Home | History | Annotate | Download | only in arm
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * This file contains codegen and support common to all supported
     19  * ARM variants.  It is included by:
     20  *
     21  *        Codegen-$(TARGET_ARCH_VARIANT).c
     22  *
     23  * which combines this common code with specific support found in the
     24  * applicable directory below this one.
     25  */
     26 
     27 /*
     28  * Mark garbage collection card. Skip if the value we're storing is null.
     29  */
     30 static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
     31 {
     32     int regCardBase = dvmCompilerAllocTemp(cUnit);
     33     int regCardNo = dvmCompilerAllocTemp(cUnit);
     34     opRegImm(cUnit, kOpCmp, valReg, 0); /* storing null? */
     35     ArmLIR *branchOver = opCondBranch(cUnit, kArmCondEq);
     36     loadWordDisp(cUnit, rGLUE, offsetof(InterpState, cardTable),
     37                  regCardBase);
     38     opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
     39     storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
     40                      kUnsignedByte);
     41     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
     42     target->defMask = ENCODE_ALL;
     43     branchOver->generic.target = (LIR *)target;
     44     dvmCompilerFreeTemp(cUnit, regCardBase);
     45     dvmCompilerFreeTemp(cUnit, regCardNo);
     46 }
     47 
     48 static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
     49                                      int srcSize, int tgtSize)
     50 {
     51     /*
     52      * Don't optimize the register usage since it calls out to template
     53      * functions
     54      */
     55     RegLocation rlSrc;
     56     RegLocation rlDest;
     57     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
     58     if (srcSize == 1) {
     59         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
     60         loadValueDirectFixed(cUnit, rlSrc, r0);
     61     } else {
     62         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
     63         loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
     64     }
     65     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
     66     opReg(cUnit, kOpBlx, r2);
     67     dvmCompilerClobberCallRegs(cUnit);
     68     if (tgtSize == 1) {
     69         RegLocation rlResult;
     70         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
     71         rlResult = dvmCompilerGetReturn(cUnit);
     72         storeValue(cUnit, rlDest, rlResult);
     73     } else {
     74         RegLocation rlResult;
     75         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
     76         rlResult = dvmCompilerGetReturnWide(cUnit);
     77         storeValueWide(cUnit, rlDest, rlResult);
     78     }
     79     return false;
     80 }
     81 
     82 static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
     83                                     RegLocation rlDest, RegLocation rlSrc1,
     84                                     RegLocation rlSrc2)
     85 {
     86     RegLocation rlResult;
     87     void* funct;
     88 
     89     switch (mir->dalvikInsn.opCode) {
     90         case OP_ADD_FLOAT_2ADDR:
     91         case OP_ADD_FLOAT:
     92             funct = (void*) __aeabi_fadd;
     93             break;
     94         case OP_SUB_FLOAT_2ADDR:
     95         case OP_SUB_FLOAT:
     96             funct = (void*) __aeabi_fsub;
     97             break;
     98         case OP_DIV_FLOAT_2ADDR:
     99         case OP_DIV_FLOAT:
    100             funct = (void*) __aeabi_fdiv;
    101             break;
    102         case OP_MUL_FLOAT_2ADDR:
    103         case OP_MUL_FLOAT:
    104             funct = (void*) __aeabi_fmul;
    105             break;
    106         case OP_REM_FLOAT_2ADDR:
    107         case OP_REM_FLOAT:
    108             funct = (void*) fmodf;
    109             break;
    110         case OP_NEG_FLOAT: {
    111             genNegFloat(cUnit, rlDest, rlSrc1);
    112             return false;
    113         }
    114         default:
    115             return true;
    116     }
    117     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    118     loadValueDirectFixed(cUnit, rlSrc1, r0);
    119     loadValueDirectFixed(cUnit, rlSrc2, r1);
    120     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
    121     opReg(cUnit, kOpBlx, r2);
    122     dvmCompilerClobberCallRegs(cUnit);
    123     rlResult = dvmCompilerGetReturn(cUnit);
    124     storeValue(cUnit, rlDest, rlResult);
    125     return false;
    126 }
    127 
    128 static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
    129                                      RegLocation rlDest, RegLocation rlSrc1,
    130                                      RegLocation rlSrc2)
    131 {
    132     RegLocation rlResult;
    133     void* funct;
    134 
    135     switch (mir->dalvikInsn.opCode) {
    136         case OP_ADD_DOUBLE_2ADDR:
    137         case OP_ADD_DOUBLE:
    138             funct = (void*) __aeabi_dadd;
    139             break;
    140         case OP_SUB_DOUBLE_2ADDR:
    141         case OP_SUB_DOUBLE:
    142             funct = (void*) __aeabi_dsub;
    143             break;
    144         case OP_DIV_DOUBLE_2ADDR:
    145         case OP_DIV_DOUBLE:
    146             funct = (void*) __aeabi_ddiv;
    147             break;
    148         case OP_MUL_DOUBLE_2ADDR:
    149         case OP_MUL_DOUBLE:
    150             funct = (void*) __aeabi_dmul;
    151             break;
    152         case OP_REM_DOUBLE_2ADDR:
    153         case OP_REM_DOUBLE:
    154             funct = (void*) fmod;
    155             break;
    156         case OP_NEG_DOUBLE: {
    157             genNegDouble(cUnit, rlDest, rlSrc1);
    158             return false;
    159         }
    160         default:
    161             return true;
    162     }
    163     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    164     LOAD_FUNC_ADDR(cUnit, rlr, (int)funct);
    165     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    166     loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    167     opReg(cUnit, kOpBlx, rlr);
    168     dvmCompilerClobberCallRegs(cUnit);
    169     rlResult = dvmCompilerGetReturnWide(cUnit);
    170     storeValueWide(cUnit, rlDest, rlResult);
    171     return false;
    172 }
    173 
    174 static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
    175 {
    176     OpCode opCode = mir->dalvikInsn.opCode;
    177 
    178     switch (opCode) {
    179         case OP_INT_TO_FLOAT:
    180             return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
    181         case OP_FLOAT_TO_INT:
    182             return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
    183         case OP_DOUBLE_TO_FLOAT:
    184             return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
    185         case OP_FLOAT_TO_DOUBLE:
    186             return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
    187         case OP_INT_TO_DOUBLE:
    188             return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
    189         case OP_DOUBLE_TO_INT:
    190             return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
    191         case OP_FLOAT_TO_LONG:
    192             return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
    193         case OP_LONG_TO_FLOAT:
    194             return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
    195         case OP_DOUBLE_TO_LONG:
    196             return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
    197         case OP_LONG_TO_DOUBLE:
    198             return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
    199         default:
    200             return true;
    201     }
    202     return false;
    203 }
    204 
    205 #if defined(WITH_SELF_VERIFICATION)
    206 static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpCode opCode,
    207                           int dest, int src1)
    208 {
    209      ArmLIR *insn = dvmCompilerNew(sizeof(ArmLIR), true);
    210      insn->opCode = opCode;
    211      insn->operands[0] = dest;
    212      insn->operands[1] = src1;
    213      setupResourceMasks(insn);
    214      dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
    215 }
    216 
    217 static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
    218 {
    219     ArmLIR *thisLIR;
    220     TemplateOpCode opCode = TEMPLATE_MEM_OP_DECODE;
    221 
    222     for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn;
    223          thisLIR != (ArmLIR *) cUnit->lastLIRInsn;
    224          thisLIR = NEXT_LIR(thisLIR)) {
    225         if (thisLIR->branchInsertSV) {
    226             /* Branch to mem op decode template */
    227             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
    228                        (int) gDvmJit.codeCache + templateEntryOffsets[opCode],
    229                        (int) gDvmJit.codeCache + templateEntryOffsets[opCode]);
    230             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
    231                        (int) gDvmJit.codeCache + templateEntryOffsets[opCode],
    232                        (int) gDvmJit.codeCache + templateEntryOffsets[opCode]);
    233         }
    234     }
    235 }
    236 #endif
    237 
    238 /* Generate conditional branch instructions */
    239 static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
    240                                     ArmConditionCode cond,
    241                                     ArmLIR *target)
    242 {
    243     ArmLIR *branch = opCondBranch(cUnit, cond);
    244     branch->generic.target = (LIR *) target;
    245     return branch;
    246 }
    247 
    248 /* Generate a unconditional branch to go to the interpreter */
    249 static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
    250                                   ArmLIR *pcrLabel)
    251 {
    252     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
    253     return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
    254 }
    255 
    256 /* Load a wide field from an object instance */
    257 static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
    258 {
    259     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
    260     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
    261     RegLocation rlResult;
    262     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    263     int regPtr = dvmCompilerAllocTemp(cUnit);
    264 
    265     assert(rlDest.wide);
    266 
    267     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    268                  NULL);/* null object? */
    269     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
    270     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
    271 
    272     HEAP_ACCESS_SHADOW(true);
    273     loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
    274     HEAP_ACCESS_SHADOW(false);
    275 
    276     dvmCompilerFreeTemp(cUnit, regPtr);
    277     storeValueWide(cUnit, rlDest, rlResult);
    278 }
    279 
    280 /* Store a wide field to an object instance */
    281 static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
    282 {
    283     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    284     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
    285     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    286     int regPtr;
    287     rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
    288     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    289                  NULL);/* null object? */
    290     regPtr = dvmCompilerAllocTemp(cUnit);
    291     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
    292 
    293     HEAP_ACCESS_SHADOW(true);
    294     storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
    295     HEAP_ACCESS_SHADOW(false);
    296 
    297     dvmCompilerFreeTemp(cUnit, regPtr);
    298 }
    299 
    300 /*
    301  * Load a field from an object instance
    302  *
    303  */
    304 static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
    305                     int fieldOffset, bool isVolatile)
    306 {
    307     RegLocation rlResult;
    308     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    309     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
    310     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
    311     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    312     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    313     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    314                  NULL);/* null object? */
    315 
    316     HEAP_ACCESS_SHADOW(true);
    317     loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
    318                  size, rlObj.sRegLow);
    319     HEAP_ACCESS_SHADOW(false);
    320     if (isVolatile) {
    321         dvmCompilerGenMemBarrier(cUnit);
    322     }
    323 
    324     storeValue(cUnit, rlDest, rlResult);
    325 }
    326 
    327 /*
    328  * Store a field to an object instance
    329  *
    330  */
    331 static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
    332                     int fieldOffset, bool isObject, bool isVolatile)
    333 {
    334     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    335     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    336     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
    337     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    338     rlSrc = loadValue(cUnit, rlSrc, regClass);
    339     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    340                  NULL);/* null object? */
    341 
    342     if (isVolatile) {
    343         dvmCompilerGenMemBarrier(cUnit);
    344     }
    345     HEAP_ACCESS_SHADOW(true);
    346     storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
    347     HEAP_ACCESS_SHADOW(false);
    348     if (isObject) {
    349         /* NOTE: marking card based on object head */
    350         markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
    351     }
    352 }
    353 
    354 
    355 /*
    356  * Generate array load
    357  */
    358 static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
    359                         RegLocation rlArray, RegLocation rlIndex,
    360                         RegLocation rlDest, int scale)
    361 {
    362     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    363     int lenOffset = offsetof(ArrayObject, length);
    364     int dataOffset = offsetof(ArrayObject, contents);
    365     RegLocation rlResult;
    366     rlArray = loadValue(cUnit, rlArray, kCoreReg);
    367     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    368     int regPtr;
    369 
    370     /* null object? */
    371     ArmLIR * pcrLabel = NULL;
    372 
    373     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    374         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
    375                                 rlArray.lowReg, mir->offset, NULL);
    376     }
    377 
    378     regPtr = dvmCompilerAllocTemp(cUnit);
    379 
    380     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    381         int regLen = dvmCompilerAllocTemp(cUnit);
    382         /* Get len */
    383         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
    384         /* regPtr -> array data */
    385         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    386         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
    387                        pcrLabel);
    388         dvmCompilerFreeTemp(cUnit, regLen);
    389     } else {
    390         /* regPtr -> array data */
    391         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    392     }
    393     if ((size == kLong) || (size == kDouble)) {
    394         if (scale) {
    395             int rNewIndex = dvmCompilerAllocTemp(cUnit);
    396             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
    397             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
    398             dvmCompilerFreeTemp(cUnit, rNewIndex);
    399         } else {
    400             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
    401         }
    402         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    403 
    404         HEAP_ACCESS_SHADOW(true);
    405         loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
    406         HEAP_ACCESS_SHADOW(false);
    407 
    408         dvmCompilerFreeTemp(cUnit, regPtr);
    409         storeValueWide(cUnit, rlDest, rlResult);
    410     } else {
    411         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    412 
    413         HEAP_ACCESS_SHADOW(true);
    414         loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
    415                         scale, size);
    416         HEAP_ACCESS_SHADOW(false);
    417 
    418         dvmCompilerFreeTemp(cUnit, regPtr);
    419         storeValue(cUnit, rlDest, rlResult);
    420     }
    421 }
    422 
    423 /*
    424  * Generate array store
    425  *
    426  */
    427 static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
    428                         RegLocation rlArray, RegLocation rlIndex,
    429                         RegLocation rlSrc, int scale)
    430 {
    431     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    432     int lenOffset = offsetof(ArrayObject, length);
    433     int dataOffset = offsetof(ArrayObject, contents);
    434 
    435     int regPtr;
    436     rlArray = loadValue(cUnit, rlArray, kCoreReg);
    437     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    438 
    439     if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
    440         dvmCompilerClobber(cUnit, rlArray.lowReg);
    441         regPtr = rlArray.lowReg;
    442     } else {
    443         regPtr = dvmCompilerAllocTemp(cUnit);
    444         genRegCopy(cUnit, regPtr, rlArray.lowReg);
    445     }
    446 
    447     /* null object? */
    448     ArmLIR * pcrLabel = NULL;
    449 
    450     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    451         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
    452                                 mir->offset, NULL);
    453     }
    454 
    455     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    456         int regLen = dvmCompilerAllocTemp(cUnit);
    457         //NOTE: max live temps(4) here.
    458         /* Get len */
    459         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
    460         /* regPtr -> array data */
    461         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    462         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
    463                        pcrLabel);
    464         dvmCompilerFreeTemp(cUnit, regLen);
    465     } else {
    466         /* regPtr -> array data */
    467         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    468     }
    469     /* at this point, regPtr points to array, 2 live temps */
    470     if ((size == kLong) || (size == kDouble)) {
    471         //TODO: need specific wide routine that can handle fp regs
    472         if (scale) {
    473             int rNewIndex = dvmCompilerAllocTemp(cUnit);
    474             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
    475             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
    476             dvmCompilerFreeTemp(cUnit, rNewIndex);
    477         } else {
    478             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
    479         }
    480         rlSrc = loadValueWide(cUnit, rlSrc, regClass);
    481 
    482         HEAP_ACCESS_SHADOW(true);
    483         storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
    484         HEAP_ACCESS_SHADOW(false);
    485 
    486         dvmCompilerFreeTemp(cUnit, regPtr);
    487     } else {
    488         rlSrc = loadValue(cUnit, rlSrc, regClass);
    489 
    490         HEAP_ACCESS_SHADOW(true);
    491         storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
    492                          scale, size);
    493         HEAP_ACCESS_SHADOW(false);
    494     }
    495 }
    496 
    497 /*
    498  * Generate array object store
    499  * Must use explicit register allocation here because of
    500  * call-out to dvmCanPutArrayElement
    501  */
    502 static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
    503                               RegLocation rlArray, RegLocation rlIndex,
    504                               RegLocation rlSrc, int scale)
    505 {
    506     int lenOffset = offsetof(ArrayObject, length);
    507     int dataOffset = offsetof(ArrayObject, contents);
    508 
    509     dvmCompilerFlushAllRegs(cUnit);
    510 
    511     int regLen = r0;
    512     int regPtr = r4PC;  /* Preserved across call */
    513     int regArray = r1;
    514     int regIndex = r7;  /* Preserved across call */
    515 
    516     loadValueDirectFixed(cUnit, rlArray, regArray);
    517     loadValueDirectFixed(cUnit, rlIndex, regIndex);
    518 
    519     /* null object? */
    520     ArmLIR * pcrLabel = NULL;
    521 
    522     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    523         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
    524                                 mir->offset, NULL);
    525     }
    526 
    527     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    528         /* Get len */
    529         loadWordDisp(cUnit, regArray, lenOffset, regLen);
    530         /* regPtr -> array data */
    531         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
    532         genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
    533                        pcrLabel);
    534     } else {
    535         /* regPtr -> array data */
    536         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
    537     }
    538 
    539     /* Get object to store */
    540     loadValueDirectFixed(cUnit, rlSrc, r0);
    541     LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement);
    542 
    543     /* Are we storing null?  If so, avoid check */
    544     opRegImm(cUnit, kOpCmp, r0, 0);
    545     ArmLIR *branchOver = opCondBranch(cUnit, kArmCondEq);
    546 
    547     /* Make sure the types are compatible */
    548     loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1);
    549     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0);
    550     opReg(cUnit, kOpBlx, r2);
    551     dvmCompilerClobberCallRegs(cUnit);
    552 
    553     /*
    554      * Using fixed registers here, and counting on r4 and r7 being
    555      * preserved across the above call.  Tell the register allocation
    556      * utilities about the regs we are using directly
    557      */
    558     dvmCompilerLockTemp(cUnit, regPtr);   // r4PC
    559     dvmCompilerLockTemp(cUnit, regIndex); // r7
    560     dvmCompilerLockTemp(cUnit, r0);
    561     dvmCompilerLockTemp(cUnit, r1);
    562 
    563     /* Bad? - roll back and re-execute if so */
    564     genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel);
    565 
    566     /* Resume here - must reload element & array, regPtr & index preserved */
    567     loadValueDirectFixed(cUnit, rlSrc, r0);
    568     loadValueDirectFixed(cUnit, rlArray, r1);
    569 
    570     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
    571     target->defMask = ENCODE_ALL;
    572     branchOver->generic.target = (LIR *) target;
    573 
    574     HEAP_ACCESS_SHADOW(true);
    575     storeBaseIndexed(cUnit, regPtr, regIndex, r0,
    576                      scale, kWord);
    577     HEAP_ACCESS_SHADOW(false);
    578 
    579     dvmCompilerFreeTemp(cUnit, regPtr);
    580     dvmCompilerFreeTemp(cUnit, regIndex);
    581 
    582     /* NOTE: marking card here based on object head */
    583     markCard(cUnit, r0, r1);
    584 }
    585 
    586 static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
    587                            RegLocation rlDest, RegLocation rlSrc1,
    588                            RegLocation rlShift)
    589 {
    590     /*
    591      * Don't mess with the regsiters here as there is a particular calling
    592      * convention to the out-of-line handler.
    593      */
    594     RegLocation rlResult;
    595 
    596     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    597     loadValueDirect(cUnit, rlShift, r2);
    598     switch( mir->dalvikInsn.opCode) {
    599         case OP_SHL_LONG:
    600         case OP_SHL_LONG_2ADDR:
    601             genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
    602             break;
    603         case OP_SHR_LONG:
    604         case OP_SHR_LONG_2ADDR:
    605             genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
    606             break;
    607         case OP_USHR_LONG:
    608         case OP_USHR_LONG_2ADDR:
    609             genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
    610             break;
    611         default:
    612             return true;
    613     }
    614     rlResult = dvmCompilerGetReturnWide(cUnit);
    615     storeValueWide(cUnit, rlDest, rlResult);
    616     return false;
    617 }
    618 
    619 static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
    620                            RegLocation rlDest, RegLocation rlSrc1,
    621                            RegLocation rlSrc2)
    622 {
    623     RegLocation rlResult;
    624     OpKind firstOp = kOpBkpt;
    625     OpKind secondOp = kOpBkpt;
    626     bool callOut = false;
    627     void *callTgt;
    628     int retReg = r0;
    629 
    630     switch (mir->dalvikInsn.opCode) {
    631         case OP_NOT_LONG:
    632             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    633             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    634             opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
    635             opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
    636             storeValueWide(cUnit, rlDest, rlResult);
    637             return false;
    638             break;
    639         case OP_ADD_LONG:
    640         case OP_ADD_LONG_2ADDR:
    641             firstOp = kOpAdd;
    642             secondOp = kOpAdc;
    643             break;
    644         case OP_SUB_LONG:
    645         case OP_SUB_LONG_2ADDR:
    646             firstOp = kOpSub;
    647             secondOp = kOpSbc;
    648             break;
    649         case OP_MUL_LONG:
    650         case OP_MUL_LONG_2ADDR:
    651             genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
    652             return false;
    653         case OP_DIV_LONG:
    654         case OP_DIV_LONG_2ADDR:
    655             callOut = true;
    656             retReg = r0;
    657             callTgt = (void*)__aeabi_ldivmod;
    658             break;
    659         /* NOTE - result is in r2/r3 instead of r0/r1 */
    660         case OP_REM_LONG:
    661         case OP_REM_LONG_2ADDR:
    662             callOut = true;
    663             callTgt = (void*)__aeabi_ldivmod;
    664             retReg = r2;
    665             break;
    666         case OP_AND_LONG_2ADDR:
    667         case OP_AND_LONG:
    668             firstOp = kOpAnd;
    669             secondOp = kOpAnd;
    670             break;
    671         case OP_OR_LONG:
    672         case OP_OR_LONG_2ADDR:
    673             firstOp = kOpOr;
    674             secondOp = kOpOr;
    675             break;
    676         case OP_XOR_LONG:
    677         case OP_XOR_LONG_2ADDR:
    678             firstOp = kOpXor;
    679             secondOp = kOpXor;
    680             break;
    681         case OP_NEG_LONG: {
    682             //TUNING: can improve this using Thumb2 code
    683             int tReg = dvmCompilerAllocTemp(cUnit);
    684             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    685             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    686             loadConstantNoClobber(cUnit, tReg, 0);
    687             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
    688                         tReg, rlSrc2.lowReg);
    689             opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg);
    690             genRegCopy(cUnit, rlResult.highReg, tReg);
    691             storeValueWide(cUnit, rlDest, rlResult);
    692             return false;
    693         }
    694         default:
    695             LOGE("Invalid long arith op");
    696             dvmCompilerAbort(cUnit);
    697     }
    698     if (!callOut) {
    699         genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
    700     } else {
    701         // Adjust return regs in to handle case of rem returning r2/r3
    702         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    703         loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    704         LOAD_FUNC_ADDR(cUnit, rlr, (int) callTgt);
    705         loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    706         opReg(cUnit, kOpBlx, rlr);
    707         dvmCompilerClobberCallRegs(cUnit);
    708         if (retReg == r0)
    709             rlResult = dvmCompilerGetReturnWide(cUnit);
    710         else
    711             rlResult = dvmCompilerGetReturnWideAlt(cUnit);
    712         storeValueWide(cUnit, rlDest, rlResult);
    713     }
    714     return false;
    715 }
    716 
    717 static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
    718                           RegLocation rlDest, RegLocation rlSrc1,
    719                           RegLocation rlSrc2)
    720 {
    721     OpKind op = kOpBkpt;
    722     bool callOut = false;
    723     bool checkZero = false;
    724     bool unary = false;
    725     int retReg = r0;
    726     void *callTgt;
    727     RegLocation rlResult;
    728     bool shiftOp = false;
    729 
    730     switch (mir->dalvikInsn.opCode) {
    731         case OP_NEG_INT:
    732             op = kOpNeg;
    733             unary = true;
    734             break;
    735         case OP_NOT_INT:
    736             op = kOpMvn;
    737             unary = true;
    738             break;
    739         case OP_ADD_INT:
    740         case OP_ADD_INT_2ADDR:
    741             op = kOpAdd;
    742             break;
    743         case OP_SUB_INT:
    744         case OP_SUB_INT_2ADDR:
    745             op = kOpSub;
    746             break;
    747         case OP_MUL_INT:
    748         case OP_MUL_INT_2ADDR:
    749             op = kOpMul;
    750             break;
    751         case OP_DIV_INT:
    752         case OP_DIV_INT_2ADDR:
    753             callOut = true;
    754             checkZero = true;
    755             callTgt = __aeabi_idiv;
    756             retReg = r0;
    757             break;
    758         /* NOTE: returns in r1 */
    759         case OP_REM_INT:
    760         case OP_REM_INT_2ADDR:
    761             callOut = true;
    762             checkZero = true;
    763             callTgt = __aeabi_idivmod;
    764             retReg = r1;
    765             break;
    766         case OP_AND_INT:
    767         case OP_AND_INT_2ADDR:
    768             op = kOpAnd;
    769             break;
    770         case OP_OR_INT:
    771         case OP_OR_INT_2ADDR:
    772             op = kOpOr;
    773             break;
    774         case OP_XOR_INT:
    775         case OP_XOR_INT_2ADDR:
    776             op = kOpXor;
    777             break;
    778         case OP_SHL_INT:
    779         case OP_SHL_INT_2ADDR:
    780             shiftOp = true;
    781             op = kOpLsl;
    782             break;
    783         case OP_SHR_INT:
    784         case OP_SHR_INT_2ADDR:
    785             shiftOp = true;
    786             op = kOpAsr;
    787             break;
    788         case OP_USHR_INT:
    789         case OP_USHR_INT_2ADDR:
    790             shiftOp = true;
    791             op = kOpLsr;
    792             break;
    793         default:
    794             LOGE("Invalid word arith op: 0x%x(%d)",
    795                  mir->dalvikInsn.opCode, mir->dalvikInsn.opCode);
    796             dvmCompilerAbort(cUnit);
    797     }
    798     if (!callOut) {
    799         rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
    800         if (unary) {
    801             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    802             opRegReg(cUnit, op, rlResult.lowReg,
    803                      rlSrc1.lowReg);
    804         } else {
    805             rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
    806             if (shiftOp) {
    807                 int tReg = dvmCompilerAllocTemp(cUnit);
    808                 opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
    809                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    810                 opRegRegReg(cUnit, op, rlResult.lowReg,
    811                             rlSrc1.lowReg, tReg);
    812                 dvmCompilerFreeTemp(cUnit, tReg);
    813             } else {
    814                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    815                 opRegRegReg(cUnit, op, rlResult.lowReg,
    816                             rlSrc1.lowReg, rlSrc2.lowReg);
    817             }
    818         }
    819         storeValue(cUnit, rlDest, rlResult);
    820     } else {
    821         RegLocation rlResult;
    822         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    823         loadValueDirectFixed(cUnit, rlSrc2, r1);
    824         LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
    825         loadValueDirectFixed(cUnit, rlSrc1, r0);
    826         if (checkZero) {
    827             genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
    828         }
    829         opReg(cUnit, kOpBlx, r2);
    830         dvmCompilerClobberCallRegs(cUnit);
    831         if (retReg == r0)
    832             rlResult = dvmCompilerGetReturn(cUnit);
    833         else
    834             rlResult = dvmCompilerGetReturnAlt(cUnit);
    835         storeValue(cUnit, rlDest, rlResult);
    836     }
    837     return false;
    838 }
    839 
    840 static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
    841 {
    842     OpCode opCode = mir->dalvikInsn.opCode;
    843     RegLocation rlDest;
    844     RegLocation rlSrc1;
    845     RegLocation rlSrc2;
    846     /* Deduce sizes of operands */
    847     if (mir->ssaRep->numUses == 2) {
    848         rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
    849         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
    850     } else if (mir->ssaRep->numUses == 3) {
    851         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    852         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
    853     } else {
    854         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    855         rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
    856         assert(mir->ssaRep->numUses == 4);
    857     }
    858     if (mir->ssaRep->numDefs == 1) {
    859         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
    860     } else {
    861         assert(mir->ssaRep->numDefs == 2);
    862         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
    863     }
    864 
    865     if ((opCode >= OP_ADD_LONG_2ADDR) && (opCode <= OP_XOR_LONG_2ADDR)) {
    866         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    867     }
    868     if ((opCode >= OP_ADD_LONG) && (opCode <= OP_XOR_LONG)) {
    869         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    870     }
    871     if ((opCode >= OP_SHL_LONG_2ADDR) && (opCode <= OP_USHR_LONG_2ADDR)) {
    872         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    873     }
    874     if ((opCode >= OP_SHL_LONG) && (opCode <= OP_USHR_LONG)) {
    875         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    876     }
    877     if ((opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_USHR_INT_2ADDR)) {
    878         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    879     }
    880     if ((opCode >= OP_ADD_INT) && (opCode <= OP_USHR_INT)) {
    881         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    882     }
    883     if ((opCode >= OP_ADD_FLOAT_2ADDR) && (opCode <= OP_REM_FLOAT_2ADDR)) {
    884         return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    885     }
    886     if ((opCode >= OP_ADD_FLOAT) && (opCode <= OP_REM_FLOAT)) {
    887         return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
    888     }
    889     if ((opCode >= OP_ADD_DOUBLE_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) {
    890         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    891     }
    892     if ((opCode >= OP_ADD_DOUBLE) && (opCode <= OP_REM_DOUBLE)) {
    893         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    894     }
    895     return true;
    896 }
    897 
    898 /* Generate unconditional branch instructions */
    899 static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
    900 {
    901     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
    902     branch->generic.target = (LIR *) target;
    903     return branch;
    904 }
    905 
    906 /* Perform the actual operation for OP_RETURN_* */
    907 static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
    908 {
    909     genDispatchToHandler(cUnit, TEMPLATE_RETURN);
    910 #if defined(WITH_JIT_TUNING)
    911     gDvmJit.returnOp++;
    912 #endif
    913     int dPC = (int) (cUnit->method->insns + mir->offset);
    914     /* Insert branch, but defer setting of target */
    915     ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
    916     /* Set up the place holder to reconstruct this Dalvik PC */
    917     ArmLIR *pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
    918     pcrLabel->opCode = kArmPseudoPCReconstructionCell;
    919     pcrLabel->operands[0] = dPC;
    920     pcrLabel->operands[1] = mir->offset;
    921     /* Insert the place holder to the growable list */
    922     dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
    923     /* Branch to the PC reconstruction code */
    924     branch->generic.target = (LIR *) pcrLabel;
    925 }
    926 
    927 static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
    928                                   DecodedInstruction *dInsn,
    929                                   ArmLIR **pcrLabel)
    930 {
    931     unsigned int i;
    932     unsigned int regMask = 0;
    933     RegLocation rlArg;
    934     int numDone = 0;
    935 
    936     /*
    937      * Load arguments to r0..r4.  Note that these registers may contain
    938      * live values, so we clobber them immediately after loading to prevent
    939      * them from being used as sources for subsequent loads.
    940      */
    941     dvmCompilerLockAllTemps(cUnit);
    942     for (i = 0; i < dInsn->vA; i++) {
    943         regMask |= 1 << i;
    944         rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
    945         loadValueDirectFixed(cUnit, rlArg, i);
    946     }
    947     if (regMask) {
    948         /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
    949         opRegRegImm(cUnit, kOpSub, r7, rFP,
    950                     sizeof(StackSaveArea) + (dInsn->vA << 2));
    951         /* generate null check */
    952         if (pcrLabel) {
    953             *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
    954                                      mir->offset, NULL);
    955         }
    956         storeMultiple(cUnit, r7, regMask);
    957     }
    958 }
    959 
    960 static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
    961                                 DecodedInstruction *dInsn,
    962                                 ArmLIR **pcrLabel)
    963 {
    964     int srcOffset = dInsn->vC << 2;
    965     int numArgs = dInsn->vA;
    966     int regMask;
    967 
    968     /*
    969      * Note: here, all promoted registers will have been flushed
    970      * back to the Dalvik base locations, so register usage restrictins
    971      * are lifted.  All parms loaded from original Dalvik register
    972      * region - even though some might conceivably have valid copies
    973      * cached in a preserved register.
    974      */
    975     dvmCompilerLockAllTemps(cUnit);
    976 
    977     /*
    978      * r4PC     : &rFP[vC]
    979      * r7: &newFP[0]
    980      */
    981     opRegRegImm(cUnit, kOpAdd, r4PC, rFP, srcOffset);
    982     /* load [r0 .. min(numArgs,4)] */
    983     regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
    984     /*
    985      * Protect the loadMultiple instruction from being reordered with other
    986      * Dalvik stack accesses.
    987      */
    988     loadMultiple(cUnit, r4PC, regMask);
    989 
    990     opRegRegImm(cUnit, kOpSub, r7, rFP,
    991                 sizeof(StackSaveArea) + (numArgs << 2));
    992     /* generate null check */
    993     if (pcrLabel) {
    994         *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
    995                                  mir->offset, NULL);
    996     }
    997 
    998     /*
    999      * Handle remaining 4n arguments:
   1000      * store previously loaded 4 values and load the next 4 values
   1001      */
   1002     if (numArgs >= 8) {
   1003         ArmLIR *loopLabel = NULL;
   1004         /*
   1005          * r0 contains "this" and it will be used later, so push it to the stack
   1006          * first. Pushing r5 (rFP) is just for stack alignment purposes.
   1007          */
   1008         opImm(cUnit, kOpPush, (1 << r0 | 1 << rFP));
   1009         /* No need to generate the loop structure if numArgs <= 11 */
   1010         if (numArgs > 11) {
   1011             loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
   1012             loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
   1013             loopLabel->defMask = ENCODE_ALL;
   1014         }
   1015         storeMultiple(cUnit, r7, regMask);
   1016         /*
   1017          * Protect the loadMultiple instruction from being reordered with other
   1018          * Dalvik stack accesses.
   1019          */
   1020         loadMultiple(cUnit, r4PC, regMask);
   1021         /* No need to generate the loop structure if numArgs <= 11 */
   1022         if (numArgs > 11) {
   1023             opRegImm(cUnit, kOpSub, rFP, 4);
   1024             genConditionalBranch(cUnit, kArmCondNe, loopLabel);
   1025         }
   1026     }
   1027 
   1028     /* Save the last batch of loaded values */
   1029     storeMultiple(cUnit, r7, regMask);
   1030 
   1031     /* Generate the loop epilogue - don't use r0 */
   1032     if ((numArgs > 4) && (numArgs % 4)) {
   1033         regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
   1034         /*
   1035          * Protect the loadMultiple instruction from being reordered with other
   1036          * Dalvik stack accesses.
   1037          */
   1038         loadMultiple(cUnit, r4PC, regMask);
   1039     }
   1040     if (numArgs >= 8)
   1041         opImm(cUnit, kOpPop, (1 << r0 | 1 << rFP));
   1042 
   1043     /* Save the modulo 4 arguments */
   1044     if ((numArgs > 4) && (numArgs % 4)) {
   1045         storeMultiple(cUnit, r7, regMask);
   1046     }
   1047 }
   1048 
   1049 /*
   1050  * Generate code to setup the call stack then jump to the chaining cell if it
   1051  * is not a native method.
   1052  */
   1053 static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
   1054                                      BasicBlock *bb, ArmLIR *labelList,
   1055                                      ArmLIR *pcrLabel,
   1056                                      const Method *calleeMethod)
   1057 {
   1058     /*
   1059      * Note: all Dalvik register state should be flushed to
   1060      * memory by the point, so register usage restrictions no
   1061      * longer apply.  All temp & preserved registers may be used.
   1062      */
   1063     dvmCompilerLockAllTemps(cUnit);
   1064     ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
   1065 
   1066     /* r1 = &retChainingCell */
   1067     dvmCompilerLockTemp(cUnit, r1);
   1068     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   1069     /* r4PC = dalvikCallsite */
   1070     loadConstant(cUnit, r4PC,
   1071                  (int) (cUnit->method->insns + mir->offset));
   1072     addrRetChain->generic.target = (LIR *) retChainingCell;
   1073     /*
   1074      * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
   1075      * r1 = &ChainingCell
   1076      * r4PC = callsiteDPC
   1077      */
   1078     if (dvmIsNativeMethod(calleeMethod)) {
   1079         genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NATIVE);
   1080 #if defined(WITH_JIT_TUNING)
   1081         gDvmJit.invokeNative++;
   1082 #endif
   1083     } else {
   1084         genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_CHAIN);
   1085 #if defined(WITH_JIT_TUNING)
   1086         gDvmJit.invokeMonomorphic++;
   1087 #endif
   1088         /* Branch to the chaining cell */
   1089         genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
   1090     }
   1091     /* Handle exceptions using the interpreter */
   1092     genTrap(cUnit, mir->offset, pcrLabel);
   1093 }
   1094 
   1095 /*
   1096  * Generate code to check the validity of a predicted chain and take actions
   1097  * based on the result.
   1098  *
   1099  * 0x426a99aa : ldr     r4, [pc, #72] --> r4 <- dalvikPC of this invoke
   1100  * 0x426a99ac : add     r1, pc, #32   --> r1 <- &retChainingCell
   1101  * 0x426a99ae : add     r2, pc, #40   --> r2 <- &predictedChainingCell
   1102  * 0x426a99b0 : blx_1   0x426a918c    --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
   1103  * 0x426a99b2 : blx_2   see above     --+
   1104  * 0x426a99b4 : b       0x426a99d8    --> off to the predicted chain
   1105  * 0x426a99b6 : b       0x426a99c8    --> punt to the interpreter
   1106  * 0x426a99b8 : ldr     r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
   1107  * 0x426a99ba : cmp     r1, #0        --> compare r1 (rechain count) against 0
   1108  * 0x426a99bc : bgt     0x426a99c2    --> >=0? don't rechain
   1109  * 0x426a99be : ldr     r7, [r6, #96] --+ dvmJitToPatchPredictedChain
   1110  * 0x426a99c0 : blx     r7            --+
   1111  * 0x426a99c2 : add     r1, pc, #12   --> r1 <- &retChainingCell
   1112  * 0x426a99c4 : blx_1   0x426a9098    --+ TEMPLATE_INVOKE_METHOD_NO_OPT
   1113  * 0x426a99c6 : blx_2   see above     --+
   1114  */
   1115 static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
   1116                                    int methodIndex,
   1117                                    ArmLIR *retChainingCell,
   1118                                    ArmLIR *predChainingCell,
   1119                                    ArmLIR *pcrLabel)
   1120 {
   1121     /*
   1122      * Note: all Dalvik register state should be flushed to
   1123      * memory by the point, so register usage restrictions no
   1124      * longer apply.  Lock temps to prevent them from being
   1125      * allocated by utility routines.
   1126      */
   1127     dvmCompilerLockAllTemps(cUnit);
   1128 
   1129     /* "this" is already left in r0 by genProcessArgs* */
   1130 
   1131     /* r4PC = dalvikCallsite */
   1132     loadConstant(cUnit, r4PC,
   1133                  (int) (cUnit->method->insns + mir->offset));
   1134 
   1135     /* r1 = &retChainingCell */
   1136     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   1137     addrRetChain->generic.target = (LIR *) retChainingCell;
   1138 
   1139     /* r2 = &predictedChainingCell */
   1140     ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, rpc, 0);
   1141     predictedChainingCell->generic.target = (LIR *) predChainingCell;
   1142 
   1143     genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
   1144 
   1145     /* return through lr - jump to the chaining cell */
   1146     genUnconditionalBranch(cUnit, predChainingCell);
   1147 
   1148     /*
   1149      * null-check on "this" may have been eliminated, but we still need a PC-
   1150      * reconstruction label for stack overflow bailout.
   1151      */
   1152     if (pcrLabel == NULL) {
   1153         int dPC = (int) (cUnit->method->insns + mir->offset);
   1154         pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
   1155         pcrLabel->opCode = kArmPseudoPCReconstructionCell;
   1156         pcrLabel->operands[0] = dPC;
   1157         pcrLabel->operands[1] = mir->offset;
   1158         /* Insert the place holder to the growable list */
   1159         dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
   1160     }
   1161 
   1162     /* return through lr+2 - punt to the interpreter */
   1163     genUnconditionalBranch(cUnit, pcrLabel);
   1164 
   1165     /*
   1166      * return through lr+4 - fully resolve the callee method.
   1167      * r1 <- count
   1168      * r2 <- &predictedChainCell
   1169      * r3 <- this->class
   1170      * r4 <- dPC
   1171      * r7 <- this->class->vtable
   1172      */
   1173 
   1174     /* r0 <- calleeMethod */
   1175     loadWordDisp(cUnit, r7, methodIndex * 4, r0);
   1176 
   1177     /* Check if rechain limit is reached */
   1178     opRegImm(cUnit, kOpCmp, r1, 0);
   1179 
   1180     ArmLIR *bypassRechaining = opCondBranch(cUnit, kArmCondGt);
   1181 
   1182     loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   1183                  jitToInterpEntries.dvmJitToPatchPredictedChain), r7);
   1184 
   1185     genRegCopy(cUnit, r1, rGLUE);
   1186 
   1187     /*
   1188      * r0 = calleeMethod
   1189      * r2 = &predictedChainingCell
   1190      * r3 = class
   1191      *
   1192      * &returnChainingCell has been loaded into r1 but is not needed
   1193      * when patching the chaining cell and will be clobbered upon
   1194      * returning so it will be reconstructed again.
   1195      */
   1196     opReg(cUnit, kOpBlx, r7);
   1197 
   1198     /* r1 = &retChainingCell */
   1199     addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   1200     addrRetChain->generic.target = (LIR *) retChainingCell;
   1201 
   1202     bypassRechaining->generic.target = (LIR *) addrRetChain;
   1203     /*
   1204      * r0 = calleeMethod,
   1205      * r1 = &ChainingCell,
   1206      * r4PC = callsiteDPC,
   1207      */
   1208     genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
   1209 #if defined(WITH_JIT_TUNING)
   1210     gDvmJit.invokePolymorphic++;
   1211 #endif
   1212     /* Handle exceptions using the interpreter */
   1213     genTrap(cUnit, mir->offset, pcrLabel);
   1214 }
   1215 
   1216 /* Geneate a branch to go back to the interpreter */
   1217 static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
   1218 {
   1219     /* r0 = dalvik pc */
   1220     dvmCompilerFlushAllRegs(cUnit);
   1221     loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
   1222     loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   1223                  jitToInterpEntries.dvmJitToInterpPunt), r1);
   1224     opReg(cUnit, kOpBlx, r1);
   1225 }
   1226 
   1227 /*
   1228  * Attempt to single step one instruction using the interpreter and return
   1229  * to the compiled code for the next Dalvik instruction
   1230  */
   1231 static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
   1232 {
   1233     int flags = dexGetInstrFlags(gDvm.instrFlags, mir->dalvikInsn.opCode);
   1234     int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn |
   1235                        kInstrCanThrow;
   1236 
   1237     //If already optimized out, just ignore
   1238     if (mir->dalvikInsn.opCode == OP_NOP)
   1239         return;
   1240 
   1241     //Ugly, but necessary.  Flush all Dalvik regs so Interp can find them
   1242     dvmCompilerFlushAllRegs(cUnit);
   1243 
   1244     if ((mir->next == NULL) || (flags & flagsToCheck)) {
   1245        genPuntToInterp(cUnit, mir->offset);
   1246        return;
   1247     }
   1248     int entryAddr = offsetof(InterpState,
   1249                              jitToInterpEntries.dvmJitToInterpSingleStep);
   1250     loadWordDisp(cUnit, rGLUE, entryAddr, r2);
   1251     /* r0 = dalvik pc */
   1252     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   1253     /* r1 = dalvik pc of following instruction */
   1254     loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
   1255     opReg(cUnit, kOpBlx, r2);
   1256 }
   1257 
   1258 #if defined(WITH_DEADLOCK_PREDICTION) || defined(WITH_MONITOR_TRACKING) || \
   1259     defined(_ARMV5TE) || defined(_ARMV5TE_VFP)
   1260 /*
   1261  * To prevent a thread in a monitor wait from blocking the Jit from
   1262  * resetting the code cache, heavyweight monitor lock will not
   1263  * be allowed to return to an existing translation.  Instead, we will
   1264  * handle them by branching to a handler, which will in turn call the
   1265  * runtime lock routine and then branch directly back to the
   1266  * interpreter main loop.  Given the high cost of the heavyweight
   1267  * lock operation, this additional cost should be slight (especially when
   1268  * considering that we expect the vast majority of lock operations to
   1269  * use the fast-path thin lock bypass).
   1270  */
   1271 static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
   1272 {
   1273     bool isEnter = (mir->dalvikInsn.opCode == OP_MONITOR_ENTER);
   1274     genExportPC(cUnit, mir);
   1275     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
   1276     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1277     loadValueDirectFixed(cUnit, rlSrc, r1);
   1278     loadWordDisp(cUnit, rGLUE, offsetof(InterpState, self), r0);
   1279     genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
   1280     if (isEnter) {
   1281         /* Get dPC of next insn */
   1282         loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
   1283                  dexGetInstrWidthAbs(gDvm.instrWidth, OP_MONITOR_ENTER)));
   1284 #if defined(WITH_DEADLOCK_PREDICTION)
   1285         genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER_DEBUG);
   1286 #else
   1287         genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
   1288 #endif
   1289     } else {
   1290         LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject);
   1291         /* Do the call */
   1292         opReg(cUnit, kOpBlx, r2);
   1293         opRegImm(cUnit, kOpCmp, r0, 0); /* Did we throw? */
   1294         ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   1295         loadConstant(cUnit, r0,
   1296                      (int) (cUnit->method->insns + mir->offset +
   1297                      dexGetInstrWidthAbs(gDvm.instrWidth, OP_MONITOR_EXIT)));
   1298         genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   1299         ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1300         target->defMask = ENCODE_ALL;
   1301         branchOver->generic.target = (LIR *) target;
   1302         dvmCompilerClobberCallRegs(cUnit);
   1303     }
   1304 }
   1305 #endif
   1306 
   1307 /*
   1308  * The following are the first-level codegen routines that analyze the format
   1309  * of each bytecode then either dispatch special purpose codegen routines
   1310  * or produce corresponding Thumb instructions directly.
   1311  */
   1312 
   1313 static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
   1314                                        BasicBlock *bb, ArmLIR *labelList)
   1315 {
   1316     /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
   1317     genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
   1318     return false;
   1319 }
   1320 
   1321 static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
   1322 {
   1323     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1324     if ((dalvikOpCode >= OP_UNUSED_3E) && (dalvikOpCode <= OP_UNUSED_43)) {
   1325         LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode);
   1326         return true;
   1327     }
   1328     switch (dalvikOpCode) {
   1329         case OP_RETURN_VOID:
   1330             genReturnCommon(cUnit,mir);
   1331             break;
   1332         case OP_UNUSED_73:
   1333         case OP_UNUSED_79:
   1334         case OP_UNUSED_7A:
   1335         case OP_UNUSED_F1:
   1336         case OP_UNUSED_FF:
   1337             LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode);
   1338             return true;
   1339         case OP_NOP:
   1340             break;
   1341         default:
   1342             return true;
   1343     }
   1344     return false;
   1345 }
   1346 
   1347 static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
   1348 {
   1349     RegLocation rlDest;
   1350     RegLocation rlResult;
   1351     if (mir->ssaRep->numDefs == 2) {
   1352         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1353     } else {
   1354         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1355     }
   1356 
   1357     switch (mir->dalvikInsn.opCode) {
   1358         case OP_CONST:
   1359         case OP_CONST_4: {
   1360             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1361             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
   1362             storeValue(cUnit, rlDest, rlResult);
   1363             break;
   1364         }
   1365         case OP_CONST_WIDE_32: {
   1366             //TUNING: single routine to load constant pair for support doubles
   1367             //TUNING: load 0/-1 separately to avoid load dependency
   1368             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1369             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
   1370             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
   1371                         rlResult.lowReg, 31);
   1372             storeValueWide(cUnit, rlDest, rlResult);
   1373             break;
   1374         }
   1375         default:
   1376             return true;
   1377     }
   1378     return false;
   1379 }
   1380 
   1381 static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
   1382 {
   1383     RegLocation rlDest;
   1384     RegLocation rlResult;
   1385     if (mir->ssaRep->numDefs == 2) {
   1386         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1387     } else {
   1388         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1389     }
   1390     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1391 
   1392     switch (mir->dalvikInsn.opCode) {
   1393         case OP_CONST_HIGH16: {
   1394             loadConstantNoClobber(cUnit, rlResult.lowReg,
   1395                                   mir->dalvikInsn.vB << 16);
   1396             storeValue(cUnit, rlDest, rlResult);
   1397             break;
   1398         }
   1399         case OP_CONST_WIDE_HIGH16: {
   1400             loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
   1401                                   0, mir->dalvikInsn.vB << 16);
   1402             storeValueWide(cUnit, rlDest, rlResult);
   1403             break;
   1404         }
   1405         default:
   1406             return true;
   1407     }
   1408     return false;
   1409 }
   1410 
   1411 static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
   1412 {
   1413     /* For OP_THROW_VERIFICATION_ERROR */
   1414     genInterpSingleStep(cUnit, mir);
   1415     return false;
   1416 }
   1417 
   1418 static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
   1419 {
   1420     RegLocation rlResult;
   1421     RegLocation rlDest;
   1422     RegLocation rlSrc;
   1423 
   1424     switch (mir->dalvikInsn.opCode) {
   1425         case OP_CONST_STRING_JUMBO:
   1426         case OP_CONST_STRING: {
   1427             void *strPtr = (void*)
   1428               (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
   1429 
   1430             if (strPtr == NULL) {
   1431                 LOGE("Unexpected null string");
   1432                 dvmAbort();
   1433             }
   1434 
   1435             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1436             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1437             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
   1438             storeValue(cUnit, rlDest, rlResult);
   1439             break;
   1440         }
   1441         case OP_CONST_CLASS: {
   1442             void *classPtr = (void*)
   1443               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1444 
   1445             if (classPtr == NULL) {
   1446                 LOGE("Unexpected null class");
   1447                 dvmAbort();
   1448             }
   1449 
   1450             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1451             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1452             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
   1453             storeValue(cUnit, rlDest, rlResult);
   1454             break;
   1455         }
   1456         case OP_SGET_VOLATILE:
   1457         case OP_SGET_OBJECT_VOLATILE:
   1458         case OP_SGET_OBJECT:
   1459         case OP_SGET_BOOLEAN:
   1460         case OP_SGET_CHAR:
   1461         case OP_SGET_BYTE:
   1462         case OP_SGET_SHORT:
   1463         case OP_SGET: {
   1464             int valOffset = offsetof(StaticField, value);
   1465             int tReg = dvmCompilerAllocTemp(cUnit);
   1466             bool isVolatile;
   1467             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1468                 mir->meta.calleeMethod : cUnit->method;
   1469             void *fieldPtr = (void*)
   1470               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1471 
   1472             if (fieldPtr == NULL) {
   1473                 LOGE("Unexpected null static field");
   1474                 dvmAbort();
   1475             }
   1476 
   1477             isVolatile = (mir->dalvikInsn.opCode == OP_SGET_VOLATILE) ||
   1478                          (mir->dalvikInsn.opCode == OP_SGET_OBJECT_VOLATILE) ||
   1479                          dvmIsVolatileField(fieldPtr);
   1480 
   1481             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1482             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1483             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1484 
   1485             if (isVolatile) {
   1486                 dvmCompilerGenMemBarrier(cUnit);
   1487             }
   1488             HEAP_ACCESS_SHADOW(true);
   1489             loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
   1490             HEAP_ACCESS_SHADOW(false);
   1491 
   1492             storeValue(cUnit, rlDest, rlResult);
   1493             break;
   1494         }
   1495         case OP_SGET_WIDE: {
   1496             int valOffset = offsetof(StaticField, value);
   1497             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1498                 mir->meta.calleeMethod : cUnit->method;
   1499             void *fieldPtr = (void*)
   1500               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1501 
   1502             if (fieldPtr == NULL) {
   1503                 LOGE("Unexpected null static field");
   1504                 dvmAbort();
   1505             }
   1506 
   1507             int tReg = dvmCompilerAllocTemp(cUnit);
   1508             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1509             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1510             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1511 
   1512             HEAP_ACCESS_SHADOW(true);
   1513             loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
   1514             HEAP_ACCESS_SHADOW(false);
   1515 
   1516             storeValueWide(cUnit, rlDest, rlResult);
   1517             break;
   1518         }
   1519         case OP_SPUT_OBJECT:
   1520         case OP_SPUT_OBJECT_VOLATILE:
   1521         case OP_SPUT_VOLATILE:
   1522         case OP_SPUT_BOOLEAN:
   1523         case OP_SPUT_CHAR:
   1524         case OP_SPUT_BYTE:
   1525         case OP_SPUT_SHORT:
   1526         case OP_SPUT: {
   1527             int valOffset = offsetof(StaticField, value);
   1528             int tReg = dvmCompilerAllocTemp(cUnit);
   1529             int objHead;
   1530             bool isVolatile;
   1531             bool isSputObject;
   1532             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1533                 mir->meta.calleeMethod : cUnit->method;
   1534             void *fieldPtr = (void*)
   1535               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1536 
   1537             isVolatile = (mir->dalvikInsn.opCode == OP_SPUT_VOLATILE) ||
   1538                          (mir->dalvikInsn.opCode == OP_SPUT_OBJECT_VOLATILE) ||
   1539                          dvmIsVolatileField(fieldPtr);
   1540 
   1541             isSputObject = (mir->dalvikInsn.opCode == OP_SPUT_OBJECT) ||
   1542                            (mir->dalvikInsn.opCode == OP_SPUT_OBJECT_VOLATILE);
   1543 
   1544             if (fieldPtr == NULL) {
   1545                 LOGE("Unexpected null static field");
   1546                 dvmAbort();
   1547             }
   1548 
   1549             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1550             rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
   1551             loadConstant(cUnit, tReg,  (int) fieldPtr);
   1552             if (isSputObject) {
   1553                 objHead = dvmCompilerAllocTemp(cUnit);
   1554                 loadWordDisp(cUnit, tReg, offsetof(Field, clazz), objHead);
   1555             }
   1556             HEAP_ACCESS_SHADOW(true);
   1557             storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
   1558             dvmCompilerFreeTemp(cUnit, tReg);
   1559             HEAP_ACCESS_SHADOW(false);
   1560             if (isVolatile) {
   1561                 dvmCompilerGenMemBarrier(cUnit);
   1562             }
   1563             if (isSputObject) {
   1564                 /* NOTE: marking card based sfield->clazz */
   1565                 markCard(cUnit, rlSrc.lowReg, objHead);
   1566                 dvmCompilerFreeTemp(cUnit, objHead);
   1567             }
   1568 
   1569             break;
   1570         }
   1571         case OP_SPUT_WIDE: {
   1572             int tReg = dvmCompilerAllocTemp(cUnit);
   1573             int valOffset = offsetof(StaticField, value);
   1574             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1575                 mir->meta.calleeMethod : cUnit->method;
   1576             void *fieldPtr = (void*)
   1577               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1578 
   1579             if (fieldPtr == NULL) {
   1580                 LOGE("Unexpected null static field");
   1581                 dvmAbort();
   1582             }
   1583 
   1584             rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1585             rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
   1586             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1587 
   1588             HEAP_ACCESS_SHADOW(true);
   1589             storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
   1590             HEAP_ACCESS_SHADOW(false);
   1591             break;
   1592         }
   1593         case OP_NEW_INSTANCE: {
   1594             /*
   1595              * Obey the calling convention and don't mess with the register
   1596              * usage.
   1597              */
   1598             ClassObject *classPtr = (void*)
   1599               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1600 
   1601             if (classPtr == NULL) {
   1602                 LOGE("Unexpected null class");
   1603                 dvmAbort();
   1604             }
   1605 
   1606             /*
   1607              * If it is going to throw, it should not make to the trace to begin
   1608              * with.  However, Alloc might throw, so we need to genExportPC()
   1609              */
   1610             assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
   1611             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   1612             genExportPC(cUnit, mir);
   1613             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject);
   1614             loadConstant(cUnit, r0, (int) classPtr);
   1615             loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
   1616             opReg(cUnit, kOpBlx, r2);
   1617             dvmCompilerClobberCallRegs(cUnit);
   1618             /* generate a branch over if allocation is successful */
   1619             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   1620             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   1621             /*
   1622              * OOM exception needs to be thrown here and cannot re-execute
   1623              */
   1624             loadConstant(cUnit, r0,
   1625                          (int) (cUnit->method->insns + mir->offset));
   1626             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   1627             /* noreturn */
   1628 
   1629             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1630             target->defMask = ENCODE_ALL;
   1631             branchOver->generic.target = (LIR *) target;
   1632             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1633             rlResult = dvmCompilerGetReturn(cUnit);
   1634             storeValue(cUnit, rlDest, rlResult);
   1635             break;
   1636         }
   1637         case OP_CHECK_CAST: {
   1638             /*
   1639              * Obey the calling convention and don't mess with the register
   1640              * usage.
   1641              */
   1642             ClassObject *classPtr =
   1643               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1644             /*
   1645              * Note: It is possible that classPtr is NULL at this point,
   1646              * even though this instruction has been successfully interpreted.
   1647              * If the previous interpretation had a null source, the
   1648              * interpreter would not have bothered to resolve the clazz.
   1649              * Bail out to the interpreter in this case, and log it
   1650              * so that we can tell if it happens frequently.
   1651              */
   1652             if (classPtr == NULL) {
   1653                  LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
   1654                  genInterpSingleStep(cUnit, mir);
   1655                  return false;
   1656             }
   1657             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   1658             loadConstant(cUnit, r1, (int) classPtr );
   1659             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1660             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1661             opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);   /* Null? */
   1662             ArmLIR *branch1 = opCondBranch(cUnit, kArmCondEq);
   1663             /*
   1664              *  rlSrc.lowReg now contains object->clazz.  Note that
   1665              *  it could have been allocated r0, but we're okay so long
   1666              *  as we don't do anything desctructive until r0 is loaded
   1667              *  with clazz.
   1668              */
   1669             /* r0 now contains object->clazz */
   1670             loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
   1671             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial);
   1672             opRegReg(cUnit, kOpCmp, r0, r1);
   1673             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
   1674             opReg(cUnit, kOpBlx, r2);
   1675             dvmCompilerClobberCallRegs(cUnit);
   1676             /*
   1677              * If null, check cast failed - punt to the interpreter.  Because
   1678              * interpreter will be the one throwing, we don't need to
   1679              * genExportPC() here.
   1680              */
   1681             genZeroCheck(cUnit, r0, mir->offset, NULL);
   1682             /* check cast passed - branch target here */
   1683             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1684             target->defMask = ENCODE_ALL;
   1685             branch1->generic.target = (LIR *)target;
   1686             branch2->generic.target = (LIR *)target;
   1687             break;
   1688         }
   1689         case OP_SGET_WIDE_VOLATILE:
   1690         case OP_SPUT_WIDE_VOLATILE:
   1691             genInterpSingleStep(cUnit, mir);
   1692             break;
   1693         default:
   1694             return true;
   1695     }
   1696     return false;
   1697 }
   1698 
   1699 /*
   1700  * A typical example of inlined getter/setter from a monomorphic callsite:
   1701  *
   1702  * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ invoke-static (I)
   1703  * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ...
   1704  * D/dalvikvm(  289): 0x4427fc22 (0002): ldr     r0, [pc, #56]
   1705  * D/dalvikvm(  289): 0x4427fc24 (0004): ldr     r1, [r0, #0]
   1706  * D/dalvikvm(  289): 0x4427fc26 (0006): str     r1, [r5, #0]
   1707  * D/dalvikvm(  289): 0x4427fc28 (0008): .align4
   1708  * D/dalvikvm(  289): L0x0003:
   1709  * D/dalvikvm(  289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0
   1710  *
   1711  * Note the invoke-static and move-result-object with the (I) notation are
   1712  * turned into no-op.
   1713  */
   1714 static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
   1715 {
   1716     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1717     RegLocation rlResult;
   1718     switch (dalvikOpCode) {
   1719         case OP_MOVE_EXCEPTION: {
   1720             int offset = offsetof(InterpState, self);
   1721             int exOffset = offsetof(Thread, exception);
   1722             int selfReg = dvmCompilerAllocTemp(cUnit);
   1723             int resetReg = dvmCompilerAllocTemp(cUnit);
   1724             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1725             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1726             loadWordDisp(cUnit, rGLUE, offset, selfReg);
   1727             loadConstant(cUnit, resetReg, 0);
   1728             loadWordDisp(cUnit, selfReg, exOffset, rlResult.lowReg);
   1729             storeWordDisp(cUnit, selfReg, exOffset, resetReg);
   1730             storeValue(cUnit, rlDest, rlResult);
   1731            break;
   1732         }
   1733         case OP_MOVE_RESULT:
   1734         case OP_MOVE_RESULT_OBJECT: {
   1735             /* An inlined move result is effectively no-op */
   1736             if (mir->OptimizationFlags & MIR_INLINED)
   1737                 break;
   1738             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1739             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
   1740             rlSrc.fp = rlDest.fp;
   1741             storeValue(cUnit, rlDest, rlSrc);
   1742             break;
   1743         }
   1744         case OP_MOVE_RESULT_WIDE: {
   1745             /* An inlined move result is effectively no-op */
   1746             if (mir->OptimizationFlags & MIR_INLINED)
   1747                 break;
   1748             RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1749             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
   1750             rlSrc.fp = rlDest.fp;
   1751             storeValueWide(cUnit, rlDest, rlSrc);
   1752             break;
   1753         }
   1754         case OP_RETURN_WIDE: {
   1755             RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1756             RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
   1757             rlDest.fp = rlSrc.fp;
   1758             storeValueWide(cUnit, rlDest, rlSrc);
   1759             genReturnCommon(cUnit,mir);
   1760             break;
   1761         }
   1762         case OP_RETURN:
   1763         case OP_RETURN_OBJECT: {
   1764             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1765             RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
   1766             rlDest.fp = rlSrc.fp;
   1767             storeValue(cUnit, rlDest, rlSrc);
   1768             genReturnCommon(cUnit,mir);
   1769             break;
   1770         }
   1771         case OP_MONITOR_EXIT:
   1772         case OP_MONITOR_ENTER:
   1773 #if defined(WITH_DEADLOCK_PREDICTION) || defined(WITH_MONITOR_TRACKING)
   1774             genMonitorPortable(cUnit, mir);
   1775 #else
   1776             genMonitor(cUnit, mir);
   1777 #endif
   1778             break;
   1779         case OP_THROW: {
   1780             genInterpSingleStep(cUnit, mir);
   1781             break;
   1782         }
   1783         default:
   1784             return true;
   1785     }
   1786     return false;
   1787 }
   1788 
   1789 static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
   1790 {
   1791     OpCode opCode = mir->dalvikInsn.opCode;
   1792     RegLocation rlDest;
   1793     RegLocation rlSrc;
   1794     RegLocation rlResult;
   1795 
   1796     if ( (opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) {
   1797         return genArithOp( cUnit, mir );
   1798     }
   1799 
   1800     if (mir->ssaRep->numUses == 2)
   1801         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1802     else
   1803         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1804     if (mir->ssaRep->numDefs == 2)
   1805         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1806     else
   1807         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1808 
   1809     switch (opCode) {
   1810         case OP_DOUBLE_TO_INT:
   1811         case OP_INT_TO_FLOAT:
   1812         case OP_FLOAT_TO_INT:
   1813         case OP_DOUBLE_TO_FLOAT:
   1814         case OP_FLOAT_TO_DOUBLE:
   1815         case OP_INT_TO_DOUBLE:
   1816         case OP_FLOAT_TO_LONG:
   1817         case OP_LONG_TO_FLOAT:
   1818         case OP_DOUBLE_TO_LONG:
   1819         case OP_LONG_TO_DOUBLE:
   1820             return genConversion(cUnit, mir);
   1821         case OP_NEG_INT:
   1822         case OP_NOT_INT:
   1823             return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
   1824         case OP_NEG_LONG:
   1825         case OP_NOT_LONG:
   1826             return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
   1827         case OP_NEG_FLOAT:
   1828             return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
   1829         case OP_NEG_DOUBLE:
   1830             return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
   1831         case OP_MOVE_WIDE:
   1832             storeValueWide(cUnit, rlDest, rlSrc);
   1833             break;
   1834         case OP_INT_TO_LONG:
   1835             rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
   1836             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1837             //TUNING: shouldn't loadValueDirect already check for phys reg?
   1838             if (rlSrc.location == kLocPhysReg) {
   1839                 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
   1840             } else {
   1841                 loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
   1842             }
   1843             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
   1844                         rlResult.lowReg, 31);
   1845             storeValueWide(cUnit, rlDest, rlResult);
   1846             break;
   1847         case OP_LONG_TO_INT:
   1848             rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
   1849             rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
   1850             // Intentional fallthrough
   1851         case OP_MOVE:
   1852         case OP_MOVE_OBJECT:
   1853             storeValue(cUnit, rlDest, rlSrc);
   1854             break;
   1855         case OP_INT_TO_BYTE:
   1856             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1857             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1858             opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
   1859             storeValue(cUnit, rlDest, rlResult);
   1860             break;
   1861         case OP_INT_TO_SHORT:
   1862             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1863             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1864             opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
   1865             storeValue(cUnit, rlDest, rlResult);
   1866             break;
   1867         case OP_INT_TO_CHAR:
   1868             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1869             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1870             opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
   1871             storeValue(cUnit, rlDest, rlResult);
   1872             break;
   1873         case OP_ARRAY_LENGTH: {
   1874             int lenOffset = offsetof(ArrayObject, length);
   1875             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1876             genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
   1877                          mir->offset, NULL);
   1878             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1879             loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
   1880                          rlResult.lowReg);
   1881             storeValue(cUnit, rlDest, rlResult);
   1882             break;
   1883         }
   1884         default:
   1885             return true;
   1886     }
   1887     return false;
   1888 }
   1889 
   1890 static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
   1891 {
   1892     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1893     RegLocation rlDest;
   1894     RegLocation rlResult;
   1895     int BBBB = mir->dalvikInsn.vB;
   1896     if (dalvikOpCode == OP_CONST_WIDE_16) {
   1897         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1898         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1899         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
   1900         //TUNING: do high separately to avoid load dependency
   1901         opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
   1902         storeValueWide(cUnit, rlDest, rlResult);
   1903     } else if (dalvikOpCode == OP_CONST_16) {
   1904         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1905         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1906         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
   1907         storeValue(cUnit, rlDest, rlResult);
   1908     } else
   1909         return true;
   1910     return false;
   1911 }
   1912 
   1913 /* Compare agaist zero */
   1914 static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   1915                          ArmLIR *labelList)
   1916 {
   1917     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   1918     ArmConditionCode cond;
   1919     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1920     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1921     opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
   1922 
   1923 //TUNING: break this out to allow use of Thumb2 CB[N]Z
   1924     switch (dalvikOpCode) {
   1925         case OP_IF_EQZ:
   1926             cond = kArmCondEq;
   1927             break;
   1928         case OP_IF_NEZ:
   1929             cond = kArmCondNe;
   1930             break;
   1931         case OP_IF_LTZ:
   1932             cond = kArmCondLt;
   1933             break;
   1934         case OP_IF_GEZ:
   1935             cond = kArmCondGe;
   1936             break;
   1937         case OP_IF_GTZ:
   1938             cond = kArmCondGt;
   1939             break;
   1940         case OP_IF_LEZ:
   1941             cond = kArmCondLe;
   1942             break;
   1943         default:
   1944             cond = 0;
   1945             LOGE("Unexpected opcode (%d) for Fmt21t\n", dalvikOpCode);
   1946             dvmCompilerAbort(cUnit);
   1947     }
   1948     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
   1949     /* This mostly likely will be optimized away in a later phase */
   1950     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   1951     return false;
   1952 }
   1953 
   1954 static bool isPowerOfTwo(int x)
   1955 {
   1956     return (x & (x - 1)) == 0;
   1957 }
   1958 
   1959 // Returns true if no more than two bits are set in 'x'.
   1960 static bool isPopCountLE2(unsigned int x)
   1961 {
   1962     x &= x - 1;
   1963     return (x & (x - 1)) == 0;
   1964 }
   1965 
   1966 // Returns the index of the lowest set bit in 'x'.
   1967 static int lowestSetBit(unsigned int x) {
   1968     int bit_posn = 0;
   1969     while ((x & 0xf) == 0) {
   1970         bit_posn += 4;
   1971         x >>= 4;
   1972     }
   1973     while ((x & 1) == 0) {
   1974         bit_posn++;
   1975         x >>= 1;
   1976     }
   1977     return bit_posn;
   1978 }
   1979 
   1980 // Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
   1981 // and store the result in 'rlDest'.
   1982 static bool handleEasyDivide(CompilationUnit *cUnit, OpCode dalvikOpCode,
   1983                              RegLocation rlSrc, RegLocation rlDest, int lit)
   1984 {
   1985     if (lit < 2 || !isPowerOfTwo(lit)) {
   1986         return false;
   1987     }
   1988     int k = lowestSetBit(lit);
   1989     if (k >= 30) {
   1990         // Avoid special cases.
   1991         return false;
   1992     }
   1993     bool div = (dalvikOpCode == OP_DIV_INT_LIT8 || dalvikOpCode == OP_DIV_INT_LIT16);
   1994     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1995     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1996     if (div) {
   1997         int tReg = dvmCompilerAllocTemp(cUnit);
   1998         if (lit == 2) {
   1999             // Division by 2 is by far the most common division by constant.
   2000             opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
   2001             opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
   2002             opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
   2003         } else {
   2004             opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
   2005             opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
   2006             opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
   2007             opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
   2008         }
   2009     } else {
   2010         int cReg = dvmCompilerAllocTemp(cUnit);
   2011         loadConstant(cUnit, cReg, lit - 1);
   2012         int tReg1 = dvmCompilerAllocTemp(cUnit);
   2013         int tReg2 = dvmCompilerAllocTemp(cUnit);
   2014         if (lit == 2) {
   2015             opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
   2016             opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
   2017             opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
   2018             opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
   2019         } else {
   2020             opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
   2021             opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
   2022             opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
   2023             opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
   2024             opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
   2025         }
   2026     }
   2027     storeValue(cUnit, rlDest, rlResult);
   2028     return true;
   2029 }
   2030 
   2031 // Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
   2032 // and store the result in 'rlDest'.
   2033 static bool handleEasyMultiply(CompilationUnit *cUnit,
   2034                                RegLocation rlSrc, RegLocation rlDest, int lit)
   2035 {
   2036     // Can we simplify this multiplication?
   2037     bool powerOfTwo = false;
   2038     bool popCountLE2 = false;
   2039     bool powerOfTwoMinusOne = false;
   2040     if (lit < 2) {
   2041         // Avoid special cases.
   2042         return false;
   2043     } else if (isPowerOfTwo(lit)) {
   2044         powerOfTwo = true;
   2045     } else if (isPopCountLE2(lit)) {
   2046         popCountLE2 = true;
   2047     } else if (isPowerOfTwo(lit + 1)) {
   2048         powerOfTwoMinusOne = true;
   2049     } else {
   2050         return false;
   2051     }
   2052     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2053     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2054     if (powerOfTwo) {
   2055         // Shift.
   2056         opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
   2057                     lowestSetBit(lit));
   2058     } else if (popCountLE2) {
   2059         // Shift and add and shift.
   2060         int firstBit = lowestSetBit(lit);
   2061         int secondBit = lowestSetBit(lit ^ (1 << firstBit));
   2062         genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
   2063                                       firstBit, secondBit);
   2064     } else {
   2065         // Reverse subtract: (src << (shift + 1)) - src.
   2066         assert(powerOfTwoMinusOne);
   2067         // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
   2068         int tReg = dvmCompilerAllocTemp(cUnit);
   2069         opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
   2070         opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
   2071     }
   2072     storeValue(cUnit, rlDest, rlResult);
   2073     return true;
   2074 }
   2075 
   2076 static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
   2077 {
   2078     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2079     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2080     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2081     RegLocation rlResult;
   2082     int lit = mir->dalvikInsn.vC;
   2083     OpKind op = 0;      /* Make gcc happy */
   2084     int shiftOp = false;
   2085     bool isDiv = false;
   2086 
   2087     switch (dalvikOpCode) {
   2088         case OP_RSUB_INT_LIT8:
   2089         case OP_RSUB_INT: {
   2090             int tReg;
   2091             //TUNING: add support for use of Arm rsub op
   2092             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2093             tReg = dvmCompilerAllocTemp(cUnit);
   2094             loadConstant(cUnit, tReg, lit);
   2095             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2096             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
   2097                         tReg, rlSrc.lowReg);
   2098             storeValue(cUnit, rlDest, rlResult);
   2099             return false;
   2100             break;
   2101         }
   2102 
   2103         case OP_ADD_INT_LIT8:
   2104         case OP_ADD_INT_LIT16:
   2105             op = kOpAdd;
   2106             break;
   2107         case OP_MUL_INT_LIT8:
   2108         case OP_MUL_INT_LIT16: {
   2109             if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
   2110                 return false;
   2111             }
   2112             op = kOpMul;
   2113             break;
   2114         }
   2115         case OP_AND_INT_LIT8:
   2116         case OP_AND_INT_LIT16:
   2117             op = kOpAnd;
   2118             break;
   2119         case OP_OR_INT_LIT8:
   2120         case OP_OR_INT_LIT16:
   2121             op = kOpOr;
   2122             break;
   2123         case OP_XOR_INT_LIT8:
   2124         case OP_XOR_INT_LIT16:
   2125             op = kOpXor;
   2126             break;
   2127         case OP_SHL_INT_LIT8:
   2128             lit &= 31;
   2129             shiftOp = true;
   2130             op = kOpLsl;
   2131             break;
   2132         case OP_SHR_INT_LIT8:
   2133             lit &= 31;
   2134             shiftOp = true;
   2135             op = kOpAsr;
   2136             break;
   2137         case OP_USHR_INT_LIT8:
   2138             lit &= 31;
   2139             shiftOp = true;
   2140             op = kOpLsr;
   2141             break;
   2142 
   2143         case OP_DIV_INT_LIT8:
   2144         case OP_DIV_INT_LIT16:
   2145         case OP_REM_INT_LIT8:
   2146         case OP_REM_INT_LIT16:
   2147             if (lit == 0) {
   2148                 /* Let the interpreter deal with div by 0 */
   2149                 genInterpSingleStep(cUnit, mir);
   2150                 return false;
   2151             }
   2152             if (handleEasyDivide(cUnit, dalvikOpCode, rlSrc, rlDest, lit)) {
   2153                 return false;
   2154             }
   2155             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2156             loadValueDirectFixed(cUnit, rlSrc, r0);
   2157             dvmCompilerClobber(cUnit, r0);
   2158             if ((dalvikOpCode == OP_DIV_INT_LIT8) ||
   2159                 (dalvikOpCode == OP_DIV_INT_LIT16)) {
   2160                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv);
   2161                 isDiv = true;
   2162             } else {
   2163                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod);
   2164                 isDiv = false;
   2165             }
   2166             loadConstant(cUnit, r1, lit);
   2167             opReg(cUnit, kOpBlx, r2);
   2168             dvmCompilerClobberCallRegs(cUnit);
   2169             if (isDiv)
   2170                 rlResult = dvmCompilerGetReturn(cUnit);
   2171             else
   2172                 rlResult = dvmCompilerGetReturnAlt(cUnit);
   2173             storeValue(cUnit, rlDest, rlResult);
   2174             return false;
   2175             break;
   2176         default:
   2177             return true;
   2178     }
   2179     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2180     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2181     // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
   2182     if (shiftOp && (lit == 0)) {
   2183         genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
   2184     } else {
   2185         opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
   2186     }
   2187     storeValue(cUnit, rlDest, rlResult);
   2188     return false;
   2189 }
   2190 
   2191 static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
   2192 {
   2193     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2194     int fieldOffset = -1;
   2195     bool isVolatile = false;
   2196     switch (dalvikOpCode) {
   2197         /*
   2198          * Wide volatiles currently handled via single step.
   2199          * Add them here if generating in-line code.
   2200          *     case OP_IGET_WIDE_VOLATILE:
   2201          *     case OP_IPUT_WIDE_VOLATILE:
   2202          */
   2203         case OP_IGET:
   2204         case OP_IGET_VOLATILE:
   2205         case OP_IGET_WIDE:
   2206         case OP_IGET_OBJECT:
   2207         case OP_IGET_OBJECT_VOLATILE:
   2208         case OP_IGET_BOOLEAN:
   2209         case OP_IGET_BYTE:
   2210         case OP_IGET_CHAR:
   2211         case OP_IGET_SHORT:
   2212         case OP_IPUT:
   2213         case OP_IPUT_VOLATILE:
   2214         case OP_IPUT_WIDE:
   2215         case OP_IPUT_OBJECT:
   2216         case OP_IPUT_OBJECT_VOLATILE:
   2217         case OP_IPUT_BOOLEAN:
   2218         case OP_IPUT_BYTE:
   2219         case OP_IPUT_CHAR:
   2220         case OP_IPUT_SHORT: {
   2221             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   2222                 mir->meta.calleeMethod : cUnit->method;
   2223             Field *fieldPtr =
   2224                 method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
   2225 
   2226             if (fieldPtr == NULL) {
   2227                 LOGE("Unexpected null instance field");
   2228                 dvmAbort();
   2229             }
   2230             isVolatile = dvmIsVolatileField(fieldPtr);
   2231             fieldOffset = ((InstField *)fieldPtr)->byteOffset;
   2232             break;
   2233         }
   2234         default:
   2235             break;
   2236     }
   2237 
   2238     switch (dalvikOpCode) {
   2239         case OP_NEW_ARRAY: {
   2240             // Generates a call - use explicit registers
   2241             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2242             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2243             RegLocation rlResult;
   2244             void *classPtr = (void*)
   2245               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
   2246 
   2247             if (classPtr == NULL) {
   2248                 LOGE("Unexpected null class");
   2249                 dvmAbort();
   2250             }
   2251 
   2252             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2253             genExportPC(cUnit, mir);
   2254             loadValueDirectFixed(cUnit, rlSrc, r1);   /* Len */
   2255             loadConstant(cUnit, r0, (int) classPtr );
   2256             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass);
   2257             /*
   2258              * "len < 0": bail to the interpreter to re-execute the
   2259              * instruction
   2260              */
   2261             genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
   2262             loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
   2263             opReg(cUnit, kOpBlx, r3);
   2264             dvmCompilerClobberCallRegs(cUnit);
   2265             /* generate a branch over if allocation is successful */
   2266             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   2267             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   2268             /*
   2269              * OOM exception needs to be thrown here and cannot re-execute
   2270              */
   2271             loadConstant(cUnit, r0,
   2272                          (int) (cUnit->method->insns + mir->offset));
   2273             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2274             /* noreturn */
   2275 
   2276             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2277             target->defMask = ENCODE_ALL;
   2278             branchOver->generic.target = (LIR *) target;
   2279             rlResult = dvmCompilerGetReturn(cUnit);
   2280             storeValue(cUnit, rlDest, rlResult);
   2281             break;
   2282         }
   2283         case OP_INSTANCE_OF: {
   2284             // May generate a call - use explicit registers
   2285             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2286             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2287             RegLocation rlResult;
   2288             ClassObject *classPtr =
   2289               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
   2290             /*
   2291              * Note: It is possible that classPtr is NULL at this point,
   2292              * even though this instruction has been successfully interpreted.
   2293              * If the previous interpretation had a null source, the
   2294              * interpreter would not have bothered to resolve the clazz.
   2295              * Bail out to the interpreter in this case, and log it
   2296              * so that we can tell if it happens frequently.
   2297              */
   2298             if (classPtr == NULL) {
   2299                 LOGD("null clazz in OP_INSTANCE_OF, single-stepping");
   2300                 genInterpSingleStep(cUnit, mir);
   2301                 break;
   2302             }
   2303             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2304             loadValueDirectFixed(cUnit, rlSrc, r0);  /* Ref */
   2305             loadConstant(cUnit, r2, (int) classPtr );
   2306 //TUNING: compare to 0 primative to allow use of CB[N]Z
   2307             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   2308             /* When taken r0 has NULL which can be used for store directly */
   2309             ArmLIR *branch1 = opCondBranch(cUnit, kArmCondEq);
   2310             /* r1 now contains object->clazz */
   2311             loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
   2312             /* r1 now contains object->clazz */
   2313             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial);
   2314             loadConstant(cUnit, r0, 1);                /* Assume true */
   2315             opRegReg(cUnit, kOpCmp, r1, r2);
   2316             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
   2317             genRegCopy(cUnit, r0, r1);
   2318             genRegCopy(cUnit, r1, r2);
   2319             opReg(cUnit, kOpBlx, r3);
   2320             dvmCompilerClobberCallRegs(cUnit);
   2321             /* branch target here */
   2322             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2323             target->defMask = ENCODE_ALL;
   2324             rlResult = dvmCompilerGetReturn(cUnit);
   2325             storeValue(cUnit, rlDest, rlResult);
   2326             branch1->generic.target = (LIR *)target;
   2327             branch2->generic.target = (LIR *)target;
   2328             break;
   2329         }
   2330         case OP_IGET_WIDE:
   2331             genIGetWide(cUnit, mir, fieldOffset);
   2332             break;
   2333         case OP_IGET_VOLATILE:
   2334         case OP_IGET_OBJECT_VOLATILE:
   2335             isVolatile = true;
   2336             // NOTE: intentional fallthrough
   2337         case OP_IGET:
   2338         case OP_IGET_OBJECT:
   2339         case OP_IGET_BOOLEAN:
   2340         case OP_IGET_BYTE:
   2341         case OP_IGET_CHAR:
   2342         case OP_IGET_SHORT:
   2343             genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
   2344             break;
   2345         case OP_IPUT_WIDE:
   2346             genIPutWide(cUnit, mir, fieldOffset);
   2347             break;
   2348         case OP_IPUT:
   2349         case OP_IPUT_SHORT:
   2350         case OP_IPUT_CHAR:
   2351         case OP_IPUT_BYTE:
   2352         case OP_IPUT_BOOLEAN:
   2353             genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
   2354             break;
   2355         case OP_IPUT_VOLATILE:
   2356         case OP_IPUT_OBJECT_VOLATILE:
   2357             isVolatile = true;
   2358             // NOTE: intentional fallthrough
   2359         case OP_IPUT_OBJECT:
   2360             genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
   2361             break;
   2362         case OP_IGET_WIDE_VOLATILE:
   2363         case OP_IPUT_WIDE_VOLATILE:
   2364             genInterpSingleStep(cUnit, mir);
   2365             break;
   2366         default:
   2367             return true;
   2368     }
   2369     return false;
   2370 }
   2371 
   2372 static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
   2373 {
   2374     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2375     int fieldOffset =  mir->dalvikInsn.vC;
   2376     switch (dalvikOpCode) {
   2377         case OP_IGET_QUICK:
   2378         case OP_IGET_OBJECT_QUICK:
   2379             genIGet(cUnit, mir, kWord, fieldOffset, false);
   2380             break;
   2381         case OP_IPUT_QUICK:
   2382             genIPut(cUnit, mir, kWord, fieldOffset, false, false);
   2383             break;
   2384         case OP_IPUT_OBJECT_QUICK:
   2385             genIPut(cUnit, mir, kWord, fieldOffset, true, false);
   2386             break;
   2387         case OP_IGET_WIDE_QUICK:
   2388             genIGetWide(cUnit, mir, fieldOffset);
   2389             break;
   2390         case OP_IPUT_WIDE_QUICK:
   2391             genIPutWide(cUnit, mir, fieldOffset);
   2392             break;
   2393         default:
   2394             return true;
   2395     }
   2396     return false;
   2397 
   2398 }
   2399 
   2400 /* Compare agaist zero */
   2401 static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   2402                          ArmLIR *labelList)
   2403 {
   2404     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2405     ArmConditionCode cond;
   2406     RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
   2407     RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
   2408 
   2409     rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
   2410     rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
   2411     opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
   2412 
   2413     switch (dalvikOpCode) {
   2414         case OP_IF_EQ:
   2415             cond = kArmCondEq;
   2416             break;
   2417         case OP_IF_NE:
   2418             cond = kArmCondNe;
   2419             break;
   2420         case OP_IF_LT:
   2421             cond = kArmCondLt;
   2422             break;
   2423         case OP_IF_GE:
   2424             cond = kArmCondGe;
   2425             break;
   2426         case OP_IF_GT:
   2427             cond = kArmCondGt;
   2428             break;
   2429         case OP_IF_LE:
   2430             cond = kArmCondLe;
   2431             break;
   2432         default:
   2433             cond = 0;
   2434             LOGE("Unexpected opcode (%d) for Fmt22t\n", dalvikOpCode);
   2435             dvmCompilerAbort(cUnit);
   2436     }
   2437     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
   2438     /* This mostly likely will be optimized away in a later phase */
   2439     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   2440     return false;
   2441 }
   2442 
   2443 static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
   2444 {
   2445     OpCode opCode = mir->dalvikInsn.opCode;
   2446 
   2447     switch (opCode) {
   2448         case OP_MOVE_16:
   2449         case OP_MOVE_OBJECT_16:
   2450         case OP_MOVE_FROM16:
   2451         case OP_MOVE_OBJECT_FROM16: {
   2452             storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
   2453                        dvmCompilerGetSrc(cUnit, mir, 0));
   2454             break;
   2455         }
   2456         case OP_MOVE_WIDE_16:
   2457         case OP_MOVE_WIDE_FROM16: {
   2458             storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
   2459                            dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
   2460             break;
   2461         }
   2462         default:
   2463             return true;
   2464     }
   2465     return false;
   2466 }
   2467 
   2468 static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
   2469 {
   2470     OpCode opCode = mir->dalvikInsn.opCode;
   2471     RegLocation rlSrc1;
   2472     RegLocation rlSrc2;
   2473     RegLocation rlDest;
   2474 
   2475     if ( (opCode >= OP_ADD_INT) && (opCode <= OP_REM_DOUBLE)) {
   2476         return genArithOp( cUnit, mir );
   2477     }
   2478 
   2479     /* APUTs have 3 sources and no targets */
   2480     if (mir->ssaRep->numDefs == 0) {
   2481         if (mir->ssaRep->numUses == 3) {
   2482             rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
   2483             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
   2484             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
   2485         } else {
   2486             assert(mir->ssaRep->numUses == 4);
   2487             rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   2488             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
   2489             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
   2490         }
   2491     } else {
   2492         /* Two sources and 1 dest.  Deduce the operand sizes */
   2493         if (mir->ssaRep->numUses == 4) {
   2494             rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   2495             rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
   2496         } else {
   2497             assert(mir->ssaRep->numUses == 2);
   2498             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
   2499             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
   2500         }
   2501         if (mir->ssaRep->numDefs == 2) {
   2502             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   2503         } else {
   2504             assert(mir->ssaRep->numDefs == 1);
   2505             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2506         }
   2507     }
   2508 
   2509 
   2510     switch (opCode) {
   2511         case OP_CMPL_FLOAT:
   2512         case OP_CMPG_FLOAT:
   2513         case OP_CMPL_DOUBLE:
   2514         case OP_CMPG_DOUBLE:
   2515             return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
   2516         case OP_CMP_LONG:
   2517             genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
   2518             break;
   2519         case OP_AGET_WIDE:
   2520             genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
   2521             break;
   2522         case OP_AGET:
   2523         case OP_AGET_OBJECT:
   2524             genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
   2525             break;
   2526         case OP_AGET_BOOLEAN:
   2527             genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2528             break;
   2529         case OP_AGET_BYTE:
   2530             genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2531             break;
   2532         case OP_AGET_CHAR:
   2533             genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2534             break;
   2535         case OP_AGET_SHORT:
   2536             genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2537             break;
   2538         case OP_APUT_WIDE:
   2539             genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
   2540             break;
   2541         case OP_APUT:
   2542             genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
   2543             break;
   2544         case OP_APUT_OBJECT:
   2545             genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
   2546             break;
   2547         case OP_APUT_SHORT:
   2548         case OP_APUT_CHAR:
   2549             genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2550             break;
   2551         case OP_APUT_BYTE:
   2552         case OP_APUT_BOOLEAN:
   2553             genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2554             break;
   2555         default:
   2556             return true;
   2557     }
   2558     return false;
   2559 }
   2560 
   2561 /*
   2562  * Find the matching case.
   2563  *
   2564  * return values:
   2565  * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
   2566  *    including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
   2567  * r1 (high 32-bit): the branch offset of the matching case (only for indexes
   2568  *    above MAX_CHAINED_SWITCH_CASES).
   2569  *
   2570  * Instructions around the call are:
   2571  *
   2572  * mov r2, pc
   2573  * blx &findPackedSwitchIndex
   2574  * mov pc, r0
   2575  * .align4
   2576  * chaining cell for case 0 [12 bytes]
   2577  * chaining cell for case 1 [12 bytes]
   2578  *               :
   2579  * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes]
   2580  * chaining cell for case default [8 bytes]
   2581  * noChain exit
   2582  */
   2583 static s8 findPackedSwitchIndex(const u2* switchData, int testVal, int pc)
   2584 {
   2585     int size;
   2586     int firstKey;
   2587     const int *entries;
   2588     int index;
   2589     int jumpIndex;
   2590     int caseDPCOffset = 0;
   2591     /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
   2592     int chainingPC = (pc + 4) & ~3;
   2593 
   2594     /*
   2595      * Packed switch data format:
   2596      *  ushort ident = 0x0100   magic value
   2597      *  ushort size             number of entries in the table
   2598      *  int first_key           first (and lowest) switch case value
   2599      *  int targets[size]       branch targets, relative to switch opcode
   2600      *
   2601      * Total size is (4+size*2) 16-bit code units.
   2602      */
   2603     size = switchData[1];
   2604     assert(size > 0);
   2605 
   2606     firstKey = switchData[2];
   2607     firstKey |= switchData[3] << 16;
   2608 
   2609 
   2610     /* The entries are guaranteed to be aligned on a 32-bit boundary;
   2611      * we can treat them as a native int array.
   2612      */
   2613     entries = (const int*) &switchData[4];
   2614     assert(((u4)entries & 0x3) == 0);
   2615 
   2616     index = testVal - firstKey;
   2617 
   2618     /* Jump to the default cell */
   2619     if (index < 0 || index >= size) {
   2620         jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
   2621     /* Jump to the non-chaining exit point */
   2622     } else if (index >= MAX_CHAINED_SWITCH_CASES) {
   2623         jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
   2624         caseDPCOffset = entries[index];
   2625     /* Jump to the inline chaining cell */
   2626     } else {
   2627         jumpIndex = index;
   2628     }
   2629 
   2630     chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
   2631     return (((s8) caseDPCOffset) << 32) | (u8) chainingPC;
   2632 }
   2633 
   2634 /* See comments for findPackedSwitchIndex */
   2635 static s8 findSparseSwitchIndex(const u2* switchData, int testVal, int pc)
   2636 {
   2637     int size;
   2638     const int *keys;
   2639     const int *entries;
   2640     int chainingPC = (pc + 4) & ~3;
   2641     int i;
   2642 
   2643     /*
   2644      * Sparse switch data format:
   2645      *  ushort ident = 0x0200   magic value
   2646      *  ushort size             number of entries in the table; > 0
   2647      *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
   2648      *  int targets[size]       branch targets, relative to switch opcode
   2649      *
   2650      * Total size is (2+size*4) 16-bit code units.
   2651      */
   2652 
   2653     size = switchData[1];
   2654     assert(size > 0);
   2655 
   2656     /* The keys are guaranteed to be aligned on a 32-bit boundary;
   2657      * we can treat them as a native int array.
   2658      */
   2659     keys = (const int*) &switchData[2];
   2660     assert(((u4)keys & 0x3) == 0);
   2661 
   2662     /* The entries are guaranteed to be aligned on a 32-bit boundary;
   2663      * we can treat them as a native int array.
   2664      */
   2665     entries = keys + size;
   2666     assert(((u4)entries & 0x3) == 0);
   2667 
   2668     /*
   2669      * Run through the list of keys, which are guaranteed to
   2670      * be sorted low-to-high.
   2671      *
   2672      * Most tables have 3-4 entries.  Few have more than 10.  A binary
   2673      * search here is probably not useful.
   2674      */
   2675     for (i = 0; i < size; i++) {
   2676         int k = keys[i];
   2677         if (k == testVal) {
   2678             /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
   2679             int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
   2680                            i : MAX_CHAINED_SWITCH_CASES + 1;
   2681             chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
   2682             return (((s8) entries[i]) << 32) | (u8) chainingPC;
   2683         } else if (k > testVal) {
   2684             break;
   2685         }
   2686     }
   2687     return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) *
   2688            CHAIN_CELL_NORMAL_SIZE;
   2689 }
   2690 
   2691 static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
   2692 {
   2693     OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   2694     switch (dalvikOpCode) {
   2695         case OP_FILL_ARRAY_DATA: {
   2696             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2697             // Making a call - use explicit registers
   2698             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2699             genExportPC(cUnit, mir);
   2700             loadValueDirectFixed(cUnit, rlSrc, r0);
   2701             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData);
   2702             loadConstant(cUnit, r1,
   2703                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
   2704             opReg(cUnit, kOpBlx, r2);
   2705             dvmCompilerClobberCallRegs(cUnit);
   2706             /* generate a branch over if successful */
   2707             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   2708             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   2709             loadConstant(cUnit, r0,
   2710                          (int) (cUnit->method->insns + mir->offset));
   2711             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2712             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2713             target->defMask = ENCODE_ALL;
   2714             branchOver->generic.target = (LIR *) target;
   2715             break;
   2716         }
   2717         /*
   2718          * Compute the goto target of up to
   2719          * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
   2720          * See the comment before findPackedSwitchIndex for the code layout.
   2721          */
   2722         case OP_PACKED_SWITCH:
   2723         case OP_SPARSE_SWITCH: {
   2724             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2725             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2726             loadValueDirectFixed(cUnit, rlSrc, r1);
   2727             dvmCompilerLockAllTemps(cUnit);
   2728             if (dalvikOpCode == OP_PACKED_SWITCH) {
   2729                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex);
   2730             } else {
   2731                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex);
   2732             }
   2733             /* r0 <- Addr of the switch data */
   2734             loadConstant(cUnit, r0,
   2735                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
   2736             /* r2 <- pc of the instruction following the blx */
   2737             opRegReg(cUnit, kOpMov, r2, rpc);
   2738             opReg(cUnit, kOpBlx, r4PC);
   2739             dvmCompilerClobberCallRegs(cUnit);
   2740             /* pc <- computed goto target */
   2741             opRegReg(cUnit, kOpMov, rpc, r0);
   2742             break;
   2743         }
   2744         default:
   2745             return true;
   2746     }
   2747     return false;
   2748 }
   2749 
   2750 /*
   2751  * See the example of predicted inlining listed before the
   2752  * genValidationForPredictedInline function. The function here takes care the
   2753  * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
   2754  */
   2755 static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
   2756                                                BasicBlock *bb,
   2757                                                ArmLIR *labelList)
   2758 {
   2759     BasicBlock *fallThrough = bb->fallThrough;
   2760 
   2761     /* Bypass the move-result block if there is one */
   2762     if (fallThrough->firstMIRInsn) {
   2763         assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
   2764         fallThrough = fallThrough->fallThrough;
   2765     }
   2766     /* Generate a branch over if the predicted inlining is correct */
   2767     genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
   2768 
   2769     /* Reset the register state */
   2770     dvmCompilerResetRegPool(cUnit);
   2771     dvmCompilerClobberAllRegs(cUnit);
   2772     dvmCompilerResetNullCheck(cUnit);
   2773 
   2774     /* Target for the slow invoke path */
   2775     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2776     target->defMask = ENCODE_ALL;
   2777     /* Hook up the target to the verification branch */
   2778     mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
   2779 }
   2780 
   2781 static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   2782                              ArmLIR *labelList)
   2783 {
   2784     ArmLIR *retChainingCell = NULL;
   2785     ArmLIR *pcrLabel = NULL;
   2786 
   2787     /* An invoke with the MIR_INLINED is effectively a no-op */
   2788     if (mir->OptimizationFlags & MIR_INLINED)
   2789         return false;
   2790 
   2791     if (bb->fallThrough != NULL)
   2792         retChainingCell = &labelList[bb->fallThrough->id];
   2793 
   2794     DecodedInstruction *dInsn = &mir->dalvikInsn;
   2795     switch (mir->dalvikInsn.opCode) {
   2796         /*
   2797          * calleeMethod = this->clazz->vtable[
   2798          *     method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
   2799          * ]
   2800          */
   2801         case OP_INVOKE_VIRTUAL:
   2802         case OP_INVOKE_VIRTUAL_RANGE: {
   2803             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   2804             int methodIndex =
   2805                 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
   2806                 methodIndex;
   2807 
   2808             /*
   2809              * If the invoke has non-null misPredBranchOver, we need to generate
   2810              * the non-inlined version of the invoke here to handle the
   2811              * mispredicted case.
   2812              */
   2813             if (mir->meta.callsiteInfo->misPredBranchOver) {
   2814                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   2815             }
   2816 
   2817             if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL)
   2818                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2819             else
   2820                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2821 
   2822             genInvokeVirtualCommon(cUnit, mir, methodIndex,
   2823                                    retChainingCell,
   2824                                    predChainingCell,
   2825                                    pcrLabel);
   2826             break;
   2827         }
   2828         /*
   2829          * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
   2830          *                ->pResMethods[BBBB]->methodIndex]
   2831          */
   2832         case OP_INVOKE_SUPER:
   2833         case OP_INVOKE_SUPER_RANGE: {
   2834             /* Grab the method ptr directly from what the interpreter sees */
   2835             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   2836             assert(calleeMethod == cUnit->method->clazz->super->vtable[
   2837                                      cUnit->method->clazz->pDvmDex->
   2838                                        pResMethods[dInsn->vB]->methodIndex]);
   2839 
   2840             if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER)
   2841                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2842             else
   2843                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2844 
   2845             /* r0 = calleeMethod */
   2846             loadConstant(cUnit, r0, (int) calleeMethod);
   2847 
   2848             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   2849                                      calleeMethod);
   2850             break;
   2851         }
   2852         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
   2853         case OP_INVOKE_DIRECT:
   2854         case OP_INVOKE_DIRECT_RANGE: {
   2855             /* Grab the method ptr directly from what the interpreter sees */
   2856             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   2857             assert(calleeMethod ==
   2858                    cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
   2859 
   2860             if (mir->dalvikInsn.opCode == OP_INVOKE_DIRECT)
   2861                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2862             else
   2863                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2864 
   2865             /* r0 = calleeMethod */
   2866             loadConstant(cUnit, r0, (int) calleeMethod);
   2867 
   2868             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   2869                                      calleeMethod);
   2870             break;
   2871         }
   2872         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
   2873         case OP_INVOKE_STATIC:
   2874         case OP_INVOKE_STATIC_RANGE: {
   2875             /* Grab the method ptr directly from what the interpreter sees */
   2876             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   2877             assert(calleeMethod ==
   2878                    cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
   2879 
   2880             if (mir->dalvikInsn.opCode == OP_INVOKE_STATIC)
   2881                 genProcessArgsNoRange(cUnit, mir, dInsn,
   2882                                       NULL /* no null check */);
   2883             else
   2884                 genProcessArgsRange(cUnit, mir, dInsn,
   2885                                     NULL /* no null check */);
   2886 
   2887             /* r0 = calleeMethod */
   2888             loadConstant(cUnit, r0, (int) calleeMethod);
   2889 
   2890             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   2891                                      calleeMethod);
   2892             break;
   2893         }
   2894         /*
   2895          * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
   2896          *                    BBBB, method, method->clazz->pDvmDex)
   2897          *
   2898          * The following is an example of generated code for
   2899          *      "invoke-interface v0"
   2900          *
   2901          * -------- dalvik offset: 0x0008 @ invoke-interface v0
   2902          * 0x47357e36 : ldr     r0, [r5, #0]   --+
   2903          * 0x47357e38 : sub     r7,r5,#24        |
   2904          * 0x47357e3c : cmp     r0, #0           | genProcessArgsNoRange
   2905          * 0x47357e3e : beq     0x47357e82       |
   2906          * 0x47357e40 : stmia   r7, <r0>       --+
   2907          * 0x47357e42 : ldr     r4, [pc, #120] --> r4 <- dalvikPC of this invoke
   2908          * 0x47357e44 : add     r1, pc, #64    --> r1 <- &retChainingCell
   2909          * 0x47357e46 : add     r2, pc, #72    --> r2 <- &predictedChainingCell
   2910          * 0x47357e48 : blx_1   0x47348190     --+ TEMPLATE_INVOKE_METHOD_
   2911          * 0x47357e4a : blx_2   see above      --+     PREDICTED_CHAIN
   2912          * 0x47357e4c : b       0x47357e90     --> off to the predicted chain
   2913          * 0x47357e4e : b       0x47357e82     --> punt to the interpreter
   2914          * 0x47357e50 : mov     r8, r1         --+
   2915          * 0x47357e52 : mov     r9, r2           |
   2916          * 0x47357e54 : ldr     r2, [pc, #96]    |
   2917          * 0x47357e56 : mov     r10, r3          |
   2918          * 0x47357e58 : movs    r0, r3           | dvmFindInterfaceMethodInCache
   2919          * 0x47357e5a : ldr     r3, [pc, #88]    |
   2920          * 0x47357e5c : ldr     r7, [pc, #80]    |
   2921          * 0x47357e5e : mov     r1, #1452        |
   2922          * 0x47357e62 : blx     r7             --+
   2923          * 0x47357e64 : cmp     r0, #0         --> calleeMethod == NULL?
   2924          * 0x47357e66 : bne     0x47357e6e     --> branch over the throw if !r0
   2925          * 0x47357e68 : ldr     r0, [pc, #80]  --> load Dalvik PC of the invoke
   2926          * 0x47357e6a : blx_1   0x47348494     --+ TEMPLATE_THROW_EXCEPTION_
   2927          * 0x47357e6c : blx_2   see above      --+     COMMON
   2928          * 0x47357e6e : mov     r1, r8         --> r1 <- &retChainingCell
   2929          * 0x47357e70 : cmp     r1, #0         --> compare against 0
   2930          * 0x47357e72 : bgt     0x47357e7c     --> >=0? don't rechain
   2931          * 0x47357e74 : ldr     r7, [r6, #108] --+
   2932          * 0x47357e76 : mov     r2, r9           | dvmJitToPatchPredictedChain
   2933          * 0x47357e78 : mov     r3, r10          |
   2934          * 0x47357e7a : blx     r7             --+
   2935          * 0x47357e7c : add     r1, pc, #8     --> r1 <- &retChainingCell
   2936          * 0x47357e7e : blx_1   0x4734809c     --+ TEMPLATE_INVOKE_METHOD_NO_OPT
   2937          * 0x47357e80 : blx_2   see above      --+
   2938          * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008
   2939          * 0x47357e82 : ldr     r0, [pc, #56]
   2940          * Exception_Handling:
   2941          * 0x47357e84 : ldr     r1, [r6, #92]
   2942          * 0x47357e86 : blx     r1
   2943          * 0x47357e88 : .align4
   2944          * -------- chaining cell (hot): 0x000b
   2945          * 0x47357e88 : ldr     r0, [r6, #104]
   2946          * 0x47357e8a : blx     r0
   2947          * 0x47357e8c : data    0x19e2(6626)
   2948          * 0x47357e8e : data    0x4257(16983)
   2949          * 0x47357e90 : .align4
   2950          * -------- chaining cell (predicted)
   2951          * 0x47357e90 : data    0xe7fe(59390)  --> will be patched into bx
   2952          * 0x47357e92 : data    0x0000(0)
   2953          * 0x47357e94 : data    0x0000(0)      --> class
   2954          * 0x47357e96 : data    0x0000(0)
   2955          * 0x47357e98 : data    0x0000(0)      --> method
   2956          * 0x47357e9a : data    0x0000(0)
   2957          * 0x47357e9c : data    0x0000(0)      --> rechain count
   2958          * 0x47357e9e : data    0x0000(0)
   2959          * -------- end of chaining cells (0x006c)
   2960          * 0x47357eb0 : .word (0xad03e369)
   2961          * 0x47357eb4 : .word (0x28a90)
   2962          * 0x47357eb8 : .word (0x41a63394)
   2963          * 0x47357ebc : .word (0x425719dc)
   2964          */
   2965         case OP_INVOKE_INTERFACE:
   2966         case OP_INVOKE_INTERFACE_RANGE: {
   2967             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   2968 
   2969             /*
   2970              * If the invoke has non-null misPredBranchOver, we need to generate
   2971              * the non-inlined version of the invoke here to handle the
   2972              * mispredicted case.
   2973              */
   2974             if (mir->meta.callsiteInfo->misPredBranchOver) {
   2975                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   2976             }
   2977 
   2978             if (mir->dalvikInsn.opCode == OP_INVOKE_INTERFACE)
   2979                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   2980             else
   2981                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   2982 
   2983             /* "this" is already left in r0 by genProcessArgs* */
   2984 
   2985             /* r4PC = dalvikCallsite */
   2986             loadConstant(cUnit, r4PC,
   2987                          (int) (cUnit->method->insns + mir->offset));
   2988 
   2989             /* r1 = &retChainingCell */
   2990             ArmLIR *addrRetChain =
   2991                 opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   2992             addrRetChain->generic.target = (LIR *) retChainingCell;
   2993 
   2994             /* r2 = &predictedChainingCell */
   2995             ArmLIR *predictedChainingCell =
   2996                 opRegRegImm(cUnit, kOpAdd, r2, rpc, 0);
   2997             predictedChainingCell->generic.target = (LIR *) predChainingCell;
   2998 
   2999             genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
   3000 
   3001             /* return through lr - jump to the chaining cell */
   3002             genUnconditionalBranch(cUnit, predChainingCell);
   3003 
   3004             /*
   3005              * null-check on "this" may have been eliminated, but we still need
   3006              * a PC-reconstruction label for stack overflow bailout.
   3007              */
   3008             if (pcrLabel == NULL) {
   3009                 int dPC = (int) (cUnit->method->insns + mir->offset);
   3010                 pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
   3011                 pcrLabel->opCode = kArmPseudoPCReconstructionCell;
   3012                 pcrLabel->operands[0] = dPC;
   3013                 pcrLabel->operands[1] = mir->offset;
   3014                 /* Insert the place holder to the growable list */
   3015                 dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
   3016             }
   3017 
   3018             /* return through lr+2 - punt to the interpreter */
   3019             genUnconditionalBranch(cUnit, pcrLabel);
   3020 
   3021             /*
   3022              * return through lr+4 - fully resolve the callee method.
   3023              * r1 <- count
   3024              * r2 <- &predictedChainCell
   3025              * r3 <- this->class
   3026              * r4 <- dPC
   3027              * r7 <- this->class->vtable
   3028              */
   3029 
   3030             /* Save count, &predictedChainCell, and class to high regs first */
   3031             genRegCopy(cUnit, r8, r1);
   3032             genRegCopy(cUnit, r9, r2);
   3033             genRegCopy(cUnit, r10, r3);
   3034 
   3035             /* r0 now contains this->clazz */
   3036             genRegCopy(cUnit, r0, r3);
   3037 
   3038             /* r1 = BBBB */
   3039             loadConstant(cUnit, r1, dInsn->vB);
   3040 
   3041             /* r2 = method (caller) */
   3042             loadConstant(cUnit, r2, (int) cUnit->method);
   3043 
   3044             /* r3 = pDvmDex */
   3045             loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
   3046 
   3047             LOAD_FUNC_ADDR(cUnit, r7,
   3048                            (intptr_t) dvmFindInterfaceMethodInCache);
   3049             opReg(cUnit, kOpBlx, r7);
   3050             /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
   3051 
   3052             dvmCompilerClobberCallRegs(cUnit);
   3053             /* generate a branch over if the interface method is resolved */
   3054             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   3055             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   3056             /*
   3057              * calleeMethod == NULL -> throw
   3058              */
   3059             loadConstant(cUnit, r0,
   3060                          (int) (cUnit->method->insns + mir->offset));
   3061             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   3062             /* noreturn */
   3063 
   3064             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3065             target->defMask = ENCODE_ALL;
   3066             branchOver->generic.target = (LIR *) target;
   3067 
   3068             genRegCopy(cUnit, r1, r8);
   3069 
   3070             /* Check if rechain limit is reached */
   3071             opRegImm(cUnit, kOpCmp, r1, 0);
   3072 
   3073             ArmLIR *bypassRechaining = opCondBranch(cUnit, kArmCondGt);
   3074 
   3075             loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   3076                          jitToInterpEntries.dvmJitToPatchPredictedChain), r7);
   3077 
   3078             genRegCopy(cUnit, r1, rGLUE);
   3079             genRegCopy(cUnit, r2, r9);
   3080             genRegCopy(cUnit, r3, r10);
   3081 
   3082             /*
   3083              * r0 = calleeMethod
   3084              * r2 = &predictedChainingCell
   3085              * r3 = class
   3086              *
   3087              * &returnChainingCell has been loaded into r1 but is not needed
   3088              * when patching the chaining cell and will be clobbered upon
   3089              * returning so it will be reconstructed again.
   3090              */
   3091             opReg(cUnit, kOpBlx, r7);
   3092 
   3093             /* r1 = &retChainingCell */
   3094             addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
   3095             addrRetChain->generic.target = (LIR *) retChainingCell;
   3096 
   3097             bypassRechaining->generic.target = (LIR *) addrRetChain;
   3098 
   3099             /*
   3100              * r0 = this, r1 = calleeMethod,
   3101              * r1 = &ChainingCell,
   3102              * r4PC = callsiteDPC,
   3103              */
   3104             genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
   3105 #if defined(WITH_JIT_TUNING)
   3106             gDvmJit.invokePolymorphic++;
   3107 #endif
   3108             /* Handle exceptions using the interpreter */
   3109             genTrap(cUnit, mir->offset, pcrLabel);
   3110             break;
   3111         }
   3112         /* NOP */
   3113         case OP_INVOKE_DIRECT_EMPTY: {
   3114             return false;
   3115         }
   3116         case OP_FILLED_NEW_ARRAY:
   3117         case OP_FILLED_NEW_ARRAY_RANGE: {
   3118             /* Just let the interpreter deal with these */
   3119             genInterpSingleStep(cUnit, mir);
   3120             break;
   3121         }
   3122         default:
   3123             return true;
   3124     }
   3125     return false;
   3126 }
   3127 
   3128 static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
   3129                                BasicBlock *bb, ArmLIR *labelList)
   3130 {
   3131     ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
   3132     ArmLIR *predChainingCell = &labelList[bb->taken->id];
   3133     ArmLIR *pcrLabel = NULL;
   3134 
   3135     /* An invoke with the MIR_INLINED is effectively a no-op */
   3136     if (mir->OptimizationFlags & MIR_INLINED)
   3137         return false;
   3138 
   3139     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3140     switch (mir->dalvikInsn.opCode) {
   3141         /* calleeMethod = this->clazz->vtable[BBBB] */
   3142         case OP_INVOKE_VIRTUAL_QUICK_RANGE:
   3143         case OP_INVOKE_VIRTUAL_QUICK: {
   3144             int methodIndex = dInsn->vB;
   3145 
   3146             /*
   3147              * If the invoke has non-null misPredBranchOver, we need to generate
   3148              * the non-inlined version of the invoke here to handle the
   3149              * mispredicted case.
   3150              */
   3151             if (mir->meta.callsiteInfo->misPredBranchOver) {
   3152                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   3153             }
   3154 
   3155             if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL_QUICK)
   3156                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3157             else
   3158                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3159 
   3160             genInvokeVirtualCommon(cUnit, mir, methodIndex,
   3161                                    retChainingCell,
   3162                                    predChainingCell,
   3163                                    pcrLabel);
   3164             break;
   3165         }
   3166         /* calleeMethod = method->clazz->super->vtable[BBBB] */
   3167         case OP_INVOKE_SUPER_QUICK:
   3168         case OP_INVOKE_SUPER_QUICK_RANGE: {
   3169             /* Grab the method ptr directly from what the interpreter sees */
   3170             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3171             assert(calleeMethod ==
   3172                    cUnit->method->clazz->super->vtable[dInsn->vB]);
   3173 
   3174             if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER_QUICK)
   3175                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3176             else
   3177                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3178 
   3179             /* r0 = calleeMethod */
   3180             loadConstant(cUnit, r0, (int) calleeMethod);
   3181 
   3182             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3183                                      calleeMethod);
   3184             break;
   3185         }
   3186         default:
   3187             return true;
   3188     }
   3189     return false;
   3190 }
   3191 
   3192 /*
   3193  * This operation is complex enough that we'll do it partly inline
   3194  * and partly with a handler.  NOTE: the handler uses hardcoded
   3195  * values for string object offsets and must be revisitied if the
   3196  * layout changes.
   3197  */
   3198 static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
   3199 {
   3200 #if defined(USE_GLOBAL_STRING_DEFS)
   3201     return false;
   3202 #else
   3203     ArmLIR *rollback;
   3204     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
   3205     RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
   3206 
   3207     loadValueDirectFixed(cUnit, rlThis, r0);
   3208     loadValueDirectFixed(cUnit, rlComp, r1);
   3209     /* Test objects for NULL */
   3210     rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
   3211     genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
   3212     /*
   3213      * TUNING: we could check for object pointer equality before invoking
   3214      * handler. Unclear whether the gain would be worth the added code size
   3215      * expansion.
   3216      */
   3217     genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
   3218     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
   3219                dvmCompilerGetReturn(cUnit));
   3220     return true;
   3221 #endif
   3222 }
   3223 
   3224 static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
   3225 {
   3226 #if defined(USE_GLOBAL_STRING_DEFS)
   3227     return false;
   3228 #else
   3229     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
   3230     RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
   3231 
   3232     loadValueDirectFixed(cUnit, rlThis, r0);
   3233     loadValueDirectFixed(cUnit, rlChar, r1);
   3234     RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
   3235     loadValueDirectFixed(cUnit, rlStart, r2);
   3236     /* Test objects for NULL */
   3237     genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
   3238     genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
   3239     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
   3240                dvmCompilerGetReturn(cUnit));
   3241     return true;
   3242 #endif
   3243 }
   3244 
   3245 // Generates an inlined String.isEmpty or String.length.
   3246 static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
   3247                                             bool isEmpty)
   3248 {
   3249     // dst = src.length();
   3250     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
   3251     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3252     rlObj = loadValue(cUnit, rlObj, kCoreReg);
   3253     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3254     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
   3255     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
   3256                  rlResult.lowReg);
   3257     if (isEmpty) {
   3258         // dst = (dst == 0);
   3259         int tReg = dvmCompilerAllocTemp(cUnit);
   3260         opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
   3261         opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
   3262     }
   3263     storeValue(cUnit, rlDest, rlResult);
   3264     return false;
   3265 }
   3266 
   3267 static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
   3268 {
   3269     return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
   3270 }
   3271 
   3272 static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
   3273 {
   3274     return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
   3275 }
   3276 
   3277 static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
   3278 {
   3279     int contents = offsetof(ArrayObject, contents);
   3280     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
   3281     RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
   3282     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3283     RegLocation rlResult;
   3284     rlObj = loadValue(cUnit, rlObj, kCoreReg);
   3285     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
   3286     int regMax = dvmCompilerAllocTemp(cUnit);
   3287     int regOff = dvmCompilerAllocTemp(cUnit);
   3288     int regPtr = dvmCompilerAllocTemp(cUnit);
   3289     ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
   3290                                     mir->offset, NULL);
   3291     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
   3292     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
   3293     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
   3294     genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
   3295     dvmCompilerFreeTemp(cUnit, regMax);
   3296     opRegImm(cUnit, kOpAdd, regPtr, contents);
   3297     opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
   3298     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3299     loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
   3300     storeValue(cUnit, rlDest, rlResult);
   3301     return false;
   3302 }
   3303 
   3304 static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
   3305 {
   3306     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   3307     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   3308     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3309     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3310     int signReg = dvmCompilerAllocTemp(cUnit);
   3311     /*
   3312      * abs(x) = y<=x>>31, (x+y)^y.
   3313      * Thumb2's IT block also yields 3 instructions, but imposes
   3314      * scheduling constraints.
   3315      */
   3316     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
   3317     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
   3318     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
   3319     storeValue(cUnit, rlDest, rlResult);
   3320     return false;
   3321 }
   3322 
   3323 static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
   3324 {
   3325     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   3326     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
   3327     rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
   3328     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3329     int signReg = dvmCompilerAllocTemp(cUnit);
   3330     /*
   3331      * abs(x) = y<=x>>31, (x+y)^y.
   3332      * Thumb2 IT block allows slightly shorter sequence,
   3333      * but introduces a scheduling barrier.  Stick with this
   3334      * mechanism for now.
   3335      */
   3336     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
   3337     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
   3338     opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
   3339     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
   3340     opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
   3341     storeValueWide(cUnit, rlDest, rlResult);
   3342     return false;
   3343 }
   3344 
   3345 static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
   3346 {
   3347     // Just move from source to destination...
   3348     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   3349     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3350     storeValue(cUnit, rlDest, rlSrc);
   3351     return false;
   3352 }
   3353 
   3354 static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
   3355 {
   3356     // Just move from source to destination...
   3357     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   3358     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
   3359     storeValueWide(cUnit, rlDest, rlSrc);
   3360     return false;
   3361 }
   3362 
   3363 /*
   3364  * NOTE: Handles both range and non-range versions (arguments
   3365  * have already been normalized by this point).
   3366  */
   3367 static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
   3368 {
   3369     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3370     switch( mir->dalvikInsn.opCode) {
   3371         case OP_EXECUTE_INLINE_RANGE:
   3372         case OP_EXECUTE_INLINE: {
   3373             unsigned int i;
   3374             const InlineOperation* inLineTable = dvmGetInlineOpsTable();
   3375             int offset = offsetof(InterpState, retval);
   3376             int operation = dInsn->vB;
   3377             switch (operation) {
   3378                 case INLINE_EMPTYINLINEMETHOD:
   3379                     return false;  /* Nop */
   3380                 case INLINE_STRING_LENGTH:
   3381                     return genInlinedStringLength(cUnit, mir);
   3382                 case INLINE_STRING_IS_EMPTY:
   3383                     return genInlinedStringIsEmpty(cUnit, mir);
   3384                 case INLINE_MATH_ABS_INT:
   3385                     return genInlinedAbsInt(cUnit, mir);
   3386                 case INLINE_MATH_ABS_LONG:
   3387                     return genInlinedAbsLong(cUnit, mir);
   3388                 case INLINE_MATH_MIN_INT:
   3389                     return genInlinedMinMaxInt(cUnit, mir, true);
   3390                 case INLINE_MATH_MAX_INT:
   3391                     return genInlinedMinMaxInt(cUnit, mir, false);
   3392                 case INLINE_STRING_CHARAT:
   3393                     return genInlinedStringCharAt(cUnit, mir);
   3394                 case INLINE_MATH_SQRT:
   3395                     if (genInlineSqrt(cUnit, mir))
   3396                         return false;
   3397                     else
   3398                         break;   /* Handle with C routine */
   3399                 case INLINE_MATH_ABS_FLOAT:
   3400                     if (genInlinedAbsFloat(cUnit, mir))
   3401                         return false;
   3402                     else
   3403                         break;
   3404                 case INLINE_MATH_ABS_DOUBLE:
   3405                     if (genInlinedAbsDouble(cUnit, mir))
   3406                         return false;
   3407                     else
   3408                         break;
   3409                 case INLINE_STRING_COMPARETO:
   3410                     if (genInlinedCompareTo(cUnit, mir))
   3411                         return false;
   3412                     else
   3413                         break;
   3414                 case INLINE_STRING_FASTINDEXOF_II:
   3415                     if (genInlinedFastIndexOf(cUnit, mir))
   3416                         return false;
   3417                     else
   3418                         break;
   3419                 case INLINE_FLOAT_TO_RAW_INT_BITS:
   3420                 case INLINE_INT_BITS_TO_FLOAT:
   3421                     return genInlinedIntFloatConversion(cUnit, mir);
   3422                 case INLINE_DOUBLE_TO_RAW_LONG_BITS:
   3423                 case INLINE_LONG_BITS_TO_DOUBLE:
   3424                     return genInlinedLongDoubleConversion(cUnit, mir);
   3425                 case INLINE_STRING_EQUALS:
   3426                 case INLINE_MATH_COS:
   3427                 case INLINE_MATH_SIN:
   3428                 case INLINE_FLOAT_TO_INT_BITS:
   3429                 case INLINE_DOUBLE_TO_LONG_BITS:
   3430                     break;   /* Handle with C routine */
   3431                 default:
   3432                     dvmCompilerAbort(cUnit);
   3433             }
   3434             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   3435             dvmCompilerClobberCallRegs(cUnit);
   3436             dvmCompilerClobber(cUnit, r4PC);
   3437             dvmCompilerClobber(cUnit, r7);
   3438             opRegRegImm(cUnit, kOpAdd, r4PC, rGLUE, offset);
   3439             opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
   3440             LOAD_FUNC_ADDR(cUnit, r4PC, (int)inLineTable[operation].func);
   3441             genExportPC(cUnit, mir);
   3442             for (i=0; i < dInsn->vA; i++) {
   3443                 loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i);
   3444             }
   3445             opReg(cUnit, kOpBlx, r4PC);
   3446             opRegImm(cUnit, kOpAdd, r13, 8);
   3447             opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
   3448             ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
   3449             loadConstant(cUnit, r0,
   3450                          (int) (cUnit->method->insns + mir->offset));
   3451             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   3452             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3453             target->defMask = ENCODE_ALL;
   3454             branchOver->generic.target = (LIR *) target;
   3455             break;
   3456         }
   3457         default:
   3458             return true;
   3459     }
   3460     return false;
   3461 }
   3462 
   3463 static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
   3464 {
   3465     //TUNING: We're using core regs here - not optimal when target is a double
   3466     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   3467     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3468     loadConstantNoClobber(cUnit, rlResult.lowReg,
   3469                           mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
   3470     loadConstantNoClobber(cUnit, rlResult.highReg,
   3471                           (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
   3472     storeValueWide(cUnit, rlDest, rlResult);
   3473     return false;
   3474 }
   3475 
   3476 /*
   3477  * The following are special processing routines that handle transfer of
   3478  * controls between compiled code and the interpreter. Certain VM states like
   3479  * Dalvik PC and special-purpose registers are reconstructed here.
   3480  */
   3481 
   3482 /*
   3483  * Insert a
   3484  *    b   .+4
   3485  *    nop
   3486  * pair at the beginning of a chaining cell.  This serves as the
   3487  * switch branch that selects between reverting to the interpreter or
   3488  * not.  Once the cell is chained to a translation, the cell will
   3489  * contain a 32-bit branch.  Subsequent chain/unchain operations will
   3490  * then only alter that first 16-bits - the "b .+4" for unchaining,
   3491  * and the restoration of the first half of the 32-bit branch for
   3492  * rechaining.
   3493  */
   3494 static void insertChainingSwitch(CompilationUnit *cUnit)
   3495 {
   3496     ArmLIR *branch = newLIR0(cUnit, kThumbBUncond);
   3497     newLIR2(cUnit, kThumbOrr, r0, r0);
   3498     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3499     target->defMask = ENCODE_ALL;
   3500     branch->generic.target = (LIR *) target;
   3501 }
   3502 
   3503 /* Chaining cell for code that may need warmup. */
   3504 static void handleNormalChainingCell(CompilationUnit *cUnit,
   3505                                      unsigned int offset)
   3506 {
   3507     /*
   3508      * Use raw instruction constructors to guarantee that the generated
   3509      * instructions fit the predefined cell size.
   3510      */
   3511     insertChainingSwitch(cUnit);
   3512     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3513             offsetof(InterpState,
   3514                      jitToInterpEntries.dvmJitToInterpNormal) >> 2);
   3515     newLIR1(cUnit, kThumbBlxR, r0);
   3516     addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
   3517 }
   3518 
   3519 /*
   3520  * Chaining cell for instructions that immediately following already translated
   3521  * code.
   3522  */
   3523 static void handleHotChainingCell(CompilationUnit *cUnit,
   3524                                   unsigned int offset)
   3525 {
   3526     /*
   3527      * Use raw instruction constructors to guarantee that the generated
   3528      * instructions fit the predefined cell size.
   3529      */
   3530     insertChainingSwitch(cUnit);
   3531     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3532             offsetof(InterpState,
   3533                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
   3534     newLIR1(cUnit, kThumbBlxR, r0);
   3535     addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
   3536 }
   3537 
   3538 #if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
   3539 /* Chaining cell for branches that branch back into the same basic block */
   3540 static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
   3541                                              unsigned int offset)
   3542 {
   3543     /*
   3544      * Use raw instruction constructors to guarantee that the generated
   3545      * instructions fit the predefined cell size.
   3546      */
   3547     insertChainingSwitch(cUnit);
   3548 #if defined(WITH_SELF_VERIFICATION)
   3549     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3550         offsetof(InterpState,
   3551                  jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2);
   3552 #else
   3553     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3554         offsetof(InterpState, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
   3555 #endif
   3556     newLIR1(cUnit, kThumbBlxR, r0);
   3557     addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
   3558 }
   3559 
   3560 #endif
   3561 /* Chaining cell for monomorphic method invocations. */
   3562 static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
   3563                                               const Method *callee)
   3564 {
   3565     /*
   3566      * Use raw instruction constructors to guarantee that the generated
   3567      * instructions fit the predefined cell size.
   3568      */
   3569     insertChainingSwitch(cUnit);
   3570     newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
   3571             offsetof(InterpState,
   3572                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
   3573     newLIR1(cUnit, kThumbBlxR, r0);
   3574     addWordData(cUnit, (int) (callee->insns), true);
   3575 }
   3576 
   3577 /* Chaining cell for monomorphic method invocations. */
   3578 static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
   3579 {
   3580 
   3581     /* Should not be executed in the initial state */
   3582     addWordData(cUnit, PREDICTED_CHAIN_BX_PAIR_INIT, true);
   3583     /* To be filled: class */
   3584     addWordData(cUnit, PREDICTED_CHAIN_CLAZZ_INIT, true);
   3585     /* To be filled: method */
   3586     addWordData(cUnit, PREDICTED_CHAIN_METHOD_INIT, true);
   3587     /*
   3588      * Rechain count. The initial value of 0 here will trigger chaining upon
   3589      * the first invocation of this callsite.
   3590      */
   3591     addWordData(cUnit, PREDICTED_CHAIN_COUNTER_INIT, true);
   3592 }
   3593 
   3594 /* Load the Dalvik PC into r0 and jump to the specified target */
   3595 static void handlePCReconstruction(CompilationUnit *cUnit,
   3596                                    ArmLIR *targetLabel)
   3597 {
   3598     ArmLIR **pcrLabel =
   3599         (ArmLIR **) cUnit->pcReconstructionList.elemList;
   3600     int numElems = cUnit->pcReconstructionList.numUsed;
   3601     int i;
   3602     for (i = 0; i < numElems; i++) {
   3603         dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
   3604         /* r0 = dalvik PC */
   3605         loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
   3606         genUnconditionalBranch(cUnit, targetLabel);
   3607     }
   3608 }
   3609 
   3610 static char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
   3611     "kMirOpPhi",
   3612     "kMirOpNullNRangeUpCheck",
   3613     "kMirOpNullNRangeDownCheck",
   3614     "kMirOpLowerBound",
   3615     "kMirOpPunt",
   3616     "kMirOpCheckInlinePrediction",
   3617 };
   3618 
   3619 /*
   3620  * vA = arrayReg;
   3621  * vB = idxReg;
   3622  * vC = endConditionReg;
   3623  * arg[0] = maxC
   3624  * arg[1] = minC
   3625  * arg[2] = loopBranchConditionCode
   3626  */
   3627 static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
   3628 {
   3629     /*
   3630      * NOTE: these synthesized blocks don't have ssa names assigned
   3631      * for Dalvik registers.  However, because they dominate the following
   3632      * blocks we can simply use the Dalvik name w/ subscript 0 as the
   3633      * ssa name.
   3634      */
   3635     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3636     const int lenOffset = offsetof(ArrayObject, length);
   3637     const int maxC = dInsn->arg[0];
   3638     int regLength;
   3639     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
   3640     RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
   3641 
   3642     /* regArray <- arrayRef */
   3643     rlArray = loadValue(cUnit, rlArray, kCoreReg);
   3644     rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
   3645     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
   3646                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3647 
   3648     /* regLength <- len(arrayRef) */
   3649     regLength = dvmCompilerAllocTemp(cUnit);
   3650     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
   3651 
   3652     int delta = maxC;
   3653     /*
   3654      * If the loop end condition is ">=" instead of ">", then the largest value
   3655      * of the index is "endCondition - 1".
   3656      */
   3657     if (dInsn->arg[2] == OP_IF_GE) {
   3658         delta--;
   3659     }
   3660 
   3661     if (delta) {
   3662         int tReg = dvmCompilerAllocTemp(cUnit);
   3663         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
   3664         rlIdxEnd.lowReg = tReg;
   3665         dvmCompilerFreeTemp(cUnit, tReg);
   3666     }
   3667     /* Punt if "regIdxEnd < len(Array)" is false */
   3668     genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
   3669                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3670 }
   3671 
   3672 /*
   3673  * vA = arrayReg;
   3674  * vB = idxReg;
   3675  * vC = endConditionReg;
   3676  * arg[0] = maxC
   3677  * arg[1] = minC
   3678  * arg[2] = loopBranchConditionCode
   3679  */
   3680 static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
   3681 {
   3682     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3683     const int lenOffset = offsetof(ArrayObject, length);
   3684     const int regLength = dvmCompilerAllocTemp(cUnit);
   3685     const int maxC = dInsn->arg[0];
   3686     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
   3687     RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
   3688 
   3689     /* regArray <- arrayRef */
   3690     rlArray = loadValue(cUnit, rlArray, kCoreReg);
   3691     rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
   3692     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
   3693                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3694 
   3695     /* regLength <- len(arrayRef) */
   3696     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
   3697 
   3698     if (maxC) {
   3699         int tReg = dvmCompilerAllocTemp(cUnit);
   3700         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
   3701         rlIdxInit.lowReg = tReg;
   3702         dvmCompilerFreeTemp(cUnit, tReg);
   3703     }
   3704 
   3705     /* Punt if "regIdxInit < len(Array)" is false */
   3706     genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
   3707                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3708 }
   3709 
   3710 /*
   3711  * vA = idxReg;
   3712  * vB = minC;
   3713  */
   3714 static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
   3715 {
   3716     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3717     const int minC = dInsn->vB;
   3718     RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
   3719 
   3720     /* regIdx <- initial index value */
   3721     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
   3722 
   3723     /* Punt if "regIdxInit + minC >= 0" is false */
   3724     genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
   3725                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3726 }
   3727 
   3728 /*
   3729  * vC = this
   3730  *
   3731  * A predicted inlining target looks like the following, where instructions
   3732  * between 0x4858de66 and 0x4858de72 are checking if the predicted class
   3733  * matches "this", and the verificaion code is generated by this routine.
   3734  *
   3735  * (C) means the instruction is inlined from the callee, and (PI) means the
   3736  * instruction is the predicted inlined invoke, whose corresponding
   3737  * instructions are still generated to handle the mispredicted case.
   3738  *
   3739  * D/dalvikvm(   86): -------- kMirOpCheckInlinePrediction
   3740  * D/dalvikvm(   86): 0x4858de66 (0002): ldr     r0, [r5, #68]
   3741  * D/dalvikvm(   86): 0x4858de68 (0004): ldr     r1, [pc, #140]
   3742  * D/dalvikvm(   86): 0x4858de6a (0006): cmp     r0, #0
   3743  * D/dalvikvm(   86): 0x4858de6c (0008): beq     0x4858deb2
   3744  * D/dalvikvm(   86): 0x4858de6e (000a): ldr     r2, [r0, #0]
   3745  * D/dalvikvm(   86): 0x4858de70 (000c): cmp     r1, r2
   3746  * D/dalvikvm(   86): 0x4858de72 (000e): bne     0x4858de7a
   3747  * D/dalvikvm(   86): -------- dalvik offset: 0x004c @ +iget-object-quick (C)
   3748  * v4, v17, (#8)
   3749  * D/dalvikvm(   86): 0x4858de74 (0010): ldr     r3, [r0, #8]
   3750  * D/dalvikvm(   86): 0x4858de76 (0012): str     r3, [r5, #16]
   3751  * D/dalvikvm(   86): -------- dalvik offset: 0x004c @
   3752  * +invoke-virtual-quick/range (PI) v17..v17
   3753  * D/dalvikvm(   86): 0x4858de78 (0014): b       0x4858debc
   3754  * D/dalvikvm(   86): 0x4858de7a (0016): add     r4,r5,#68
   3755  * D/dalvikvm(   86): -------- BARRIER
   3756  * D/dalvikvm(   86): 0x4858de7e (001a): ldmia   r4, <r0>
   3757  * D/dalvikvm(   86): -------- BARRIER
   3758  * D/dalvikvm(   86): 0x4858de80 (001c): sub     r7,r5,#24
   3759  * D/dalvikvm(   86): 0x4858de84 (0020): cmp     r0, #0
   3760  * D/dalvikvm(   86): 0x4858de86 (0022): beq     0x4858deb6
   3761  * D/dalvikvm(   86): -------- BARRIER
   3762  * D/dalvikvm(   86): 0x4858de88 (0024): stmia   r7, <r0>
   3763  * D/dalvikvm(   86): -------- BARRIER
   3764  * D/dalvikvm(   86): 0x4858de8a (0026): ldr     r4, [pc, #104]
   3765  * D/dalvikvm(   86): 0x4858de8c (0028): add     r1, pc, #28
   3766  * D/dalvikvm(   86): 0x4858de8e (002a): add     r2, pc, #56
   3767  * D/dalvikvm(   86): 0x4858de90 (002c): blx_1   0x48589198
   3768  * D/dalvikvm(   86): 0x4858de92 (002e): blx_2   see above
   3769  * D/dalvikvm(   86): 0x4858de94 (0030): b       0x4858dec8
   3770  * D/dalvikvm(   86): 0x4858de96 (0032): b       0x4858deb6
   3771  * D/dalvikvm(   86): 0x4858de98 (0034): ldr     r0, [r7, #72]
   3772  * D/dalvikvm(   86): 0x4858de9a (0036): cmp     r1, #0
   3773  * D/dalvikvm(   86): 0x4858de9c (0038): bgt     0x4858dea4
   3774  * D/dalvikvm(   86): 0x4858de9e (003a): ldr     r7, [r6, #116]
   3775  * D/dalvikvm(   86): 0x4858dea0 (003c): movs    r1, r6
   3776  * D/dalvikvm(   86): 0x4858dea2 (003e): blx     r7
   3777  * D/dalvikvm(   86): 0x4858dea4 (0040): add     r1, pc, #4
   3778  * D/dalvikvm(   86): 0x4858dea6 (0042): blx_1   0x485890a0
   3779  * D/dalvikvm(   86): 0x4858dea8 (0044): blx_2   see above
   3780  * D/dalvikvm(   86): 0x4858deaa (0046): b       0x4858deb6
   3781  * D/dalvikvm(   86): 0x4858deac (0048): .align4
   3782  * D/dalvikvm(   86): L0x004f:
   3783  * D/dalvikvm(   86): -------- dalvik offset: 0x004f @ move-result-object (PI)
   3784  * v4, (#0), (#0)
   3785  * D/dalvikvm(   86): 0x4858deac (0048): ldr     r4, [r6, #8]
   3786  * D/dalvikvm(   86): 0x4858deae (004a): str     r4, [r5, #16]
   3787  * D/dalvikvm(   86): 0x4858deb0 (004c): b       0x4858debc
   3788  * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
   3789  * D/dalvikvm(   86): 0x4858deb2 (004e): ldr     r0, [pc, #64]
   3790  * D/dalvikvm(   86): 0x4858deb4 (0050): b       0x4858deb8
   3791  * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
   3792  * D/dalvikvm(   86): 0x4858deb6 (0052): ldr     r0, [pc, #60]
   3793  * D/dalvikvm(   86): Exception_Handling:
   3794  * D/dalvikvm(   86): 0x4858deb8 (0054): ldr     r1, [r6, #100]
   3795  * D/dalvikvm(   86): 0x4858deba (0056): blx     r1
   3796  * D/dalvikvm(   86): 0x4858debc (0058): .align4
   3797  * D/dalvikvm(   86): -------- chaining cell (hot): 0x0050
   3798  * D/dalvikvm(   86): 0x4858debc (0058): b       0x4858dec0
   3799  * D/dalvikvm(   86): 0x4858debe (005a): orrs    r0, r0
   3800  * D/dalvikvm(   86): 0x4858dec0 (005c): ldr     r0, [r6, #112]
   3801  * D/dalvikvm(   86): 0x4858dec2 (005e): blx     r0
   3802  * D/dalvikvm(   86): 0x4858dec4 (0060): data    0xefd4(61396)
   3803  * D/dalvikvm(   86): 0x4858dec6 (0062): data    0x42be(17086)
   3804  * D/dalvikvm(   86): 0x4858dec8 (0064): .align4
   3805  * D/dalvikvm(   86): -------- chaining cell (predicted)
   3806  * D/dalvikvm(   86): 0x4858dec8 (0064): data    0xe7fe(59390)
   3807  * D/dalvikvm(   86): 0x4858deca (0066): data    0x0000(0)
   3808  * D/dalvikvm(   86): 0x4858decc (0068): data    0x0000(0)
   3809  * D/dalvikvm(   86): 0x4858dece (006a): data    0x0000(0)
   3810  * :
   3811  */
   3812 static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
   3813 {
   3814     CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
   3815     RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
   3816 
   3817     rlThis = loadValue(cUnit, rlThis, kCoreReg);
   3818     int regPredictedClass = dvmCompilerAllocTemp(cUnit);
   3819     loadConstant(cUnit, regPredictedClass, (int) callsiteInfo->clazz);
   3820     genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
   3821                  NULL);/* null object? */
   3822     int regActualClass = dvmCompilerAllocTemp(cUnit);
   3823     loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
   3824     opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
   3825     /*
   3826      * Set the misPredBranchOver target so that it will be generated when the
   3827      * code for the non-optimized invoke is generated.
   3828      */
   3829     callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe);
   3830 }
   3831 
   3832 /* Extended MIR instructions like PHI */
   3833 static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
   3834 {
   3835     int opOffset = mir->dalvikInsn.opCode - kMirOpFirst;
   3836     char *msg = dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
   3837                                false);
   3838     strcpy(msg, extendedMIROpNames[opOffset]);
   3839     newLIR1(cUnit, kArmPseudoExtended, (int) msg);
   3840 
   3841     switch (mir->dalvikInsn.opCode) {
   3842         case kMirOpPhi: {
   3843             char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
   3844             newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
   3845             break;
   3846         }
   3847         case kMirOpNullNRangeUpCheck: {
   3848             genHoistedChecksForCountUpLoop(cUnit, mir);
   3849             break;
   3850         }
   3851         case kMirOpNullNRangeDownCheck: {
   3852             genHoistedChecksForCountDownLoop(cUnit, mir);
   3853             break;
   3854         }
   3855         case kMirOpLowerBound: {
   3856             genHoistedLowerBoundCheck(cUnit, mir);
   3857             break;
   3858         }
   3859         case kMirOpPunt: {
   3860             genUnconditionalBranch(cUnit,
   3861                                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3862             break;
   3863         }
   3864         case kMirOpCheckInlinePrediction: {
   3865             genValidationForPredictedInline(cUnit, mir);
   3866             break;
   3867         }
   3868         default:
   3869             break;
   3870     }
   3871 }
   3872 
   3873 /*
   3874  * Create a PC-reconstruction cell for the starting offset of this trace.
   3875  * Since the PCR cell is placed near the end of the compiled code which is
   3876  * usually out of range for a conditional branch, we put two branches (one
   3877  * branch over to the loop body and one layover branch to the actual PCR) at the
   3878  * end of the entry block.
   3879  */
   3880 static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
   3881                                 ArmLIR *bodyLabel)
   3882 {
   3883     /* Set up the place holder to reconstruct this Dalvik PC */
   3884     ArmLIR *pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
   3885     pcrLabel->opCode = kArmPseudoPCReconstructionCell;
   3886     pcrLabel->operands[0] =
   3887         (int) (cUnit->method->insns + entry->startOffset);
   3888     pcrLabel->operands[1] = entry->startOffset;
   3889     /* Insert the place holder to the growable list */
   3890     dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
   3891 
   3892     /*
   3893      * Next, create two branches - one branch over to the loop body and the
   3894      * other branch to the PCR cell to punt.
   3895      */
   3896     ArmLIR *branchToBody = dvmCompilerNew(sizeof(ArmLIR), true);
   3897     branchToBody->opCode = kThumbBUncond;
   3898     branchToBody->generic.target = (LIR *) bodyLabel;
   3899     setupResourceMasks(branchToBody);
   3900     cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
   3901 
   3902     ArmLIR *branchToPCR = dvmCompilerNew(sizeof(ArmLIR), true);
   3903     branchToPCR->opCode = kThumbBUncond;
   3904     branchToPCR->generic.target = (LIR *) pcrLabel;
   3905     setupResourceMasks(branchToPCR);
   3906     cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
   3907 }
   3908 
   3909 #if defined(WITH_SELF_VERIFICATION)
   3910 static bool selfVerificationPuntOps(MIR *mir)
   3911 {
   3912     DecodedInstruction *decInsn = &mir->dalvikInsn;
   3913     OpCode op = decInsn->opCode;
   3914 
   3915     /*
   3916      * All opcodes that can throw exceptions and use the
   3917      * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
   3918      * under self-verification mode.
   3919      */
   3920     return (op == OP_MONITOR_ENTER || op == OP_MONITOR_EXIT ||
   3921             op == OP_NEW_INSTANCE || op == OP_NEW_ARRAY ||
   3922             op == OP_CHECK_CAST || op == OP_MOVE_EXCEPTION ||
   3923             op == OP_FILL_ARRAY_DATA || op == OP_EXECUTE_INLINE ||
   3924             op == OP_EXECUTE_INLINE_RANGE);
   3925 }
   3926 #endif
   3927 
   3928 void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
   3929 {
   3930     /* Used to hold the labels of each block */
   3931     ArmLIR *labelList =
   3932         dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
   3933     GrowableList chainingListByType[kChainingCellGap];
   3934     int i;
   3935 
   3936     /*
   3937      * Initialize various types chaining lists.
   3938      */
   3939     for (i = 0; i < kChainingCellGap; i++) {
   3940         dvmInitGrowableList(&chainingListByType[i], 2);
   3941     }
   3942 
   3943     BasicBlock **blockList = cUnit->blockList;
   3944 
   3945     if (cUnit->executionCount) {
   3946         /*
   3947          * Reserve 6 bytes at the beginning of the trace
   3948          *        +----------------------------+
   3949          *        | execution count (4 bytes)  |
   3950          *        +----------------------------+
   3951          *        | chain cell offset (2 bytes)|
   3952          *        +----------------------------+
   3953          * ...and then code to increment the execution
   3954          * count:
   3955          *       mov   r0, pc       @ move adr of "mov r0,pc" + 4 to r0
   3956          *       sub   r0, #10      @ back up to addr of executionCount
   3957          *       ldr   r1, [r0]
   3958          *       add   r1, #1
   3959          *       str   r1, [r0]
   3960          */
   3961         newLIR1(cUnit, kArm16BitData, 0);
   3962         newLIR1(cUnit, kArm16BitData, 0);
   3963         cUnit->chainCellOffsetLIR =
   3964             (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
   3965         cUnit->headerSize = 6;
   3966         /* Thumb instruction used directly here to ensure correct size */
   3967         newLIR2(cUnit, kThumbMovRR_H2L, r0, rpc);
   3968         newLIR2(cUnit, kThumbSubRI8, r0, 10);
   3969         newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
   3970         newLIR2(cUnit, kThumbAddRI8, r1, 1);
   3971         newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
   3972     } else {
   3973          /* Just reserve 2 bytes for the chain cell offset */
   3974         cUnit->chainCellOffsetLIR =
   3975             (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
   3976         cUnit->headerSize = 2;
   3977     }
   3978 
   3979     /* Handle the content in each basic block */
   3980     for (i = 0; i < cUnit->numBlocks; i++) {
   3981         blockList[i]->visited = true;
   3982         MIR *mir;
   3983 
   3984         labelList[i].operands[0] = blockList[i]->startOffset;
   3985 
   3986         if (blockList[i]->blockType >= kChainingCellGap) {
   3987             if (blockList[i]->isFallThroughFromInvoke == true) {
   3988                 /* Align this block first since it is a return chaining cell */
   3989                 newLIR0(cUnit, kArmPseudoPseudoAlign4);
   3990             }
   3991             /*
   3992              * Append the label pseudo LIR first. Chaining cells will be handled
   3993              * separately afterwards.
   3994              */
   3995             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
   3996         }
   3997 
   3998         if (blockList[i]->blockType == kTraceEntryBlock) {
   3999             labelList[i].opCode = kArmPseudoEntryBlock;
   4000             if (blockList[i]->firstMIRInsn == NULL) {
   4001                 continue;
   4002             } else {
   4003               setupLoopEntryBlock(cUnit, blockList[i],
   4004                                   &labelList[blockList[i]->fallThrough->id]);
   4005             }
   4006         } else if (blockList[i]->blockType == kTraceExitBlock) {
   4007             labelList[i].opCode = kArmPseudoExitBlock;
   4008             goto gen_fallthrough;
   4009         } else if (blockList[i]->blockType == kDalvikByteCode) {
   4010             labelList[i].opCode = kArmPseudoNormalBlockLabel;
   4011             /* Reset the register state */
   4012             dvmCompilerResetRegPool(cUnit);
   4013             dvmCompilerClobberAllRegs(cUnit);
   4014             dvmCompilerResetNullCheck(cUnit);
   4015         } else {
   4016             switch (blockList[i]->blockType) {
   4017                 case kChainingCellNormal:
   4018                     labelList[i].opCode = kArmPseudoChainingCellNormal;
   4019                     /* handle the codegen later */
   4020                     dvmInsertGrowableList(
   4021                         &chainingListByType[kChainingCellNormal], (void *) i);
   4022                     break;
   4023                 case kChainingCellInvokeSingleton:
   4024                     labelList[i].opCode =
   4025                         kArmPseudoChainingCellInvokeSingleton;
   4026                     labelList[i].operands[0] =
   4027                         (int) blockList[i]->containingMethod;
   4028                     /* handle the codegen later */
   4029                     dvmInsertGrowableList(
   4030                         &chainingListByType[kChainingCellInvokeSingleton],
   4031                         (void *) i);
   4032                     break;
   4033                 case kChainingCellInvokePredicted:
   4034                     labelList[i].opCode =
   4035                         kArmPseudoChainingCellInvokePredicted;
   4036                     /* handle the codegen later */
   4037                     dvmInsertGrowableList(
   4038                         &chainingListByType[kChainingCellInvokePredicted],
   4039                         (void *) i);
   4040                     break;
   4041                 case kChainingCellHot:
   4042                     labelList[i].opCode =
   4043                         kArmPseudoChainingCellHot;
   4044                     /* handle the codegen later */
   4045                     dvmInsertGrowableList(
   4046                         &chainingListByType[kChainingCellHot],
   4047                         (void *) i);
   4048                     break;
   4049                 case kPCReconstruction:
   4050                     /* Make sure exception handling block is next */
   4051                     labelList[i].opCode =
   4052                         kArmPseudoPCReconstructionBlockLabel;
   4053                     assert (i == cUnit->numBlocks - 2);
   4054                     handlePCReconstruction(cUnit, &labelList[i+1]);
   4055                     break;
   4056                 case kExceptionHandling:
   4057                     labelList[i].opCode = kArmPseudoEHBlockLabel;
   4058                     if (cUnit->pcReconstructionList.numUsed) {
   4059                         loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   4060                                      jitToInterpEntries.dvmJitToInterpPunt),
   4061                                      r1);
   4062                         opReg(cUnit, kOpBlx, r1);
   4063                     }
   4064                     break;
   4065 #if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
   4066                 case kChainingCellBackwardBranch:
   4067                     labelList[i].opCode =
   4068                         kArmPseudoChainingCellBackwardBranch;
   4069                     /* handle the codegen later */
   4070                     dvmInsertGrowableList(
   4071                         &chainingListByType[kChainingCellBackwardBranch],
   4072                         (void *) i);
   4073                     break;
   4074 #endif
   4075                 default:
   4076                     break;
   4077             }
   4078             continue;
   4079         }
   4080 
   4081         ArmLIR *headLIR = NULL;
   4082 
   4083         for (mir = blockList[i]->firstMIRInsn; mir; mir = mir->next) {
   4084 
   4085             dvmCompilerResetRegPool(cUnit);
   4086             if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
   4087                 dvmCompilerClobberAllRegs(cUnit);
   4088             }
   4089 
   4090             if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
   4091                 dvmCompilerResetDefTracking(cUnit);
   4092             }
   4093 
   4094             if (mir->dalvikInsn.opCode >= kMirOpFirst) {
   4095                 handleExtendedMIR(cUnit, mir);
   4096                 continue;
   4097             }
   4098 
   4099 
   4100             OpCode dalvikOpCode = mir->dalvikInsn.opCode;
   4101             InstructionFormat dalvikFormat =
   4102                 dexGetInstrFormat(gDvm.instrFormat, dalvikOpCode);
   4103             char *note;
   4104             if (mir->OptimizationFlags & MIR_INLINED) {
   4105                 note = " (I)";
   4106             } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
   4107                 note = " (PI)";
   4108             } else if (mir->OptimizationFlags & MIR_CALLEE) {
   4109                 note = " (C)";
   4110             } else {
   4111                 note = NULL;
   4112             }
   4113 
   4114             ArmLIR *boundaryLIR =
   4115                 newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
   4116                         mir->offset,
   4117                         (int) dvmCompilerGetDalvikDisassembly(&mir->dalvikInsn,
   4118                                                               note));
   4119             if (mir->ssaRep) {
   4120                 char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
   4121                 newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
   4122             }
   4123 
   4124             /* Remember the first LIR for this block */
   4125             if (headLIR == NULL) {
   4126                 headLIR = boundaryLIR;
   4127                 /* Set the first boundaryLIR as a scheduling barrier */
   4128                 headLIR->defMask = ENCODE_ALL;
   4129             }
   4130 
   4131             bool notHandled;
   4132             /*
   4133              * Debugging: screen the opcode first to see if it is in the
   4134              * do[-not]-compile list
   4135              */
   4136             bool singleStepMe = SINGLE_STEP_OP(dalvikOpCode);
   4137 #if defined(WITH_SELF_VERIFICATION)
   4138           if (singleStepMe == false) {
   4139               singleStepMe = selfVerificationPuntOps(mir);
   4140           }
   4141 #endif
   4142             if (singleStepMe || cUnit->allSingleStep) {
   4143                 notHandled = false;
   4144                 genInterpSingleStep(cUnit, mir);
   4145             } else {
   4146                 opcodeCoverage[dalvikOpCode]++;
   4147                 switch (dalvikFormat) {
   4148                     case kFmt10t:
   4149                     case kFmt20t:
   4150                     case kFmt30t:
   4151                         notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
   4152                                   mir, blockList[i], labelList);
   4153                         break;
   4154                     case kFmt10x:
   4155                         notHandled = handleFmt10x(cUnit, mir);
   4156                         break;
   4157                     case kFmt11n:
   4158                     case kFmt31i:
   4159                         notHandled = handleFmt11n_Fmt31i(cUnit, mir);
   4160                         break;
   4161                     case kFmt11x:
   4162                         notHandled = handleFmt11x(cUnit, mir);
   4163                         break;
   4164                     case kFmt12x:
   4165                         notHandled = handleFmt12x(cUnit, mir);
   4166                         break;
   4167                     case kFmt20bc:
   4168                         notHandled = handleFmt20bc(cUnit, mir);
   4169                         break;
   4170                     case kFmt21c:
   4171                     case kFmt31c:
   4172                         notHandled = handleFmt21c_Fmt31c(cUnit, mir);
   4173                         break;
   4174                     case kFmt21h:
   4175                         notHandled = handleFmt21h(cUnit, mir);
   4176                         break;
   4177                     case kFmt21s:
   4178                         notHandled = handleFmt21s(cUnit, mir);
   4179                         break;
   4180                     case kFmt21t:
   4181                         notHandled = handleFmt21t(cUnit, mir, blockList[i],
   4182                                                   labelList);
   4183                         break;
   4184                     case kFmt22b:
   4185                     case kFmt22s:
   4186                         notHandled = handleFmt22b_Fmt22s(cUnit, mir);
   4187                         break;
   4188                     case kFmt22c:
   4189                         notHandled = handleFmt22c(cUnit, mir);
   4190                         break;
   4191                     case kFmt22cs:
   4192                         notHandled = handleFmt22cs(cUnit, mir);
   4193                         break;
   4194                     case kFmt22t:
   4195                         notHandled = handleFmt22t(cUnit, mir, blockList[i],
   4196                                                   labelList);
   4197                         break;
   4198                     case kFmt22x:
   4199                     case kFmt32x:
   4200                         notHandled = handleFmt22x_Fmt32x(cUnit, mir);
   4201                         break;
   4202                     case kFmt23x:
   4203                         notHandled = handleFmt23x(cUnit, mir);
   4204                         break;
   4205                     case kFmt31t:
   4206                         notHandled = handleFmt31t(cUnit, mir);
   4207                         break;
   4208                     case kFmt3rc:
   4209                     case kFmt35c:
   4210                         notHandled = handleFmt35c_3rc(cUnit, mir, blockList[i],
   4211                                                       labelList);
   4212                         break;
   4213                     case kFmt3rms:
   4214                     case kFmt35ms:
   4215                         notHandled = handleFmt35ms_3rms(cUnit, mir,blockList[i],
   4216                                                         labelList);
   4217                         break;
   4218                     case kFmt3inline:
   4219                     case kFmt3rinline:
   4220                         notHandled = handleExecuteInline(cUnit, mir);
   4221                         break;
   4222                     case kFmt51l:
   4223                         notHandled = handleFmt51l(cUnit, mir);
   4224                         break;
   4225                     default:
   4226                         notHandled = true;
   4227                         break;
   4228                 }
   4229             }
   4230             if (notHandled) {
   4231                 LOGE("%#06x: Opcode 0x%x (%s) / Fmt %d not handled\n",
   4232                      mir->offset,
   4233                      dalvikOpCode, dexGetOpcodeName(dalvikOpCode),
   4234                      dalvikFormat);
   4235                 dvmCompilerAbort(cUnit);
   4236                 break;
   4237             }
   4238         }
   4239 
   4240         if (blockList[i]->blockType == kTraceEntryBlock) {
   4241             dvmCompilerAppendLIR(cUnit,
   4242                                  (LIR *) cUnit->loopAnalysis->branchToBody);
   4243             dvmCompilerAppendLIR(cUnit,
   4244                                  (LIR *) cUnit->loopAnalysis->branchToPCR);
   4245         }
   4246 
   4247         if (headLIR) {
   4248             /*
   4249              * Eliminate redundant loads/stores and delay stores into later
   4250              * slots
   4251              */
   4252             dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
   4253                                                cUnit->lastLIRInsn);
   4254         }
   4255 
   4256 gen_fallthrough:
   4257         /*
   4258          * Check if the block is terminated due to trace length constraint -
   4259          * insert an unconditional branch to the chaining cell.
   4260          */
   4261         if (blockList[i]->needFallThroughBranch) {
   4262             genUnconditionalBranch(cUnit,
   4263                                    &labelList[blockList[i]->fallThrough->id]);
   4264         }
   4265 
   4266     }
   4267 
   4268     /* Handle the chaining cells in predefined order */
   4269     for (i = 0; i < kChainingCellGap; i++) {
   4270         size_t j;
   4271         int *blockIdList = (int *) chainingListByType[i].elemList;
   4272 
   4273         cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
   4274 
   4275         /* No chaining cells of this type */
   4276         if (cUnit->numChainingCells[i] == 0)
   4277             continue;
   4278 
   4279         /* Record the first LIR for a new type of chaining cell */
   4280         cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
   4281 
   4282         for (j = 0; j < chainingListByType[i].numUsed; j++) {
   4283             int blockId = blockIdList[j];
   4284 
   4285             /* Align this chaining cell first */
   4286             newLIR0(cUnit, kArmPseudoPseudoAlign4);
   4287 
   4288             /* Insert the pseudo chaining instruction */
   4289             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
   4290 
   4291 
   4292             switch (blockList[blockId]->blockType) {
   4293                 case kChainingCellNormal:
   4294                     handleNormalChainingCell(cUnit,
   4295                       blockList[blockId]->startOffset);
   4296                     break;
   4297                 case kChainingCellInvokeSingleton:
   4298                     handleInvokeSingletonChainingCell(cUnit,
   4299                         blockList[blockId]->containingMethod);
   4300                     break;
   4301                 case kChainingCellInvokePredicted:
   4302                     handleInvokePredictedChainingCell(cUnit);
   4303                     break;
   4304                 case kChainingCellHot:
   4305                     handleHotChainingCell(cUnit,
   4306                         blockList[blockId]->startOffset);
   4307                     break;
   4308 #if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
   4309                 case kChainingCellBackwardBranch:
   4310                     handleBackwardBranchChainingCell(cUnit,
   4311                         blockList[blockId]->startOffset);
   4312                     break;
   4313 #endif
   4314                 default:
   4315                     LOGE("Bad blocktype %d", blockList[blockId]->blockType);
   4316                     dvmCompilerAbort(cUnit);
   4317             }
   4318         }
   4319     }
   4320 
   4321     /* Mark the bottom of chaining cells */
   4322     cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom);
   4323 
   4324     /*
   4325      * Generate the branch to the dvmJitToInterpNoChain entry point at the end
   4326      * of all chaining cells for the overflow cases.
   4327      */
   4328     if (cUnit->switchOverflowPad) {
   4329         loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
   4330         loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
   4331                      jitToInterpEntries.dvmJitToInterpNoChain), r2);
   4332         opRegReg(cUnit, kOpAdd, r1, r1);
   4333         opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
   4334 #if defined(WITH_JIT_TUNING)
   4335         loadConstant(cUnit, r0, kSwitchOverflow);
   4336 #endif
   4337         opReg(cUnit, kOpBlx, r2);
   4338     }
   4339 
   4340     dvmCompilerApplyGlobalOptimizations(cUnit);
   4341 
   4342 #if defined(WITH_SELF_VERIFICATION)
   4343     selfVerificationBranchInsertPass(cUnit);
   4344 #endif
   4345 }
   4346 
   4347 /* Accept the work and start compiling */
   4348 bool dvmCompilerDoWork(CompilerWorkOrder *work)
   4349 {
   4350     bool res;
   4351 
   4352     if (gDvmJit.codeCacheFull) {
   4353         return false;
   4354     }
   4355 
   4356     switch (work->kind) {
   4357         case kWorkOrderTrace:
   4358             /* Start compilation with maximally allowed trace length */
   4359             res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result,
   4360                                   work->bailPtr, 0 /* no hints */);
   4361             break;
   4362         case kWorkOrderTraceDebug: {
   4363             bool oldPrintMe = gDvmJit.printMe;
   4364             gDvmJit.printMe = true;
   4365             /* Start compilation with maximally allowed trace length */
   4366             res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result,
   4367                                   work->bailPtr, 0 /* no hints */);
   4368             gDvmJit.printMe = oldPrintMe;
   4369             break;
   4370         }
   4371         default:
   4372             res = false;
   4373             LOGE("Jit: unknown work order type");
   4374             assert(0);  // Bail if debug build, discard otherwise
   4375     }
   4376     return res;
   4377 }
   4378 
   4379 /* Architectural-specific debugging helpers go here */
   4380 void dvmCompilerArchDump(void)
   4381 {
   4382     /* Print compiled opcode in this VM instance */
   4383     int i, start, streak;
   4384     char buf[1024];
   4385 
   4386     streak = i = 0;
   4387     buf[0] = 0;
   4388     while (opcodeCoverage[i] == 0 && i < 256) {
   4389         i++;
   4390     }
   4391     if (i == 256) {
   4392         return;
   4393     }
   4394     for (start = i++, streak = 1; i < 256; i++) {
   4395         if (opcodeCoverage[i]) {
   4396             streak++;
   4397         } else {
   4398             if (streak == 1) {
   4399                 sprintf(buf+strlen(buf), "%x,", start);
   4400             } else {
   4401                 sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
   4402             }
   4403             streak = 0;
   4404             while (opcodeCoverage[i] == 0 && i < 256) {
   4405                 i++;
   4406             }
   4407             if (i < 256) {
   4408                 streak = 1;
   4409                 start = i;
   4410             }
   4411         }
   4412     }
   4413     if (streak) {
   4414         if (streak == 1) {
   4415             sprintf(buf+strlen(buf), "%x", start);
   4416         } else {
   4417             sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
   4418         }
   4419     }
   4420     if (strlen(buf)) {
   4421         LOGD("dalvik.vm.jit.op = %s", buf);
   4422     }
   4423 }
   4424 
   4425 /* Common initialization routine for an architecture family */
   4426 bool dvmCompilerArchInit()
   4427 {
   4428     int i;
   4429 
   4430     for (i = 0; i < kArmLast; i++) {
   4431         if (EncodingMap[i].opCode != i) {
   4432             LOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
   4433                  EncodingMap[i].name, i, EncodingMap[i].opCode);
   4434             dvmAbort();  // OK to dvmAbort - build error
   4435         }
   4436     }
   4437 
   4438     return dvmCompilerArchVariantInit();
   4439 }
   4440 
   4441 void *dvmCompilerGetInterpretTemplate()
   4442 {
   4443       return (void*) ((int)gDvmJit.codeCache +
   4444                       templateEntryOffsets[TEMPLATE_INTERPRET]);
   4445 }
   4446 
   4447 /* Needed by the Assembler */
   4448 void dvmCompilerSetupResourceMasks(ArmLIR *lir)
   4449 {
   4450     setupResourceMasks(lir);
   4451 }
   4452 
   4453 /* Needed by the ld/st optmizatons */
   4454 ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
   4455 {
   4456     return genRegCopyNoInsert(cUnit, rDest, rSrc);
   4457 }
   4458 
   4459 /* Needed by the register allocator */
   4460 ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
   4461 {
   4462     return genRegCopy(cUnit, rDest, rSrc);
   4463 }
   4464 
   4465 /* Needed by the register allocator */
   4466 void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
   4467                             int srcLo, int srcHi)
   4468 {
   4469     genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
   4470 }
   4471 
   4472 void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
   4473                              int displacement, int rSrc, OpSize size)
   4474 {
   4475     storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
   4476 }
   4477 
   4478 void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
   4479                                  int displacement, int rSrcLo, int rSrcHi)
   4480 {
   4481     storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
   4482 }
   4483