1 /* Vector API for GNU compiler. 2 Copyright (C) 2004, 2005, 2007, 2008 Free Software Foundation, Inc. 3 Contributed by Nathan Sidwell <nathan (at) codesourcery.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #ifndef GCC_VEC_H 22 #define GCC_VEC_H 23 24 /* The macros here implement a set of templated vector types and 25 associated interfaces. These templates are implemented with 26 macros, as we're not in C++ land. The interface functions are 27 typesafe and use static inline functions, sometimes backed by 28 out-of-line generic functions. The vectors are designed to 29 interoperate with the GTY machinery. 30 31 Because of the different behavior of structure objects, scalar 32 objects and of pointers, there are three flavors, one for each of 33 these variants. Both the structure object and pointer variants 34 pass pointers to objects around -- in the former case the pointers 35 are stored into the vector and in the latter case the pointers are 36 dereferenced and the objects copied into the vector. The scalar 37 object variant is suitable for int-like objects, and the vector 38 elements are returned by value. 39 40 There are both 'index' and 'iterate' accessors. The iterator 41 returns a boolean iteration condition and updates the iteration 42 variable passed by reference. Because the iterator will be 43 inlined, the address-of can be optimized away. 44 45 The vectors are implemented using the trailing array idiom, thus 46 they are not resizeable without changing the address of the vector 47 object itself. This means you cannot have variables or fields of 48 vector type -- always use a pointer to a vector. The one exception 49 is the final field of a structure, which could be a vector type. 50 You will have to use the embedded_size & embedded_init calls to 51 create such objects, and they will probably not be resizeable (so 52 don't use the 'safe' allocation variants). The trailing array 53 idiom is used (rather than a pointer to an array of data), because, 54 if we allow NULL to also represent an empty vector, empty vectors 55 occupy minimal space in the structure containing them. 56 57 Each operation that increases the number of active elements is 58 available in 'quick' and 'safe' variants. The former presumes that 59 there is sufficient allocated space for the operation to succeed 60 (it dies if there is not). The latter will reallocate the 61 vector, if needed. Reallocation causes an exponential increase in 62 vector size. If you know you will be adding N elements, it would 63 be more efficient to use the reserve operation before adding the 64 elements with the 'quick' operation. This will ensure there are at 65 least as many elements as you ask for, it will exponentially 66 increase if there are too few spare slots. If you want reserve a 67 specific number of slots, but do not want the exponential increase 68 (for instance, you know this is the last allocation), use the 69 reserve_exact operation. You can also create a vector of a 70 specific size from the get go. 71 72 You should prefer the push and pop operations, as they append and 73 remove from the end of the vector. If you need to remove several 74 items in one go, use the truncate operation. The insert and remove 75 operations allow you to change elements in the middle of the 76 vector. There are two remove operations, one which preserves the 77 element ordering 'ordered_remove', and one which does not 78 'unordered_remove'. The latter function copies the end element 79 into the removed slot, rather than invoke a memmove operation. The 80 'lower_bound' function will determine where to place an item in the 81 array using insert that will maintain sorted order. 82 83 When a vector type is defined, first a non-memory managed version 84 is created. You can then define either or both garbage collected 85 and heap allocated versions. The allocation mechanism is specified 86 when the type is defined, and is therefore part of the type. If 87 you need both gc'd and heap allocated versions, you still must have 88 *exactly* one definition of the common non-memory managed base vector. 89 90 If you need to directly manipulate a vector, then the 'address' 91 accessor will return the address of the start of the vector. Also 92 the 'space' predicate will tell you whether there is spare capacity 93 in the vector. You will not normally need to use these two functions. 94 95 Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to 96 get the non-memory allocation version, and then a 97 DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed 98 vectors. Variables of vector type are declared using a 99 VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the 100 allocation strategy, and can be either 'gc' or 'heap' for garbage 101 collected and heap allocated respectively. It can be 'none' to get 102 a vector that must be explicitly allocated (for instance as a 103 trailing array of another structure). The characters O, P and I 104 indicate whether TYPEDEF is a pointer (P), object (O) or integral 105 (I) type. Be careful to pick the correct one, as you'll get an 106 awkward and inefficient API if you use the wrong one. There is a 107 check, which results in a compile-time warning, for the P and I 108 versions, but there is no check for the O versions, as that is not 109 possible in plain C. Due to the way GTY works, you must annotate 110 any structures you wish to insert or reference from a vector with a 111 GTY(()) tag. You need to do this even if you never declare the GC 112 allocated variants. 113 114 An example of their use would be, 115 116 DEF_VEC_P(tree); // non-managed tree vector. 117 DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must 118 // appear at file scope. 119 120 struct my_struct { 121 VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers. 122 }; 123 124 struct my_struct *s; 125 126 if (VEC_length(tree,s->v)) { we have some contents } 127 VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end 128 for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++) 129 { do something with elt } 130 131 */ 132 133 /* Macros to invoke API calls. A single macro works for both pointer 134 and object vectors, but the argument and return types might well be 135 different. In each macro, T is the typedef of the vector elements, 136 and A is the allocation strategy. The allocation strategy is only 137 present when it is required. Some of these macros pass the vector, 138 V, by reference (by taking its address), this is noted in the 139 descriptions. */ 140 141 /* Length of vector 142 unsigned VEC_T_length(const VEC(T) *v); 143 144 Return the number of active elements in V. V can be NULL, in which 145 case zero is returned. */ 146 147 #define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V))) 148 149 150 /* Check if vector is empty 151 int VEC_T_empty(const VEC(T) *v); 152 153 Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */ 154 155 #define VEC_empty(T,V) (VEC_length (T,V) == 0) 156 157 158 /* Get the final element of the vector. 159 T VEC_T_last(VEC(T) *v); // Integer 160 T VEC_T_last(VEC(T) *v); // Pointer 161 T *VEC_T_last(VEC(T) *v); // Object 162 163 Return the final element. V must not be empty. */ 164 165 #define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO)) 166 167 /* Index into vector 168 T VEC_T_index(VEC(T) *v, unsigned ix); // Integer 169 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer 170 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object 171 172 Return the IX'th element. If IX must be in the domain of V. */ 173 174 #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO)) 175 176 /* Iterate over vector 177 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer 178 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer 179 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object 180 181 Return iteration condition and update PTR to point to the IX'th 182 element. At the end of iteration, sets PTR to NULL. Use this to 183 iterate over the elements of a vector as follows, 184 185 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++) 186 continue; */ 187 188 #define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P))) 189 190 /* Allocate new vector. 191 VEC(T,A) *VEC_T_A_alloc(int reserve); 192 193 Allocate a new vector with space for RESERVE objects. If RESERVE 194 is zero, NO vector is created. */ 195 196 #define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO)) 197 198 /* Free a vector. 199 void VEC_T_A_free(VEC(T,A) *&); 200 201 Free a vector and set it to NULL. */ 202 203 #define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V)) 204 205 /* Use these to determine the required size and initialization of a 206 vector embedded within another structure (as the final member). 207 208 size_t VEC_T_embedded_size(int reserve); 209 void VEC_T_embedded_init(VEC(T) *v, int reserve); 210 211 These allow the caller to perform the memory allocation. */ 212 213 #define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N)) 214 #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N)) 215 216 /* Copy a vector. 217 VEC(T,A) *VEC_T_A_copy(VEC(T) *); 218 219 Copy the live elements of a vector into a new vector. The new and 220 old vectors need not be allocated by the same mechanism. */ 221 222 #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO)) 223 224 /* Determine if a vector has additional capacity. 225 226 int VEC_T_space (VEC(T) *v,int reserve) 227 228 If V has space for RESERVE additional entries, return nonzero. You 229 usually only need to use this if you are doing your own vector 230 reallocation, for instance on an embedded vector. This returns 231 nonzero in exactly the same circumstances that VEC_T_reserve 232 will. */ 233 234 #define VEC_space(T,V,R) \ 235 (VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO)) 236 237 /* Reserve space. 238 int VEC_T_A_reserve(VEC(T,A) *&v, int reserve); 239 240 Ensure that V has at least RESERVE slots available. This will 241 create additional headroom. Note this can cause V to be 242 reallocated. Returns nonzero iff reallocation actually 243 occurred. */ 244 245 #define VEC_reserve(T,A,V,R) \ 246 (VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO)) 247 248 /* Reserve space exactly. 249 int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve); 250 251 Ensure that V has at least RESERVE slots available. This will not 252 create additional headroom. Note this can cause V to be 253 reallocated. Returns nonzero iff reallocation actually 254 occurred. */ 255 256 #define VEC_reserve_exact(T,A,V,R) \ 257 (VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO)) 258 259 /* Push object with no reallocation 260 T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer 261 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer 262 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object 263 264 Push a new element onto the end, returns a pointer to the slot 265 filled in. For object vectors, the new value can be NULL, in which 266 case NO initialization is performed. There must 267 be sufficient space in the vector. */ 268 269 #define VEC_quick_push(T,V,O) \ 270 (VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO)) 271 272 /* Push object with reallocation 273 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer 274 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer 275 T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object 276 277 Push a new element onto the end, returns a pointer to the slot 278 filled in. For object vectors, the new value can be NULL, in which 279 case NO initialization is performed. Reallocates V, if needed. */ 280 281 #define VEC_safe_push(T,A,V,O) \ 282 (VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO)) 283 284 /* Pop element off end 285 T VEC_T_pop (VEC(T) *v); // Integer 286 T VEC_T_pop (VEC(T) *v); // Pointer 287 void VEC_T_pop (VEC(T) *v); // Object 288 289 Pop the last element off the end. Returns the element popped, for 290 pointer vectors. */ 291 292 #define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO)) 293 294 /* Truncate to specific length 295 void VEC_T_truncate (VEC(T) *v, unsigned len); 296 297 Set the length as specified. The new length must be less than or 298 equal to the current length. This is an O(1) operation. */ 299 300 #define VEC_truncate(T,V,I) \ 301 (VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO)) 302 303 /* Grow to a specific length. 304 void VEC_T_A_safe_grow (VEC(T,A) *&v, int len); 305 306 Grow the vector to a specific length. The LEN must be as 307 long or longer than the current length. The new elements are 308 uninitialized. */ 309 310 #define VEC_safe_grow(T,A,V,I) \ 311 (VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO)) 312 313 /* Grow to a specific length. 314 void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len); 315 316 Grow the vector to a specific length. The LEN must be as 317 long or longer than the current length. The new elements are 318 initialized to zero. */ 319 320 #define VEC_safe_grow_cleared(T,A,V,I) \ 321 (VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO)) 322 323 /* Replace element 324 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer 325 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer 326 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object 327 328 Replace the IXth element of V with a new value, VAL. For pointer 329 vectors returns the original value. For object vectors returns a 330 pointer to the new value. For object vectors the new value can be 331 NULL, in which case no overwriting of the slot is actually 332 performed. */ 333 334 #define VEC_replace(T,V,I,O) \ 335 (VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO)) 336 337 /* Insert object with no reallocation 338 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer 339 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer 340 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object 341 342 Insert an element, VAL, at the IXth position of V. Return a pointer 343 to the slot created. For vectors of object, the new value can be 344 NULL, in which case no initialization of the inserted slot takes 345 place. There must be sufficient space. */ 346 347 #define VEC_quick_insert(T,V,I,O) \ 348 (VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO)) 349 350 /* Insert object with reallocation 351 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer 352 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer 353 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object 354 355 Insert an element, VAL, at the IXth position of V. Return a pointer 356 to the slot created. For vectors of object, the new value can be 357 NULL, in which case no initialization of the inserted slot takes 358 place. Reallocate V, if necessary. */ 359 360 #define VEC_safe_insert(T,A,V,I,O) \ 361 (VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO)) 362 363 /* Remove element retaining order 364 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer 365 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer 366 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object 367 368 Remove an element from the IXth position of V. Ordering of 369 remaining elements is preserved. For pointer vectors returns the 370 removed object. This is an O(N) operation due to a memmove. */ 371 372 #define VEC_ordered_remove(T,V,I) \ 373 (VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO)) 374 375 /* Remove element destroying order 376 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer 377 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer 378 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object 379 380 Remove an element from the IXth position of V. Ordering of 381 remaining elements is destroyed. For pointer vectors returns the 382 removed object. This is an O(1) operation. */ 383 384 #define VEC_unordered_remove(T,V,I) \ 385 (VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO)) 386 387 /* Remove a block of elements 388 void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len); 389 390 Remove LEN elements starting at the IXth. Ordering is retained. 391 This is an O(1) operation. */ 392 393 #define VEC_block_remove(T,V,I,L) \ 394 (VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO)) 395 396 /* Get the address of the array of elements 397 T *VEC_T_address (VEC(T) v) 398 399 If you need to directly manipulate the array (for instance, you 400 want to feed it to qsort), use this accessor. */ 401 402 #define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V))) 403 404 /* Find the first index in the vector not less than the object. 405 unsigned VEC_T_lower_bound (VEC(T) *v, const T val, 406 bool (*lessthan) (const T, const T)); // Integer 407 unsigned VEC_T_lower_bound (VEC(T) *v, const T val, 408 bool (*lessthan) (const T, const T)); // Pointer 409 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val, 410 bool (*lessthan) (const T*, const T*)); // Object 411 412 Find the first position in which VAL could be inserted without 413 changing the ordering of V. LESSTHAN is a function that returns 414 true if the first argument is strictly less than the second. */ 415 416 #define VEC_lower_bound(T,V,O,LT) \ 417 (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO)) 418 419 /* Reallocate an array of elements with prefix. */ 420 extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL); 421 extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL); 422 extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); 423 extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t 424 MEM_STAT_DECL); 425 extern void ggc_free (void *); 426 #define vec_gc_free(V) ggc_free (V) 427 extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL); 428 extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL); 429 extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); 430 extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t 431 MEM_STAT_DECL); 432 extern void dump_vec_loc_statistics (void); 433 #ifdef GATHER_STATISTICS 434 void vec_heap_free (void *); 435 #else 436 #define vec_heap_free(V) free (V) 437 #endif 438 439 #if ENABLE_CHECKING 440 #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__ 441 #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_ 442 #define VEC_CHECK_PASS ,file_,line_,function_ 443 444 #define VEC_ASSERT(EXPR,OP,T,A) \ 445 (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0)) 446 447 extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL) 448 ATTRIBUTE_NORETURN; 449 #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS) 450 #else 451 #define VEC_CHECK_INFO 452 #define VEC_CHECK_DECL 453 #define VEC_CHECK_PASS 454 #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR) 455 #endif 456 457 /* Note: gengtype has hardwired knowledge of the expansions of the 458 VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros. If you change the 459 expansions of these macros you may need to change gengtype too. */ 460 461 #define VEC(T,A) VEC_##T##_##A 462 #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP 463 464 /* Base of vector type, not user visible. */ 465 #define VEC_T(T,B) \ 466 typedef struct VEC(T,B) \ 467 { \ 468 unsigned num; \ 469 unsigned alloc; \ 470 T vec[1]; \ 471 } VEC(T,B) 472 473 #define VEC_T_GTY(T,B) \ 474 typedef struct VEC(T,B) GTY(()) \ 475 { \ 476 unsigned num; \ 477 unsigned alloc; \ 478 T GTY ((length ("%h.num"))) vec[1]; \ 479 } VEC(T,B) 480 481 /* Derived vector type, user visible. */ 482 #define VEC_TA_GTY(T,B,A,GTY) \ 483 typedef struct VEC(T,A) GTY \ 484 { \ 485 VEC(T,B) base; \ 486 } VEC(T,A) 487 488 #define VEC_TA(T,B,A) \ 489 typedef struct VEC(T,A) \ 490 { \ 491 VEC(T,B) base; \ 492 } VEC(T,A) 493 494 /* Convert to base type. */ 495 #define VEC_BASE(P) ((P) ? &(P)->base : 0) 496 497 /* Vector of integer-like object. */ 498 #define DEF_VEC_I(T) \ 499 static inline void VEC_OP (T,must_be,integral_type) (void) \ 500 { \ 501 (void)~(T)0; \ 502 } \ 503 \ 504 VEC_T(T,base); \ 505 VEC_TA(T,base,none); \ 506 DEF_VEC_FUNC_P(T) \ 507 struct vec_swallow_trailing_semi 508 #define DEF_VEC_ALLOC_I(T,A) \ 509 VEC_TA(T,base,A); \ 510 DEF_VEC_ALLOC_FUNC_I(T,A) \ 511 struct vec_swallow_trailing_semi 512 513 /* Vector of pointer to object. */ 514 #define DEF_VEC_P(T) \ 515 static inline void VEC_OP (T,must_be,pointer_type) (void) \ 516 { \ 517 (void)((T)1 == (void *)1); \ 518 } \ 519 \ 520 VEC_T_GTY(T,base); \ 521 VEC_TA(T,base,none); \ 522 DEF_VEC_FUNC_P(T) \ 523 struct vec_swallow_trailing_semi 524 #define DEF_VEC_ALLOC_P(T,A) \ 525 VEC_TA(T,base,A); \ 526 DEF_VEC_ALLOC_FUNC_P(T,A) \ 527 struct vec_swallow_trailing_semi 528 529 #define DEF_VEC_FUNC_P(T) \ 530 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \ 531 { \ 532 return vec_ ? vec_->num : 0; \ 533 } \ 534 \ 535 static inline T VEC_OP (T,base,last) \ 536 (const VEC(T,base) *vec_ VEC_CHECK_DECL) \ 537 { \ 538 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \ 539 \ 540 return vec_->vec[vec_->num - 1]; \ 541 } \ 542 \ 543 static inline T VEC_OP (T,base,index) \ 544 (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ 545 { \ 546 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \ 547 \ 548 return vec_->vec[ix_]; \ 549 } \ 550 \ 551 static inline int VEC_OP (T,base,iterate) \ 552 (const VEC(T,base) *vec_, unsigned ix_, T *ptr) \ 553 { \ 554 if (vec_ && ix_ < vec_->num) \ 555 { \ 556 *ptr = vec_->vec[ix_]; \ 557 return 1; \ 558 } \ 559 else \ 560 { \ 561 *ptr = 0; \ 562 return 0; \ 563 } \ 564 } \ 565 \ 566 static inline size_t VEC_OP (T,base,embedded_size) \ 567 (int alloc_) \ 568 { \ 569 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \ 570 } \ 571 \ 572 static inline void VEC_OP (T,base,embedded_init) \ 573 (VEC(T,base) *vec_, int alloc_) \ 574 { \ 575 vec_->num = 0; \ 576 vec_->alloc = alloc_; \ 577 } \ 578 \ 579 static inline int VEC_OP (T,base,space) \ 580 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \ 581 { \ 582 VEC_ASSERT (alloc_ >= 0, "space", T, base); \ 583 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ 584 } \ 585 \ 586 static inline T *VEC_OP (T,base,quick_push) \ 587 (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \ 588 { \ 589 T *slot_; \ 590 \ 591 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \ 592 slot_ = &vec_->vec[vec_->num++]; \ 593 *slot_ = obj_; \ 594 \ 595 return slot_; \ 596 } \ 597 \ 598 static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ 599 { \ 600 T obj_; \ 601 \ 602 VEC_ASSERT (vec_->num, "pop", T, base); \ 603 obj_ = vec_->vec[--vec_->num]; \ 604 \ 605 return obj_; \ 606 } \ 607 \ 608 static inline void VEC_OP (T,base,truncate) \ 609 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \ 610 { \ 611 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \ 612 if (vec_) \ 613 vec_->num = size_; \ 614 } \ 615 \ 616 static inline T VEC_OP (T,base,replace) \ 617 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \ 618 { \ 619 T old_obj_; \ 620 \ 621 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \ 622 old_obj_ = vec_->vec[ix_]; \ 623 vec_->vec[ix_] = obj_; \ 624 \ 625 return old_obj_; \ 626 } \ 627 \ 628 static inline T *VEC_OP (T,base,quick_insert) \ 629 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \ 630 { \ 631 T *slot_; \ 632 \ 633 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \ 634 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \ 635 slot_ = &vec_->vec[ix_]; \ 636 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ 637 *slot_ = obj_; \ 638 \ 639 return slot_; \ 640 } \ 641 \ 642 static inline T VEC_OP (T,base,ordered_remove) \ 643 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ 644 { \ 645 T *slot_; \ 646 T obj_; \ 647 \ 648 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ 649 slot_ = &vec_->vec[ix_]; \ 650 obj_ = *slot_; \ 651 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ 652 \ 653 return obj_; \ 654 } \ 655 \ 656 static inline T VEC_OP (T,base,unordered_remove) \ 657 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ 658 { \ 659 T *slot_; \ 660 T obj_; \ 661 \ 662 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ 663 slot_ = &vec_->vec[ix_]; \ 664 obj_ = *slot_; \ 665 *slot_ = vec_->vec[--vec_->num]; \ 666 \ 667 return obj_; \ 668 } \ 669 \ 670 static inline void VEC_OP (T,base,block_remove) \ 671 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \ 672 { \ 673 T *slot_; \ 674 \ 675 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \ 676 slot_ = &vec_->vec[ix_]; \ 677 vec_->num -= len_; \ 678 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ 679 } \ 680 \ 681 static inline T *VEC_OP (T,base,address) \ 682 (VEC(T,base) *vec_) \ 683 { \ 684 return vec_ ? vec_->vec : 0; \ 685 } \ 686 \ 687 static inline unsigned VEC_OP (T,base,lower_bound) \ 688 (VEC(T,base) *vec_, const T obj_, \ 689 bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \ 690 { \ 691 unsigned int len_ = VEC_OP (T,base, length) (vec_); \ 692 unsigned int half_, middle_; \ 693 unsigned int first_ = 0; \ 694 while (len_ > 0) \ 695 { \ 696 T middle_elem_; \ 697 half_ = len_ >> 1; \ 698 middle_ = first_; \ 699 middle_ += half_; \ 700 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \ 701 if (lessthan_ (middle_elem_, obj_)) \ 702 { \ 703 first_ = middle_; \ 704 ++first_; \ 705 len_ = len_ - half_ - 1; \ 706 } \ 707 else \ 708 len_ = half_; \ 709 } \ 710 return first_; \ 711 } 712 713 #define DEF_VEC_ALLOC_FUNC_P(T,A) \ 714 static inline VEC(T,A) *VEC_OP (T,A,alloc) \ 715 (int alloc_ MEM_STAT_DECL) \ 716 { \ 717 return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_ \ 718 PASS_MEM_STAT); \ 719 } \ 720 \ 721 static inline void VEC_OP (T,A,free) \ 722 (VEC(T,A) **vec_) \ 723 { \ 724 if (*vec_) \ 725 vec_##A##_free (*vec_); \ 726 *vec_ = NULL; \ 727 } \ 728 \ 729 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ 730 { \ 731 size_t len_ = vec_ ? vec_->num : 0; \ 732 VEC (T,A) *new_vec_ = NULL; \ 733 \ 734 if (len_) \ 735 { \ 736 new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact \ 737 (NULL, len_ PASS_MEM_STAT)); \ 738 \ 739 new_vec_->base.num = len_; \ 740 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ 741 } \ 742 return new_vec_; \ 743 } \ 744 \ 745 static inline int VEC_OP (T,A,reserve) \ 746 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ 747 { \ 748 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ 749 VEC_CHECK_PASS); \ 750 \ 751 if (extend) \ 752 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \ 753 \ 754 return extend; \ 755 } \ 756 \ 757 static inline int VEC_OP (T,A,reserve_exact) \ 758 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ 759 { \ 760 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ 761 VEC_CHECK_PASS); \ 762 \ 763 if (extend) \ 764 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_ \ 765 PASS_MEM_STAT); \ 766 \ 767 return extend; \ 768 } \ 769 \ 770 static inline void VEC_OP (T,A,safe_grow) \ 771 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ 772 { \ 773 VEC_ASSERT (size_ >= 0 \ 774 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ 775 "grow", T, A); \ 776 VEC_OP (T,A,reserve_exact) (vec_, \ 777 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ 778 VEC_CHECK_PASS PASS_MEM_STAT); \ 779 VEC_BASE (*vec_)->num = size_; \ 780 } \ 781 \ 782 static inline void VEC_OP (T,A,safe_grow_cleared) \ 783 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ 784 { \ 785 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ 786 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ 787 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ 788 sizeof (T) * (size_ - oldsize)); \ 789 } \ 790 \ 791 static inline T *VEC_OP (T,A,safe_push) \ 792 (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ 793 { \ 794 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ 795 \ 796 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ 797 } \ 798 \ 799 static inline T *VEC_OP (T,A,safe_insert) \ 800 (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ 801 { \ 802 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ 803 \ 804 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ 805 VEC_CHECK_PASS); \ 806 } 807 808 /* Vector of object. */ 809 #define DEF_VEC_O(T) \ 810 VEC_T_GTY(T,base); \ 811 VEC_TA(T,base,none); \ 812 DEF_VEC_FUNC_O(T) \ 813 struct vec_swallow_trailing_semi 814 #define DEF_VEC_ALLOC_O(T,A) \ 815 VEC_TA(T,base,A); \ 816 DEF_VEC_ALLOC_FUNC_O(T,A) \ 817 struct vec_swallow_trailing_semi 818 819 #define DEF_VEC_FUNC_O(T) \ 820 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \ 821 { \ 822 return vec_ ? vec_->num : 0; \ 823 } \ 824 \ 825 static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ 826 { \ 827 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \ 828 \ 829 return &vec_->vec[vec_->num - 1]; \ 830 } \ 831 \ 832 static inline T *VEC_OP (T,base,index) \ 833 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ 834 { \ 835 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \ 836 \ 837 return &vec_->vec[ix_]; \ 838 } \ 839 \ 840 static inline int VEC_OP (T,base,iterate) \ 841 (VEC(T,base) *vec_, unsigned ix_, T **ptr) \ 842 { \ 843 if (vec_ && ix_ < vec_->num) \ 844 { \ 845 *ptr = &vec_->vec[ix_]; \ 846 return 1; \ 847 } \ 848 else \ 849 { \ 850 *ptr = 0; \ 851 return 0; \ 852 } \ 853 } \ 854 \ 855 static inline size_t VEC_OP (T,base,embedded_size) \ 856 (int alloc_) \ 857 { \ 858 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \ 859 } \ 860 \ 861 static inline void VEC_OP (T,base,embedded_init) \ 862 (VEC(T,base) *vec_, int alloc_) \ 863 { \ 864 vec_->num = 0; \ 865 vec_->alloc = alloc_; \ 866 } \ 867 \ 868 static inline int VEC_OP (T,base,space) \ 869 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \ 870 { \ 871 VEC_ASSERT (alloc_ >= 0, "space", T, base); \ 872 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ 873 } \ 874 \ 875 static inline T *VEC_OP (T,base,quick_push) \ 876 (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \ 877 { \ 878 T *slot_; \ 879 \ 880 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \ 881 slot_ = &vec_->vec[vec_->num++]; \ 882 if (obj_) \ 883 *slot_ = *obj_; \ 884 \ 885 return slot_; \ 886 } \ 887 \ 888 static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ 889 { \ 890 VEC_ASSERT (vec_->num, "pop", T, base); \ 891 --vec_->num; \ 892 } \ 893 \ 894 static inline void VEC_OP (T,base,truncate) \ 895 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \ 896 { \ 897 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \ 898 if (vec_) \ 899 vec_->num = size_; \ 900 } \ 901 \ 902 static inline T *VEC_OP (T,base,replace) \ 903 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \ 904 { \ 905 T *slot_; \ 906 \ 907 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \ 908 slot_ = &vec_->vec[ix_]; \ 909 if (obj_) \ 910 *slot_ = *obj_; \ 911 \ 912 return slot_; \ 913 } \ 914 \ 915 static inline T *VEC_OP (T,base,quick_insert) \ 916 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \ 917 { \ 918 T *slot_; \ 919 \ 920 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \ 921 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \ 922 slot_ = &vec_->vec[ix_]; \ 923 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ 924 if (obj_) \ 925 *slot_ = *obj_; \ 926 \ 927 return slot_; \ 928 } \ 929 \ 930 static inline void VEC_OP (T,base,ordered_remove) \ 931 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ 932 { \ 933 T *slot_; \ 934 \ 935 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ 936 slot_ = &vec_->vec[ix_]; \ 937 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ 938 } \ 939 \ 940 static inline void VEC_OP (T,base,unordered_remove) \ 941 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ 942 { \ 943 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ 944 vec_->vec[ix_] = vec_->vec[--vec_->num]; \ 945 } \ 946 \ 947 static inline void VEC_OP (T,base,block_remove) \ 948 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \ 949 { \ 950 T *slot_; \ 951 \ 952 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \ 953 slot_ = &vec_->vec[ix_]; \ 954 vec_->num -= len_; \ 955 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ 956 } \ 957 \ 958 static inline T *VEC_OP (T,base,address) \ 959 (VEC(T,base) *vec_) \ 960 { \ 961 return vec_ ? vec_->vec : 0; \ 962 } \ 963 \ 964 static inline unsigned VEC_OP (T,base,lower_bound) \ 965 (VEC(T,base) *vec_, const T *obj_, \ 966 bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \ 967 { \ 968 unsigned int len_ = VEC_OP (T, base, length) (vec_); \ 969 unsigned int half_, middle_; \ 970 unsigned int first_ = 0; \ 971 while (len_ > 0) \ 972 { \ 973 T *middle_elem_; \ 974 half_ = len_ >> 1; \ 975 middle_ = first_; \ 976 middle_ += half_; \ 977 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \ 978 if (lessthan_ (middle_elem_, obj_)) \ 979 { \ 980 first_ = middle_; \ 981 ++first_; \ 982 len_ = len_ - half_ - 1; \ 983 } \ 984 else \ 985 len_ = half_; \ 986 } \ 987 return first_; \ 988 } 989 990 #define DEF_VEC_ALLOC_FUNC_O(T,A) \ 991 static inline VEC(T,A) *VEC_OP (T,A,alloc) \ 992 (int alloc_ MEM_STAT_DECL) \ 993 { \ 994 return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_, \ 995 offsetof (VEC(T,A),base.vec), \ 996 sizeof (T) \ 997 PASS_MEM_STAT); \ 998 } \ 999 \ 1000 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ 1001 { \ 1002 size_t len_ = vec_ ? vec_->num : 0; \ 1003 VEC (T,A) *new_vec_ = NULL; \ 1004 \ 1005 if (len_) \ 1006 { \ 1007 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \ 1008 (NULL, len_, \ 1009 offsetof (VEC(T,A),base.vec), sizeof (T) \ 1010 PASS_MEM_STAT)); \ 1011 \ 1012 new_vec_->base.num = len_; \ 1013 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ 1014 } \ 1015 return new_vec_; \ 1016 } \ 1017 \ 1018 static inline void VEC_OP (T,A,free) \ 1019 (VEC(T,A) **vec_) \ 1020 { \ 1021 if (*vec_) \ 1022 vec_##A##_free (*vec_); \ 1023 *vec_ = NULL; \ 1024 } \ 1025 \ 1026 static inline int VEC_OP (T,A,reserve) \ 1027 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ 1028 { \ 1029 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ 1030 VEC_CHECK_PASS); \ 1031 \ 1032 if (extend) \ 1033 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \ 1034 offsetof (VEC(T,A),base.vec),\ 1035 sizeof (T) \ 1036 PASS_MEM_STAT); \ 1037 \ 1038 return extend; \ 1039 } \ 1040 \ 1041 static inline int VEC_OP (T,A,reserve_exact) \ 1042 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ 1043 { \ 1044 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ 1045 VEC_CHECK_PASS); \ 1046 \ 1047 if (extend) \ 1048 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \ 1049 (*vec_, alloc_, \ 1050 offsetof (VEC(T,A),base.vec), \ 1051 sizeof (T) PASS_MEM_STAT); \ 1052 \ 1053 return extend; \ 1054 } \ 1055 \ 1056 static inline void VEC_OP (T,A,safe_grow) \ 1057 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ 1058 { \ 1059 VEC_ASSERT (size_ >= 0 \ 1060 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ 1061 "grow", T, A); \ 1062 VEC_OP (T,A,reserve_exact) (vec_, \ 1063 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ 1064 VEC_CHECK_PASS PASS_MEM_STAT); \ 1065 VEC_BASE (*vec_)->num = size_; \ 1066 } \ 1067 \ 1068 static inline void VEC_OP (T,A,safe_grow_cleared) \ 1069 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ 1070 { \ 1071 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ 1072 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ 1073 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ 1074 sizeof (T) * (size_ - oldsize)); \ 1075 } \ 1076 \ 1077 static inline T *VEC_OP (T,A,safe_push) \ 1078 (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ 1079 { \ 1080 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ 1081 \ 1082 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ 1083 } \ 1084 \ 1085 static inline T *VEC_OP (T,A,safe_insert) \ 1086 (VEC(T,A) **vec_, unsigned ix_, const T *obj_ \ 1087 VEC_CHECK_DECL MEM_STAT_DECL) \ 1088 { \ 1089 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ 1090 \ 1091 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ 1092 VEC_CHECK_PASS); \ 1093 } 1094 1095 #define DEF_VEC_ALLOC_FUNC_I(T,A) \ 1096 static inline VEC(T,A) *VEC_OP (T,A,alloc) \ 1097 (int alloc_ MEM_STAT_DECL) \ 1098 { \ 1099 return (VEC(T,A) *) vec_##A##_o_reserve_exact \ 1100 (NULL, alloc_, offsetof (VEC(T,A),base.vec), \ 1101 sizeof (T) PASS_MEM_STAT); \ 1102 } \ 1103 \ 1104 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ 1105 { \ 1106 size_t len_ = vec_ ? vec_->num : 0; \ 1107 VEC (T,A) *new_vec_ = NULL; \ 1108 \ 1109 if (len_) \ 1110 { \ 1111 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \ 1112 (NULL, len_, \ 1113 offsetof (VEC(T,A),base.vec), sizeof (T) \ 1114 PASS_MEM_STAT)); \ 1115 \ 1116 new_vec_->base.num = len_; \ 1117 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ 1118 } \ 1119 return new_vec_; \ 1120 } \ 1121 \ 1122 static inline void VEC_OP (T,A,free) \ 1123 (VEC(T,A) **vec_) \ 1124 { \ 1125 if (*vec_) \ 1126 vec_##A##_free (*vec_); \ 1127 *vec_ = NULL; \ 1128 } \ 1129 \ 1130 static inline int VEC_OP (T,A,reserve) \ 1131 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ 1132 { \ 1133 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ 1134 VEC_CHECK_PASS); \ 1135 \ 1136 if (extend) \ 1137 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \ 1138 offsetof (VEC(T,A),base.vec),\ 1139 sizeof (T) \ 1140 PASS_MEM_STAT); \ 1141 \ 1142 return extend; \ 1143 } \ 1144 \ 1145 static inline int VEC_OP (T,A,reserve_exact) \ 1146 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ 1147 { \ 1148 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ 1149 VEC_CHECK_PASS); \ 1150 \ 1151 if (extend) \ 1152 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \ 1153 (*vec_, alloc_, offsetof (VEC(T,A),base.vec), \ 1154 sizeof (T) PASS_MEM_STAT); \ 1155 \ 1156 return extend; \ 1157 } \ 1158 \ 1159 static inline void VEC_OP (T,A,safe_grow) \ 1160 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ 1161 { \ 1162 VEC_ASSERT (size_ >= 0 \ 1163 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ 1164 "grow", T, A); \ 1165 VEC_OP (T,A,reserve_exact) (vec_, \ 1166 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ 1167 VEC_CHECK_PASS PASS_MEM_STAT); \ 1168 VEC_BASE (*vec_)->num = size_; \ 1169 } \ 1170 \ 1171 static inline void VEC_OP (T,A,safe_grow_cleared) \ 1172 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ 1173 { \ 1174 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ 1175 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ 1176 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ 1177 sizeof (T) * (size_ - oldsize)); \ 1178 } \ 1179 \ 1180 static inline T *VEC_OP (T,A,safe_push) \ 1181 (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ 1182 { \ 1183 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ 1184 \ 1185 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ 1186 } \ 1187 \ 1188 static inline T *VEC_OP (T,A,safe_insert) \ 1189 (VEC(T,A) **vec_, unsigned ix_, const T obj_ \ 1190 VEC_CHECK_DECL MEM_STAT_DECL) \ 1191 { \ 1192 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ 1193 \ 1194 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ 1195 VEC_CHECK_PASS); \ 1196 } 1197 1198 #endif /* GCC_VEC_H */ 1199