Home | History | Annotate | Download | only in include
      1 /* Vector API for GNU compiler.
      2    Copyright (C) 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
      3    Contributed by Nathan Sidwell <nathan (at) codesourcery.com>
      4 
      5 This file is part of GCC.
      6 
      7 GCC is free software; you can redistribute it and/or modify it under
      8 the terms of the GNU General Public License as published by the Free
      9 Software Foundation; either version 3, or (at your option) any later
     10 version.
     11 
     12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
     13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
     14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     15 for more details.
     16 
     17 You should have received a copy of the GNU General Public License
     18 along with GCC; see the file COPYING3.  If not see
     19 <http://www.gnu.org/licenses/>.  */
     20 
     21 #ifndef GCC_VEC_H
     22 #define GCC_VEC_H
     23 
     24 /* The macros here implement a set of templated vector types and
     25    associated interfaces.  These templates are implemented with
     26    macros, as we're not in C++ land.  The interface functions are
     27    typesafe and use static inline functions, sometimes backed by
     28    out-of-line generic functions.  The vectors are designed to
     29    interoperate with the GTY machinery.
     30 
     31    Because of the different behavior of structure objects, scalar
     32    objects and of pointers, there are three flavors, one for each of
     33    these variants.  Both the structure object and pointer variants
     34    pass pointers to objects around -- in the former case the pointers
     35    are stored into the vector and in the latter case the pointers are
     36    dereferenced and the objects copied into the vector.  The scalar
     37    object variant is suitable for int-like objects, and the vector
     38    elements are returned by value.
     39 
     40    There are both 'index' and 'iterate' accessors.  The iterator
     41    returns a boolean iteration condition and updates the iteration
     42    variable passed by reference.  Because the iterator will be
     43    inlined, the address-of can be optimized away.
     44 
     45    The vectors are implemented using the trailing array idiom, thus
     46    they are not resizeable without changing the address of the vector
     47    object itself.  This means you cannot have variables or fields of
     48    vector type -- always use a pointer to a vector.  The one exception
     49    is the final field of a structure, which could be a vector type.
     50    You will have to use the embedded_size & embedded_init calls to
     51    create such objects, and they will probably not be resizeable (so
     52    don't use the 'safe' allocation variants).  The trailing array
     53    idiom is used (rather than a pointer to an array of data), because,
     54    if we allow NULL to also represent an empty vector, empty vectors
     55    occupy minimal space in the structure containing them.
     56 
     57    Each operation that increases the number of active elements is
     58    available in 'quick' and 'safe' variants.  The former presumes that
     59    there is sufficient allocated space for the operation to succeed
     60    (it dies if there is not).  The latter will reallocate the
     61    vector, if needed.  Reallocation causes an exponential increase in
     62    vector size.  If you know you will be adding N elements, it would
     63    be more efficient to use the reserve operation before adding the
     64    elements with the 'quick' operation.  This will ensure there are at
     65    least as many elements as you ask for, it will exponentially
     66    increase if there are too few spare slots.  If you want reserve a
     67    specific number of slots, but do not want the exponential increase
     68    (for instance, you know this is the last allocation), use the
     69    reserve_exact operation.  You can also create a vector of a
     70    specific size from the get go.
     71 
     72    You should prefer the push and pop operations, as they append and
     73    remove from the end of the vector. If you need to remove several
     74    items in one go, use the truncate operation.  The insert and remove
     75    operations allow you to change elements in the middle of the
     76    vector.  There are two remove operations, one which preserves the
     77    element ordering 'ordered_remove', and one which does not
     78    'unordered_remove'.  The latter function copies the end element
     79    into the removed slot, rather than invoke a memmove operation.  The
     80    'lower_bound' function will determine where to place an item in the
     81    array using insert that will maintain sorted order.
     82 
     83    When a vector type is defined, first a non-memory managed version
     84    is created.  You can then define either or both garbage collected
     85    and heap allocated versions.  The allocation mechanism is specified
     86    when the type is defined, and is therefore part of the type.  If
     87    you need both gc'd and heap allocated versions, you still must have
     88    *exactly* one definition of the common non-memory managed base vector.
     89 
     90    If you need to directly manipulate a vector, then the 'address'
     91    accessor will return the address of the start of the vector.  Also
     92    the 'space' predicate will tell you whether there is spare capacity
     93    in the vector.  You will not normally need to use these two functions.
     94 
     95    Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
     96    get the non-memory allocation version, and then a
     97    DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
     98    vectors.  Variables of vector type are declared using a
     99    VEC(TYPEDEF,ALLOC) macro.  The ALLOC argument specifies the
    100    allocation strategy, and can be either 'gc' or 'heap' for garbage
    101    collected and heap allocated respectively.  It can be 'none' to get
    102    a vector that must be explicitly allocated (for instance as a
    103    trailing array of another structure).  The characters O, P and I
    104    indicate whether TYPEDEF is a pointer (P), object (O) or integral
    105    (I) type.  Be careful to pick the correct one, as you'll get an
    106    awkward and inefficient API if you use the wrong one.  There is a
    107    check, which results in a compile-time warning, for the P and I
    108    versions, but there is no check for the O versions, as that is not
    109    possible in plain C.  Due to the way GTY works, you must annotate
    110    any structures you wish to insert or reference from a vector with a
    111    GTY(()) tag.  You need to do this even if you never declare the GC
    112    allocated variants.
    113 
    114    An example of their use would be,
    115 
    116    DEF_VEC_P(tree);   // non-managed tree vector.
    117    DEF_VEC_ALLOC_P(tree,gc);	// gc'd vector of tree pointers.  This must
    118    			        // appear at file scope.
    119 
    120    struct my_struct {
    121      VEC(tree,gc) *v;      // A (pointer to) a vector of tree pointers.
    122    };
    123 
    124    struct my_struct *s;
    125 
    126    if (VEC_length(tree,s->v)) { we have some contents }
    127    VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
    128    for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
    129      { do something with elt }
    130 
    131 */
    132 
    133 /* Macros to invoke API calls.  A single macro works for both pointer
    134    and object vectors, but the argument and return types might well be
    135    different.  In each macro, T is the typedef of the vector elements,
    136    and A is the allocation strategy.  The allocation strategy is only
    137    present when it is required.  Some of these macros pass the vector,
    138    V, by reference (by taking its address), this is noted in the
    139    descriptions.  */
    140 
    141 /* Length of vector
    142    unsigned VEC_T_length(const VEC(T) *v);
    143 
    144    Return the number of active elements in V.  V can be NULL, in which
    145    case zero is returned.  */
    146 
    147 #define VEC_length(T,V)	(VEC_OP(T,base,length)(VEC_BASE(V)))
    148 
    149 
    150 /* Check if vector is empty
    151    int VEC_T_empty(const VEC(T) *v);
    152 
    153    Return nonzero if V is an empty vector (or V is NULL), zero otherwise.  */
    154 
    155 #define VEC_empty(T,V)	(VEC_length (T,V) == 0)
    156 
    157 
    158 /* Get the final element of the vector.
    159    T VEC_T_last(VEC(T) *v); // Integer
    160    T VEC_T_last(VEC(T) *v); // Pointer
    161    T *VEC_T_last(VEC(T) *v); // Object
    162 
    163    Return the final element.  V must not be empty.  */
    164 
    165 #define VEC_last(T,V)	(VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
    166 
    167 /* Index into vector
    168    T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
    169    T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
    170    T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
    171 
    172    Return the IX'th element.  If IX must be in the domain of V.  */
    173 
    174 #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
    175 
    176 /* Iterate over vector
    177    int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
    178    int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
    179    int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
    180 
    181    Return iteration condition and update PTR to point to the IX'th
    182    element.  At the end of iteration, sets PTR to NULL.  Use this to
    183    iterate over the elements of a vector as follows,
    184 
    185      for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
    186        continue;  */
    187 
    188 #define VEC_iterate(T,V,I,P)	(VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
    189 
    190 /* Allocate new vector.
    191    VEC(T,A) *VEC_T_A_alloc(int reserve);
    192 
    193    Allocate a new vector with space for RESERVE objects.  If RESERVE
    194    is zero, NO vector is created.  */
    195 
    196 #define VEC_alloc(T,A,N)	(VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
    197 
    198 /* Free a vector.
    199    void VEC_T_A_free(VEC(T,A) *&);
    200 
    201    Free a vector and set it to NULL.  */
    202 
    203 #define VEC_free(T,A,V)	(VEC_OP(T,A,free)(&V))
    204 
    205 /* Use these to determine the required size and initialization of a
    206    vector embedded within another structure (as the final member).
    207 
    208    size_t VEC_T_embedded_size(int reserve);
    209    void VEC_T_embedded_init(VEC(T) *v, int reserve);
    210 
    211    These allow the caller to perform the memory allocation.  */
    212 
    213 #define VEC_embedded_size(T,N)	 (VEC_OP(T,base,embedded_size)(N))
    214 #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
    215 
    216 /* Copy a vector.
    217    VEC(T,A) *VEC_T_A_copy(VEC(T) *);
    218 
    219    Copy the live elements of a vector into a new vector.  The new and
    220    old vectors need not be allocated by the same mechanism.  */
    221 
    222 #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))
    223 
    224 /* Determine if a vector has additional capacity.
    225 
    226    int VEC_T_space (VEC(T) *v,int reserve)
    227 
    228    If V has space for RESERVE additional entries, return nonzero.  You
    229    usually only need to use this if you are doing your own vector
    230    reallocation, for instance on an embedded vector.  This returns
    231    nonzero in exactly the same circumstances that VEC_T_reserve
    232    will.  */
    233 
    234 #define VEC_space(T,V,R) \
    235 	(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
    236 
    237 /* Reserve space.
    238    int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
    239 
    240    Ensure that V has at least RESERVE slots available.  This will
    241    create additional headroom.  Note this can cause V to be
    242    reallocated.  Returns nonzero iff reallocation actually
    243    occurred.  */
    244 
    245 #define VEC_reserve(T,A,V,R)	\
    246 	(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
    247 
    248 /* Reserve space exactly.
    249    int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);
    250 
    251    Ensure that V has at least RESERVE slots available.  This will not
    252    create additional headroom.  Note this can cause V to be
    253    reallocated.  Returns nonzero iff reallocation actually
    254    occurred.  */
    255 
    256 #define VEC_reserve_exact(T,A,V,R)	\
    257 	(VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
    258 
    259 /* Push object with no reallocation
    260    T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
    261    T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
    262    T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
    263 
    264    Push a new element onto the end, returns a pointer to the slot
    265    filled in. For object vectors, the new value can be NULL, in which
    266    case NO initialization is performed.  There must
    267    be sufficient space in the vector.  */
    268 
    269 #define VEC_quick_push(T,V,O)	\
    270 	(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
    271 
    272 /* Push object with reallocation
    273    T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
    274    T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
    275    T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
    276 
    277    Push a new element onto the end, returns a pointer to the slot
    278    filled in. For object vectors, the new value can be NULL, in which
    279    case NO initialization is performed.  Reallocates V, if needed.  */
    280 
    281 #define VEC_safe_push(T,A,V,O)		\
    282 	(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
    283 
    284 /* Pop element off end
    285    T VEC_T_pop (VEC(T) *v);		// Integer
    286    T VEC_T_pop (VEC(T) *v);		// Pointer
    287    void VEC_T_pop (VEC(T) *v);		// Object
    288 
    289    Pop the last element off the end. Returns the element popped, for
    290    pointer vectors.  */
    291 
    292 #define VEC_pop(T,V)	(VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
    293 
    294 /* Truncate to specific length
    295    void VEC_T_truncate (VEC(T) *v, unsigned len);
    296 
    297    Set the length as specified.  The new length must be less than or
    298    equal to the current length.  This is an O(1) operation.  */
    299 
    300 #define VEC_truncate(T,V,I)		\
    301 	(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
    302 
    303 /* Grow to a specific length.
    304    void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
    305 
    306    Grow the vector to a specific length.  The LEN must be as
    307    long or longer than the current length.  The new elements are
    308    uninitialized.  */
    309 
    310 #define VEC_safe_grow(T,A,V,I)		\
    311 	(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
    312 
    313 /* Grow to a specific length.
    314    void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);
    315 
    316    Grow the vector to a specific length.  The LEN must be as
    317    long or longer than the current length.  The new elements are
    318    initialized to zero.  */
    319 
    320 #define VEC_safe_grow_cleared(T,A,V,I)		\
    321 	(VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
    322 
    323 /* Replace element
    324    T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
    325    T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
    326    T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val);  // Object
    327 
    328    Replace the IXth element of V with a new value, VAL.  For pointer
    329    vectors returns the original value. For object vectors returns a
    330    pointer to the new value.  For object vectors the new value can be
    331    NULL, in which case no overwriting of the slot is actually
    332    performed.  */
    333 
    334 #define VEC_replace(T,V,I,O)		\
    335 	(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
    336 
    337 /* Insert object with no reallocation
    338    T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
    339    T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
    340    T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
    341 
    342    Insert an element, VAL, at the IXth position of V. Return a pointer
    343    to the slot created.  For vectors of object, the new value can be
    344    NULL, in which case no initialization of the inserted slot takes
    345    place. There must be sufficient space.  */
    346 
    347 #define VEC_quick_insert(T,V,I,O)	\
    348 	(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
    349 
    350 /* Insert object with reallocation
    351    T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
    352    T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
    353    T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
    354 
    355    Insert an element, VAL, at the IXth position of V. Return a pointer
    356    to the slot created.  For vectors of object, the new value can be
    357    NULL, in which case no initialization of the inserted slot takes
    358    place. Reallocate V, if necessary.  */
    359 
    360 #define VEC_safe_insert(T,A,V,I,O)	\
    361 	(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
    362 
    363 /* Remove element retaining order
    364    T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
    365    T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
    366    void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
    367 
    368    Remove an element from the IXth position of V. Ordering of
    369    remaining elements is preserved.  For pointer vectors returns the
    370    removed object.  This is an O(N) operation due to a memmove.  */
    371 
    372 #define VEC_ordered_remove(T,V,I)	\
    373 	(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
    374 
    375 /* Remove element destroying order
    376    T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
    377    T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
    378    void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
    379 
    380    Remove an element from the IXth position of V. Ordering of
    381    remaining elements is destroyed.  For pointer vectors returns the
    382    removed object.  This is an O(1) operation.  */
    383 
    384 #define VEC_unordered_remove(T,V,I)	\
    385 	(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
    386 
    387 /* Remove a block of elements
    388    void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
    389 
    390    Remove LEN elements starting at the IXth.  Ordering is retained.
    391    This is an O(1) operation.  */
    392 
    393 #define VEC_block_remove(T,V,I,L)	\
    394 	(VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))
    395 
    396 /* Get the address of the array of elements
    397    T *VEC_T_address (VEC(T) v)
    398 
    399    If you need to directly manipulate the array (for instance, you
    400    want to feed it to qsort), use this accessor.  */
    401 
    402 #define VEC_address(T,V)		(VEC_OP(T,base,address)(VEC_BASE(V)))
    403 
    404 /* Find the first index in the vector not less than the object.
    405    unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
    406                                bool (*lessthan) (const T, const T)); // Integer
    407    unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
    408                                bool (*lessthan) (const T, const T)); // Pointer
    409    unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
    410                                bool (*lessthan) (const T*, const T*)); // Object
    411 
    412    Find the first position in which VAL could be inserted without
    413    changing the ordering of V.  LESSTHAN is a function that returns
    414    true if the first argument is strictly less than the second.  */
    415 
    416 #define VEC_lower_bound(T,V,O,LT)    \
    417        (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
    418 
    419 /* Reallocate an array of elements with prefix.  */
    420 extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
    421 extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
    422 extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
    423 extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
    424 				     MEM_STAT_DECL);
    425 extern void ggc_free (void *);
    426 #define vec_gc_free(V) ggc_free (V)
    427 extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
    428 extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
    429 extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
    430 extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
    431 				       MEM_STAT_DECL);
    432 extern void dump_vec_loc_statistics (void);
    433 #ifdef GATHER_STATISTICS
    434 void vec_heap_free (void *);
    435 #else
    436 #define vec_heap_free(V) free (V)
    437 #endif
    438 
    439 #if ENABLE_CHECKING
    440 #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
    441 #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
    442 #define VEC_CHECK_PASS ,file_,line_,function_
    443 
    444 #define VEC_ASSERT(EXPR,OP,T,A) \
    445   (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
    446 
    447 extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
    448      ATTRIBUTE_NORETURN;
    449 #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
    450 #else
    451 #define VEC_CHECK_INFO
    452 #define VEC_CHECK_DECL
    453 #define VEC_CHECK_PASS
    454 #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
    455 #endif
    456 
    457 /* Note: gengtype has hardwired knowledge of the expansions of the
    458    VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros.  If you change the
    459    expansions of these macros you may need to change gengtype too.  */
    460 
    461 #define VEC(T,A) VEC_##T##_##A
    462 #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
    463 
    464 /* Base of vector type, not user visible.  */
    465 #define VEC_T(T,B)							  \
    466 typedef struct VEC(T,B) 				 		  \
    467 {									  \
    468   unsigned num;								  \
    469   unsigned alloc;							  \
    470   T vec[1];								  \
    471 } VEC(T,B)
    472 
    473 #define VEC_T_GTY(T,B)							  \
    474 typedef struct VEC(T,B) GTY(())				 		  \
    475 {									  \
    476   unsigned num;								  \
    477   unsigned alloc;							  \
    478   T GTY ((length ("%h.num"))) vec[1];					  \
    479 } VEC(T,B)
    480 
    481 /* Derived vector type, user visible.  */
    482 #define VEC_TA_GTY(T,B,A,GTY)						  \
    483 typedef struct VEC(T,A) GTY						  \
    484 {									  \
    485   VEC(T,B) base;							  \
    486 } VEC(T,A)
    487 
    488 #define VEC_TA(T,B,A)							  \
    489 typedef struct VEC(T,A)							  \
    490 {									  \
    491   VEC(T,B) base;							  \
    492 } VEC(T,A)
    493 
    494 /* Convert to base type.  */
    495 #define VEC_BASE(P)  ((P) ? &(P)->base : 0)
    496 
    497 /* Vector of integer-like object.  */
    498 #define DEF_VEC_I(T)							  \
    499 static inline void VEC_OP (T,must_be,integral_type) (void) 		  \
    500 {									  \
    501   (void)~(T)0;								  \
    502 }									  \
    503 									  \
    504 VEC_T(T,base);								  \
    505 VEC_TA(T,base,none);							  \
    506 DEF_VEC_FUNC_P(T)							  \
    507 struct vec_swallow_trailing_semi
    508 #define DEF_VEC_ALLOC_I(T,A)						  \
    509 VEC_TA(T,base,A);							  \
    510 DEF_VEC_ALLOC_FUNC_I(T,A)						  \
    511 struct vec_swallow_trailing_semi
    512 
    513 /* Vector of pointer to object.  */
    514 #define DEF_VEC_P(T) 							  \
    515 static inline void VEC_OP (T,must_be,pointer_type) (void) 		  \
    516 {									  \
    517   (void)((T)1 == (void *)1);						  \
    518 }									  \
    519 									  \
    520 VEC_T_GTY(T,base);							  \
    521 VEC_TA(T,base,none);							  \
    522 DEF_VEC_FUNC_P(T)							  \
    523 struct vec_swallow_trailing_semi
    524 #define DEF_VEC_ALLOC_P(T,A)						  \
    525 VEC_TA(T,base,A);							  \
    526 DEF_VEC_ALLOC_FUNC_P(T,A)						  \
    527 struct vec_swallow_trailing_semi
    528 
    529 #define DEF_VEC_FUNC_P(T)						  \
    530 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)   \
    531 {									  \
    532   return vec_ ? vec_->num : 0;						  \
    533 }									  \
    534 									  \
    535 static inline T VEC_OP (T,base,last)					  \
    536      (const VEC(T,base) *vec_ VEC_CHECK_DECL)				  \
    537 {									  \
    538   VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
    539   									  \
    540   return vec_->vec[vec_->num - 1];					  \
    541 }									  \
    542 									  \
    543 static inline T VEC_OP (T,base,index)					  \
    544      (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)		  \
    545 {									  \
    546   VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
    547   									  \
    548   return vec_->vec[ix_];						  \
    549 }									  \
    550 									  \
    551 static inline int VEC_OP (T,base,iterate)			  	  \
    552      (const VEC(T,base) *vec_, unsigned ix_, T *ptr)			  \
    553 {									  \
    554   if (vec_ && ix_ < vec_->num)						  \
    555     {									  \
    556       *ptr = vec_->vec[ix_];						  \
    557       return 1;								  \
    558     }									  \
    559   else									  \
    560     {									  \
    561       *ptr = 0;								  \
    562       return 0;								  \
    563     }									  \
    564 }									  \
    565 									  \
    566 static inline size_t VEC_OP (T,base,embedded_size)			  \
    567      (int alloc_)							  \
    568 {									  \
    569   return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
    570 }									  \
    571 									  \
    572 static inline void VEC_OP (T,base,embedded_init)			  \
    573      (VEC(T,base) *vec_, int alloc_)					  \
    574 {									  \
    575   vec_->num = 0;							  \
    576   vec_->alloc = alloc_;							  \
    577 }									  \
    578 									  \
    579 static inline int VEC_OP (T,base,space)	       				  \
    580      (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
    581 {									  \
    582   VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
    583   return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
    584 }									  \
    585 									  \
    586 static inline T *VEC_OP (T,base,quick_push)				  \
    587      (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL)				  \
    588 {									  \
    589   T *slot_;								  \
    590   									  \
    591   VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
    592   slot_ = &vec_->vec[vec_->num++];					  \
    593   *slot_ = obj_;							  \
    594   									  \
    595   return slot_;								  \
    596 }									  \
    597 									  \
    598 static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL)	  \
    599 {									  \
    600   T obj_;								  \
    601 									  \
    602   VEC_ASSERT (vec_->num, "pop", T, base);				  \
    603   obj_ = vec_->vec[--vec_->num];					  \
    604 									  \
    605   return obj_;								  \
    606 }									  \
    607 									  \
    608 static inline void VEC_OP (T,base,truncate)				  \
    609      (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
    610 {									  \
    611   VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
    612   if (vec_)								  \
    613     vec_->num = size_;							  \
    614 }									  \
    615 									  \
    616 static inline T VEC_OP (T,base,replace)		  	     		  \
    617      (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
    618 {									  \
    619   T old_obj_;								  \
    620 									  \
    621   VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
    622   old_obj_ = vec_->vec[ix_];						  \
    623   vec_->vec[ix_] = obj_;						  \
    624 									  \
    625   return old_obj_;							  \
    626 }									  \
    627 									  \
    628 static inline T *VEC_OP (T,base,quick_insert)				  \
    629      (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
    630 {									  \
    631   T *slot_;								  \
    632 									  \
    633   VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
    634   VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
    635   slot_ = &vec_->vec[ix_];						  \
    636   memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
    637   *slot_ = obj_;							  \
    638   									  \
    639   return slot_;								  \
    640 }									  \
    641 									  \
    642 static inline T VEC_OP (T,base,ordered_remove)				  \
    643      (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
    644 {									  \
    645   T *slot_;								  \
    646   T obj_;								  \
    647 									  \
    648   VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
    649   slot_ = &vec_->vec[ix_];						  \
    650   obj_ = *slot_;							  \
    651   memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));     	  \
    652 									  \
    653   return obj_;								  \
    654 }									  \
    655 									  \
    656 static inline T VEC_OP (T,base,unordered_remove)			  \
    657      (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
    658 {									  \
    659   T *slot_;								  \
    660   T obj_;								  \
    661 									  \
    662   VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
    663   slot_ = &vec_->vec[ix_];						  \
    664   obj_ = *slot_;							  \
    665   *slot_ = vec_->vec[--vec_->num];					  \
    666 									  \
    667   return obj_;								  \
    668 }									  \
    669 									  \
    670 static inline void VEC_OP (T,base,block_remove)				  \
    671      (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
    672 {									  \
    673   T *slot_;								  \
    674 									  \
    675   VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
    676   slot_ = &vec_->vec[ix_];						  \
    677   vec_->num -= len_;							  \
    678   memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
    679 }									  \
    680 									  \
    681 static inline T *VEC_OP (T,base,address)				  \
    682      (VEC(T,base) *vec_)						  \
    683 {									  \
    684   return vec_ ? vec_->vec : 0;						  \
    685 }									  \
    686 									  \
    687 static inline unsigned VEC_OP (T,base,lower_bound)			  \
    688      (VEC(T,base) *vec_, const T obj_,					  \
    689       bool (*lessthan_)(const T, const T) VEC_CHECK_DECL)		  \
    690 {									  \
    691    unsigned int len_ = VEC_OP (T,base, length) (vec_);			  \
    692    unsigned int half_, middle_;						  \
    693    unsigned int first_ = 0;						  \
    694    while (len_ > 0)							  \
    695      {									  \
    696         T middle_elem_;							  \
    697         half_ = len_ >> 1;						  \
    698         middle_ = first_;						  \
    699         middle_ += half_;						  \
    700         middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
    701         if (lessthan_ (middle_elem_, obj_))				  \
    702           {								  \
    703              first_ = middle_;						  \
    704              ++first_;							  \
    705              len_ = len_ - half_ - 1;					  \
    706           }								  \
    707         else								  \
    708           len_ = half_;							  \
    709      }									  \
    710    return first_;							  \
    711 }
    712 
    713 #define DEF_VEC_ALLOC_FUNC_P(T,A)					  \
    714 static inline VEC(T,A) *VEC_OP (T,A,alloc)				  \
    715      (int alloc_ MEM_STAT_DECL)						  \
    716 {									  \
    717   return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_		  \
    718 						 PASS_MEM_STAT);	  \
    719 }									  \
    720 									  \
    721 static inline void VEC_OP (T,A,free)					  \
    722      (VEC(T,A) **vec_)							  \
    723 {									  \
    724   if (*vec_)								  \
    725     vec_##A##_free (*vec_);						  \
    726   *vec_ = NULL;								  \
    727 }									  \
    728 									  \
    729 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
    730 {									  \
    731   size_t len_ = vec_ ? vec_->num : 0;					  \
    732   VEC (T,A) *new_vec_ = NULL;						  \
    733 									  \
    734   if (len_)								  \
    735     {									  \
    736       new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact		  \
    737 			       (NULL, len_ PASS_MEM_STAT));		  \
    738 									  \
    739       new_vec_->base.num = len_;					  \
    740       memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    741     }									  \
    742   return new_vec_;							  \
    743 }									  \
    744 									  \
    745 static inline int VEC_OP (T,A,reserve)	       				  \
    746      (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
    747 {									  \
    748   int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
    749 				       VEC_CHECK_PASS);			  \
    750 		  							  \
    751   if (extend)	  							  \
    752     *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
    753 		  							  \
    754   return extend;							  \
    755 }									  \
    756 									  \
    757 static inline int VEC_OP (T,A,reserve_exact)  				  \
    758      (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
    759 {									  \
    760   int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
    761 				       VEC_CHECK_PASS);			  \
    762 		  							  \
    763   if (extend)	  							  \
    764     *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_	  \
    765 						    PASS_MEM_STAT);	  \
    766 		  							  \
    767   return extend;							  \
    768 }									  \
    769 									  \
    770 static inline void VEC_OP (T,A,safe_grow)				  \
    771      (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
    772 {									  \
    773   VEC_ASSERT (size_ >= 0						  \
    774 	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
    775 						 "grow", T, A);		  \
    776   VEC_OP (T,A,reserve_exact) (vec_,					  \
    777 			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
    778 			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
    779   VEC_BASE (*vec_)->num = size_;					  \
    780 }									  \
    781 									  \
    782 static inline void VEC_OP (T,A,safe_grow_cleared)			  \
    783      (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
    784 {									  \
    785   int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
    786   VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
    787   memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
    788 	  sizeof (T) * (size_ - oldsize));				  \
    789 }									  \
    790 									  \
    791 static inline T *VEC_OP (T,A,safe_push)					  \
    792      (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)       	  \
    793 {									  \
    794   VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
    795 									  \
    796   return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
    797 }									  \
    798 									  \
    799 static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
    800      (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)  \
    801 {									  \
    802   VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
    803 									  \
    804   return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
    805  				       VEC_CHECK_PASS);			  \
    806 }
    807 
    808 /* Vector of object.  */
    809 #define DEF_VEC_O(T)							  \
    810 VEC_T_GTY(T,base);							  \
    811 VEC_TA(T,base,none);						  \
    812 DEF_VEC_FUNC_O(T)							  \
    813 struct vec_swallow_trailing_semi
    814 #define DEF_VEC_ALLOC_O(T,A)						  \
    815 VEC_TA(T,base,A);							  \
    816 DEF_VEC_ALLOC_FUNC_O(T,A)						  \
    817 struct vec_swallow_trailing_semi
    818 
    819 #define DEF_VEC_FUNC_O(T)						  \
    820 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)	  \
    821 {									  \
    822   return vec_ ? vec_->num : 0;						  \
    823 }									  \
    824 									  \
    825 static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL)  \
    826 {									  \
    827   VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
    828   									  \
    829   return &vec_->vec[vec_->num - 1];					  \
    830 }									  \
    831 									  \
    832 static inline T *VEC_OP (T,base,index)					  \
    833      (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
    834 {									  \
    835   VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
    836   									  \
    837   return &vec_->vec[ix_];						  \
    838 }									  \
    839 									  \
    840 static inline int VEC_OP (T,base,iterate)			     	  \
    841      (VEC(T,base) *vec_, unsigned ix_, T **ptr)				  \
    842 {									  \
    843   if (vec_ && ix_ < vec_->num)						  \
    844     {									  \
    845       *ptr = &vec_->vec[ix_];						  \
    846       return 1;								  \
    847     }									  \
    848   else									  \
    849     {									  \
    850       *ptr = 0;								  \
    851       return 0;								  \
    852     }									  \
    853 }									  \
    854 									  \
    855 static inline size_t VEC_OP (T,base,embedded_size)			  \
    856      (int alloc_)							  \
    857 {									  \
    858   return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
    859 }									  \
    860 									  \
    861 static inline void VEC_OP (T,base,embedded_init)			  \
    862      (VEC(T,base) *vec_, int alloc_)					  \
    863 {									  \
    864   vec_->num = 0;							  \
    865   vec_->alloc = alloc_;							  \
    866 }									  \
    867 									  \
    868 static inline int VEC_OP (T,base,space)	       				  \
    869      (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
    870 {									  \
    871   VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
    872   return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
    873 }									  \
    874 									  \
    875 static inline T *VEC_OP (T,base,quick_push)				  \
    876      (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL)			  \
    877 {									  \
    878   T *slot_;								  \
    879   									  \
    880   VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
    881   slot_ = &vec_->vec[vec_->num++];					  \
    882   if (obj_)								  \
    883     *slot_ = *obj_;							  \
    884   									  \
    885   return slot_;								  \
    886 }									  \
    887 									  \
    888 static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
    889 {									  \
    890   VEC_ASSERT (vec_->num, "pop", T, base);				  \
    891   --vec_->num;								  \
    892 }									  \
    893 									  \
    894 static inline void VEC_OP (T,base,truncate)				  \
    895      (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
    896 {									  \
    897   VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
    898   if (vec_)								  \
    899     vec_->num = size_;							  \
    900 }									  \
    901 									  \
    902 static inline T *VEC_OP (T,base,replace)				  \
    903      (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
    904 {									  \
    905   T *slot_;								  \
    906 									  \
    907   VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
    908   slot_ = &vec_->vec[ix_];						  \
    909   if (obj_)								  \
    910     *slot_ = *obj_;							  \
    911 									  \
    912   return slot_;								  \
    913 }									  \
    914 									  \
    915 static inline T *VEC_OP (T,base,quick_insert)				  \
    916      (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
    917 {									  \
    918   T *slot_;								  \
    919 									  \
    920   VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
    921   VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
    922   slot_ = &vec_->vec[ix_];						  \
    923   memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
    924   if (obj_)								  \
    925     *slot_ = *obj_;							  \
    926   									  \
    927   return slot_;								  \
    928 }									  \
    929 									  \
    930 static inline void VEC_OP (T,base,ordered_remove)			  \
    931      (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
    932 {									  \
    933   T *slot_;								  \
    934 									  \
    935   VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
    936   slot_ = &vec_->vec[ix_];						  \
    937   memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));		  \
    938 }									  \
    939 									  \
    940 static inline void VEC_OP (T,base,unordered_remove)			  \
    941      (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
    942 {									  \
    943   VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
    944   vec_->vec[ix_] = vec_->vec[--vec_->num];				  \
    945 }									  \
    946 									  \
    947 static inline void VEC_OP (T,base,block_remove)				  \
    948      (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
    949 {									  \
    950   T *slot_;								  \
    951 									  \
    952   VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
    953   slot_ = &vec_->vec[ix_];						  \
    954   vec_->num -= len_;							  \
    955   memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
    956 }									  \
    957 									  \
    958 static inline T *VEC_OP (T,base,address)				  \
    959      (VEC(T,base) *vec_)						  \
    960 {									  \
    961   return vec_ ? vec_->vec : 0;						  \
    962 }									  \
    963 									  \
    964 static inline unsigned VEC_OP (T,base,lower_bound)			  \
    965      (VEC(T,base) *vec_, const T *obj_,					  \
    966       bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL)		  \
    967 {									  \
    968    unsigned int len_ = VEC_OP (T, base, length) (vec_);			  \
    969    unsigned int half_, middle_;						  \
    970    unsigned int first_ = 0;						  \
    971    while (len_ > 0)							  \
    972      {									  \
    973         T *middle_elem_;						  \
    974         half_ = len_ >> 1;						  \
    975         middle_ = first_;						  \
    976         middle_ += half_;						  \
    977         middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
    978         if (lessthan_ (middle_elem_, obj_))				  \
    979           {								  \
    980              first_ = middle_;						  \
    981              ++first_;							  \
    982              len_ = len_ - half_ - 1;					  \
    983           }								  \
    984         else								  \
    985           len_ = half_;							  \
    986      }									  \
    987    return first_;							  \
    988 }
    989 
    990 #define DEF_VEC_ALLOC_FUNC_O(T,A)					  \
    991 static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
    992      (int alloc_ MEM_STAT_DECL)						  \
    993 {									  \
    994   return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_,		  \
    995 						 offsetof (VEC(T,A),base.vec), \
    996 						 sizeof (T)		  \
    997 						 PASS_MEM_STAT);	  \
    998 }									  \
    999 									  \
   1000 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
   1001 {									  \
   1002   size_t len_ = vec_ ? vec_->num : 0;					  \
   1003   VEC (T,A) *new_vec_ = NULL;						  \
   1004 									  \
   1005   if (len_)								  \
   1006     {									  \
   1007       new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
   1008 			       (NULL, len_,				  \
   1009 				offsetof (VEC(T,A),base.vec), sizeof (T)  \
   1010 				PASS_MEM_STAT));			  \
   1011 									  \
   1012       new_vec_->base.num = len_;					  \
   1013       memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
   1014     }									  \
   1015   return new_vec_;							  \
   1016 }									  \
   1017 									  \
   1018 static inline void VEC_OP (T,A,free)					  \
   1019      (VEC(T,A) **vec_)							  \
   1020 {									  \
   1021   if (*vec_)								  \
   1022     vec_##A##_free (*vec_);						  \
   1023   *vec_ = NULL;								  \
   1024 }									  \
   1025 									  \
   1026 static inline int VEC_OP (T,A,reserve)	   	    			  \
   1027      (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
   1028 {									  \
   1029   int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
   1030 				       VEC_CHECK_PASS);			  \
   1031 									  \
   1032   if (extend)								  \
   1033     *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
   1034 			   		      offsetof (VEC(T,A),base.vec),\
   1035  					      sizeof (T)		  \
   1036 			   		      PASS_MEM_STAT);		  \
   1037 									  \
   1038   return extend;							  \
   1039 }									  \
   1040 									  \
   1041 static inline int VEC_OP (T,A,reserve_exact)   	    			  \
   1042      (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
   1043 {									  \
   1044   int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
   1045 				       VEC_CHECK_PASS);			  \
   1046 									  \
   1047   if (extend)								  \
   1048     *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
   1049 			 (*vec_, alloc_,				  \
   1050 			  offsetof (VEC(T,A),base.vec),			  \
   1051 			  sizeof (T) PASS_MEM_STAT);			  \
   1052 									  \
   1053   return extend;							  \
   1054 }									  \
   1055 									  \
   1056 static inline void VEC_OP (T,A,safe_grow)				  \
   1057      (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
   1058 {									  \
   1059   VEC_ASSERT (size_ >= 0						  \
   1060 	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
   1061 						 "grow", T, A);		  \
   1062   VEC_OP (T,A,reserve_exact) (vec_,					  \
   1063 			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
   1064 			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
   1065   VEC_BASE (*vec_)->num = size_;					  \
   1066 }									  \
   1067 									  \
   1068 static inline void VEC_OP (T,A,safe_grow_cleared)			  \
   1069      (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
   1070 {									  \
   1071   int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
   1072   VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
   1073   memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
   1074 	  sizeof (T) * (size_ - oldsize));				  \
   1075 }									  \
   1076 									  \
   1077 static inline T *VEC_OP (T,A,safe_push)					  \
   1078      (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
   1079 {									  \
   1080   VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
   1081 									  \
   1082   return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
   1083 }									  \
   1084 									  \
   1085 static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
   1086      (VEC(T,A) **vec_, unsigned ix_, const T *obj_			  \
   1087  		VEC_CHECK_DECL MEM_STAT_DECL)				  \
   1088 {									  \
   1089   VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
   1090 									  \
   1091   return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
   1092 				       VEC_CHECK_PASS);			  \
   1093 }
   1094 
   1095 #define DEF_VEC_ALLOC_FUNC_I(T,A)					  \
   1096 static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
   1097      (int alloc_ MEM_STAT_DECL)						  \
   1098 {									  \
   1099   return (VEC(T,A) *) vec_##A##_o_reserve_exact				  \
   1100 		      (NULL, alloc_, offsetof (VEC(T,A),base.vec),	  \
   1101 		       sizeof (T) PASS_MEM_STAT);			  \
   1102 }									  \
   1103 									  \
   1104 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
   1105 {									  \
   1106   size_t len_ = vec_ ? vec_->num : 0;					  \
   1107   VEC (T,A) *new_vec_ = NULL;						  \
   1108 									  \
   1109   if (len_)								  \
   1110     {									  \
   1111       new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
   1112 			       (NULL, len_,				  \
   1113 				offsetof (VEC(T,A),base.vec), sizeof (T)  \
   1114 				PASS_MEM_STAT));			  \
   1115 									  \
   1116       new_vec_->base.num = len_;					  \
   1117       memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
   1118     }									  \
   1119   return new_vec_;							  \
   1120 }									  \
   1121 									  \
   1122 static inline void VEC_OP (T,A,free)					  \
   1123      (VEC(T,A) **vec_)							  \
   1124 {									  \
   1125   if (*vec_)								  \
   1126     vec_##A##_free (*vec_);						  \
   1127   *vec_ = NULL;								  \
   1128 }									  \
   1129 									  \
   1130 static inline int VEC_OP (T,A,reserve)	   	    			  \
   1131      (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
   1132 {									  \
   1133   int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
   1134 				       VEC_CHECK_PASS);			  \
   1135 									  \
   1136   if (extend)								  \
   1137     *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
   1138 			   		      offsetof (VEC(T,A),base.vec),\
   1139  					      sizeof (T)		  \
   1140 			   		      PASS_MEM_STAT);		  \
   1141 									  \
   1142   return extend;							  \
   1143 }									  \
   1144 									  \
   1145 static inline int VEC_OP (T,A,reserve_exact)   	    			  \
   1146      (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
   1147 {									  \
   1148   int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
   1149 				       VEC_CHECK_PASS);			  \
   1150 									  \
   1151   if (extend)								  \
   1152     *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
   1153 			 (*vec_, alloc_, offsetof (VEC(T,A),base.vec),	  \
   1154 			  sizeof (T) PASS_MEM_STAT);			  \
   1155 									  \
   1156   return extend;							  \
   1157 }									  \
   1158 									  \
   1159 static inline void VEC_OP (T,A,safe_grow)				  \
   1160      (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
   1161 {									  \
   1162   VEC_ASSERT (size_ >= 0						  \
   1163 	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
   1164 						 "grow", T, A);		  \
   1165   VEC_OP (T,A,reserve_exact) (vec_,					  \
   1166 			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
   1167 			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
   1168   VEC_BASE (*vec_)->num = size_;					  \
   1169 }									  \
   1170 									  \
   1171 static inline void VEC_OP (T,A,safe_grow_cleared)			  \
   1172      (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
   1173 {									  \
   1174   int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
   1175   VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
   1176   memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
   1177 	  sizeof (T) * (size_ - oldsize));				  \
   1178 }									  \
   1179 									  \
   1180 static inline T *VEC_OP (T,A,safe_push)					  \
   1181      (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
   1182 {									  \
   1183   VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
   1184 									  \
   1185   return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
   1186 }									  \
   1187 									  \
   1188 static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
   1189      (VEC(T,A) **vec_, unsigned ix_, const T obj_			  \
   1190  		VEC_CHECK_DECL MEM_STAT_DECL)				  \
   1191 {									  \
   1192   VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
   1193 									  \
   1194   return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
   1195 				       VEC_CHECK_PASS);			  \
   1196 }
   1197 
   1198 #endif /* GCC_VEC_H */
   1199