Home | History | Annotate | Download | only in arm
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * This file contains codegen and support common to all supported
     19  * ARM variants.  It is included by:
     20  *
     21  *        Codegen-$(TARGET_ARCH_VARIANT).c
     22  *
     23  * which combines this common code with specific support found in the
     24  * applicable directory below this one.
     25  */
     26 
     27 static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
     28                                      int srcSize, int tgtSize)
     29 {
     30     /*
     31      * Don't optimize the register usage since it calls out to template
     32      * functions
     33      */
     34     RegLocation rlSrc;
     35     RegLocation rlDest;
     36     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
     37     if (srcSize == 1) {
     38         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
     39         loadValueDirectFixed(cUnit, rlSrc, r0);
     40     } else {
     41         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
     42         loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
     43     }
     44     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
     45     opReg(cUnit, kOpBlx, r2);
     46     dvmCompilerClobberCallRegs(cUnit);
     47     if (tgtSize == 1) {
     48         RegLocation rlResult;
     49         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
     50         rlResult = dvmCompilerGetReturn(cUnit);
     51         storeValue(cUnit, rlDest, rlResult);
     52     } else {
     53         RegLocation rlResult;
     54         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
     55         rlResult = dvmCompilerGetReturnWide(cUnit);
     56         storeValueWide(cUnit, rlDest, rlResult);
     57     }
     58     return false;
     59 }
     60 
     61 
     62 static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
     63                                     RegLocation rlDest, RegLocation rlSrc1,
     64                                     RegLocation rlSrc2)
     65 {
     66     RegLocation rlResult;
     67     void* funct;
     68 
     69     switch (mir->dalvikInsn.opCode) {
     70         case OP_ADD_FLOAT_2ADDR:
     71         case OP_ADD_FLOAT:
     72             funct = (void*) __aeabi_fadd;
     73             break;
     74         case OP_SUB_FLOAT_2ADDR:
     75         case OP_SUB_FLOAT:
     76             funct = (void*) __aeabi_fsub;
     77             break;
     78         case OP_DIV_FLOAT_2ADDR:
     79         case OP_DIV_FLOAT:
     80             funct = (void*) __aeabi_fdiv;
     81             break;
     82         case OP_MUL_FLOAT_2ADDR:
     83         case OP_MUL_FLOAT:
     84             funct = (void*) __aeabi_fmul;
     85             break;
     86         case OP_REM_FLOAT_2ADDR:
     87         case OP_REM_FLOAT:
     88             funct = (void*) fmodf;
     89             break;
     90         case OP_NEG_FLOAT: {
     91             genNegFloat(cUnit, rlDest, rlSrc1);
     92             return false;
     93         }
     94         default:
     95             return true;
     96     }
     97     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
     98     loadValueDirectFixed(cUnit, rlSrc1, r0);
     99     loadValueDirectFixed(cUnit, rlSrc2, r1);
    100     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
    101     opReg(cUnit, kOpBlx, r2);
    102     dvmCompilerClobberCallRegs(cUnit);
    103     rlResult = dvmCompilerGetReturn(cUnit);
    104     storeValue(cUnit, rlDest, rlResult);
    105     return false;
    106 }
    107 
    108 static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
    109                                      RegLocation rlDest, RegLocation rlSrc1,
    110                                      RegLocation rlSrc2)
    111 {
    112     RegLocation rlResult;
    113     void* funct;
    114 
    115     switch (mir->dalvikInsn.opCode) {
    116         case OP_ADD_DOUBLE_2ADDR:
    117         case OP_ADD_DOUBLE:
    118             funct = (void*) __aeabi_dadd;
    119             break;
    120         case OP_SUB_DOUBLE_2ADDR:
    121         case OP_SUB_DOUBLE:
    122             funct = (void*) __aeabi_dsub;
    123             break;
    124         case OP_DIV_DOUBLE_2ADDR:
    125         case OP_DIV_DOUBLE:
    126             funct = (void*) __aeabi_ddiv;
    127             break;
    128         case OP_MUL_DOUBLE_2ADDR:
    129         case OP_MUL_DOUBLE:
    130             funct = (void*) __aeabi_dmul;
    131             break;
    132         case OP_REM_DOUBLE_2ADDR:
    133         case OP_REM_DOUBLE:
    134             funct = (void*) fmod;
    135             break;
    136         case OP_NEG_DOUBLE: {
    137             genNegDouble(cUnit, rlDest, rlSrc1);
    138             return false;
    139         }
    140         default:
    141             return true;
    142     }
    143     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    144     LOAD_FUNC_ADDR(cUnit, rlr, (int)funct);
    145     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    146     loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    147     opReg(cUnit, kOpBlx, rlr);
    148     dvmCompilerClobberCallRegs(cUnit);
    149     rlResult = dvmCompilerGetReturnWide(cUnit);
    150     storeValueWide(cUnit, rlDest, rlResult);
    151     return false;
    152 }
    153 
    154 static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
    155 {
    156     OpCode opCode = mir->dalvikInsn.opCode;
    157 
    158     switch (opCode) {
    159         case OP_INT_TO_FLOAT:
    160             return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
    161         case OP_FLOAT_TO_INT:
    162             return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
    163         case OP_DOUBLE_TO_FLOAT:
    164             return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
    165         case OP_FLOAT_TO_DOUBLE:
    166             return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
    167         case OP_INT_TO_DOUBLE:
    168             return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
    169         case OP_DOUBLE_TO_INT:
    170             return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
    171         case OP_FLOAT_TO_LONG:
    172             return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
    173         case OP_LONG_TO_FLOAT:
    174             return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
    175         case OP_DOUBLE_TO_LONG:
    176             return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
    177         case OP_LONG_TO_DOUBLE:
    178             return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
    179         default:
    180             return true;
    181     }
    182     return false;
    183 }
    184 
    185 #if defined(WITH_SELF_VERIFICATION)
    186 static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpCode opCode,
    187                           int dest, int src1)
    188 {
    189      ArmLIR *insn = dvmCompilerNew(sizeof(ArmLIR), true);
    190      insn->opCode = opCode;
    191      insn->operands[0] = dest;
    192      insn->operands[1] = src1;
    193      setupResourceMasks(insn);
    194      dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
    195 }
    196 
    197 static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
    198 {
    199     ArmLIR *thisLIR;
    200     ArmLIR *branchLIR = dvmCompilerNew(sizeof(ArmLIR), true);
    201     TemplateOpCode opCode = TEMPLATE_MEM_OP_DECODE;
    202 
    203     for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn;
    204          thisLIR != (ArmLIR *) cUnit->lastLIRInsn;
    205          thisLIR = NEXT_LIR(thisLIR)) {
    206         if (thisLIR->branchInsertSV) {
    207             /* Branch to mem op decode template */
    208             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
    209                        (int) gDvmJit.codeCache + templateEntryOffsets[opCode],
    210                        (int) gDvmJit.codeCache + templateEntryOffsets[opCode]);
    211             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
    212                        (int) gDvmJit.codeCache + templateEntryOffsets[opCode],
    213                        (int) gDvmJit.codeCache + templateEntryOffsets[opCode]);
    214         }
    215     }
    216 }
    217 #endif
    218 
    219 /* Generate conditional branch instructions */
    220 static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
    221                                     ArmConditionCode cond,
    222                                     ArmLIR *target)
    223 {
    224     ArmLIR *branch = opCondBranch(cUnit, cond);
    225     branch->generic.target = (LIR *) target;
    226     return branch;
    227 }
    228 
    229 /* Generate a unconditional branch to go to the interpreter */
    230 static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
    231                                   ArmLIR *pcrLabel)
    232 {
    233     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
    234     return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
    235 }
    236 
    237 /* Load a wide field from an object instance */
    238 static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
    239 {
    240     DecodedInstruction *dInsn = &mir->dalvikInsn;
    241     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
    242     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
    243     RegLocation rlResult;
    244     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    245     int regPtr = dvmCompilerAllocTemp(cUnit);
    246 
    247     assert(rlDest.wide);
    248 
    249     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    250                  NULL);/* null object? */
    251     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
    252     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
    253 
    254     HEAP_ACCESS_SHADOW(true);
    255     loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
    256     HEAP_ACCESS_SHADOW(false);
    257 
    258     dvmCompilerFreeTemp(cUnit, regPtr);
    259     storeValueWide(cUnit, rlDest, rlResult);
    260 }
    261 
    262 /* Store a wide field to an object instance */
    263 static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
    264 {
    265     DecodedInstruction *dInsn = &mir->dalvikInsn;
    266     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    267     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
    268     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    269     int regPtr;
    270     rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
    271     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    272                  NULL);/* null object? */
    273     regPtr = dvmCompilerAllocTemp(cUnit);
    274     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
    275 
    276     HEAP_ACCESS_SHADOW(true);
    277     storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
    278     HEAP_ACCESS_SHADOW(false);
    279 
    280     dvmCompilerFreeTemp(cUnit, regPtr);
    281 }
    282 
    283 /*
    284  * Load a field from an object instance
    285  *
    286  */
    287 static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
    288                     int fieldOffset)
    289 {
    290     int regPtr;
    291     RegLocation rlResult;
    292     DecodedInstruction *dInsn = &mir->dalvikInsn;
    293     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
    294     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
    295     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    296     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
    297     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    298                  NULL);/* null object? */
    299 
    300     HEAP_ACCESS_SHADOW(true);
    301     loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
    302                  size, rlObj.sRegLow);
    303     HEAP_ACCESS_SHADOW(false);
    304 
    305     storeValue(cUnit, rlDest, rlResult);
    306 }
    307 
    308 /*
    309  * Store a field to an object instance
    310  *
    311  */
    312 static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
    313                     int fieldOffset)
    314 {
    315     DecodedInstruction *dInsn = &mir->dalvikInsn;
    316     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    317     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
    318     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    319     rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
    320     int regPtr;
    321     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    322                  NULL);/* null object? */
    323 
    324     HEAP_ACCESS_SHADOW(true);
    325     storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
    326     HEAP_ACCESS_SHADOW(false);
    327 }
    328 
    329 
    330 /*
    331  * Generate array load
    332  */
    333 static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
    334                         RegLocation rlArray, RegLocation rlIndex,
    335                         RegLocation rlDest, int scale)
    336 {
    337     int lenOffset = offsetof(ArrayObject, length);
    338     int dataOffset = offsetof(ArrayObject, contents);
    339     RegLocation rlResult;
    340     rlArray = loadValue(cUnit, rlArray, kCoreReg);
    341     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    342     int regPtr;
    343 
    344     /* null object? */
    345     ArmLIR * pcrLabel = NULL;
    346 
    347     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    348         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
    349                                 rlArray.lowReg, mir->offset, NULL);
    350     }
    351 
    352     regPtr = dvmCompilerAllocTemp(cUnit);
    353 
    354     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    355         int regLen = dvmCompilerAllocTemp(cUnit);
    356         /* Get len */
    357         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
    358         /* regPtr -> array data */
    359         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    360         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
    361                        pcrLabel);
    362         dvmCompilerFreeTemp(cUnit, regLen);
    363     } else {
    364         /* regPtr -> array data */
    365         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    366     }
    367     if ((size == kLong) || (size == kDouble)) {
    368         if (scale) {
    369             int rNewIndex = dvmCompilerAllocTemp(cUnit);
    370             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
    371             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
    372             dvmCompilerFreeTemp(cUnit, rNewIndex);
    373         } else {
    374             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
    375         }
    376         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
    377 
    378         HEAP_ACCESS_SHADOW(true);
    379         loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
    380         HEAP_ACCESS_SHADOW(false);
    381 
    382         dvmCompilerFreeTemp(cUnit, regPtr);
    383         storeValueWide(cUnit, rlDest, rlResult);
    384     } else {
    385         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
    386 
    387         HEAP_ACCESS_SHADOW(true);
    388         loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
    389                         scale, size);
    390         HEAP_ACCESS_SHADOW(false);
    391 
    392         dvmCompilerFreeTemp(cUnit, regPtr);
    393         storeValue(cUnit, rlDest, rlResult);
    394     }
    395 }
    396 
    397 /*
    398  * Generate array store
    399  *
    400  */
    401 static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
    402                         RegLocation rlArray, RegLocation rlIndex,
    403                         RegLocation rlSrc, int scale)
    404 {
    405     int lenOffset = offsetof(ArrayObject, length);
    406     int dataOffset = offsetof(ArrayObject, contents);
    407 
    408     int regPtr;
    409     rlArray = loadValue(cUnit, rlArray, kCoreReg);
    410     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    411 
    412     if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
    413         dvmCompilerClobber(cUnit, rlArray.lowReg);
    414         regPtr = rlArray.lowReg;
    415     } else {
    416         regPtr = dvmCompilerAllocTemp(cUnit);
    417         genRegCopy(cUnit, regPtr, rlArray.lowReg);
    418     }
    419 
    420     /* null object? */
    421     ArmLIR * pcrLabel = NULL;
    422 
    423     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    424         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
    425                                 mir->offset, NULL);
    426     }
    427 
    428     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    429         int regLen = dvmCompilerAllocTemp(cUnit);
    430         //NOTE: max live temps(4) here.
    431         /* Get len */
    432         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
    433         /* regPtr -> array data */
    434         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    435         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
    436                        pcrLabel);
    437         dvmCompilerFreeTemp(cUnit, regLen);
    438     } else {
    439         /* regPtr -> array data */
    440         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    441     }
    442     /* at this point, regPtr points to array, 2 live temps */
    443     if ((size == kLong) || (size == kDouble)) {
    444         //TODO: need specific wide routine that can handle fp regs
    445         if (scale) {
    446             int rNewIndex = dvmCompilerAllocTemp(cUnit);
    447             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
    448             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
    449             dvmCompilerFreeTemp(cUnit, rNewIndex);
    450         } else {
    451             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
    452         }
    453         rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
    454 
    455         HEAP_ACCESS_SHADOW(true);
    456         storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
    457         HEAP_ACCESS_SHADOW(false);
    458 
    459         dvmCompilerFreeTemp(cUnit, regPtr);
    460     } else {
    461         rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
    462 
    463         HEAP_ACCESS_SHADOW(true);
    464         storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
    465                          scale, size);
    466         HEAP_ACCESS_SHADOW(false);
    467     }
    468 }
    469 
    470 /*
    471  * Generate array object store
    472  * Must use explicit register allocation here because of
    473  * call-out to dvmCanPutArrayElement
    474  */
    475 static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
    476                               RegLocation rlArray, RegLocation rlIndex,
    477                               RegLocation rlSrc, int scale)
    478 {
    479     int lenOffset = offsetof(ArrayObject, length);
    480     int dataOffset = offsetof(ArrayObject, contents);
    481 
    482     dvmCompilerFlushAllRegs(cUnit);
    483 
    484     int regLen = r0;
    485     int regPtr = r4PC;  /* Preserved across call */
    486     int regArray = r1;
    487     int regIndex = r7;  /* Preserved across call */
    488 
    489     loadValueDirectFixed(cUnit, rlArray, regArray);
    490     loadValueDirectFixed(cUnit, rlIndex, regIndex);
    491 
    492     /* null object? */
    493     ArmLIR * pcrLabel = NULL;
    494 
    495     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    496         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
    497                                 mir->offset, NULL);
    498     }
    499 
    500     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    501         /* Get len */
    502         loadWordDisp(cUnit, regArray, lenOffset, regLen);
    503         /* regPtr -> array data */
    504         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
    505         genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
    506                        pcrLabel);
    507     } else {
    508         /* regPtr -> array data */
    509         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
    510     }
    511 
    512     /* Get object to store */
    513     loadValueDirectFixed(cUnit, rlSrc, r0);
    514     LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement);
    515 
    516     /* Are we storing null?  If so, avoid check */
    517     opRegImm(cUnit, kOpCmp, r0, 0);
    518     ArmLIR *branchOver = opCondBranch(cUnit, kArmCondEq);
    519 
    520     /* Make sure the types are compatible */
    521     loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1);
    522     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0);
    523     opReg(cUnit, kOpBlx, r2);
    524     dvmCompilerClobberCallRegs(cUnit);
    525 
    526     /*
    527      * Using fixed registers here, and counting on r4 and r7 being
    528      * preserved across the above call.  Tell the register allocation
    529      * utilities about the regs we are using directly
    530      */
    531     dvmCompilerLockTemp(cUnit, regPtr);   // r4PC
    532     dvmCompilerLockTemp(cUnit, regIndex); // r7
    533     dvmCompilerLockTemp(cUnit, r0);
    534 
    535     /* Bad? - roll back and re-execute if so */
    536     genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel);
    537 
    538     /* Resume here - must reload element, regPtr & index preserved */
    539     loadValueDirectFixed(cUnit, rlSrc, r0);
    540 
    541     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
    542     target->defMask = ENCODE_ALL;
    543     branchOver->generic.target = (LIR *) target;
    544 
    545     HEAP_ACCESS_SHADOW(true);
    546     storeBaseIndexed(cUnit, regPtr, regIndex, r0,
    547                      scale, kWord);
    548     HEAP_ACCESS_SHADOW(false);
    549 }
    550 
    551 static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
    552                            RegLocation rlDest, RegLocation rlSrc1,
    553                            RegLocation rlShift)
    554 {
    555     /*
    556      * Don't mess with the regsiters here as there is a particular calling
    557      * convention to the out-of-line handler.
    558      */
    559     RegLocation rlResult;
    560 
    561     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    562     loadValueDirect(cUnit, rlShift, r2);
    563     switch( mir->dalvikInsn.opCode) {
    564         case OP_SHL_LONG:
    565         case OP_SHL_LONG_2ADDR:
    566             genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
    567             break;
    568         case OP_SHR_LONG:
    569         case OP_SHR_LONG_2ADDR:
    570             genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
    571             break;
    572         case OP_USHR_LONG:
    573         case OP_USHR_LONG_2ADDR:
    574             genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
    575             break;
    576         default:
    577             return true;
    578     }
    579     rlResult = dvmCompilerGetReturnWide(cUnit);
    580     storeValueWide(cUnit, rlDest, rlResult);
    581     return false;
    582 }
    583 
    584 static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
    585                            RegLocation rlDest, RegLocation rlSrc1,
    586                            RegLocation rlSrc2)
    587 {
    588     RegLocation rlResult;
    589     OpKind firstOp = kOpBkpt;
    590     OpKind secondOp = kOpBkpt;
    591     bool callOut = false;
    592     void *callTgt;
    593     int retReg = r0;
    594 
    595     switch (mir->dalvikInsn.opCode) {
    596         case OP_NOT_LONG:
    597             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    598             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    599             opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
    600             opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
    601             storeValueWide(cUnit, rlDest, rlResult);
    602             return false;
    603             break;
    604         case OP_ADD_LONG:
    605         case OP_ADD_LONG_2ADDR:
    606             firstOp = kOpAdd;
    607             secondOp = kOpAdc;
    608             break;
    609         case OP_SUB_LONG:
    610         case OP_SUB_LONG_2ADDR:
    611             firstOp = kOpSub;
    612             secondOp = kOpSbc;
    613             break;
    614         case OP_MUL_LONG:
    615         case OP_MUL_LONG_2ADDR:
    616             genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
    617             return false;
    618         case OP_DIV_LONG:
    619         case OP_DIV_LONG_2ADDR:
    620             callOut = true;
    621             retReg = r0;
    622             callTgt = (void*)__aeabi_ldivmod;
    623             break;
    624         /* NOTE - result is in r2/r3 instead of r0/r1 */
    625         case OP_REM_LONG:
    626         case OP_REM_LONG_2ADDR:
    627             callOut = true;
    628             callTgt = (void*)__aeabi_ldivmod;
    629             retReg = r2;
    630             break;
    631         case OP_AND_LONG_2ADDR:
    632         case OP_AND_LONG:
    633             firstOp = kOpAnd;
    634             secondOp = kOpAnd;
    635             break;
    636         case OP_OR_LONG:
    637         case OP_OR_LONG_2ADDR:
    638             firstOp = kOpOr;
    639             secondOp = kOpOr;
    640             break;
    641         case OP_XOR_LONG:
    642         case OP_XOR_LONG_2ADDR:
    643             firstOp = kOpXor;
    644             secondOp = kOpXor;
    645             break;
    646         case OP_NEG_LONG: {
    647             //TUNING: can improve this using Thumb2 code
    648             int tReg = dvmCompilerAllocTemp(cUnit);
    649             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    650             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    651             loadConstantNoClobber(cUnit, tReg, 0);
    652             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
    653                         tReg, rlSrc2.lowReg);
    654             opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg);
    655             genRegCopy(cUnit, rlResult.highReg, tReg);
    656             storeValueWide(cUnit, rlDest, rlResult);
    657             return false;
    658         }
    659         default:
    660             LOGE("Invalid long arith op");
    661             dvmCompilerAbort(cUnit);
    662     }
    663     if (!callOut) {
    664         genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
    665     } else {
    666         // Adjust return regs in to handle case of rem returning r2/r3
    667         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    668         loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    669         LOAD_FUNC_ADDR(cUnit, rlr, (int) callTgt);
    670         loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    671         opReg(cUnit, kOpBlx, rlr);
    672         dvmCompilerClobberCallRegs(cUnit);
    673         if (retReg == r0)
    674             rlResult = dvmCompilerGetReturnWide(cUnit);
    675         else
    676             rlResult = dvmCompilerGetReturnWideAlt(cUnit);
    677         storeValueWide(cUnit, rlDest, rlResult);
    678     }
    679     return false;
    680 }
    681 
    682 static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
    683                           RegLocation rlDest, RegLocation rlSrc1,
    684                           RegLocation rlSrc2)
    685 {
    686     OpKind op = kOpBkpt;
    687     bool callOut = false;
    688     bool checkZero = false;
    689     bool unary = false;
    690     int retReg = r0;
    691     void *callTgt;
    692     RegLocation rlResult;
    693     bool shiftOp = false;
    694 
    695     switch (mir->dalvikInsn.opCode) {
    696         case OP_NEG_INT:
    697             op = kOpNeg;
    698             unary = true;
    699             break;
    700         case OP_NOT_INT:
    701             op = kOpMvn;
    702             unary = true;
    703             break;
    704         case OP_ADD_INT:
    705         case OP_ADD_INT_2ADDR:
    706             op = kOpAdd;
    707             break;
    708         case OP_SUB_INT:
    709         case OP_SUB_INT_2ADDR:
    710             op = kOpSub;
    711             break;
    712         case OP_MUL_INT:
    713         case OP_MUL_INT_2ADDR:
    714             op = kOpMul;
    715             break;
    716         case OP_DIV_INT:
    717         case OP_DIV_INT_2ADDR:
    718             callOut = true;
    719             checkZero = true;
    720             callTgt = __aeabi_idiv;
    721             retReg = r0;
    722             break;
    723         /* NOTE: returns in r1 */
    724         case OP_REM_INT:
    725         case OP_REM_INT_2ADDR:
    726             callOut = true;
    727             checkZero = true;
    728             callTgt = __aeabi_idivmod;
    729             retReg = r1;
    730             break;
    731         case OP_AND_INT:
    732         case OP_AND_INT_2ADDR:
    733             op = kOpAnd;
    734             break;
    735         case OP_OR_INT:
    736         case OP_OR_INT_2ADDR:
    737             op = kOpOr;
    738             break;
    739         case OP_XOR_INT:
    740         case OP_XOR_INT_2ADDR:
    741             op = kOpXor;
    742             break;
    743         case OP_SHL_INT:
    744         case OP_SHL_INT_2ADDR:
    745             shiftOp = true;
    746             op = kOpLsl;
    747             break;
    748         case OP_SHR_INT:
    749         case OP_SHR_INT_2ADDR:
    750             shiftOp = true;
    751             op = kOpAsr;
    752             break;
    753         case OP_USHR_INT:
    754         case OP_USHR_INT_2ADDR:
    755             shiftOp = true;
    756             op = kOpLsr;
    757             break;
    758         default:
    759             LOGE("Invalid word arith op: 0x%x(%d)",
    760                  mir->dalvikInsn.opCode, mir->dalvikInsn.opCode);
    761             dvmCompilerAbort(cUnit);
    762     }
    763     if (!callOut) {
    764         rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
    765         if (unary) {
    766             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    767             opRegReg(cUnit, op, rlResult.lowReg,
    768                      rlSrc1.lowReg);
    769         } else {
    770             rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
    771             if (shiftOp) {
    772                 int tReg = dvmCompilerAllocTemp(cUnit);
    773                 opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
    774                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    775                 opRegRegReg(cUnit, op, rlResult.lowReg,
    776                             rlSrc1.lowReg, tReg);
    777                 dvmCompilerFreeTemp(cUnit, tReg);
    778             } else {
    779                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    780                 opRegRegReg(cUnit, op, rlResult.lowReg,
    781                             rlSrc1.lowReg, rlSrc2.lowReg);
    782             }
    783         }
    784         storeValue(cUnit, rlDest, rlResult);
    785     } else {
    786         RegLocation rlResult;
    787         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    788         loadValueDirectFixed(cUnit, rlSrc2, r1);
    789         LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
    790         loadValueDirectFixed(cUnit, rlSrc1, r0);
    791         if (checkZero) {
    792             genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
    793         }
    794         opReg(cUnit, kOpBlx, r2);
    795         dvmCompilerClobberCallRegs(cUnit);
    796         if (retReg == r0)
    797             rlResult = dvmCompilerGetReturn(cUnit);
    798         else
    799             rlResult = dvmCompilerGetReturnAlt(cUnit);
    800         storeValue(cUnit, rlDest, rlResult);
    801     }
    802     return false;
    803 }
    804 
    805 static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
    806 {
    807     OpCode opCode = mir->dalvikInsn.opCode;
    808     RegLocation rlDest;
    809     RegLocation rlSrc1;
    810     RegLocation rlSrc2;
    811     /* Deduce sizes of operands */
    812     if (mir->ssaRep->numUses == 2) {
    813         rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
    814         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
    815     } else if (mir->ssaRep->numUses == 3) {
    816         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    817         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
    818     } else {
    819         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    820         rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
    821         assert(mir->ssaRep->numUses == 4);
    822     }
    823     if (mir->ssaRep->numDefs == 1) {
    824         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
    825     } else {
    826         assert(mir->ssaRep->numDefs == 2);
    827         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
    828     }
    829 
    830     if ((opCode >= OP_ADD_LONG_2ADDR) && (opCode <= OP_XOR_LONG_2ADDR)) {
    831         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    832     }
    833     if ((opCode >= OP_ADD_LONG) && (opCode <= OP_XOR_LONG)) {
    834         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    835     }
    836     if ((opCode >= OP_SHL_LONG_2ADDR) && (opCode <= OP_USHR_LONG_2ADDR)) {
    837         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    838     }
    839     if ((opCode >= OP_SHL_LONG) && (opCode <= OP_USHR_LONG)) {
    840         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    841     }
    842     if ((opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_USHR_INT_2ADDR)) {
    843         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    844     }
    845     if ((opCode >= OP_ADD_INT) && (opCode <= OP_USHR_INT)) {
    846         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    847     }
    848     if ((opCode >= OP_ADD_FLOAT_2ADDR) && (opCode <= OP_REM_FLOAT_2ADDR)) {
    849         return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    850     }
    851     if ((opCode >= OP_ADD_FLOAT) && (opCode <= OP_REM_FLOAT)) {
    852         return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
    853     }
    854     if ((opCode >= OP_ADD_DOUBLE_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) {
    855         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    856     }
    857     if ((opCode >= OP_ADD_DOUBLE) && (opCode <= OP_REM_DOUBLE)) {
    858         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    859     }
    860     return true;
    861 }
    862 
    863 /* Generate unconditional branch instructions */
    864 static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
    865 {
    866     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
    867     branch->generic.target = (LIR *) target;
    868     return branch;
    869 }
    870 
    871 /* Perform the actual operation for OP_RETURN_* */
    872 static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
    873 {
    874     genDispatchToHandler(cUnit, TEMPLATE_RETURN);
    875 #if defined(JIT_STATS)
    876     gDvmJit.returnOp++;
    877 #endif
    878     int dPC = (int) (cUnit->method->insns + mir->offset);
    879     /* Insert branch, but defer setting of target */
    880     ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
    881     /* Set up the place holder to reconstruct this Dalvik PC */
    882     ArmLIR *pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
    883     pcrLabel->opCode = kArmPseudoPCReconstructionCell;
    884     pcrLabel->operands[0] = dPC;
    885     pcrLabel->operands[1] = mir->offset;
    886     /* Insert the place holder to the growable list */
    887     dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
    888     /* Branch to the PC reconstruction code */
    889     branch->generic.target = (LIR *) pcrLabel;
    890 }
    891 
    892 static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
    893                                   DecodedInstruction *dInsn,
    894                                   ArmLIR **pcrLabel)
    895 {
    896     unsigned int i;
    897     unsigned int regMask = 0;
    898     RegLocation rlArg;
    899     int numDone = 0;
    900 
    901     /*
    902      * Load arguments to r0..r4.  Note that these registers may contain
    903      * live values, so we clobber them immediately after loading to prevent
    904      * them from being used as sources for subsequent loads.
    905      */
    906     dvmCompilerLockAllTemps(cUnit);
    907     for (i = 0; i < dInsn->vA; i++) {
    908         regMask |= 1 << i;
    909         rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
    910         loadValueDirectFixed(cUnit, rlArg, i);
    911     }
    912     if (regMask) {
    913         /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
    914         opRegRegImm(cUnit, kOpSub, r7, rFP,
    915                     sizeof(StackSaveArea) + (dInsn->vA << 2));
    916         /* generate null check */
    917         if (pcrLabel) {
    918             *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
    919                                      mir->offset, NULL);
    920         }
    921         storeMultiple(cUnit, r7, regMask);
    922     }
    923 }
    924 
    925 static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
    926                                 DecodedInstruction *dInsn,
    927                                 ArmLIR **pcrLabel)
    928 {
    929     int srcOffset = dInsn->vC << 2;
    930     int numArgs = dInsn->vA;
    931     int regMask;
    932 
    933     /*
    934      * Note: here, all promoted registers will have been flushed
    935      * back to the Dalvik base locations, so register usage restrictins
    936      * are lifted.  All parms loaded from original Dalvik register
    937      * region - even though some might conceivably have valid copies
    938      * cached in a preserved register.
    939      */
    940     dvmCompilerLockAllTemps(cUnit);
    941 
    942     /*
    943      * r4PC     : &rFP[vC]
    944      * r7: &newFP[0]
    945      */
    946     opRegRegImm(cUnit, kOpAdd, r4PC, rFP, srcOffset);
    947     /* load [r0 .. min(numArgs,4)] */
    948     regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
    949     /*
    950      * Protect the loadMultiple instruction from being reordered with other
    951      * Dalvik stack accesses.
    952      */
    953     loadMultiple(cUnit, r4PC, regMask);
    954 
    955     opRegRegImm(cUnit, kOpSub, r7, rFP,
    956                 sizeof(StackSaveArea) + (numArgs << 2));
    957     /* generate null check */
    958     if (pcrLabel) {
    959         *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
    960                                  mir->offset, NULL);
    961     }
    962 
    963     /*
    964      * Handle remaining 4n arguments:
    965      * store previously loaded 4 values and load the next 4 values
    966      */
    967     if (numArgs >= 8) {
    968         ArmLIR *loopLabel = NULL;
    969         /*
    970          * r0 contains "this" and it will be used later, so push it to the stack
    971          * first. Pushing r5 (rFP) is just for stack alignment purposes.
    972          */
    973         opImm(cUnit, kOpPush, (1 << r0 | 1 << rFP));
    974         /* No need to generate the loop structure if numArgs <= 11 */
    975         if (numArgs > 11) {
    976             loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
    977             loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
    978             loopLabel->defMask = ENCODE_ALL;
    979         }
    980         storeMultiple(cUnit, r7, regMask);
    981         /*
    982          * Protect the loadMultiple instruction from being reordered with other
    983          * Dalvik stack accesses.
    984          */
    985         loadMultiple(cUnit, r4PC, regMask);
    986         /* No need to generate the loop structure if numArgs <= 11 */
    987         if (numArgs > 11) {
    988             opRegImm(cUnit, kOpSub, rFP, 4);
    989             genConditionalBranch(cUnit, kArmCondNe, loopLabel);
    990         }
    991     }
    992 
    993     /* Save the last batch of loaded values */
    994     storeMultiple(cUnit, r7, regMask);
    995 
    996     /* Generate the loop epilogue - don't use r0 */
    997     if ((numArgs > 4) && (numArgs % 4)) {
    998         regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
    999         /*
   1000          * Protect the loadMultiple instruction from being reordered with other
   1001          * Dalvik stack accesses.
   1002          */
   1003         loadMultiple(cUnit, r4PC, regMask);
   1004     }
   1005     if (numArgs >= 8)
   1006         opImm(cUnit, kOpPop, (1 << r0 | 1 << rFP));
   1007 
   1008     /* Save the modulo 4 arguments */
   1009     if ((numArgs > 4) && (numArgs % 4)) {
   1010         storeMultiple(cUnit, r7, regMask);
   1011     }
   1012 }
   1013 
   1014 /*
   1015  * Generate code to setup the call stack then jump to the chaining cell if it
   1016  * is not a native method.
   1017  */
   1018 static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
   1019                                      BasicBlock *bb, ArmLIR *labelList,
   1020                                      ArmLIR *pcrLabel,
   1021                                      const Method *calleeMethod)
   1022 {
   1023     /*
   1024      * Note: all Dalvik register state should be flushed to
   1025      * memory by the point, so register usage restrictions no
   1026      * longer apply.  All temp & preserved registers may be used.
   1027      */
   1028     dvmCompilerLockAllTemps(cUnit);
   1029     ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
   1030 
   1031     /* r1 = &retChainingCell */
   1032     dvmCompilerLockTemp(cUnit, r1);
   1033     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   1034     /* r4PC = dalvikCallsite */
   1035     loadConstant(cUnit, r4PC,
   1036                  (int) (cUnit->method->insns + mir->offset));
   1037     addrRetChain->generic.target = (LIR *) retChainingCell;
   1038     /*
   1039      * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
   1040      * r1 = &ChainingCell
   1041      * r4PC = callsiteDPC
   1042      */
   1043     if (dvmIsNativeMethod(calleeMethod)) {
   1044         genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NATIVE);
   1045 #if defined(JIT_STATS)
   1046         gDvmJit.invokeNative++;
   1047 #endif
   1048     } else {
   1049         genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_CHAIN);
   1050 #if defined(JIT_STATS)
   1051         gDvmJit.invokeMonomorphic++;
   1052 #endif
   1053         /* Branch to the chaining cell */
   1054         genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
   1055     }
   1056     /* Handle exceptions using the interpreter */
   1057     genTrap(cUnit, mir->offset, pcrLabel);
   1058 }
   1059 
   1060 /*
   1061  * Generate code to check the validity of a predicted chain and take actions
   1062  * based on the result.
   1063  *
   1064  * 0x426a99aa : ldr     r4, [pc, #72] --> r4 <- dalvikPC of this invoke
   1065  * 0x426a99ac : add     r1, pc, #32   --> r1 <- &retChainingCell
   1066  * 0x426a99ae : add     r2, pc, #40   --> r2 <- &predictedChainingCell
   1067  * 0x426a99b0 : blx_1   0x426a918c    --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
   1068  * 0x426a99b2 : blx_2   see above     --+
   1069  * 0x426a99b4 : b       0x426a99d8    --> off to the predicted chain
   1070  * 0x426a99b6 : b       0x426a99c8    --> punt to the interpreter
   1071  * 0x426a99b8 : ldr     r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
   1072  * 0x426a99ba : cmp     r1, #0        --> compare r1 (rechain count) against 0
   1073  * 0x426a99bc : bgt     0x426a99c2    --> >=0? don't rechain
   1074  * 0x426a99be : ldr     r7, [r6, #96] --+ dvmJitToPatchPredictedChain
   1075  * 0x426a99c0 : blx     r7            --+
   1076  * 0x426a99c2 : add     r1, pc, #12   --> r1 <- &retChainingCell
   1077  * 0x426a99c4 : blx_1   0x426a9098    --+ TEMPLATE_INVOKE_METHOD_NO_OPT
   1078  * 0x426a99c6 : blx_2   see above     --+
   1079  */
   1080 static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
   1081                                    int methodIndex,
   1082                                    ArmLIR *retChainingCell,
   1083                                    ArmLIR *predChainingCell,
   1084                                    ArmLIR *pcrLabel)
   1085 {
   1086     /*
   1087      * Note: all Dalvik register state should be flushed to
   1088      * memory by the point, so register usage restrictions no
   1089      * longer apply.  Lock temps to prevent them from being
   1090      * allocated by utility routines.
   1091      */
   1092     dvmCompilerLockAllTemps(cUnit);
   1093 
   1094     /* "this" is already left in r0 by genProcessArgs* */
   1095 
   1096     /* r4PC = dalvikCallsite */
   1097     loadConstant(cUnit, r4PC,
   1098                  (int) (cUnit->method->insns + mir->offset));
   1099 
   1100     /* r1 = &retChainingCell */
   1101     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   1102     addrRetChain->generic.target = (LIR *) retChainingCell;
   1103 
   1104     /* r2 = &predictedChainingCell */
   1105     ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, rpc, 0);
   1106     predictedChainingCell->generic.target = (LIR *) predChainingCell;
   1107 
   1108     genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
   1109 
   1110     /* return through lr - jump to the chaining cell */
   1111     genUnconditionalBranch(cUnit, predChainingCell);
   1112 
   1113     /*
   1114      * null-check on "this" may have been eliminated, but we still need a PC-
   1115      * reconstruction label for stack overflow bailout.
   1116      */
   1117     if (pcrLabel == NULL) {
   1118         int dPC = (int) (cUnit->method->insns + mir->offset);
   1119         pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
   1120         pcrLabel->opCode = kArmPseudoPCReconstructionCell;
   1121         pcrLabel->operands[0] = dPC;
   1122         pcrLabel->operands[1] = mir->offset;
   1123         /* Insert the place holder to the growable list */
   1124         dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
   1125     }
   1126 
   1127     /* return through lr+2 - punt to the interpreter */
   1128     genUnconditionalBranch(cUnit, pcrLabel);
   1129 
   1130     /*
   1131      * return through lr+4 - fully resolve the callee method.
   1132      * r1 <- count
   1133      * r2 <- &predictedChainCell
   1134      * r3 <- this->class
   1135      * r4 <- dPC
   1136      * r7 <- this->class->vtable
   1137      */
   1138 
   1139     /* r0 <- calleeMethod */
   1140     loadWordDisp(cUnit, r7, methodIndex * 4, r0);
   1141 
   1142     /* Check if rechain limit is reached */
   1143     opRegImm(cUnit, kOpCmp, r1, 0);
   1144 
   1145     ArmLIR *bypassRechaining = opCondBranch(cUnit, kArmCondGt);
   1146 
   1147     loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   1148                  jitToInterpEntries.dvmJitToPatchPredictedChain), r7);
   1149 
   1150     /*
   1151      * r0 = calleeMethod
   1152      * r2 = &predictedChainingCell
   1153      * r3 = class
   1154      *
   1155      * &returnChainingCell has been loaded into r1 but is not needed
   1156      * when patching the chaining cell and will be clobbered upon
   1157      * returning so it will be reconstructed again.
   1158      */
   1159     opReg(cUnit, kOpBlx, r7);
   1160 
   1161     /* r1 = &retChainingCell */
   1162     addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   1163     addrRetChain->generic.target = (LIR *) retChainingCell;
   1164 
   1165     bypassRechaining->generic.target = (LIR *) addrRetChain;
   1166     /*
   1167      * r0 = calleeMethod,
   1168      * r1 = &ChainingCell,
   1169      * r4PC = callsiteDPC,
   1170      */
   1171     genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
   1172 #if defined(JIT_STATS)
   1173     gDvmJit.invokePolymorphic++;
   1174 #endif
   1175     /* Handle exceptions using the interpreter */
   1176     genTrap(cUnit, mir->offset, pcrLabel);
   1177 }
   1178 
   1179 /*
   1180  * Up calling this function, "this" is stored in r0. The actual class will be
   1181  * chased down off r0 and the predicted one will be retrieved through
   1182  * predictedChainingCell then a comparison is performed to see whether the
   1183  * previously established chaining is still valid.
   1184  *
   1185  * The return LIR is a branch based on the comparison result. The actual branch
   1186  * target will be setup in the caller.
   1187  */
   1188 static ArmLIR *genCheckPredictedChain(CompilationUnit *cUnit,
   1189                                           ArmLIR *predChainingCell,
   1190                                           ArmLIR *retChainingCell,
   1191                                           MIR *mir)
   1192 {
   1193     /*
   1194      * Note: all Dalvik register state should be flushed to
   1195      * memory by the point, so register usage restrictions no
   1196      * longer apply.  All temp & preserved registers may be used.
   1197      */
   1198     dvmCompilerLockAllTemps(cUnit);
   1199 
   1200     /* r3 now contains this->clazz */
   1201     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r3);
   1202 
   1203     /*
   1204      * r2 now contains predicted class. The starting offset of the
   1205      * cached value is 4 bytes into the chaining cell.
   1206      */
   1207     ArmLIR *getPredictedClass =
   1208          loadWordDisp(cUnit, rpc, offsetof(PredictedChainingCell, clazz), r2);
   1209     getPredictedClass->generic.target = (LIR *) predChainingCell;
   1210 
   1211     /*
   1212      * r0 now contains predicted method. The starting offset of the
   1213      * cached value is 8 bytes into the chaining cell.
   1214      */
   1215     ArmLIR *getPredictedMethod =
   1216         loadWordDisp(cUnit, rpc, offsetof(PredictedChainingCell, method), r0);
   1217     getPredictedMethod->generic.target = (LIR *) predChainingCell;
   1218 
   1219     /* Load the stats counter to see if it is time to unchain and refresh */
   1220     ArmLIR *getRechainingRequestCount =
   1221         loadWordDisp(cUnit, rpc, offsetof(PredictedChainingCell, counter), r7);
   1222     getRechainingRequestCount->generic.target =
   1223         (LIR *) predChainingCell;
   1224 
   1225     /* r4PC = dalvikCallsite */
   1226     loadConstant(cUnit, r4PC,
   1227                  (int) (cUnit->method->insns + mir->offset));
   1228 
   1229     /* r1 = &retChainingCell */
   1230     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   1231     addrRetChain->generic.target = (LIR *) retChainingCell;
   1232 
   1233     /* Check if r2 (predicted class) == r3 (actual class) */
   1234     opRegReg(cUnit, kOpCmp, r2, r3);
   1235 
   1236     return opCondBranch(cUnit, kArmCondEq);
   1237 }
   1238 
   1239 /* Geneate a branch to go back to the interpreter */
   1240 static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
   1241 {
   1242     /* r0 = dalvik pc */
   1243     dvmCompilerFlushAllRegs(cUnit);
   1244     loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
   1245     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r3);
   1246     loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   1247                  jitToInterpEntries.dvmJitToInterpPunt), r1);
   1248     opReg(cUnit, kOpBlx, r1);
   1249 }
   1250 
   1251 /*
   1252  * Attempt to single step one instruction using the interpreter and return
   1253  * to the compiled code for the next Dalvik instruction
   1254  */
   1255 static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
   1256 {
   1257     int flags = dexGetInstrFlags(gDvm.instrFlags, mir->dalvikInsn.opCode);
   1258     int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn |
   1259                        kInstrCanThrow;
   1260 
   1261     //If already optimized out, just ignore
   1262     if (mir->dalvikInsn.opCode == OP_NOP)
   1263         return;
   1264 
   1265     //Ugly, but necessary.  Flush all Dalvik regs so Interp can find them
   1266     dvmCompilerFlushAllRegs(cUnit);
   1267 
   1268     if ((mir->next == NULL) || (flags & flagsToCheck)) {
   1269        genPuntToInterp(cUnit, mir->offset);
   1270        return;
   1271     }
   1272     int entryAddr = offsetof(InterpState,
   1273                              jitToInterpEntries.dvmJitToInterpSingleStep);
   1274     loadWordDisp(cUnit, rGLUE, entryAddr, r2);
   1275     /* r0 = dalvik pc */
   1276     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   1277     /* r1 = dalvik pc of following instruction */
   1278     loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
   1279     opReg(cUnit, kOpBlx, r2);
   1280 }
   1281 
   1282 /*
   1283  * To prevent a thread in a monitor wait from blocking the Jit from
   1284  * resetting the code cache, heavyweight monitor lock will not
   1285  * be allowed to return to an existing translation.  Instead, we will
   1286  * handle them by branching to a handler, which will in turn call the
   1287  * runtime lock routine and then branch directly back to the
   1288  * interpreter main loop.  Given the high cost of the heavyweight
   1289  * lock operation, this additional cost should be slight (especially when
   1290  * considering that we expect the vast majority of lock operations to
   1291  * use the fast-path thin lock bypass).
   1292  */
   1293 static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
   1294 {
   1295     bool isEnter = (mir->dalvikInsn.opCode == OP_MONITOR_ENTER);
   1296     genExportPC(cUnit, mir);
   1297     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
   1298     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1299     loadValueDirectFixed(cUnit, rlSrc, r1);
   1300     loadWordDisp(cUnit, rGLUE, offsetof(InterpState, self), r0);
   1301     genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
   1302     if (isEnter) {
   1303         /* Get dPC of next insn */
   1304         loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
   1305                  dexGetInstrWidthAbs(gDvm.instrWidth, OP_MONITOR_ENTER)));
   1306 #if defined(WITH_DEADLOCK_PREDICTION)
   1307         genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER_DEBUG);
   1308 #else
   1309         genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
   1310 #endif
   1311     } else {
   1312         LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject);
   1313         /* Do the call */
   1314         opReg(cUnit, kOpBlx, r2);
   1315         opRegImm(cUnit, kOpCmp, r0, 0); /* Did we throw? */
   1316         ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   1317         loadConstant(cUnit, r0,
   1318                      (int) (cUnit->method->insns + mir->offset +
   1319                      dexGetInstrWidthAbs(gDvm.instrWidth, OP_MONITOR_EXIT)));
   1320         genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   1321         ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1322         target->defMask = ENCODE_ALL;
   1323         branchOver->generic.target = (LIR *) target;
   1324         dvmCompilerClobberCallRegs(cUnit);
   1325     }
   1326 }
   1327 
   1328 /*
   1329  * The following are the first-level codegen routines that analyze the format
   1330  * of each bytecode then either dispatch special purpose codegen routines
   1331  * or produce corresponding Thumb instructions directly.
   1332  */
   1333 
   1334 static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
   1335                                        BasicBlock *bb, ArmLIR *labelList)
   1336 {
   1337     /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
   1338     genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
   1339     return false;
   1340 }
   1341 
   1342 static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
   1343 {
   1344     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1345     if (((dalvikOpCode >= OP_UNUSED_3E) && (dalvikOpCode <= OP_UNUSED_43)) ||
   1346         ((dalvikOpCode >= OP_UNUSED_E3) && (dalvikOpCode <= OP_UNUSED_EB))) {
   1347         LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode);
   1348         return true;
   1349     }
   1350     switch (dalvikOpCode) {
   1351         case OP_RETURN_VOID:
   1352             genReturnCommon(cUnit,mir);
   1353             break;
   1354         case OP_UNUSED_73:
   1355         case OP_UNUSED_79:
   1356         case OP_UNUSED_7A:
   1357             LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode);
   1358             return true;
   1359         case OP_NOP:
   1360             break;
   1361         default:
   1362             return true;
   1363     }
   1364     return false;
   1365 }
   1366 
   1367 static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
   1368 {
   1369     RegLocation rlDest;
   1370     RegLocation rlResult;
   1371     if (mir->ssaRep->numDefs == 2) {
   1372         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1373     } else {
   1374         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1375     }
   1376 
   1377     switch (mir->dalvikInsn.opCode) {
   1378         case OP_CONST:
   1379         case OP_CONST_4: {
   1380             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1381             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
   1382             storeValue(cUnit, rlDest, rlResult);
   1383             break;
   1384         }
   1385         case OP_CONST_WIDE_32: {
   1386             //TUNING: single routine to load constant pair for support doubles
   1387             //TUNING: load 0/-1 separately to avoid load dependency
   1388             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1389             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
   1390             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
   1391                         rlResult.lowReg, 31);
   1392             storeValueWide(cUnit, rlDest, rlResult);
   1393             break;
   1394         }
   1395         default:
   1396             return true;
   1397     }
   1398     return false;
   1399 }
   1400 
   1401 static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
   1402 {
   1403     RegLocation rlDest;
   1404     RegLocation rlResult;
   1405     if (mir->ssaRep->numDefs == 2) {
   1406         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1407     } else {
   1408         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1409     }
   1410     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1411 
   1412     switch (mir->dalvikInsn.opCode) {
   1413         case OP_CONST_HIGH16: {
   1414             loadConstantNoClobber(cUnit, rlResult.lowReg,
   1415                                   mir->dalvikInsn.vB << 16);
   1416             storeValue(cUnit, rlDest, rlResult);
   1417             break;
   1418         }
   1419         case OP_CONST_WIDE_HIGH16: {
   1420             loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
   1421                                   0, mir->dalvikInsn.vB << 16);
   1422             storeValueWide(cUnit, rlDest, rlResult);
   1423             break;
   1424         }
   1425         default:
   1426             return true;
   1427     }
   1428     return false;
   1429 }
   1430 
   1431 static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
   1432 {
   1433     /* For OP_THROW_VERIFICATION_ERROR */
   1434     genInterpSingleStep(cUnit, mir);
   1435     return false;
   1436 }
   1437 
   1438 static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
   1439 {
   1440     RegLocation rlResult;
   1441     RegLocation rlDest;
   1442     RegLocation rlSrc;
   1443 
   1444     switch (mir->dalvikInsn.opCode) {
   1445         case OP_CONST_STRING_JUMBO:
   1446         case OP_CONST_STRING: {
   1447             void *strPtr = (void*)
   1448               (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
   1449             assert(strPtr != NULL);
   1450             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1451             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1452             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
   1453             storeValue(cUnit, rlDest, rlResult);
   1454             break;
   1455         }
   1456         case OP_CONST_CLASS: {
   1457             void *classPtr = (void*)
   1458               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1459             assert(classPtr != NULL);
   1460             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1461             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1462             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
   1463             storeValue(cUnit, rlDest, rlResult);
   1464             break;
   1465         }
   1466         case OP_SGET_OBJECT:
   1467         case OP_SGET_BOOLEAN:
   1468         case OP_SGET_CHAR:
   1469         case OP_SGET_BYTE:
   1470         case OP_SGET_SHORT:
   1471         case OP_SGET: {
   1472             int valOffset = offsetof(StaticField, value);
   1473             int tReg = dvmCompilerAllocTemp(cUnit);
   1474             void *fieldPtr = (void*)
   1475               (cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1476             assert(fieldPtr != NULL);
   1477             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1478             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1479             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1480 
   1481             HEAP_ACCESS_SHADOW(true);
   1482             loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
   1483             HEAP_ACCESS_SHADOW(false);
   1484 
   1485             storeValue(cUnit, rlDest, rlResult);
   1486             break;
   1487         }
   1488         case OP_SGET_WIDE: {
   1489             int valOffset = offsetof(StaticField, value);
   1490             void *fieldPtr = (void*)
   1491               (cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1492             int tReg = dvmCompilerAllocTemp(cUnit);
   1493             assert(fieldPtr != NULL);
   1494             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1495             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1496             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1497 
   1498             HEAP_ACCESS_SHADOW(true);
   1499             loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
   1500             HEAP_ACCESS_SHADOW(false);
   1501 
   1502             storeValueWide(cUnit, rlDest, rlResult);
   1503             break;
   1504         }
   1505         case OP_SPUT_OBJECT:
   1506         case OP_SPUT_BOOLEAN:
   1507         case OP_SPUT_CHAR:
   1508         case OP_SPUT_BYTE:
   1509         case OP_SPUT_SHORT:
   1510         case OP_SPUT: {
   1511             int valOffset = offsetof(StaticField, value);
   1512             int tReg = dvmCompilerAllocTemp(cUnit);
   1513             void *fieldPtr = (void*)
   1514               (cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1515 
   1516             assert(fieldPtr != NULL);
   1517             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1518             rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
   1519             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1520 
   1521             HEAP_ACCESS_SHADOW(true);
   1522             storeWordDisp(cUnit, tReg, 0 ,rlSrc.lowReg);
   1523             HEAP_ACCESS_SHADOW(false);
   1524 
   1525             break;
   1526         }
   1527         case OP_SPUT_WIDE: {
   1528             int tReg = dvmCompilerAllocTemp(cUnit);
   1529             int valOffset = offsetof(StaticField, value);
   1530             void *fieldPtr = (void*)
   1531               (cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1532 
   1533             assert(fieldPtr != NULL);
   1534             rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1535             rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
   1536             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1537 
   1538             HEAP_ACCESS_SHADOW(true);
   1539             storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
   1540             HEAP_ACCESS_SHADOW(false);
   1541             break;
   1542         }
   1543         case OP_NEW_INSTANCE: {
   1544             /*
   1545              * Obey the calling convention and don't mess with the register
   1546              * usage.
   1547              */
   1548             ClassObject *classPtr = (void*)
   1549               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1550             assert(classPtr != NULL);
   1551             assert(classPtr->status & CLASS_INITIALIZED);
   1552             /*
   1553              * If it is going to throw, it should not make to the trace to begin
   1554              * with.  However, Alloc might throw, so we need to genExportPC()
   1555              */
   1556             assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
   1557             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   1558             genExportPC(cUnit, mir);
   1559             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject);
   1560             loadConstant(cUnit, r0, (int) classPtr);
   1561             loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
   1562             opReg(cUnit, kOpBlx, r2);
   1563             dvmCompilerClobberCallRegs(cUnit);
   1564             /* generate a branch over if allocation is successful */
   1565             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   1566             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   1567             /*
   1568              * OOM exception needs to be thrown here and cannot re-execute
   1569              */
   1570             loadConstant(cUnit, r0,
   1571                          (int) (cUnit->method->insns + mir->offset));
   1572             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   1573             /* noreturn */
   1574 
   1575             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1576             target->defMask = ENCODE_ALL;
   1577             branchOver->generic.target = (LIR *) target;
   1578             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1579             rlResult = dvmCompilerGetReturn(cUnit);
   1580             storeValue(cUnit, rlDest, rlResult);
   1581             break;
   1582         }
   1583         case OP_CHECK_CAST: {
   1584             /*
   1585              * Obey the calling convention and don't mess with the register
   1586              * usage.
   1587              */
   1588             ClassObject *classPtr =
   1589               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1590             /*
   1591              * Note: It is possible that classPtr is NULL at this point,
   1592              * even though this instruction has been successfully interpreted.
   1593              * If the previous interpretation had a null source, the
   1594              * interpreter would not have bothered to resolve the clazz.
   1595              * Bail out to the interpreter in this case, and log it
   1596              * so that we can tell if it happens frequently.
   1597              */
   1598             if (classPtr == NULL) {
   1599                  LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
   1600                  genInterpSingleStep(cUnit, mir);
   1601                  return false;
   1602             }
   1603             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   1604             loadConstant(cUnit, r1, (int) classPtr );
   1605             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1606             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1607             opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);   /* Null? */
   1608             ArmLIR *branch1 = opCondBranch(cUnit, kArmCondEq);
   1609             /*
   1610              *  rlSrc.lowReg now contains object->clazz.  Note that
   1611              *  it could have been allocated r0, but we're okay so long
   1612              *  as we don't do anything desctructive until r0 is loaded
   1613              *  with clazz.
   1614              */
   1615             /* r0 now contains object->clazz */
   1616             loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
   1617             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial);
   1618             opRegReg(cUnit, kOpCmp, r0, r1);
   1619             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
   1620             opReg(cUnit, kOpBlx, r2);
   1621             dvmCompilerClobberCallRegs(cUnit);
   1622             /*
   1623              * If null, check cast failed - punt to the interpreter.  Because
   1624              * interpreter will be the one throwing, we don't need to
   1625              * genExportPC() here.
   1626              */
   1627             genZeroCheck(cUnit, r0, mir->offset, NULL);
   1628             /* check cast passed - branch target here */
   1629             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1630             target->defMask = ENCODE_ALL;
   1631             branch1->generic.target = (LIR *)target;
   1632             branch2->generic.target = (LIR *)target;
   1633             break;
   1634         }
   1635         default:
   1636             return true;
   1637     }
   1638     return false;
   1639 }
   1640 
   1641 static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
   1642 {
   1643     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1644     RegLocation rlResult;
   1645     switch (dalvikOpCode) {
   1646         case OP_MOVE_EXCEPTION: {
   1647             int offset = offsetof(InterpState, self);
   1648             int exOffset = offsetof(Thread, exception);
   1649             int selfReg = dvmCompilerAllocTemp(cUnit);
   1650             int resetReg = dvmCompilerAllocTemp(cUnit);
   1651             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1652             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1653             loadWordDisp(cUnit, rGLUE, offset, selfReg);
   1654             loadConstant(cUnit, resetReg, 0);
   1655             loadWordDisp(cUnit, selfReg, exOffset, rlResult.lowReg);
   1656             storeWordDisp(cUnit, selfReg, exOffset, resetReg);
   1657             storeValue(cUnit, rlDest, rlResult);
   1658            break;
   1659         }
   1660         case OP_MOVE_RESULT:
   1661         case OP_MOVE_RESULT_OBJECT: {
   1662             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1663             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
   1664             rlSrc.fp = rlDest.fp;
   1665             storeValue(cUnit, rlDest, rlSrc);
   1666             break;
   1667         }
   1668         case OP_MOVE_RESULT_WIDE: {
   1669             RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1670             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
   1671             rlSrc.fp = rlDest.fp;
   1672             storeValueWide(cUnit, rlDest, rlSrc);
   1673             break;
   1674         }
   1675         case OP_RETURN_WIDE: {
   1676             RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1677             RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
   1678             rlDest.fp = rlSrc.fp;
   1679             storeValueWide(cUnit, rlDest, rlSrc);
   1680             genReturnCommon(cUnit,mir);
   1681             break;
   1682         }
   1683         case OP_RETURN:
   1684         case OP_RETURN_OBJECT: {
   1685             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1686             RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
   1687             rlDest.fp = rlSrc.fp;
   1688             storeValue(cUnit, rlDest, rlSrc);
   1689             genReturnCommon(cUnit,mir);
   1690             break;
   1691         }
   1692         case OP_MONITOR_EXIT:
   1693         case OP_MONITOR_ENTER:
   1694 #if defined(WITH_DEADLOCK_PREDICTION) || defined(WITH_MONITOR_TRACKING)
   1695             genMonitorPortable(cUnit, mir);
   1696 #else
   1697             genMonitor(cUnit, mir);
   1698 #endif
   1699             break;
   1700         case OP_THROW: {
   1701             genInterpSingleStep(cUnit, mir);
   1702             break;
   1703         }
   1704         default:
   1705             return true;
   1706     }
   1707     return false;
   1708 }
   1709 
   1710 static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
   1711 {
   1712     OpCode opCode = mir->dalvikInsn.opCode;
   1713     RegLocation rlDest;
   1714     RegLocation rlSrc;
   1715     RegLocation rlResult;
   1716 
   1717     if ( (opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) {
   1718         return genArithOp( cUnit, mir );
   1719     }
   1720 
   1721     if (mir->ssaRep->numUses == 2)
   1722         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1723     else
   1724         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1725     if (mir->ssaRep->numDefs == 2)
   1726         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1727     else
   1728         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1729 
   1730     switch (opCode) {
   1731         case OP_DOUBLE_TO_INT:
   1732         case OP_INT_TO_FLOAT:
   1733         case OP_FLOAT_TO_INT:
   1734         case OP_DOUBLE_TO_FLOAT:
   1735         case OP_FLOAT_TO_DOUBLE:
   1736         case OP_INT_TO_DOUBLE:
   1737         case OP_FLOAT_TO_LONG:
   1738         case OP_LONG_TO_FLOAT:
   1739         case OP_DOUBLE_TO_LONG:
   1740         case OP_LONG_TO_DOUBLE:
   1741             return genConversion(cUnit, mir);
   1742         case OP_NEG_INT:
   1743         case OP_NOT_INT:
   1744             return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
   1745         case OP_NEG_LONG:
   1746         case OP_NOT_LONG:
   1747             return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
   1748         case OP_NEG_FLOAT:
   1749             return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
   1750         case OP_NEG_DOUBLE:
   1751             return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
   1752         case OP_MOVE_WIDE:
   1753             storeValueWide(cUnit, rlDest, rlSrc);
   1754             break;
   1755         case OP_INT_TO_LONG:
   1756             rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
   1757             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1758             //TUNING: shouldn't loadValueDirect already check for phys reg?
   1759             if (rlSrc.location == kLocPhysReg) {
   1760                 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
   1761             } else {
   1762                 loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
   1763             }
   1764             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
   1765                         rlResult.lowReg, 31);
   1766             storeValueWide(cUnit, rlDest, rlResult);
   1767             break;
   1768         case OP_LONG_TO_INT:
   1769             rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
   1770             rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
   1771             // Intentional fallthrough
   1772         case OP_MOVE:
   1773         case OP_MOVE_OBJECT:
   1774             storeValue(cUnit, rlDest, rlSrc);
   1775             break;
   1776         case OP_INT_TO_BYTE:
   1777             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1778             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1779             opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
   1780             storeValue(cUnit, rlDest, rlResult);
   1781             break;
   1782         case OP_INT_TO_SHORT:
   1783             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1784             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1785             opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
   1786             storeValue(cUnit, rlDest, rlResult);
   1787             break;
   1788         case OP_INT_TO_CHAR:
   1789             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1790             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1791             opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
   1792             storeValue(cUnit, rlDest, rlResult);
   1793             break;
   1794         case OP_ARRAY_LENGTH: {
   1795             int lenOffset = offsetof(ArrayObject, length);
   1796             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1797             genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
   1798                          mir->offset, NULL);
   1799             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1800             loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
   1801                          rlResult.lowReg);
   1802             storeValue(cUnit, rlDest, rlResult);
   1803             break;
   1804         }
   1805         default:
   1806             return true;
   1807     }
   1808     return false;
   1809 }
   1810 
   1811 static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
   1812 {
   1813     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1814     RegLocation rlDest;
   1815     RegLocation rlResult;
   1816     int BBBB = mir->dalvikInsn.vB;
   1817     if (dalvikOpCode == OP_CONST_WIDE_16) {
   1818         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1819         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1820         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
   1821         //TUNING: do high separately to avoid load dependency
   1822         opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
   1823         storeValueWide(cUnit, rlDest, rlResult);
   1824     } else if (dalvikOpCode == OP_CONST_16) {
   1825         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1826         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1827         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
   1828         storeValue(cUnit, rlDest, rlResult);
   1829     } else
   1830         return true;
   1831     return false;
   1832 }
   1833 
   1834 /* Compare agaist zero */
   1835 static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   1836                          ArmLIR *labelList)
   1837 {
   1838     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1839     ArmConditionCode cond;
   1840     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1841     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1842     opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
   1843 
   1844 //TUNING: break this out to allow use of Thumb2 CB[N]Z
   1845     switch (dalvikOpCode) {
   1846         case OP_IF_EQZ:
   1847             cond = kArmCondEq;
   1848             break;
   1849         case OP_IF_NEZ:
   1850             cond = kArmCondNe;
   1851             break;
   1852         case OP_IF_LTZ:
   1853             cond = kArmCondLt;
   1854             break;
   1855         case OP_IF_GEZ:
   1856             cond = kArmCondGe;
   1857             break;
   1858         case OP_IF_GTZ:
   1859             cond = kArmCondGt;
   1860             break;
   1861         case OP_IF_LEZ:
   1862             cond = kArmCondLe;
   1863             break;
   1864         default:
   1865             cond = 0;
   1866             LOGE("Unexpected opcode (%d) for Fmt21t\n", dalvikOpCode);
   1867             dvmCompilerAbort(cUnit);
   1868     }
   1869     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
   1870     /* This mostly likely will be optimized away in a later phase */
   1871     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   1872     return false;
   1873 }
   1874 
   1875 static bool isPowerOfTwo(int x)
   1876 {
   1877     return (x & (x - 1)) == 0;
   1878 }
   1879 
   1880 // Returns true if no more than two bits are set in 'x'.
   1881 static bool isPopCountLE2(unsigned int x)
   1882 {
   1883     x &= x - 1;
   1884     return (x & (x - 1)) == 0;
   1885 }
   1886 
   1887 // Returns the index of the lowest set bit in 'x'.
   1888 static int lowestSetBit(unsigned int x) {
   1889     int bit_posn = 0;
   1890     while ((x & 0xf) == 0) {
   1891         bit_posn += 4;
   1892         x >>= 4;
   1893     }
   1894     while ((x & 1) == 0) {
   1895         bit_posn++;
   1896         x >>= 1;
   1897     }
   1898     return bit_posn;
   1899 }
   1900 
   1901 // Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
   1902 // and store the result in 'rlDest'.
   1903 static bool handleEasyMultiply(CompilationUnit *cUnit,
   1904                                RegLocation rlSrc, RegLocation rlDest, int lit)
   1905 {
   1906     // Can we simplify this multiplication?
   1907     bool powerOfTwo = false;
   1908     bool popCountLE2 = false;
   1909     bool powerOfTwoMinusOne = false;
   1910     if (lit < 2) {
   1911         // Avoid special cases.
   1912         return false;
   1913     } else if (isPowerOfTwo(lit)) {
   1914         powerOfTwo = true;
   1915     } else if (isPopCountLE2(lit)) {
   1916         popCountLE2 = true;
   1917     } else if (isPowerOfTwo(lit + 1)) {
   1918         powerOfTwoMinusOne = true;
   1919     } else {
   1920         return false;
   1921     }
   1922     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1923     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1924     if (powerOfTwo) {
   1925         // Shift.
   1926         opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
   1927                     lowestSetBit(lit));
   1928     } else if (popCountLE2) {
   1929         // Shift and add and shift.
   1930         int firstBit = lowestSetBit(lit);
   1931         int secondBit = lowestSetBit(lit ^ (1 << firstBit));
   1932         genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
   1933                                       firstBit, secondBit);
   1934     } else {
   1935         // Reverse subtract: (src << (shift + 1)) - src.
   1936         assert(powerOfTwoMinusOne);
   1937         // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
   1938         int tReg = dvmCompilerAllocTemp(cUnit);
   1939         opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
   1940         opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
   1941     }
   1942     storeValue(cUnit, rlDest, rlResult);
   1943     return true;
   1944 }
   1945 
   1946 static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
   1947 {
   1948     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1949     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1950     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1951     RegLocation rlResult;
   1952     int lit = mir->dalvikInsn.vC;
   1953     OpKind op = 0;      /* Make gcc happy */
   1954     int shiftOp = false;
   1955     bool isDiv = false;
   1956 
   1957     switch (dalvikOpCode) {
   1958         case OP_RSUB_INT_LIT8:
   1959         case OP_RSUB_INT: {
   1960             int tReg;
   1961             //TUNING: add support for use of Arm rsub op
   1962             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1963             tReg = dvmCompilerAllocTemp(cUnit);
   1964             loadConstant(cUnit, tReg, lit);
   1965             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1966             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
   1967                         tReg, rlSrc.lowReg);
   1968             storeValue(cUnit, rlDest, rlResult);
   1969             return false;
   1970             break;
   1971         }
   1972 
   1973         case OP_ADD_INT_LIT8:
   1974         case OP_ADD_INT_LIT16:
   1975             op = kOpAdd;
   1976             break;
   1977         case OP_MUL_INT_LIT8:
   1978         case OP_MUL_INT_LIT16: {
   1979             if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
   1980                 return false;
   1981             }
   1982             op = kOpMul;
   1983             break;
   1984         }
   1985         case OP_AND_INT_LIT8:
   1986         case OP_AND_INT_LIT16:
   1987             op = kOpAnd;
   1988             break;
   1989         case OP_OR_INT_LIT8:
   1990         case OP_OR_INT_LIT16:
   1991             op = kOpOr;
   1992             break;
   1993         case OP_XOR_INT_LIT8:
   1994         case OP_XOR_INT_LIT16:
   1995             op = kOpXor;
   1996             break;
   1997         case OP_SHL_INT_LIT8:
   1998             lit &= 31;
   1999             shiftOp = true;
   2000             op = kOpLsl;
   2001             break;
   2002         case OP_SHR_INT_LIT8:
   2003             lit &= 31;
   2004             shiftOp = true;
   2005             op = kOpAsr;
   2006             break;
   2007         case OP_USHR_INT_LIT8:
   2008             lit &= 31;
   2009             shiftOp = true;
   2010             op = kOpLsr;
   2011             break;
   2012 
   2013         case OP_DIV_INT_LIT8:
   2014         case OP_DIV_INT_LIT16:
   2015         case OP_REM_INT_LIT8:
   2016         case OP_REM_INT_LIT16:
   2017             if (lit == 0) {
   2018                 /* Let the interpreter deal with div by 0 */
   2019                 genInterpSingleStep(cUnit, mir);
   2020                 return false;
   2021             }
   2022             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2023             loadValueDirectFixed(cUnit, rlSrc, r0);
   2024             dvmCompilerClobber(cUnit, r0);
   2025             if ((dalvikOpCode == OP_DIV_INT_LIT8) ||
   2026                 (dalvikOpCode == OP_DIV_INT_LIT16)) {
   2027                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv);
   2028                 isDiv = true;
   2029             } else {
   2030                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod);
   2031                 isDiv = false;
   2032             }
   2033             loadConstant(cUnit, r1, lit);
   2034             opReg(cUnit, kOpBlx, r2);
   2035             dvmCompilerClobberCallRegs(cUnit);
   2036             if (isDiv)
   2037                 rlResult = dvmCompilerGetReturn(cUnit);
   2038             else
   2039                 rlResult = dvmCompilerGetReturnAlt(cUnit);
   2040             storeValue(cUnit, rlDest, rlResult);
   2041             return false;
   2042             break;
   2043         default:
   2044             return true;
   2045     }
   2046     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2047     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2048     // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
   2049     if (shiftOp && (lit == 0)) {
   2050         genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
   2051     } else {
   2052         opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
   2053     }
   2054     storeValue(cUnit, rlDest, rlResult);
   2055     return false;
   2056 }
   2057 
   2058 static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
   2059 {
   2060     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2061     int fieldOffset;
   2062 
   2063     if (dalvikOpCode >= OP_IGET && dalvikOpCode <= OP_IPUT_SHORT) {
   2064         InstField *pInstField = (InstField *)
   2065             cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
   2066 
   2067         assert(pInstField != NULL);
   2068         fieldOffset = pInstField->byteOffset;
   2069     } else {
   2070         /* Deliberately break the code while make the compiler happy */
   2071         fieldOffset = -1;
   2072     }
   2073     switch (dalvikOpCode) {
   2074         case OP_NEW_ARRAY: {
   2075             // Generates a call - use explicit registers
   2076             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2077             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2078             RegLocation rlResult;
   2079             void *classPtr = (void*)
   2080               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
   2081             assert(classPtr != NULL);
   2082             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2083             genExportPC(cUnit, mir);
   2084             loadValueDirectFixed(cUnit, rlSrc, r1);   /* Len */
   2085             loadConstant(cUnit, r0, (int) classPtr );
   2086             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass);
   2087             /*
   2088              * "len < 0": bail to the interpreter to re-execute the
   2089              * instruction
   2090              */
   2091             ArmLIR *pcrLabel =
   2092                 genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
   2093             loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
   2094             opReg(cUnit, kOpBlx, r3);
   2095             dvmCompilerClobberCallRegs(cUnit);
   2096             /* generate a branch over if allocation is successful */
   2097             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   2098             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   2099             /*
   2100              * OOM exception needs to be thrown here and cannot re-execute
   2101              */
   2102             loadConstant(cUnit, r0,
   2103                          (int) (cUnit->method->insns + mir->offset));
   2104             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2105             /* noreturn */
   2106 
   2107             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2108             target->defMask = ENCODE_ALL;
   2109             branchOver->generic.target = (LIR *) target;
   2110             rlResult = dvmCompilerGetReturn(cUnit);
   2111             storeValue(cUnit, rlDest, rlResult);
   2112             break;
   2113         }
   2114         case OP_INSTANCE_OF: {
   2115             // May generate a call - use explicit registers
   2116             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2117             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2118             RegLocation rlResult;
   2119             ClassObject *classPtr =
   2120               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
   2121             /*
   2122              * Note: It is possible that classPtr is NULL at this point,
   2123              * even though this instruction has been successfully interpreted.
   2124              * If the previous interpretation had a null source, the
   2125              * interpreter would not have bothered to resolve the clazz.
   2126              * Bail out to the interpreter in this case, and log it
   2127              * so that we can tell if it happens frequently.
   2128              */
   2129             if (classPtr == NULL) {
   2130                 LOGD("null clazz in OP_INSTANCE_OF, single-stepping");
   2131                 genInterpSingleStep(cUnit, mir);
   2132                 break;
   2133             }
   2134             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2135             loadValueDirectFixed(cUnit, rlSrc, r0);  /* Ref */
   2136             loadConstant(cUnit, r2, (int) classPtr );
   2137 //TUNING: compare to 0 primative to allow use of CB[N]Z
   2138             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   2139             /* When taken r0 has NULL which can be used for store directly */
   2140             ArmLIR *branch1 = opCondBranch(cUnit, kArmCondEq);
   2141             /* r1 now contains object->clazz */
   2142             loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
   2143             /* r1 now contains object->clazz */
   2144             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial);
   2145             loadConstant(cUnit, r0, 1);                /* Assume true */
   2146             opRegReg(cUnit, kOpCmp, r1, r2);
   2147             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
   2148             genRegCopy(cUnit, r0, r1);
   2149             genRegCopy(cUnit, r1, r2);
   2150             opReg(cUnit, kOpBlx, r3);
   2151             dvmCompilerClobberCallRegs(cUnit);
   2152             /* branch target here */
   2153             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2154             target->defMask = ENCODE_ALL;
   2155             rlResult = dvmCompilerGetReturn(cUnit);
   2156             storeValue(cUnit, rlDest, rlResult);
   2157             branch1->generic.target = (LIR *)target;
   2158             branch2->generic.target = (LIR *)target;
   2159             break;
   2160         }
   2161         case OP_IGET_WIDE:
   2162             genIGetWide(cUnit, mir, fieldOffset);
   2163             break;
   2164         case OP_IGET:
   2165         case OP_IGET_OBJECT:
   2166             genIGet(cUnit, mir, kWord, fieldOffset);
   2167             break;
   2168         case OP_IGET_BOOLEAN:
   2169             genIGet(cUnit, mir, kUnsignedByte, fieldOffset);
   2170             break;
   2171         case OP_IGET_BYTE:
   2172             genIGet(cUnit, mir, kSignedByte, fieldOffset);
   2173             break;
   2174         case OP_IGET_CHAR:
   2175             genIGet(cUnit, mir, kUnsignedHalf, fieldOffset);
   2176             break;
   2177         case OP_IGET_SHORT:
   2178             genIGet(cUnit, mir, kSignedHalf, fieldOffset);
   2179             break;
   2180         case OP_IPUT_WIDE:
   2181             genIPutWide(cUnit, mir, fieldOffset);
   2182             break;
   2183         case OP_IPUT:
   2184         case OP_IPUT_OBJECT:
   2185             genIPut(cUnit, mir, kWord, fieldOffset);
   2186             break;
   2187         case OP_IPUT_SHORT:
   2188         case OP_IPUT_CHAR:
   2189             genIPut(cUnit, mir, kUnsignedHalf, fieldOffset);
   2190             break;
   2191         case OP_IPUT_BYTE:
   2192         case OP_IPUT_BOOLEAN:
   2193             genIPut(cUnit, mir, kUnsignedByte, fieldOffset);
   2194             break;
   2195         default:
   2196             return true;
   2197     }
   2198     return false;
   2199 }
   2200 
   2201 static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
   2202 {
   2203     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2204     int fieldOffset =  mir->dalvikInsn.vC;
   2205     switch (dalvikOpCode) {
   2206         case OP_IGET_QUICK:
   2207         case OP_IGET_OBJECT_QUICK:
   2208             genIGet(cUnit, mir, kWord, fieldOffset);
   2209             break;
   2210         case OP_IPUT_QUICK:
   2211         case OP_IPUT_OBJECT_QUICK:
   2212             genIPut(cUnit, mir, kWord, fieldOffset);
   2213             break;
   2214         case OP_IGET_WIDE_QUICK:
   2215             genIGetWide(cUnit, mir, fieldOffset);
   2216             break;
   2217         case OP_IPUT_WIDE_QUICK:
   2218             genIPutWide(cUnit, mir, fieldOffset);
   2219             break;
   2220         default:
   2221             return true;
   2222     }
   2223     return false;
   2224 
   2225 }
   2226 
   2227 /* Compare agaist zero */
   2228 static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   2229                          ArmLIR *labelList)
   2230 {
   2231     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2232     ArmConditionCode cond;
   2233     RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
   2234     RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
   2235 
   2236     rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
   2237     rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
   2238     opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
   2239 
   2240     switch (dalvikOpCode) {
   2241         case OP_IF_EQ:
   2242             cond = kArmCondEq;
   2243             break;
   2244         case OP_IF_NE:
   2245             cond = kArmCondNe;
   2246             break;
   2247         case OP_IF_LT:
   2248             cond = kArmCondLt;
   2249             break;
   2250         case OP_IF_GE:
   2251             cond = kArmCondGe;
   2252             break;
   2253         case OP_IF_GT:
   2254             cond = kArmCondGt;
   2255             break;
   2256         case OP_IF_LE:
   2257             cond = kArmCondLe;
   2258             break;
   2259         default:
   2260             cond = 0;
   2261             LOGE("Unexpected opcode (%d) for Fmt22t\n", dalvikOpCode);
   2262             dvmCompilerAbort(cUnit);
   2263     }
   2264     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
   2265     /* This mostly likely will be optimized away in a later phase */
   2266     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   2267     return false;
   2268 }
   2269 
   2270 static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
   2271 {
   2272     OpCode opCode = mir->dalvikInsn.opCode;
   2273 
   2274     switch (opCode) {
   2275         case OP_MOVE_16:
   2276         case OP_MOVE_OBJECT_16:
   2277         case OP_MOVE_FROM16:
   2278         case OP_MOVE_OBJECT_FROM16: {
   2279             storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
   2280                        dvmCompilerGetSrc(cUnit, mir, 0));
   2281             break;
   2282         }
   2283         case OP_MOVE_WIDE_16:
   2284         case OP_MOVE_WIDE_FROM16: {
   2285             storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
   2286                            dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
   2287             break;
   2288         }
   2289         default:
   2290             return true;
   2291     }
   2292     return false;
   2293 }
   2294 
   2295 static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
   2296 {
   2297     OpCode opCode = mir->dalvikInsn.opCode;
   2298     RegLocation rlSrc1;
   2299     RegLocation rlSrc2;
   2300     RegLocation rlDest;
   2301 
   2302     if ( (opCode >= OP_ADD_INT) && (opCode <= OP_REM_DOUBLE)) {
   2303         return genArithOp( cUnit, mir );
   2304     }
   2305 
   2306     /* APUTs have 3 sources and no targets */
   2307     if (mir->ssaRep->numDefs == 0) {
   2308         if (mir->ssaRep->numUses == 3) {
   2309             rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
   2310             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
   2311             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
   2312         } else {
   2313             assert(mir->ssaRep->numUses == 4);
   2314             rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   2315             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
   2316             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
   2317         }
   2318     } else {
   2319         /* Two sources and 1 dest.  Deduce the operand sizes */
   2320         if (mir->ssaRep->numUses == 4) {
   2321             rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   2322             rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
   2323         } else {
   2324             assert(mir->ssaRep->numUses == 2);
   2325             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
   2326             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
   2327         }
   2328         if (mir->ssaRep->numDefs == 2) {
   2329             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   2330         } else {
   2331             assert(mir->ssaRep->numDefs == 1);
   2332             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2333         }
   2334     }
   2335 
   2336 
   2337     switch (opCode) {
   2338         case OP_CMPL_FLOAT:
   2339         case OP_CMPG_FLOAT:
   2340         case OP_CMPL_DOUBLE:
   2341         case OP_CMPG_DOUBLE:
   2342             return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
   2343         case OP_CMP_LONG:
   2344             genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
   2345             break;
   2346         case OP_AGET_WIDE:
   2347             genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
   2348             break;
   2349         case OP_AGET:
   2350         case OP_AGET_OBJECT:
   2351             genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
   2352             break;
   2353         case OP_AGET_BOOLEAN:
   2354             genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2355             break;
   2356         case OP_AGET_BYTE:
   2357             genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2358             break;
   2359         case OP_AGET_CHAR:
   2360             genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2361             break;
   2362         case OP_AGET_SHORT:
   2363             genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2364             break;
   2365         case OP_APUT_WIDE:
   2366             genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
   2367             break;
   2368         case OP_APUT:
   2369             genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
   2370             break;
   2371         case OP_APUT_OBJECT:
   2372             genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
   2373             break;
   2374         case OP_APUT_SHORT:
   2375         case OP_APUT_CHAR:
   2376             genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2377             break;
   2378         case OP_APUT_BYTE:
   2379         case OP_APUT_BOOLEAN:
   2380             genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2381             break;
   2382         default:
   2383             return true;
   2384     }
   2385     return false;
   2386 }
   2387 
   2388 /*
   2389  * Find the matching case.
   2390  *
   2391  * return values:
   2392  * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
   2393  *    including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
   2394  * r1 (high 32-bit): the branch offset of the matching case (only for indexes
   2395  *    above MAX_CHAINED_SWITCH_CASES).
   2396  *
   2397  * Instructions around the call are:
   2398  *
   2399  * mov r2, pc
   2400  * blx &findPackedSwitchIndex
   2401  * mov pc, r0
   2402  * .align4
   2403  * chaining cell for case 0 [8 bytes]
   2404  * chaining cell for case 1 [8 bytes]
   2405  *               :
   2406  * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [8 bytes]
   2407  * chaining cell for case default [8 bytes]
   2408  * noChain exit
   2409  */
   2410 static s8 findPackedSwitchIndex(const u2* switchData, int testVal, int pc)
   2411 {
   2412     int size;
   2413     int firstKey;
   2414     const int *entries;
   2415     int index;
   2416     int jumpIndex;
   2417     int caseDPCOffset = 0;
   2418     /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
   2419     int chainingPC = (pc + 4) & ~3;
   2420 
   2421     /*
   2422      * Packed switch data format:
   2423      *  ushort ident = 0x0100   magic value
   2424      *  ushort size             number of entries in the table
   2425      *  int first_key           first (and lowest) switch case value
   2426      *  int targets[size]       branch targets, relative to switch opcode
   2427      *
   2428      * Total size is (4+size*2) 16-bit code units.
   2429      */
   2430     size = switchData[1];
   2431     assert(size > 0);
   2432 
   2433     firstKey = switchData[2];
   2434     firstKey |= switchData[3] << 16;
   2435 
   2436 
   2437     /* The entries are guaranteed to be aligned on a 32-bit boundary;
   2438      * we can treat them as a native int array.
   2439      */
   2440     entries = (const int*) &switchData[4];
   2441     assert(((u4)entries & 0x3) == 0);
   2442 
   2443     index = testVal - firstKey;
   2444 
   2445     /* Jump to the default cell */
   2446     if (index < 0 || index >= size) {
   2447         jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
   2448     /* Jump to the non-chaining exit point */
   2449     } else if (index >= MAX_CHAINED_SWITCH_CASES) {
   2450         jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
   2451         caseDPCOffset = entries[index];
   2452     /* Jump to the inline chaining cell */
   2453     } else {
   2454         jumpIndex = index;
   2455     }
   2456 
   2457     chainingPC += jumpIndex * 8;
   2458     return (((s8) caseDPCOffset) << 32) | (u8) chainingPC;
   2459 }
   2460 
   2461 /* See comments for findPackedSwitchIndex */
   2462 static s8 findSparseSwitchIndex(const u2* switchData, int testVal, int pc)
   2463 {
   2464     int size;
   2465     const int *keys;
   2466     const int *entries;
   2467     int chainingPC = (pc + 4) & ~3;
   2468     int i;
   2469 
   2470     /*
   2471      * Sparse switch data format:
   2472      *  ushort ident = 0x0200   magic value
   2473      *  ushort size             number of entries in the table; > 0
   2474      *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
   2475      *  int targets[size]       branch targets, relative to switch opcode
   2476      *
   2477      * Total size is (2+size*4) 16-bit code units.
   2478      */
   2479 
   2480     size = switchData[1];
   2481     assert(size > 0);
   2482 
   2483     /* The keys are guaranteed to be aligned on a 32-bit boundary;
   2484      * we can treat them as a native int array.
   2485      */
   2486     keys = (const int*) &switchData[2];
   2487     assert(((u4)keys & 0x3) == 0);
   2488 
   2489     /* The entries are guaranteed to be aligned on a 32-bit boundary;
   2490      * we can treat them as a native int array.
   2491      */
   2492     entries = keys + size;
   2493     assert(((u4)entries & 0x3) == 0);
   2494 
   2495     /*
   2496      * Run through the list of keys, which are guaranteed to
   2497      * be sorted low-to-high.
   2498      *
   2499      * Most tables have 3-4 entries.  Few have more than 10.  A binary
   2500      * search here is probably not useful.
   2501      */
   2502     for (i = 0; i < size; i++) {
   2503         int k = keys[i];
   2504         if (k == testVal) {
   2505             /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
   2506             int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
   2507                            i : MAX_CHAINED_SWITCH_CASES + 1;
   2508             chainingPC += jumpIndex * 8;
   2509             return (((s8) entries[i]) << 32) | (u8) chainingPC;
   2510         } else if (k > testVal) {
   2511             break;
   2512         }
   2513     }
   2514     return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) * 8;
   2515 }
   2516 
   2517 static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
   2518 {
   2519     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2520     switch (dalvikOpCode) {
   2521         case OP_FILL_ARRAY_DATA: {
   2522             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2523             // Making a call - use explicit registers
   2524             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2525             genExportPC(cUnit, mir);
   2526             loadValueDirectFixed(cUnit, rlSrc, r0);
   2527             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData);
   2528             loadConstant(cUnit, r1,
   2529                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
   2530             opReg(cUnit, kOpBlx, r2);
   2531             dvmCompilerClobberCallRegs(cUnit);
   2532             /* generate a branch over if successful */
   2533             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   2534             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   2535             loadConstant(cUnit, r0,
   2536                          (int) (cUnit->method->insns + mir->offset));
   2537             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2538             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2539             target->defMask = ENCODE_ALL;
   2540             branchOver->generic.target = (LIR *) target;
   2541             break;
   2542         }
   2543         /*
   2544          * Compute the goto target of up to
   2545          * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
   2546          * See the comment before findPackedSwitchIndex for the code layout.
   2547          */
   2548         case OP_PACKED_SWITCH:
   2549         case OP_SPARSE_SWITCH: {
   2550             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2551             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2552             loadValueDirectFixed(cUnit, rlSrc, r1);
   2553             dvmCompilerLockAllTemps(cUnit);
   2554             const u2 *switchData =
   2555                 cUnit->method->insns + mir->offset + mir->dalvikInsn.vB;
   2556             u2 size = switchData[1];
   2557 
   2558             if (dalvikOpCode == OP_PACKED_SWITCH) {
   2559                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex);
   2560             } else {
   2561                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex);
   2562             }
   2563             /* r0 <- Addr of the switch data */
   2564             loadConstant(cUnit, r0,
   2565                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
   2566             /* r2 <- pc of the instruction following the blx */
   2567             opRegReg(cUnit, kOpMov, r2, rpc);
   2568             opReg(cUnit, kOpBlx, r4PC);
   2569             dvmCompilerClobberCallRegs(cUnit);
   2570             /* pc <- computed goto target */
   2571             opRegReg(cUnit, kOpMov, rpc, r0);
   2572             break;
   2573         }
   2574         default:
   2575             return true;
   2576     }
   2577     return false;
   2578 }
   2579 
   2580 static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   2581                              ArmLIR *labelList)
   2582 {
   2583     ArmLIR *retChainingCell = NULL;
   2584     ArmLIR *pcrLabel = NULL;
   2585 
   2586     if (bb->fallThrough != NULL)
   2587         retChainingCell = &labelList[bb->fallThrough->id];
   2588 
   2589     DecodedInstruction *dInsn = &mir->dalvikInsn;
   2590     switch (mir->dalvikInsn.opCode) {
   2591         /*
   2592          * calleeMethod = this->clazz->vtable[
   2593          *     method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
   2594          * ]
   2595          */
   2596         case OP_INVOKE_VIRTUAL:
   2597         case OP_INVOKE_VIRTUAL_RANGE: {
   2598             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   2599             int methodIndex =
   2600                 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
   2601                 methodIndex;
   2602 
   2603             if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL)
   2604                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2605             else
   2606                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2607 
   2608             genInvokeVirtualCommon(cUnit, mir, methodIndex,
   2609                                    retChainingCell,
   2610                                    predChainingCell,
   2611                                    pcrLabel);
   2612             break;
   2613         }
   2614         /*
   2615          * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
   2616          *                ->pResMethods[BBBB]->methodIndex]
   2617          */
   2618         case OP_INVOKE_SUPER:
   2619         case OP_INVOKE_SUPER_RANGE: {
   2620             int mIndex = cUnit->method->clazz->pDvmDex->
   2621                 pResMethods[dInsn->vB]->methodIndex;
   2622             const Method *calleeMethod =
   2623                 cUnit->method->clazz->super->vtable[mIndex];
   2624 
   2625             if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER)
   2626                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2627             else
   2628                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2629 
   2630             /* r0 = calleeMethod */
   2631             loadConstant(cUnit, r0, (int) calleeMethod);
   2632 
   2633             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   2634                                      calleeMethod);
   2635             break;
   2636         }
   2637         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
   2638         case OP_INVOKE_DIRECT:
   2639         case OP_INVOKE_DIRECT_RANGE: {
   2640             const Method *calleeMethod =
   2641                 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB];
   2642 
   2643             if (mir->dalvikInsn.opCode == OP_INVOKE_DIRECT)
   2644                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2645             else
   2646                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2647 
   2648             /* r0 = calleeMethod */
   2649             loadConstant(cUnit, r0, (int) calleeMethod);
   2650 
   2651             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   2652                                      calleeMethod);
   2653             break;
   2654         }
   2655         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
   2656         case OP_INVOKE_STATIC:
   2657         case OP_INVOKE_STATIC_RANGE: {
   2658             const Method *calleeMethod =
   2659                 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB];
   2660 
   2661             if (mir->dalvikInsn.opCode == OP_INVOKE_STATIC)
   2662                 genProcessArgsNoRange(cUnit, mir, dInsn,
   2663                                       NULL /* no null check */);
   2664             else
   2665                 genProcessArgsRange(cUnit, mir, dInsn,
   2666                                     NULL /* no null check */);
   2667 
   2668             /* r0 = calleeMethod */
   2669             loadConstant(cUnit, r0, (int) calleeMethod);
   2670 
   2671             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   2672                                      calleeMethod);
   2673             break;
   2674         }
   2675         /*
   2676          * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
   2677          *                    BBBB, method, method->clazz->pDvmDex)
   2678          *
   2679          * The following is an example of generated code for
   2680          *      "invoke-interface v0"
   2681          *
   2682          * -------- dalvik offset: 0x0008 @ invoke-interface v0
   2683          * 0x47357e36 : ldr     r0, [r5, #0]   --+
   2684          * 0x47357e38 : sub     r7,r5,#24        |
   2685          * 0x47357e3c : cmp     r0, #0           | genProcessArgsNoRange
   2686          * 0x47357e3e : beq     0x47357e82       |
   2687          * 0x47357e40 : stmia   r7, <r0>       --+
   2688          * 0x47357e42 : ldr     r4, [pc, #120] --> r4 <- dalvikPC of this invoke
   2689          * 0x47357e44 : add     r1, pc, #64    --> r1 <- &retChainingCell
   2690          * 0x47357e46 : add     r2, pc, #72    --> r2 <- &predictedChainingCell
   2691          * 0x47357e48 : blx_1   0x47348190     --+ TEMPLATE_INVOKE_METHOD_
   2692          * 0x47357e4a : blx_2   see above      --+     PREDICTED_CHAIN
   2693          * 0x47357e4c : b       0x47357e90     --> off to the predicted chain
   2694          * 0x47357e4e : b       0x47357e82     --> punt to the interpreter
   2695          * 0x47357e50 : mov     r8, r1         --+
   2696          * 0x47357e52 : mov     r9, r2           |
   2697          * 0x47357e54 : ldr     r2, [pc, #96]    |
   2698          * 0x47357e56 : mov     r10, r3          |
   2699          * 0x47357e58 : movs    r0, r3           | dvmFindInterfaceMethodInCache
   2700          * 0x47357e5a : ldr     r3, [pc, #88]    |
   2701          * 0x47357e5c : ldr     r7, [pc, #80]    |
   2702          * 0x47357e5e : mov     r1, #1452        |
   2703          * 0x47357e62 : blx     r7             --+
   2704          * 0x47357e64 : cmp     r0, #0         --> calleeMethod == NULL?
   2705          * 0x47357e66 : bne     0x47357e6e     --> branch over the throw if !r0
   2706          * 0x47357e68 : ldr     r0, [pc, #80]  --> load Dalvik PC of the invoke
   2707          * 0x47357e6a : blx_1   0x47348494     --+ TEMPLATE_THROW_EXCEPTION_
   2708          * 0x47357e6c : blx_2   see above      --+     COMMON
   2709          * 0x47357e6e : mov     r1, r8         --> r1 <- &retChainingCell
   2710          * 0x47357e70 : cmp     r1, #0         --> compare against 0
   2711          * 0x47357e72 : bgt     0x47357e7c     --> >=0? don't rechain
   2712          * 0x47357e74 : ldr     r7, [r6, #108] --+
   2713          * 0x47357e76 : mov     r2, r9           | dvmJitToPatchPredictedChain
   2714          * 0x47357e78 : mov     r3, r10          |
   2715          * 0x47357e7a : blx     r7             --+
   2716          * 0x47357e7c : add     r1, pc, #8     --> r1 <- &retChainingCell
   2717          * 0x47357e7e : blx_1   0x4734809c     --+ TEMPLATE_INVOKE_METHOD_NO_OPT
   2718          * 0x47357e80 : blx_2   see above      --+
   2719          * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008
   2720          * 0x47357e82 : ldr     r0, [pc, #56]
   2721          * Exception_Handling:
   2722          * 0x47357e84 : ldr     r1, [r6, #92]
   2723          * 0x47357e86 : blx     r1
   2724          * 0x47357e88 : .align4
   2725          * -------- chaining cell (hot): 0x000b
   2726          * 0x47357e88 : ldr     r0, [r6, #104]
   2727          * 0x47357e8a : blx     r0
   2728          * 0x47357e8c : data    0x19e2(6626)
   2729          * 0x47357e8e : data    0x4257(16983)
   2730          * 0x47357e90 : .align4
   2731          * -------- chaining cell (predicted)
   2732          * 0x47357e90 : data    0xe7fe(59390)  --> will be patched into bx
   2733          * 0x47357e92 : data    0x0000(0)
   2734          * 0x47357e94 : data    0x0000(0)      --> class
   2735          * 0x47357e96 : data    0x0000(0)
   2736          * 0x47357e98 : data    0x0000(0)      --> method
   2737          * 0x47357e9a : data    0x0000(0)
   2738          * 0x47357e9c : data    0x0000(0)      --> rechain count
   2739          * 0x47357e9e : data    0x0000(0)
   2740          * -------- end of chaining cells (0x006c)
   2741          * 0x47357eb0 : .word (0xad03e369)
   2742          * 0x47357eb4 : .word (0x28a90)
   2743          * 0x47357eb8 : .word (0x41a63394)
   2744          * 0x47357ebc : .word (0x425719dc)
   2745          */
   2746         case OP_INVOKE_INTERFACE:
   2747         case OP_INVOKE_INTERFACE_RANGE: {
   2748             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   2749             int methodIndex = dInsn->vB;
   2750 
   2751             /* Ensure that nothing is both live and dirty */
   2752             dvmCompilerFlushAllRegs(cUnit);
   2753 
   2754             if (mir->dalvikInsn.opCode == OP_INVOKE_INTERFACE)
   2755                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2756             else
   2757                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2758 
   2759             /* "this" is already left in r0 by genProcessArgs* */
   2760 
   2761             /* r4PC = dalvikCallsite */
   2762             loadConstant(cUnit, r4PC,
   2763                          (int) (cUnit->method->insns + mir->offset));
   2764 
   2765             /* r1 = &retChainingCell */
   2766             ArmLIR *addrRetChain =
   2767                 opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   2768             addrRetChain->generic.target = (LIR *) retChainingCell;
   2769 
   2770             /* r2 = &predictedChainingCell */
   2771             ArmLIR *predictedChainingCell =
   2772                 opRegRegImm(cUnit, kOpAdd, r2, rpc, 0);
   2773             predictedChainingCell->generic.target = (LIR *) predChainingCell;
   2774 
   2775             genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
   2776 
   2777             /* return through lr - jump to the chaining cell */
   2778             genUnconditionalBranch(cUnit, predChainingCell);
   2779 
   2780             /*
   2781              * null-check on "this" may have been eliminated, but we still need
   2782              * a PC-reconstruction label for stack overflow bailout.
   2783              */
   2784             if (pcrLabel == NULL) {
   2785                 int dPC = (int) (cUnit->method->insns + mir->offset);
   2786                 pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
   2787                 pcrLabel->opCode = kArmPseudoPCReconstructionCell;
   2788                 pcrLabel->operands[0] = dPC;
   2789                 pcrLabel->operands[1] = mir->offset;
   2790                 /* Insert the place holder to the growable list */
   2791                 dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
   2792             }
   2793 
   2794             /* return through lr+2 - punt to the interpreter */
   2795             genUnconditionalBranch(cUnit, pcrLabel);
   2796 
   2797             /*
   2798              * return through lr+4 - fully resolve the callee method.
   2799              * r1 <- count
   2800              * r2 <- &predictedChainCell
   2801              * r3 <- this->class
   2802              * r4 <- dPC
   2803              * r7 <- this->class->vtable
   2804              */
   2805 
   2806             /* Save count, &predictedChainCell, and class to high regs first */
   2807             genRegCopy(cUnit, r8, r1);
   2808             genRegCopy(cUnit, r9, r2);
   2809             genRegCopy(cUnit, r10, r3);
   2810 
   2811             /* r0 now contains this->clazz */
   2812             genRegCopy(cUnit, r0, r3);
   2813 
   2814             /* r1 = BBBB */
   2815             loadConstant(cUnit, r1, dInsn->vB);
   2816 
   2817             /* r2 = method (caller) */
   2818             loadConstant(cUnit, r2, (int) cUnit->method);
   2819 
   2820             /* r3 = pDvmDex */
   2821             loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
   2822 
   2823             LOAD_FUNC_ADDR(cUnit, r7,
   2824                            (intptr_t) dvmFindInterfaceMethodInCache);
   2825             opReg(cUnit, kOpBlx, r7);
   2826             /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
   2827 
   2828             dvmCompilerClobberCallRegs(cUnit);
   2829             /* generate a branch over if the interface method is resolved */
   2830             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   2831             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   2832             /*
   2833              * calleeMethod == NULL -> throw
   2834              */
   2835             loadConstant(cUnit, r0,
   2836                          (int) (cUnit->method->insns + mir->offset));
   2837             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2838             /* noreturn */
   2839 
   2840             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2841             target->defMask = ENCODE_ALL;
   2842             branchOver->generic.target = (LIR *) target;
   2843 
   2844             genRegCopy(cUnit, r1, r8);
   2845 
   2846             /* Check if rechain limit is reached */
   2847             opRegImm(cUnit, kOpCmp, r1, 0);
   2848 
   2849             ArmLIR *bypassRechaining = opCondBranch(cUnit, kArmCondGt);
   2850 
   2851             loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   2852                          jitToInterpEntries.dvmJitToPatchPredictedChain), r7);
   2853 
   2854             genRegCopy(cUnit, r2, r9);
   2855             genRegCopy(cUnit, r3, r10);
   2856 
   2857             /*
   2858              * r0 = calleeMethod
   2859              * r2 = &predictedChainingCell
   2860              * r3 = class
   2861              *
   2862              * &returnChainingCell has been loaded into r1 but is not needed
   2863              * when patching the chaining cell and will be clobbered upon
   2864              * returning so it will be reconstructed again.
   2865              */
   2866             opReg(cUnit, kOpBlx, r7);
   2867 
   2868             /* r1 = &retChainingCell */
   2869             addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   2870             addrRetChain->generic.target = (LIR *) retChainingCell;
   2871 
   2872             bypassRechaining->generic.target = (LIR *) addrRetChain;
   2873 
   2874             /*
   2875              * r0 = this, r1 = calleeMethod,
   2876              * r1 = &ChainingCell,
   2877              * r4PC = callsiteDPC,
   2878              */
   2879             genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
   2880 #if defined(JIT_STATS)
   2881             gDvmJit.invokePolymorphic++;
   2882 #endif
   2883             /* Handle exceptions using the interpreter */
   2884             genTrap(cUnit, mir->offset, pcrLabel);
   2885             break;
   2886         }
   2887         /* NOP */
   2888         case OP_INVOKE_DIRECT_EMPTY: {
   2889             return false;
   2890         }
   2891         case OP_FILLED_NEW_ARRAY:
   2892         case OP_FILLED_NEW_ARRAY_RANGE: {
   2893             /* Just let the interpreter deal with these */
   2894             genInterpSingleStep(cUnit, mir);
   2895             break;
   2896         }
   2897         default:
   2898             return true;
   2899     }
   2900     return false;
   2901 }
   2902 
   2903 static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
   2904                                BasicBlock *bb, ArmLIR *labelList)
   2905 {
   2906     ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
   2907     ArmLIR *predChainingCell = &labelList[bb->taken->id];
   2908     ArmLIR *pcrLabel = NULL;
   2909 
   2910     DecodedInstruction *dInsn = &mir->dalvikInsn;
   2911     switch (mir->dalvikInsn.opCode) {
   2912         /* calleeMethod = this->clazz->vtable[BBBB] */
   2913         case OP_INVOKE_VIRTUAL_QUICK_RANGE:
   2914         case OP_INVOKE_VIRTUAL_QUICK: {
   2915             int methodIndex = dInsn->vB;
   2916             if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL_QUICK)
   2917                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2918             else
   2919                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2920 
   2921             genInvokeVirtualCommon(cUnit, mir, methodIndex,
   2922                                    retChainingCell,
   2923                                    predChainingCell,
   2924                                    pcrLabel);
   2925             break;
   2926         }
   2927         /* calleeMethod = method->clazz->super->vtable[BBBB] */
   2928         case OP_INVOKE_SUPER_QUICK:
   2929         case OP_INVOKE_SUPER_QUICK_RANGE: {
   2930             const Method *calleeMethod =
   2931                 cUnit->method->clazz->super->vtable[dInsn->vB];
   2932 
   2933             if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER_QUICK)
   2934                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2935             else
   2936                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2937 
   2938             /* r0 = calleeMethod */
   2939             loadConstant(cUnit, r0, (int) calleeMethod);
   2940 
   2941             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   2942                                      calleeMethod);
   2943             /* Handle exceptions using the interpreter */
   2944             genTrap(cUnit, mir->offset, pcrLabel);
   2945             break;
   2946         }
   2947         default:
   2948             return true;
   2949     }
   2950     return false;
   2951 }
   2952 
   2953 /*
   2954  * This operation is complex enough that we'll do it partly inline
   2955  * and partly with a handler.  NOTE: the handler uses hardcoded
   2956  * values for string object offsets and must be revisitied if the
   2957  * layout changes.
   2958  */
   2959 static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
   2960 {
   2961 #if defined(USE_GLOBAL_STRING_DEFS)
   2962     return false;
   2963 #else
   2964     ArmLIR *rollback;
   2965     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
   2966     RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
   2967 
   2968     loadValueDirectFixed(cUnit, rlThis, r0);
   2969     loadValueDirectFixed(cUnit, rlComp, r1);
   2970     /* Test objects for NULL */
   2971     rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
   2972     genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
   2973     /*
   2974      * TUNING: we could check for object pointer equality before invoking
   2975      * handler. Unclear whether the gain would be worth the added code size
   2976      * expansion.
   2977      */
   2978     genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
   2979     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
   2980                dvmCompilerGetReturn(cUnit));
   2981     return true;
   2982 #endif
   2983 }
   2984 
   2985 static bool genInlinedIndexOf(CompilationUnit *cUnit, MIR *mir, bool singleI)
   2986 {
   2987 #if defined(USE_GLOBAL_STRING_DEFS)
   2988     return false;
   2989 #else
   2990     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
   2991     RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
   2992 
   2993     loadValueDirectFixed(cUnit, rlThis, r0);
   2994     loadValueDirectFixed(cUnit, rlChar, r1);
   2995     if (!singleI) {
   2996         RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
   2997         loadValueDirectFixed(cUnit, rlStart, r2);
   2998     } else {
   2999         loadConstant(cUnit, r2, 0);
   3000     }
   3001     /* Test objects for NULL */
   3002     genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
   3003     genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
   3004     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
   3005                dvmCompilerGetReturn(cUnit));
   3006     return true;
   3007 #endif
   3008 }
   3009 
   3010 static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
   3011 {
   3012     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
   3013     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3014     rlObj = loadValue(cUnit, rlObj, kCoreReg);
   3015     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3016     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
   3017     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
   3018                  rlResult.lowReg);
   3019     storeValue(cUnit, rlDest, rlResult);
   3020     return false;
   3021 }
   3022 
   3023 static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
   3024 {
   3025     int contents = offsetof(ArrayObject, contents);
   3026     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
   3027     RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
   3028     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3029     RegLocation rlResult;
   3030     rlObj = loadValue(cUnit, rlObj, kCoreReg);
   3031     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
   3032     int regMax = dvmCompilerAllocTemp(cUnit);
   3033     int regOff = dvmCompilerAllocTemp(cUnit);
   3034     int regPtr = dvmCompilerAllocTemp(cUnit);
   3035     ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
   3036                                     mir->offset, NULL);
   3037     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
   3038     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
   3039     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
   3040     genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
   3041     dvmCompilerFreeTemp(cUnit, regMax);
   3042     opRegImm(cUnit, kOpAdd, regPtr, contents);
   3043     opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
   3044     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3045     loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
   3046     storeValue(cUnit, rlDest, rlResult);
   3047     return false;
   3048 }
   3049 
   3050 static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
   3051 {
   3052     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   3053     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   3054     RegLocation rlDest = inlinedTarget(cUnit, mir, false);;
   3055     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3056     int signReg = dvmCompilerAllocTemp(cUnit);
   3057     /*
   3058      * abs(x) = y<=x>>31, (x+y)^y.
   3059      * Thumb2's IT block also yields 3 instructions, but imposes
   3060      * scheduling constraints.
   3061      */
   3062     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
   3063     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
   3064     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
   3065     storeValue(cUnit, rlDest, rlResult);
   3066     return false;
   3067 }
   3068 
   3069 static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
   3070 {
   3071     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   3072     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
   3073     rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
   3074     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3075     int signReg = dvmCompilerAllocTemp(cUnit);
   3076     /*
   3077      * abs(x) = y<=x>>31, (x+y)^y.
   3078      * Thumb2 IT block allows slightly shorter sequence,
   3079      * but introduces a scheduling barrier.  Stick with this
   3080      * mechanism for now.
   3081      */
   3082     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
   3083     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
   3084     opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
   3085     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
   3086     opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
   3087     storeValueWide(cUnit, rlDest, rlResult);
   3088     return false;
   3089 }
   3090 
   3091 /*
   3092  * NOTE: Handles both range and non-range versions (arguments
   3093  * have already been normalized by this point).
   3094  */
   3095 static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
   3096 {
   3097     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3098     switch( mir->dalvikInsn.opCode) {
   3099         case OP_EXECUTE_INLINE_RANGE:
   3100         case OP_EXECUTE_INLINE: {
   3101             unsigned int i;
   3102             const InlineOperation* inLineTable = dvmGetInlineOpsTable();
   3103             int offset = offsetof(InterpState, retval);
   3104             int operation = dInsn->vB;
   3105             int tReg1;
   3106             int tReg2;
   3107             switch (operation) {
   3108                 case INLINE_EMPTYINLINEMETHOD:
   3109                     return false;  /* Nop */
   3110                 case INLINE_STRING_LENGTH:
   3111                     return genInlinedStringLength(cUnit, mir);
   3112                 case INLINE_MATH_ABS_INT:
   3113                     return genInlinedAbsInt(cUnit, mir);
   3114                 case INLINE_MATH_ABS_LONG:
   3115                     return genInlinedAbsLong(cUnit, mir);
   3116                 case INLINE_MATH_MIN_INT:
   3117                     return genInlinedMinMaxInt(cUnit, mir, true);
   3118                 case INLINE_MATH_MAX_INT:
   3119                     return genInlinedMinMaxInt(cUnit, mir, false);
   3120                 case INLINE_STRING_CHARAT:
   3121                     return genInlinedStringCharAt(cUnit, mir);
   3122                 case INLINE_MATH_SQRT:
   3123                     if (genInlineSqrt(cUnit, mir))
   3124                         return false;
   3125                     else
   3126                         break;   /* Handle with C routine */
   3127                 case INLINE_MATH_ABS_FLOAT:
   3128                     if (genInlinedAbsFloat(cUnit, mir))
   3129                         return false;
   3130                     else
   3131                         break;
   3132                 case INLINE_MATH_ABS_DOUBLE:
   3133                     if (genInlinedAbsDouble(cUnit, mir))
   3134                         return false;
   3135                     else
   3136                         break;
   3137                 case INLINE_STRING_COMPARETO:
   3138                     if (genInlinedCompareTo(cUnit, mir))
   3139                         return false;
   3140                     else
   3141                         break;
   3142                 case INLINE_STRING_INDEXOF_I:
   3143                     if (genInlinedIndexOf(cUnit, mir, true /* I */))
   3144                         return false;
   3145                     else
   3146                         break;
   3147                 case INLINE_STRING_INDEXOF_II:
   3148                     if (genInlinedIndexOf(cUnit, mir, false /* I */))
   3149                         return false;
   3150                     else
   3151                         break;
   3152                 case INLINE_STRING_EQUALS:
   3153                 case INLINE_MATH_COS:
   3154                 case INLINE_MATH_SIN:
   3155                     break;   /* Handle with C routine */
   3156                 default:
   3157                     dvmCompilerAbort(cUnit);
   3158             }
   3159             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   3160             dvmCompilerClobberCallRegs(cUnit);
   3161             dvmCompilerClobber(cUnit, r4PC);
   3162             dvmCompilerClobber(cUnit, r7);
   3163             opRegRegImm(cUnit, kOpAdd, r4PC, rGLUE, offset);
   3164             opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
   3165             LOAD_FUNC_ADDR(cUnit, r4PC, (int)inLineTable[operation].func);
   3166             genExportPC(cUnit, mir);
   3167             for (i=0; i < dInsn->vA; i++) {
   3168                 loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i);
   3169             }
   3170             opReg(cUnit, kOpBlx, r4PC);
   3171             opRegImm(cUnit, kOpAdd, r13, 8);
   3172             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   3173             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   3174             loadConstant(cUnit, r0,
   3175                          (int) (cUnit->method->insns + mir->offset));
   3176             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   3177             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3178             target->defMask = ENCODE_ALL;
   3179             branchOver->generic.target = (LIR *) target;
   3180             break;
   3181         }
   3182         default:
   3183             return true;
   3184     }
   3185     return false;
   3186 }
   3187 
   3188 static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
   3189 {
   3190     //TUNING: We're using core regs here - not optimal when target is a double
   3191     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   3192     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3193     loadConstantNoClobber(cUnit, rlResult.lowReg,
   3194                           mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
   3195     loadConstantNoClobber(cUnit, rlResult.highReg,
   3196                           (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
   3197     storeValueWide(cUnit, rlDest, rlResult);
   3198     return false;
   3199 }
   3200 
   3201 /*
   3202  * The following are special processing routines that handle transfer of
   3203  * controls between compiled code and the interpreter. Certain VM states like
   3204  * Dalvik PC and special-purpose registers are reconstructed here.
   3205  */
   3206 
   3207 /* Chaining cell for code that may need warmup. */
   3208 static void handleNormalChainingCell(CompilationUnit *cUnit,
   3209                                      unsigned int offset)
   3210 {
   3211     /*
   3212      * Use raw instruction constructors to guarantee that the generated
   3213      * instructions fit the predefined cell size.
   3214      */
   3215     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3216             offsetof(InterpState,
   3217                      jitToInterpEntries.dvmJitToInterpNormal) >> 2);
   3218     newLIR1(cUnit, kThumbBlxR, r0);
   3219     addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
   3220 }
   3221 
   3222 /*
   3223  * Chaining cell for instructions that immediately following already translated
   3224  * code.
   3225  */
   3226 static void handleHotChainingCell(CompilationUnit *cUnit,
   3227                                   unsigned int offset)
   3228 {
   3229     /*
   3230      * Use raw instruction constructors to guarantee that the generated
   3231      * instructions fit the predefined cell size.
   3232      */
   3233     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3234             offsetof(InterpState,
   3235                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
   3236     newLIR1(cUnit, kThumbBlxR, r0);
   3237     addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
   3238 }
   3239 
   3240 #if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
   3241 /* Chaining cell for branches that branch back into the same basic block */
   3242 static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
   3243                                              unsigned int offset)
   3244 {
   3245     /*
   3246      * Use raw instruction constructors to guarantee that the generated
   3247      * instructions fit the predefined cell size.
   3248      */
   3249 #if defined(WITH_SELF_VERIFICATION)
   3250     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3251         offsetof(InterpState,
   3252                  jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2);
   3253 #else
   3254     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3255         offsetof(InterpState, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
   3256 #endif
   3257     newLIR1(cUnit, kThumbBlxR, r0);
   3258     addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
   3259 }
   3260 
   3261 #endif
   3262 /* Chaining cell for monomorphic method invocations. */
   3263 static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
   3264                                               const Method *callee)
   3265 {
   3266     /*
   3267      * Use raw instruction constructors to guarantee that the generated
   3268      * instructions fit the predefined cell size.
   3269      */
   3270     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3271             offsetof(InterpState,
   3272                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
   3273     newLIR1(cUnit, kThumbBlxR, r0);
   3274     addWordData(cUnit, (int) (callee->insns), true);
   3275 }
   3276 
   3277 /* Chaining cell for monomorphic method invocations. */
   3278 static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
   3279 {
   3280 
   3281     /* Should not be executed in the initial state */
   3282     addWordData(cUnit, PREDICTED_CHAIN_BX_PAIR_INIT, true);
   3283     /* To be filled: class */
   3284     addWordData(cUnit, PREDICTED_CHAIN_CLAZZ_INIT, true);
   3285     /* To be filled: method */
   3286     addWordData(cUnit, PREDICTED_CHAIN_METHOD_INIT, true);
   3287     /*
   3288      * Rechain count. The initial value of 0 here will trigger chaining upon
   3289      * the first invocation of this callsite.
   3290      */
   3291     addWordData(cUnit, PREDICTED_CHAIN_COUNTER_INIT, true);
   3292 }
   3293 
   3294 /* Load the Dalvik PC into r0 and jump to the specified target */
   3295 static void handlePCReconstruction(CompilationUnit *cUnit,
   3296                                    ArmLIR *targetLabel)
   3297 {
   3298     ArmLIR **pcrLabel =
   3299         (ArmLIR **) cUnit->pcReconstructionList.elemList;
   3300     int numElems = cUnit->pcReconstructionList.numUsed;
   3301     int i;
   3302     for (i = 0; i < numElems; i++) {
   3303         dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
   3304         /* r0 = dalvik PC */
   3305         loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
   3306         genUnconditionalBranch(cUnit, targetLabel);
   3307     }
   3308 }
   3309 
   3310 static char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
   3311     "kMirOpPhi",
   3312     "kMirOpNullNRangeUpCheck",
   3313     "kMirOpNullNRangeDownCheck",
   3314     "kMirOpLowerBound",
   3315     "kMirOpPunt",
   3316 };
   3317 
   3318 /*
   3319  * vA = arrayReg;
   3320  * vB = idxReg;
   3321  * vC = endConditionReg;
   3322  * arg[0] = maxC
   3323  * arg[1] = minC
   3324  * arg[2] = loopBranchConditionCode
   3325  */
   3326 static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
   3327 {
   3328     /*
   3329      * NOTE: these synthesized blocks don't have ssa names assigned
   3330      * for Dalvik registers.  However, because they dominate the following
   3331      * blocks we can simply use the Dalvik name w/ subscript 0 as the
   3332      * ssa name.
   3333      */
   3334     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3335     const int lenOffset = offsetof(ArrayObject, length);
   3336     const int maxC = dInsn->arg[0];
   3337     const int minC = dInsn->arg[1];
   3338     int regLength;
   3339     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
   3340     RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
   3341 
   3342     /* regArray <- arrayRef */
   3343     rlArray = loadValue(cUnit, rlArray, kCoreReg);
   3344     rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
   3345     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
   3346                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3347 
   3348     /* regLength <- len(arrayRef) */
   3349     regLength = dvmCompilerAllocTemp(cUnit);
   3350     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
   3351 
   3352     int delta = maxC;
   3353     /*
   3354      * If the loop end condition is ">=" instead of ">", then the largest value
   3355      * of the index is "endCondition - 1".
   3356      */
   3357     if (dInsn->arg[2] == OP_IF_GE) {
   3358         delta--;
   3359     }
   3360 
   3361     if (delta) {
   3362         int tReg = dvmCompilerAllocTemp(cUnit);
   3363         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
   3364         rlIdxEnd.lowReg = tReg;
   3365         dvmCompilerFreeTemp(cUnit, tReg);
   3366     }
   3367     /* Punt if "regIdxEnd < len(Array)" is false */
   3368     genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
   3369                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3370 }
   3371 
   3372 /*
   3373  * vA = arrayReg;
   3374  * vB = idxReg;
   3375  * vC = endConditionReg;
   3376  * arg[0] = maxC
   3377  * arg[1] = minC
   3378  * arg[2] = loopBranchConditionCode
   3379  */
   3380 static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
   3381 {
   3382     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3383     const int lenOffset = offsetof(ArrayObject, length);
   3384     const int regLength = dvmCompilerAllocTemp(cUnit);
   3385     const int maxC = dInsn->arg[0];
   3386     const int minC = dInsn->arg[1];
   3387     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
   3388     RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
   3389 
   3390     /* regArray <- arrayRef */
   3391     rlArray = loadValue(cUnit, rlArray, kCoreReg);
   3392     rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
   3393     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
   3394                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3395 
   3396     /* regLength <- len(arrayRef) */
   3397     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
   3398 
   3399     if (maxC) {
   3400         int tReg = dvmCompilerAllocTemp(cUnit);
   3401         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
   3402         rlIdxInit.lowReg = tReg;
   3403         dvmCompilerFreeTemp(cUnit, tReg);
   3404     }
   3405 
   3406     /* Punt if "regIdxInit < len(Array)" is false */
   3407     genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
   3408                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3409 }
   3410 
   3411 /*
   3412  * vA = idxReg;
   3413  * vB = minC;
   3414  */
   3415 static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
   3416 {
   3417     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3418     const int minC = dInsn->vB;
   3419     RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
   3420 
   3421     /* regIdx <- initial index value */
   3422     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
   3423 
   3424     /* Punt if "regIdxInit + minC >= 0" is false */
   3425     genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
   3426                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3427 }
   3428 
   3429 /* Extended MIR instructions like PHI */
   3430 static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
   3431 {
   3432     int opOffset = mir->dalvikInsn.opCode - kMirOpFirst;
   3433     char *msg = dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
   3434                                false);
   3435     strcpy(msg, extendedMIROpNames[opOffset]);
   3436     newLIR1(cUnit, kArmPseudoExtended, (int) msg);
   3437 
   3438     switch (mir->dalvikInsn.opCode) {
   3439         case kMirOpPhi: {
   3440             char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
   3441             newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
   3442             break;
   3443         }
   3444         case kMirOpNullNRangeUpCheck: {
   3445             genHoistedChecksForCountUpLoop(cUnit, mir);
   3446             break;
   3447         }
   3448         case kMirOpNullNRangeDownCheck: {
   3449             genHoistedChecksForCountDownLoop(cUnit, mir);
   3450             break;
   3451         }
   3452         case kMirOpLowerBound: {
   3453             genHoistedLowerBoundCheck(cUnit, mir);
   3454             break;
   3455         }
   3456         case kMirOpPunt: {
   3457             genUnconditionalBranch(cUnit,
   3458                                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3459             break;
   3460         }
   3461         default:
   3462             break;
   3463     }
   3464 }
   3465 
   3466 /*
   3467  * Create a PC-reconstruction cell for the starting offset of this trace.
   3468  * Since the PCR cell is placed near the end of the compiled code which is
   3469  * usually out of range for a conditional branch, we put two branches (one
   3470  * branch over to the loop body and one layover branch to the actual PCR) at the
   3471  * end of the entry block.
   3472  */
   3473 static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
   3474                                 ArmLIR *bodyLabel)
   3475 {
   3476     /* Set up the place holder to reconstruct this Dalvik PC */
   3477     ArmLIR *pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
   3478     pcrLabel->opCode = kArmPseudoPCReconstructionCell;
   3479     pcrLabel->operands[0] =
   3480         (int) (cUnit->method->insns + entry->startOffset);
   3481     pcrLabel->operands[1] = entry->startOffset;
   3482     /* Insert the place holder to the growable list */
   3483     dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
   3484 
   3485     /*
   3486      * Next, create two branches - one branch over to the loop body and the
   3487      * other branch to the PCR cell to punt.
   3488      */
   3489     ArmLIR *branchToBody = dvmCompilerNew(sizeof(ArmLIR), true);
   3490     branchToBody->opCode = kThumbBUncond;
   3491     branchToBody->generic.target = (LIR *) bodyLabel;
   3492     setupResourceMasks(branchToBody);
   3493     cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
   3494 
   3495     ArmLIR *branchToPCR = dvmCompilerNew(sizeof(ArmLIR), true);
   3496     branchToPCR->opCode = kThumbBUncond;
   3497     branchToPCR->generic.target = (LIR *) pcrLabel;
   3498     setupResourceMasks(branchToPCR);
   3499     cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
   3500 }
   3501 
   3502 #if defined(WITH_SELF_VERIFICATION)
   3503 static bool selfVerificationPuntOps(MIR *mir)
   3504 {
   3505     DecodedInstruction *decInsn = &mir->dalvikInsn;
   3506     OpCode op = decInsn->opCode;
   3507     int flags =  dexGetInstrFlags(gDvm.instrFlags, op);
   3508     /*
   3509      * All opcodes that can throw exceptions and use the
   3510      * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
   3511      * under self-verification mode.
   3512      */
   3513     return (op == OP_MONITOR_ENTER || op == OP_MONITOR_EXIT ||
   3514             op == OP_NEW_INSTANCE || op == OP_NEW_ARRAY ||
   3515             op == OP_CHECK_CAST || op == OP_MOVE_EXCEPTION ||
   3516             op == OP_FILL_ARRAY_DATA || op == OP_EXECUTE_INLINE ||
   3517             op == OP_EXECUTE_INLINE_RANGE ||
   3518             (flags & kInstrInvoke));
   3519 }
   3520 #endif
   3521 
   3522 void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
   3523 {
   3524     /* Used to hold the labels of each block */
   3525     ArmLIR *labelList =
   3526         dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
   3527     GrowableList chainingListByType[kChainingCellGap];
   3528     int i;
   3529 
   3530     /*
   3531      * Initialize various types chaining lists.
   3532      */
   3533     for (i = 0; i < kChainingCellGap; i++) {
   3534         dvmInitGrowableList(&chainingListByType[i], 2);
   3535     }
   3536 
   3537     BasicBlock **blockList = cUnit->blockList;
   3538 
   3539     if (cUnit->executionCount) {
   3540         /*
   3541          * Reserve 6 bytes at the beginning of the trace
   3542          *        +----------------------------+
   3543          *        | execution count (4 bytes)  |
   3544          *        +----------------------------+
   3545          *        | chain cell offset (2 bytes)|
   3546          *        +----------------------------+
   3547          * ...and then code to increment the execution
   3548          * count:
   3549          *       mov   r0, pc       @ move adr of "mov r0,pc" + 4 to r0
   3550          *       sub   r0, #10      @ back up to addr of executionCount
   3551          *       ldr   r1, [r0]
   3552          *       add   r1, #1
   3553          *       str   r1, [r0]
   3554          */
   3555         newLIR1(cUnit, kArm16BitData, 0);
   3556         newLIR1(cUnit, kArm16BitData, 0);
   3557         cUnit->chainCellOffsetLIR =
   3558             (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
   3559         cUnit->headerSize = 6;
   3560         /* Thumb instruction used directly here to ensure correct size */
   3561         newLIR2(cUnit, kThumbMovRR_H2L, r0, rpc);
   3562         newLIR2(cUnit, kThumbSubRI8, r0, 10);
   3563         newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
   3564         newLIR2(cUnit, kThumbAddRI8, r1, 1);
   3565         newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
   3566     } else {
   3567          /* Just reserve 2 bytes for the chain cell offset */
   3568         cUnit->chainCellOffsetLIR =
   3569             (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
   3570         cUnit->headerSize = 2;
   3571     }
   3572 
   3573     /* Handle the content in each basic block */
   3574     for (i = 0; i < cUnit->numBlocks; i++) {
   3575         blockList[i]->visited = true;
   3576         MIR *mir;
   3577 
   3578         labelList[i].operands[0] = blockList[i]->startOffset;
   3579 
   3580         if (blockList[i]->blockType >= kChainingCellGap) {
   3581             /*
   3582              * Append the label pseudo LIR first. Chaining cells will be handled
   3583              * separately afterwards.
   3584              */
   3585             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
   3586         }
   3587 
   3588         if (blockList[i]->blockType == kEntryBlock) {
   3589             labelList[i].opCode = kArmPseudoEntryBlock;
   3590             if (blockList[i]->firstMIRInsn == NULL) {
   3591                 continue;
   3592             } else {
   3593               setupLoopEntryBlock(cUnit, blockList[i],
   3594                                   &labelList[blockList[i]->fallThrough->id]);
   3595             }
   3596         } else if (blockList[i]->blockType == kExitBlock) {
   3597             labelList[i].opCode = kArmPseudoExitBlock;
   3598             goto gen_fallthrough;
   3599         } else if (blockList[i]->blockType == kDalvikByteCode) {
   3600             labelList[i].opCode = kArmPseudoNormalBlockLabel;
   3601             /* Reset the register state */
   3602             dvmCompilerResetRegPool(cUnit);
   3603             dvmCompilerClobberAllRegs(cUnit);
   3604             dvmCompilerResetNullCheck(cUnit);
   3605         } else {
   3606             switch (blockList[i]->blockType) {
   3607                 case kChainingCellNormal:
   3608                     labelList[i].opCode = kArmPseudoChainingCellNormal;
   3609                     /* handle the codegen later */
   3610                     dvmInsertGrowableList(
   3611                         &chainingListByType[kChainingCellNormal], (void *) i);
   3612                     break;
   3613                 case kChainingCellInvokeSingleton:
   3614                     labelList[i].opCode =
   3615                         kArmPseudoChainingCellInvokeSingleton;
   3616                     labelList[i].operands[0] =
   3617                         (int) blockList[i]->containingMethod;
   3618                     /* handle the codegen later */
   3619                     dvmInsertGrowableList(
   3620                         &chainingListByType[kChainingCellInvokeSingleton],
   3621                         (void *) i);
   3622                     break;
   3623                 case kChainingCellInvokePredicted:
   3624                     labelList[i].opCode =
   3625                         kArmPseudoChainingCellInvokePredicted;
   3626                     /* handle the codegen later */
   3627                     dvmInsertGrowableList(
   3628                         &chainingListByType[kChainingCellInvokePredicted],
   3629                         (void *) i);
   3630                     break;
   3631                 case kChainingCellHot:
   3632                     labelList[i].opCode =
   3633                         kArmPseudoChainingCellHot;
   3634                     /* handle the codegen later */
   3635                     dvmInsertGrowableList(
   3636                         &chainingListByType[kChainingCellHot],
   3637                         (void *) i);
   3638                     break;
   3639                 case kPCReconstruction:
   3640                     /* Make sure exception handling block is next */
   3641                     labelList[i].opCode =
   3642                         kArmPseudoPCReconstructionBlockLabel;
   3643                     assert (i == cUnit->numBlocks - 2);
   3644                     handlePCReconstruction(cUnit, &labelList[i+1]);
   3645                     break;
   3646                 case kExceptionHandling:
   3647                     labelList[i].opCode = kArmPseudoEHBlockLabel;
   3648                     if (cUnit->pcReconstructionList.numUsed) {
   3649                         loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   3650                                      jitToInterpEntries.dvmJitToInterpPunt),
   3651                                      r1);
   3652                         opReg(cUnit, kOpBlx, r1);
   3653                     }
   3654                     break;
   3655 #if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
   3656                 case kChainingCellBackwardBranch:
   3657                     labelList[i].opCode =
   3658                         kArmPseudoChainingCellBackwardBranch;
   3659                     /* handle the codegen later */
   3660                     dvmInsertGrowableList(
   3661                         &chainingListByType[kChainingCellBackwardBranch],
   3662                         (void *) i);
   3663                     break;
   3664 #endif
   3665                 default:
   3666                     break;
   3667             }
   3668             continue;
   3669         }
   3670 
   3671         ArmLIR *headLIR = NULL;
   3672 
   3673         for (mir = blockList[i]->firstMIRInsn; mir; mir = mir->next) {
   3674 
   3675             dvmCompilerResetRegPool(cUnit);
   3676             if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
   3677                 dvmCompilerClobberAllRegs(cUnit);
   3678             }
   3679 
   3680             if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
   3681                 dvmCompilerResetDefTracking(cUnit);
   3682             }
   3683 
   3684             if (mir->dalvikInsn.opCode >= kMirOpFirst) {
   3685                 handleExtendedMIR(cUnit, mir);
   3686                 continue;
   3687             }
   3688 
   3689 
   3690             OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   3691             InstructionFormat dalvikFormat =
   3692                 dexGetInstrFormat(gDvm.instrFormat, dalvikOpCode);
   3693             ArmLIR *boundaryLIR =
   3694                 newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
   3695                         mir->offset,
   3696                         (int) dvmCompilerGetDalvikDisassembly(&mir->dalvikInsn)
   3697                        );
   3698             if (mir->ssaRep) {
   3699                 char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
   3700                 newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
   3701             }
   3702 
   3703             /* Remember the first LIR for this block */
   3704             if (headLIR == NULL) {
   3705                 headLIR = boundaryLIR;
   3706                 /* Set the first boundaryLIR as a scheduling barrier */
   3707                 headLIR->defMask = ENCODE_ALL;
   3708             }
   3709 
   3710             bool notHandled;
   3711             /*
   3712              * Debugging: screen the opcode first to see if it is in the
   3713              * do[-not]-compile list
   3714              */
   3715             bool singleStepMe =
   3716                 gDvmJit.includeSelectedOp !=
   3717                 ((gDvmJit.opList[dalvikOpCode >> 3] &
   3718                   (1 << (dalvikOpCode & 0x7))) !=
   3719                  0);
   3720 #if defined(WITH_SELF_VERIFICATION)
   3721           if (singleStepMe == false) {
   3722               singleStepMe = selfVerificationPuntOps(mir);
   3723           }
   3724 #endif
   3725             if (singleStepMe || cUnit->allSingleStep) {
   3726                 notHandled = false;
   3727                 genInterpSingleStep(cUnit, mir);
   3728             } else {
   3729                 opcodeCoverage[dalvikOpCode]++;
   3730                 switch (dalvikFormat) {
   3731                     case kFmt10t:
   3732                     case kFmt20t:
   3733                     case kFmt30t:
   3734                         notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
   3735                                   mir, blockList[i], labelList);
   3736                         break;
   3737                     case kFmt10x:
   3738                         notHandled = handleFmt10x(cUnit, mir);
   3739                         break;
   3740                     case kFmt11n:
   3741                     case kFmt31i:
   3742                         notHandled = handleFmt11n_Fmt31i(cUnit, mir);
   3743                         break;
   3744                     case kFmt11x:
   3745                         notHandled = handleFmt11x(cUnit, mir);
   3746                         break;
   3747                     case kFmt12x:
   3748                         notHandled = handleFmt12x(cUnit, mir);
   3749                         break;
   3750                     case kFmt20bc:
   3751                         notHandled = handleFmt20bc(cUnit, mir);
   3752                         break;
   3753                     case kFmt21c:
   3754                     case kFmt31c:
   3755                         notHandled = handleFmt21c_Fmt31c(cUnit, mir);
   3756                         break;
   3757                     case kFmt21h:
   3758                         notHandled = handleFmt21h(cUnit, mir);
   3759                         break;
   3760                     case kFmt21s:
   3761                         notHandled = handleFmt21s(cUnit, mir);
   3762                         break;
   3763                     case kFmt21t:
   3764                         notHandled = handleFmt21t(cUnit, mir, blockList[i],
   3765                                                   labelList);
   3766                         break;
   3767                     case kFmt22b:
   3768                     case kFmt22s:
   3769                         notHandled = handleFmt22b_Fmt22s(cUnit, mir);
   3770                         break;
   3771                     case kFmt22c:
   3772                         notHandled = handleFmt22c(cUnit, mir);
   3773                         break;
   3774                     case kFmt22cs:
   3775                         notHandled = handleFmt22cs(cUnit, mir);
   3776                         break;
   3777                     case kFmt22t:
   3778                         notHandled = handleFmt22t(cUnit, mir, blockList[i],
   3779                                                   labelList);
   3780                         break;
   3781                     case kFmt22x:
   3782                     case kFmt32x:
   3783                         notHandled = handleFmt22x_Fmt32x(cUnit, mir);
   3784                         break;
   3785                     case kFmt23x:
   3786                         notHandled = handleFmt23x(cUnit, mir);
   3787                         break;
   3788                     case kFmt31t:
   3789                         notHandled = handleFmt31t(cUnit, mir);
   3790                         break;
   3791                     case kFmt3rc:
   3792                     case kFmt35c:
   3793                         notHandled = handleFmt35c_3rc(cUnit, mir, blockList[i],
   3794                                                       labelList);
   3795                         break;
   3796                     case kFmt3rms:
   3797                     case kFmt35ms:
   3798                         notHandled = handleFmt35ms_3rms(cUnit, mir,blockList[i],
   3799                                                         labelList);
   3800                         break;
   3801                     case kFmt3inline:
   3802                     case kFmt3rinline:
   3803                         notHandled = handleExecuteInline(cUnit, mir);
   3804                         break;
   3805                     case kFmt51l:
   3806                         notHandled = handleFmt51l(cUnit, mir);
   3807                         break;
   3808                     default:
   3809                         notHandled = true;
   3810                         break;
   3811                 }
   3812             }
   3813             if (notHandled) {
   3814                 LOGE("%#06x: Opcode 0x%x (%s) / Fmt %d not handled\n",
   3815                      mir->offset,
   3816                      dalvikOpCode, getOpcodeName(dalvikOpCode),
   3817                      dalvikFormat);
   3818                 dvmCompilerAbort(cUnit);
   3819                 break;
   3820             }
   3821         }
   3822 
   3823         if (blockList[i]->blockType == kEntryBlock) {
   3824             dvmCompilerAppendLIR(cUnit,
   3825                                  (LIR *) cUnit->loopAnalysis->branchToBody);
   3826             dvmCompilerAppendLIR(cUnit,
   3827                                  (LIR *) cUnit->loopAnalysis->branchToPCR);
   3828         }
   3829 
   3830         if (headLIR) {
   3831             /*
   3832              * Eliminate redundant loads/stores and delay stores into later
   3833              * slots
   3834              */
   3835             dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
   3836                                                cUnit->lastLIRInsn);
   3837         }
   3838 
   3839 gen_fallthrough:
   3840         /*
   3841          * Check if the block is terminated due to trace length constraint -
   3842          * insert an unconditional branch to the chaining cell.
   3843          */
   3844         if (blockList[i]->needFallThroughBranch) {
   3845             genUnconditionalBranch(cUnit,
   3846                                    &labelList[blockList[i]->fallThrough->id]);
   3847         }
   3848 
   3849     }
   3850 
   3851     /* Handle the chaining cells in predefined order */
   3852     for (i = 0; i < kChainingCellGap; i++) {
   3853         size_t j;
   3854         int *blockIdList = (int *) chainingListByType[i].elemList;
   3855 
   3856         cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
   3857 
   3858         /* No chaining cells of this type */
   3859         if (cUnit->numChainingCells[i] == 0)
   3860             continue;
   3861 
   3862         /* Record the first LIR for a new type of chaining cell */
   3863         cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
   3864 
   3865         for (j = 0; j < chainingListByType[i].numUsed; j++) {
   3866             int blockId = blockIdList[j];
   3867 
   3868             /* Align this chaining cell first */
   3869             newLIR0(cUnit, kArmPseudoPseudoAlign4);
   3870 
   3871             /* Insert the pseudo chaining instruction */
   3872             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
   3873 
   3874 
   3875             switch (blockList[blockId]->blockType) {
   3876                 case kChainingCellNormal:
   3877                     handleNormalChainingCell(cUnit,
   3878                       blockList[blockId]->startOffset);
   3879                     break;
   3880                 case kChainingCellInvokeSingleton:
   3881                     handleInvokeSingletonChainingCell(cUnit,
   3882                         blockList[blockId]->containingMethod);
   3883                     break;
   3884                 case kChainingCellInvokePredicted:
   3885                     handleInvokePredictedChainingCell(cUnit);
   3886                     break;
   3887                 case kChainingCellHot:
   3888                     handleHotChainingCell(cUnit,
   3889                         blockList[blockId]->startOffset);
   3890                     break;
   3891 #if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
   3892                 case kChainingCellBackwardBranch:
   3893                     handleBackwardBranchChainingCell(cUnit,
   3894                         blockList[blockId]->startOffset);
   3895                     break;
   3896 #endif
   3897                 default:
   3898                     LOGE("Bad blocktype %d", blockList[blockId]->blockType);
   3899                     dvmCompilerAbort(cUnit);
   3900             }
   3901         }
   3902     }
   3903 
   3904     /* Mark the bottom of chaining cells */
   3905     cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom);
   3906 
   3907     /*
   3908      * Generate the branch to the dvmJitToInterpNoChain entry point at the end
   3909      * of all chaining cells for the overflow cases.
   3910      */
   3911     if (cUnit->switchOverflowPad) {
   3912         loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
   3913         loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   3914                      jitToInterpEntries.dvmJitToInterpNoChain), r2);
   3915         opRegReg(cUnit, kOpAdd, r1, r1);
   3916         opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
   3917 #if defined(JIT_STATS)
   3918         loadConstant(cUnit, r0, kSwitchOverflow);
   3919 #endif
   3920         opReg(cUnit, kOpBlx, r2);
   3921     }
   3922 
   3923     dvmCompilerApplyGlobalOptimizations(cUnit);
   3924 
   3925 #if defined(WITH_SELF_VERIFICATION)
   3926     selfVerificationBranchInsertPass(cUnit);
   3927 #endif
   3928 }
   3929 
   3930 /* Accept the work and start compiling */
   3931 bool dvmCompilerDoWork(CompilerWorkOrder *work)
   3932 {
   3933     bool res;
   3934 
   3935     if (gDvmJit.codeCacheFull) {
   3936         return false;
   3937     }
   3938 
   3939     switch (work->kind) {
   3940         case kWorkOrderMethod:
   3941             res = dvmCompileMethod(work->info, &work->result);
   3942             break;
   3943         case kWorkOrderTrace:
   3944             /* Start compilation with maximally allowed trace length */
   3945             res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result,
   3946                                   work->bailPtr);
   3947             break;
   3948         case kWorkOrderTraceDebug: {
   3949             bool oldPrintMe = gDvmJit.printMe;
   3950             gDvmJit.printMe = true;
   3951             /* Start compilation with maximally allowed trace length */
   3952             res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result,
   3953                                   work->bailPtr);
   3954             gDvmJit.printMe = oldPrintMe;;
   3955             break;
   3956         }
   3957         default:
   3958             res = false;
   3959             LOGE("Jit: unknown work order type");
   3960             assert(0);  // Bail if debug build, discard oteherwise
   3961     }
   3962     return res;
   3963 }
   3964 
   3965 /* Architectural-specific debugging helpers go here */
   3966 void dvmCompilerArchDump(void)
   3967 {
   3968     /* Print compiled opcode in this VM instance */
   3969     int i, start, streak;
   3970     char buf[1024];
   3971 
   3972     streak = i = 0;
   3973     buf[0] = 0;
   3974     while (opcodeCoverage[i] == 0 && i < 256) {
   3975         i++;
   3976     }
   3977     if (i == 256) {
   3978         return;
   3979     }
   3980     for (start = i++, streak = 1; i < 256; i++) {
   3981         if (opcodeCoverage[i]) {
   3982             streak++;
   3983         } else {
   3984             if (streak == 1) {
   3985                 sprintf(buf+strlen(buf), "%x,", start);
   3986             } else {
   3987                 sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
   3988             }
   3989             streak = 0;
   3990             while (opcodeCoverage[i] == 0 && i < 256) {
   3991                 i++;
   3992             }
   3993             if (i < 256) {
   3994                 streak = 1;
   3995                 start = i;
   3996             }
   3997         }
   3998     }
   3999     if (streak) {
   4000         if (streak == 1) {
   4001             sprintf(buf+strlen(buf), "%x", start);
   4002         } else {
   4003             sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
   4004         }
   4005     }
   4006     if (strlen(buf)) {
   4007         LOGD("dalvik.vm.jit.op = %s", buf);
   4008     }
   4009 }
   4010 
   4011 /* Common initialization routine for an architecture family */
   4012 bool dvmCompilerArchInit()
   4013 {
   4014     int i;
   4015 
   4016     for (i = 0; i < kArmLast; i++) {
   4017         if (EncodingMap[i].opCode != i) {
   4018             LOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
   4019                  EncodingMap[i].name, i, EncodingMap[i].opCode);
   4020             dvmAbort();  // OK to dvmAbort - build error
   4021         }
   4022     }
   4023 
   4024     return dvmCompilerArchVariantInit();
   4025 }
   4026 
   4027 void *dvmCompilerGetInterpretTemplate()
   4028 {
   4029       return (void*) ((int)gDvmJit.codeCache +
   4030                       templateEntryOffsets[TEMPLATE_INTERPRET]);
   4031 }
   4032 
   4033 /* Needed by the ld/st optmizatons */
   4034 ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
   4035 {
   4036     return genRegCopyNoInsert(cUnit, rDest, rSrc);
   4037 }
   4038 
   4039 /* Needed by the register allocator */
   4040 ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
   4041 {
   4042     return genRegCopy(cUnit, rDest, rSrc);
   4043 }
   4044 
   4045 /* Needed by the register allocator */
   4046 void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
   4047                             int srcLo, int srcHi)
   4048 {
   4049     genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
   4050 }
   4051 
   4052 void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
   4053                              int displacement, int rSrc, OpSize size)
   4054 {
   4055     storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
   4056 }
   4057 
   4058 void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
   4059                                  int displacement, int rSrcLo, int rSrcHi)
   4060 {
   4061     storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
   4062 }
   4063