModule(M, Stream); 1870 } 1871 1872 if (TT.isOSDarwin()) 1873 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 1874 1875 // Write the generated bitstream to "Out". 1876 Out.write((char*)&Buffer.front(), Buffer.size()); 1877 } 1878