1 // Copyright 2010 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include <stdlib.h> 29 #include <cstdarg> 30 #include "v8.h" 31 32 #include "disasm.h" 33 #include "assembler.h" 34 #include "globals.h" // Need the bit_cast 35 #include "mips/constants-mips.h" 36 #include "mips/simulator-mips.h" 37 38 namespace v8i = v8::internal; 39 40 #if !defined(__mips) 41 42 // Only build the simulator if not compiling for real MIPS hardware. 43 namespace assembler { 44 namespace mips { 45 46 using ::v8::internal::Object; 47 using ::v8::internal::PrintF; 48 using ::v8::internal::OS; 49 using ::v8::internal::ReadLine; 50 using ::v8::internal::DeleteArray; 51 52 // Utils functions 53 bool HaveSameSign(int32_t a, int32_t b) { 54 return ((a ^ b) > 0); 55 } 56 57 58 // This macro provides a platform independent use of sscanf. The reason for 59 // SScanF not being implemented in a platform independent was through 60 // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time 61 // Library does not provide vsscanf. 62 #define SScanF sscanf // NOLINT 63 64 // The Debugger class is used by the simulator while debugging simulated MIPS 65 // code. 66 class Debugger { 67 public: 68 explicit Debugger(Simulator* sim); 69 ~Debugger(); 70 71 void Stop(Instruction* instr); 72 void Debug(); 73 74 private: 75 // We set the breakpoint code to 0xfffff to easily recognize it. 76 static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6; 77 static const Instr kNopInstr = 0x0; 78 79 Simulator* sim_; 80 81 int32_t GetRegisterValue(int regnum); 82 bool GetValue(const char* desc, int32_t* value); 83 84 // Set or delete a breakpoint. Returns true if successful. 85 bool SetBreakpoint(Instruction* breakpc); 86 bool DeleteBreakpoint(Instruction* breakpc); 87 88 // Undo and redo all breakpoints. This is needed to bracket disassembly and 89 // execution to skip past breakpoints when run from the debugger. 90 void UndoBreakpoints(); 91 void RedoBreakpoints(); 92 93 // Print all registers with a nice formatting. 94 void PrintAllRegs(); 95 }; 96 97 Debugger::Debugger(Simulator* sim) { 98 sim_ = sim; 99 } 100 101 Debugger::~Debugger() { 102 } 103 104 #ifdef GENERATED_CODE_COVERAGE 105 static FILE* coverage_log = NULL; 106 107 108 static void InitializeCoverage() { 109 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); 110 if (file_name != NULL) { 111 coverage_log = fopen(file_name, "aw+"); 112 } 113 } 114 115 116 void Debugger::Stop(Instruction* instr) { 117 UNIMPLEMENTED_MIPS(); 118 char* str = reinterpret_cast<char*>(instr->InstructionBits()); 119 if (strlen(str) > 0) { 120 if (coverage_log != NULL) { 121 fprintf(coverage_log, "%s\n", str); 122 fflush(coverage_log); 123 } 124 instr->SetInstructionBits(0x0); // Overwrite with nop. 125 } 126 sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); 127 } 128 129 #else // ndef GENERATED_CODE_COVERAGE 130 131 #define UNSUPPORTED() printf("Unsupported instruction.\n"); 132 133 static void InitializeCoverage() {} 134 135 136 void Debugger::Stop(Instruction* instr) { 137 const char* str = reinterpret_cast<char*>(instr->InstructionBits()); 138 PrintF("Simulator hit %s\n", str); 139 sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); 140 Debug(); 141 } 142 #endif // def GENERATED_CODE_COVERAGE 143 144 145 int32_t Debugger::GetRegisterValue(int regnum) { 146 if (regnum == kNumSimuRegisters) { 147 return sim_->get_pc(); 148 } else { 149 return sim_->get_register(regnum); 150 } 151 } 152 153 154 bool Debugger::GetValue(const char* desc, int32_t* value) { 155 int regnum = Registers::Number(desc); 156 if (regnum != kInvalidRegister) { 157 *value = GetRegisterValue(regnum); 158 return true; 159 } else { 160 return SScanF(desc, "%i", value) == 1; 161 } 162 return false; 163 } 164 165 166 bool Debugger::SetBreakpoint(Instruction* breakpc) { 167 // Check if a breakpoint can be set. If not return without any side-effects. 168 if (sim_->break_pc_ != NULL) { 169 return false; 170 } 171 172 // Set the breakpoint. 173 sim_->break_pc_ = breakpc; 174 sim_->break_instr_ = breakpc->InstructionBits(); 175 // Not setting the breakpoint instruction in the code itself. It will be set 176 // when the debugger shell continues. 177 return true; 178 } 179 180 181 bool Debugger::DeleteBreakpoint(Instruction* breakpc) { 182 if (sim_->break_pc_ != NULL) { 183 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 184 } 185 186 sim_->break_pc_ = NULL; 187 sim_->break_instr_ = 0; 188 return true; 189 } 190 191 192 void Debugger::UndoBreakpoints() { 193 if (sim_->break_pc_ != NULL) { 194 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 195 } 196 } 197 198 199 void Debugger::RedoBreakpoints() { 200 if (sim_->break_pc_ != NULL) { 201 sim_->break_pc_->SetInstructionBits(kBreakpointInstr); 202 } 203 } 204 205 void Debugger::PrintAllRegs() { 206 #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) 207 208 PrintF("\n"); 209 // at, v0, a0 210 PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", 211 REG_INFO(1), REG_INFO(2), REG_INFO(4)); 212 // v1, a1 213 PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", 214 "", REG_INFO(3), REG_INFO(5)); 215 // a2 216 PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6)); 217 // a3 218 PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7)); 219 PrintF("\n"); 220 // t0-t7, s0-s7 221 for (int i = 0; i < 8; i++) { 222 PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", 223 REG_INFO(8+i), REG_INFO(16+i)); 224 } 225 PrintF("\n"); 226 // t8, k0, LO 227 PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", 228 REG_INFO(24), REG_INFO(26), REG_INFO(32)); 229 // t9, k1, HI 230 PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", 231 REG_INFO(25), REG_INFO(27), REG_INFO(33)); 232 // sp, fp, gp 233 PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", 234 REG_INFO(29), REG_INFO(30), REG_INFO(28)); 235 // pc 236 PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", 237 REG_INFO(31), REG_INFO(34)); 238 #undef REG_INFO 239 } 240 241 void Debugger::Debug() { 242 intptr_t last_pc = -1; 243 bool done = false; 244 245 #define COMMAND_SIZE 63 246 #define ARG_SIZE 255 247 248 #define STR(a) #a 249 #define XSTR(a) STR(a) 250 251 char cmd[COMMAND_SIZE + 1]; 252 char arg1[ARG_SIZE + 1]; 253 char arg2[ARG_SIZE + 1]; 254 255 // make sure to have a proper terminating character if reaching the limit 256 cmd[COMMAND_SIZE] = 0; 257 arg1[ARG_SIZE] = 0; 258 arg2[ARG_SIZE] = 0; 259 260 // Undo all set breakpoints while running in the debugger shell. This will 261 // make them invisible to all commands. 262 UndoBreakpoints(); 263 264 while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { 265 if (last_pc != sim_->get_pc()) { 266 disasm::NameConverter converter; 267 disasm::Disassembler dasm(converter); 268 // use a reasonably large buffer 269 v8::internal::EmbeddedVector<char, 256> buffer; 270 dasm.InstructionDecode(buffer, 271 reinterpret_cast<byte_*>(sim_->get_pc())); 272 PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); 273 last_pc = sim_->get_pc(); 274 } 275 char* line = ReadLine("sim> "); 276 if (line == NULL) { 277 break; 278 } else { 279 // Use sscanf to parse the individual parts of the command line. At the 280 // moment no command expects more than two parameters. 281 int args = SScanF(line, 282 "%" XSTR(COMMAND_SIZE) "s " 283 "%" XSTR(ARG_SIZE) "s " 284 "%" XSTR(ARG_SIZE) "s", 285 cmd, arg1, arg2); 286 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { 287 if (!(reinterpret_cast<Instruction*>(sim_->get_pc())->IsTrap())) { 288 sim_->InstructionDecode( 289 reinterpret_cast<Instruction*>(sim_->get_pc())); 290 } else { 291 // Allow si to jump over generated breakpoints. 292 PrintF("/!\\ Jumping over generated breakpoint.\n"); 293 sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); 294 } 295 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { 296 // Execute the one instruction we broke at with breakpoints disabled. 297 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); 298 // Leave the debugger shell. 299 done = true; 300 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { 301 if (args == 2) { 302 int32_t value; 303 if (strcmp(arg1, "all") == 0) { 304 PrintAllRegs(); 305 } else { 306 if (GetValue(arg1, &value)) { 307 PrintF("%s: 0x%08x %d \n", arg1, value, value); 308 } else { 309 PrintF("%s unrecognized\n", arg1); 310 } 311 } 312 } else { 313 PrintF("print <register>\n"); 314 } 315 } else if ((strcmp(cmd, "po") == 0) 316 || (strcmp(cmd, "printobject") == 0)) { 317 if (args == 2) { 318 int32_t value; 319 if (GetValue(arg1, &value)) { 320 Object* obj = reinterpret_cast<Object*>(value); 321 PrintF("%s: \n", arg1); 322 #ifdef DEBUG 323 obj->PrintLn(); 324 #else 325 obj->ShortPrint(); 326 PrintF("\n"); 327 #endif 328 } else { 329 PrintF("%s unrecognized\n", arg1); 330 } 331 } else { 332 PrintF("printobject <value>\n"); 333 } 334 } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0)) { 335 disasm::NameConverter converter; 336 disasm::Disassembler dasm(converter); 337 // use a reasonably large buffer 338 v8::internal::EmbeddedVector<char, 256> buffer; 339 340 byte_* cur = NULL; 341 byte_* end = NULL; 342 343 if (args == 1) { 344 cur = reinterpret_cast<byte_*>(sim_->get_pc()); 345 end = cur + (10 * Instruction::kInstructionSize); 346 } else if (args == 2) { 347 int32_t value; 348 if (GetValue(arg1, &value)) { 349 cur = reinterpret_cast<byte_*>(value); 350 // no length parameter passed, assume 10 instructions 351 end = cur + (10 * Instruction::kInstructionSize); 352 } 353 } else { 354 int32_t value1; 355 int32_t value2; 356 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { 357 cur = reinterpret_cast<byte_*>(value1); 358 end = cur + (value2 * Instruction::kInstructionSize); 359 } 360 } 361 362 while (cur < end) { 363 dasm.InstructionDecode(buffer, cur); 364 PrintF(" 0x%08x %s\n", cur, buffer.start()); 365 cur += Instruction::kInstructionSize; 366 } 367 } else if (strcmp(cmd, "gdb") == 0) { 368 PrintF("relinquishing control to gdb\n"); 369 v8::internal::OS::DebugBreak(); 370 PrintF("regaining control from gdb\n"); 371 } else if (strcmp(cmd, "break") == 0) { 372 if (args == 2) { 373 int32_t value; 374 if (GetValue(arg1, &value)) { 375 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { 376 PrintF("setting breakpoint failed\n"); 377 } 378 } else { 379 PrintF("%s unrecognized\n", arg1); 380 } 381 } else { 382 PrintF("break <address>\n"); 383 } 384 } else if (strcmp(cmd, "del") == 0) { 385 if (!DeleteBreakpoint(NULL)) { 386 PrintF("deleting breakpoint failed\n"); 387 } 388 } else if (strcmp(cmd, "flags") == 0) { 389 PrintF("No flags on MIPS !\n"); 390 } else if (strcmp(cmd, "unstop") == 0) { 391 PrintF("Unstop command not implemented on MIPS."); 392 } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { 393 // Print registers and disassemble 394 PrintAllRegs(); 395 PrintF("\n"); 396 397 disasm::NameConverter converter; 398 disasm::Disassembler dasm(converter); 399 // use a reasonably large buffer 400 v8::internal::EmbeddedVector<char, 256> buffer; 401 402 byte_* cur = NULL; 403 byte_* end = NULL; 404 405 if (args == 1) { 406 cur = reinterpret_cast<byte_*>(sim_->get_pc()); 407 end = cur + (10 * Instruction::kInstructionSize); 408 } else if (args == 2) { 409 int32_t value; 410 if (GetValue(arg1, &value)) { 411 cur = reinterpret_cast<byte_*>(value); 412 // no length parameter passed, assume 10 instructions 413 end = cur + (10 * Instruction::kInstructionSize); 414 } 415 } else { 416 int32_t value1; 417 int32_t value2; 418 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { 419 cur = reinterpret_cast<byte_*>(value1); 420 end = cur + (value2 * Instruction::kInstructionSize); 421 } 422 } 423 424 while (cur < end) { 425 dasm.InstructionDecode(buffer, cur); 426 PrintF(" 0x%08x %s\n", cur, buffer.start()); 427 cur += Instruction::kInstructionSize; 428 } 429 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { 430 PrintF("cont\n"); 431 PrintF(" continue execution (alias 'c')\n"); 432 PrintF("stepi\n"); 433 PrintF(" step one instruction (alias 'si')\n"); 434 PrintF("print <register>\n"); 435 PrintF(" print register content (alias 'p')\n"); 436 PrintF(" use register name 'all' to print all registers\n"); 437 PrintF("printobject <register>\n"); 438 PrintF(" print an object from a register (alias 'po')\n"); 439 PrintF("flags\n"); 440 PrintF(" print flags\n"); 441 PrintF("disasm [<instructions>]\n"); 442 PrintF("disasm [[<address>] <instructions>]\n"); 443 PrintF(" disassemble code, default is 10 instructions from pc\n"); 444 PrintF("gdb\n"); 445 PrintF(" enter gdb\n"); 446 PrintF("break <address>\n"); 447 PrintF(" set a break point on the address\n"); 448 PrintF("del\n"); 449 PrintF(" delete the breakpoint\n"); 450 PrintF("unstop\n"); 451 PrintF(" ignore the stop instruction at the current location"); 452 PrintF(" from now on\n"); 453 } else { 454 PrintF("Unknown command: %s\n", cmd); 455 } 456 } 457 DeleteArray(line); 458 } 459 460 // Add all the breakpoints back to stop execution and enter the debugger 461 // shell when hit. 462 RedoBreakpoints(); 463 464 #undef COMMAND_SIZE 465 #undef ARG_SIZE 466 467 #undef STR 468 #undef XSTR 469 } 470 471 472 // Create one simulator per thread and keep it in thread local storage. 473 static v8::internal::Thread::LocalStorageKey simulator_key; 474 475 476 bool Simulator::initialized_ = false; 477 478 479 void Simulator::Initialize() { 480 if (initialized_) return; 481 simulator_key = v8::internal::Thread::CreateThreadLocalKey(); 482 initialized_ = true; 483 ::v8::internal::ExternalReference::set_redirector(&RedirectExternalReference); 484 } 485 486 487 Simulator::Simulator() { 488 Initialize(); 489 // Setup simulator support first. Some of this information is needed to 490 // setup the architecture state. 491 size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack 492 stack_ = reinterpret_cast<char*>(malloc(stack_size)); 493 pc_modified_ = false; 494 icount_ = 0; 495 break_pc_ = NULL; 496 break_instr_ = 0; 497 498 // Setup architecture state. 499 // All registers are initialized to zero to start with. 500 for (int i = 0; i < kNumSimuRegisters; i++) { 501 registers_[i] = 0; 502 } 503 504 // The sp is initialized to point to the bottom (high address) of the 505 // allocated stack area. To be safe in potential stack underflows we leave 506 // some buffer below. 507 registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64; 508 // The ra and pc are initialized to a known bad value that will cause an 509 // access violation if the simulator ever tries to execute it. 510 registers_[pc] = bad_ra; 511 registers_[ra] = bad_ra; 512 InitializeCoverage(); 513 } 514 515 516 // When the generated code calls an external reference we need to catch that in 517 // the simulator. The external reference will be a function compiled for the 518 // host architecture. We need to call that function instead of trying to 519 // execute it with the simulator. We do that by redirecting the external 520 // reference to a swi (software-interrupt) instruction that is handled by 521 // the simulator. We write the original destination of the jump just at a known 522 // offset from the swi instruction so the simulator knows what to call. 523 class Redirection { 524 public: 525 Redirection(void* external_function, bool fp_return) 526 : external_function_(external_function), 527 swi_instruction_(rtCallRedirInstr), 528 fp_return_(fp_return), 529 next_(list_) { 530 list_ = this; 531 } 532 533 void* address_of_swi_instruction() { 534 return reinterpret_cast<void*>(&swi_instruction_); 535 } 536 537 void* external_function() { return external_function_; } 538 bool fp_return() { return fp_return_; } 539 540 static Redirection* Get(void* external_function, bool fp_return) { 541 Redirection* current; 542 for (current = list_; current != NULL; current = current->next_) { 543 if (current->external_function_ == external_function) return current; 544 } 545 return new Redirection(external_function, fp_return); 546 } 547 548 static Redirection* FromSwiInstruction(Instruction* swi_instruction) { 549 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); 550 char* addr_of_redirection = 551 addr_of_swi - OFFSET_OF(Redirection, swi_instruction_); 552 return reinterpret_cast<Redirection*>(addr_of_redirection); 553 } 554 555 private: 556 void* external_function_; 557 uint32_t swi_instruction_; 558 bool fp_return_; 559 Redirection* next_; 560 static Redirection* list_; 561 }; 562 563 564 Redirection* Redirection::list_ = NULL; 565 566 567 void* Simulator::RedirectExternalReference(void* external_function, 568 bool fp_return) { 569 Redirection* redirection = Redirection::Get(external_function, fp_return); 570 return redirection->address_of_swi_instruction(); 571 } 572 573 574 // Get the active Simulator for the current thread. 575 Simulator* Simulator::current() { 576 Initialize(); 577 Simulator* sim = reinterpret_cast<Simulator*>( 578 v8::internal::Thread::GetThreadLocal(simulator_key)); 579 if (sim == NULL) { 580 // TODO(146): delete the simulator object when a thread goes away. 581 sim = new Simulator(); 582 v8::internal::Thread::SetThreadLocal(simulator_key, sim); 583 } 584 return sim; 585 } 586 587 588 // Sets the register in the architecture state. It will also deal with updating 589 // Simulator internal state for special registers such as PC. 590 void Simulator::set_register(int reg, int32_t value) { 591 ASSERT((reg >= 0) && (reg < kNumSimuRegisters)); 592 if (reg == pc) { 593 pc_modified_ = true; 594 } 595 596 // zero register always hold 0. 597 registers_[reg] = (reg == 0) ? 0 : value; 598 } 599 600 void Simulator::set_fpu_register(int fpureg, int32_t value) { 601 ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); 602 FPUregisters_[fpureg] = value; 603 } 604 605 void Simulator::set_fpu_register_double(int fpureg, double value) { 606 ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); 607 *v8i::bit_cast<double*, int32_t*>(&FPUregisters_[fpureg]) = value; 608 } 609 610 611 // Get the register from the architecture state. This function does handle 612 // the special case of accessing the PC register. 613 int32_t Simulator::get_register(int reg) const { 614 ASSERT((reg >= 0) && (reg < kNumSimuRegisters)); 615 if (reg == 0) 616 return 0; 617 else 618 return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); 619 } 620 621 int32_t Simulator::get_fpu_register(int fpureg) const { 622 ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); 623 return FPUregisters_[fpureg]; 624 } 625 626 double Simulator::get_fpu_register_double(int fpureg) const { 627 ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); 628 return *v8i::bit_cast<double*, int32_t*>( 629 const_cast<int32_t*>(&FPUregisters_[fpureg])); 630 } 631 632 // Raw access to the PC register. 633 void Simulator::set_pc(int32_t value) { 634 pc_modified_ = true; 635 registers_[pc] = value; 636 } 637 638 // Raw access to the PC register without the special adjustment when reading. 639 int32_t Simulator::get_pc() const { 640 return registers_[pc]; 641 } 642 643 644 // The MIPS cannot do unaligned reads and writes. On some MIPS platforms an 645 // interrupt is caused. On others it does a funky rotation thing. For now we 646 // simply disallow unaligned reads, but at some point we may want to move to 647 // emulating the rotate behaviour. Note that simulator runs have the runtime 648 // system running directly on the host system and only generated code is 649 // executed in the simulator. Since the host is typically IA32 we will not 650 // get the correct MIPS-like behaviour on unaligned accesses. 651 652 int Simulator::ReadW(int32_t addr, Instruction* instr) { 653 if ((addr & v8i::kPointerAlignmentMask) == 0) { 654 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); 655 return *ptr; 656 } 657 PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr); 658 OS::Abort(); 659 return 0; 660 } 661 662 663 void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { 664 if ((addr & v8i::kPointerAlignmentMask) == 0) { 665 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); 666 *ptr = value; 667 return; 668 } 669 PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr); 670 OS::Abort(); 671 } 672 673 674 double Simulator::ReadD(int32_t addr, Instruction* instr) { 675 if ((addr & kDoubleAlignmentMask) == 0) { 676 double* ptr = reinterpret_cast<double*>(addr); 677 return *ptr; 678 } 679 PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr); 680 OS::Abort(); 681 return 0; 682 } 683 684 685 void Simulator::WriteD(int32_t addr, double value, Instruction* instr) { 686 if ((addr & kDoubleAlignmentMask) == 0) { 687 double* ptr = reinterpret_cast<double*>(addr); 688 *ptr = value; 689 return; 690 } 691 PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr); 692 OS::Abort(); 693 } 694 695 696 uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { 697 if ((addr & 1) == 0) { 698 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 699 return *ptr; 700 } 701 PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr); 702 OS::Abort(); 703 return 0; 704 } 705 706 707 int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { 708 if ((addr & 1) == 0) { 709 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 710 return *ptr; 711 } 712 PrintF("Unaligned signed halfword read at 0x%08x, pc=%p\n", addr, instr); 713 OS::Abort(); 714 return 0; 715 } 716 717 718 void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { 719 if ((addr & 1) == 0) { 720 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 721 *ptr = value; 722 return; 723 } 724 PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr); 725 OS::Abort(); 726 } 727 728 729 void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { 730 if ((addr & 1) == 0) { 731 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 732 *ptr = value; 733 return; 734 } 735 PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr); 736 OS::Abort(); 737 } 738 739 740 uint32_t Simulator::ReadBU(int32_t addr) { 741 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 742 return *ptr & 0xff; 743 } 744 745 746 int32_t Simulator::ReadB(int32_t addr) { 747 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 748 return ((*ptr << 24) >> 24) & 0xff; 749 } 750 751 752 void Simulator::WriteB(int32_t addr, uint8_t value) { 753 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 754 *ptr = value; 755 } 756 757 758 void Simulator::WriteB(int32_t addr, int8_t value) { 759 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 760 *ptr = value; 761 } 762 763 764 // Returns the limit of the stack area to enable checking for stack overflows. 765 uintptr_t Simulator::StackLimit() const { 766 // Leave a safety margin of 256 bytes to prevent overrunning the stack when 767 // pushing values. 768 return reinterpret_cast<uintptr_t>(stack_) + 256; 769 } 770 771 772 // Unsupported instructions use Format to print an error and stop execution. 773 void Simulator::Format(Instruction* instr, const char* format) { 774 PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n", 775 instr, format); 776 UNIMPLEMENTED_MIPS(); 777 } 778 779 780 // Calls into the V8 runtime are based on this very simple interface. 781 // Note: To be able to return two values from some calls the code in runtime.cc 782 // uses the ObjectPair which is essentially two 32-bit values stuffed into a 783 // 64-bit value. With the code below we assume that all runtime calls return 784 // 64 bits of result. If they don't, the r1 result register contains a bogus 785 // value, which is fine because it is caller-saved. 786 typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, 787 int32_t arg1, 788 int32_t arg2, 789 int32_t arg3); 790 typedef double (*SimulatorRuntimeFPCall)(double fparg0, 791 double fparg1); 792 793 794 // Software interrupt instructions are used by the simulator to call into the 795 // C-based V8 runtime. 796 void Simulator::SoftwareInterrupt(Instruction* instr) { 797 // We first check if we met a call_rt_redirected. 798 if (instr->InstructionBits() == rtCallRedirInstr) { 799 Redirection* redirection = Redirection::FromSwiInstruction(instr); 800 int32_t arg0 = get_register(a0); 801 int32_t arg1 = get_register(a1); 802 int32_t arg2 = get_register(a2); 803 int32_t arg3 = get_register(a3); 804 // fp args are (not always) in f12 and f14. 805 // See MIPS conventions for more details. 806 double fparg0 = get_fpu_register_double(f12); 807 double fparg1 = get_fpu_register_double(f14); 808 // This is dodgy but it works because the C entry stubs are never moved. 809 // See comment in codegen-arm.cc and bug 1242173. 810 int32_t saved_ra = get_register(ra); 811 if (redirection->fp_return()) { 812 intptr_t external = 813 reinterpret_cast<intptr_t>(redirection->external_function()); 814 SimulatorRuntimeFPCall target = 815 reinterpret_cast<SimulatorRuntimeFPCall>(external); 816 if (::v8::internal::FLAG_trace_sim) { 817 PrintF("Call to host function at %p with args %f, %f\n", 818 FUNCTION_ADDR(target), fparg0, fparg1); 819 } 820 double result = target(fparg0, fparg1); 821 set_fpu_register_double(f0, result); 822 } else { 823 intptr_t external = 824 reinterpret_cast<int32_t>(redirection->external_function()); 825 SimulatorRuntimeCall target = 826 reinterpret_cast<SimulatorRuntimeCall>(external); 827 if (::v8::internal::FLAG_trace_sim) { 828 PrintF( 829 "Call to host function at %p with args %08x, %08x, %08x, %08x\n", 830 FUNCTION_ADDR(target), 831 arg0, 832 arg1, 833 arg2, 834 arg3); 835 } 836 int64_t result = target(arg0, arg1, arg2, arg3); 837 int32_t lo_res = static_cast<int32_t>(result); 838 int32_t hi_res = static_cast<int32_t>(result >> 32); 839 if (::v8::internal::FLAG_trace_sim) { 840 PrintF("Returned %08x\n", lo_res); 841 } 842 set_register(v0, lo_res); 843 set_register(v1, hi_res); 844 } 845 set_register(ra, saved_ra); 846 set_pc(get_register(ra)); 847 } else { 848 Debugger dbg(this); 849 dbg.Debug(); 850 } 851 } 852 853 void Simulator::SignalExceptions() { 854 for (int i = 1; i < kNumExceptions; i++) { 855 if (exceptions[i] != 0) { 856 V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", i); 857 } 858 } 859 } 860 861 // Handle execution based on instruction types. 862 void Simulator::DecodeTypeRegister(Instruction* instr) { 863 // Instruction fields 864 Opcode op = instr->OpcodeFieldRaw(); 865 int32_t rs_reg = instr->RsField(); 866 int32_t rs = get_register(rs_reg); 867 uint32_t rs_u = static_cast<uint32_t>(rs); 868 int32_t rt_reg = instr->RtField(); 869 int32_t rt = get_register(rt_reg); 870 uint32_t rt_u = static_cast<uint32_t>(rt); 871 int32_t rd_reg = instr->RdField(); 872 uint32_t sa = instr->SaField(); 873 874 int32_t fs_reg= instr->FsField(); 875 876 // ALU output 877 // It should not be used as is. Instructions using it should always initialize 878 // it first. 879 int32_t alu_out = 0x12345678; 880 // Output or temporary for floating point. 881 double fp_out = 0.0; 882 883 // For break and trap instructions. 884 bool do_interrupt = false; 885 886 // For jr and jalr 887 // Get current pc. 888 int32_t current_pc = get_pc(); 889 // Next pc 890 int32_t next_pc = 0; 891 892 // ---------- Configuration 893 switch (op) { 894 case COP1: // Coprocessor instructions 895 switch (instr->RsFieldRaw()) { 896 case BC1: // branch on coprocessor condition 897 UNREACHABLE(); 898 break; 899 case MFC1: 900 alu_out = get_fpu_register(fs_reg); 901 break; 902 case MFHC1: 903 fp_out = get_fpu_register_double(fs_reg); 904 alu_out = *v8i::bit_cast<int32_t*, double*>(&fp_out); 905 break; 906 case MTC1: 907 case MTHC1: 908 // Do the store in the execution step. 909 break; 910 case S: 911 case D: 912 case W: 913 case L: 914 case PS: 915 // Do everything in the execution step. 916 break; 917 default: 918 UNIMPLEMENTED_MIPS(); 919 }; 920 break; 921 case SPECIAL: 922 switch (instr->FunctionFieldRaw()) { 923 case JR: 924 case JALR: 925 next_pc = get_register(instr->RsField()); 926 break; 927 case SLL: 928 alu_out = rt << sa; 929 break; 930 case SRL: 931 alu_out = rt_u >> sa; 932 break; 933 case SRA: 934 alu_out = rt >> sa; 935 break; 936 case SLLV: 937 alu_out = rt << rs; 938 break; 939 case SRLV: 940 alu_out = rt_u >> rs; 941 break; 942 case SRAV: 943 alu_out = rt >> rs; 944 break; 945 case MFHI: 946 alu_out = get_register(HI); 947 break; 948 case MFLO: 949 alu_out = get_register(LO); 950 break; 951 case MULT: 952 UNIMPLEMENTED_MIPS(); 953 break; 954 case MULTU: 955 UNIMPLEMENTED_MIPS(); 956 break; 957 case DIV: 958 case DIVU: 959 exceptions[kDivideByZero] = rt == 0; 960 break; 961 case ADD: 962 if (HaveSameSign(rs, rt)) { 963 if (rs > 0) { 964 exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - rt); 965 } else if (rs < 0) { 966 exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue - rt); 967 } 968 } 969 alu_out = rs + rt; 970 break; 971 case ADDU: 972 alu_out = rs + rt; 973 break; 974 case SUB: 975 if (!HaveSameSign(rs, rt)) { 976 if (rs > 0) { 977 exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue + rt); 978 } else if (rs < 0) { 979 exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue + rt); 980 } 981 } 982 alu_out = rs - rt; 983 break; 984 case SUBU: 985 alu_out = rs - rt; 986 break; 987 case AND: 988 alu_out = rs & rt; 989 break; 990 case OR: 991 alu_out = rs | rt; 992 break; 993 case XOR: 994 alu_out = rs ^ rt; 995 break; 996 case NOR: 997 alu_out = ~(rs | rt); 998 break; 999 case SLT: 1000 alu_out = rs < rt ? 1 : 0; 1001 break; 1002 case SLTU: 1003 alu_out = rs_u < rt_u ? 1 : 0; 1004 break; 1005 // Break and trap instructions 1006 case BREAK: 1007 do_interrupt = true; 1008 break; 1009 case TGE: 1010 do_interrupt = rs >= rt; 1011 break; 1012 case TGEU: 1013 do_interrupt = rs_u >= rt_u; 1014 break; 1015 case TLT: 1016 do_interrupt = rs < rt; 1017 break; 1018 case TLTU: 1019 do_interrupt = rs_u < rt_u; 1020 break; 1021 case TEQ: 1022 do_interrupt = rs == rt; 1023 break; 1024 case TNE: 1025 do_interrupt = rs != rt; 1026 break; 1027 default: 1028 UNREACHABLE(); 1029 }; 1030 break; 1031 case SPECIAL2: 1032 switch (instr->FunctionFieldRaw()) { 1033 case MUL: 1034 alu_out = rs_u * rt_u; // Only the lower 32 bits are kept. 1035 break; 1036 default: 1037 UNREACHABLE(); 1038 } 1039 break; 1040 default: 1041 UNREACHABLE(); 1042 }; 1043 1044 // ---------- Raise exceptions triggered. 1045 SignalExceptions(); 1046 1047 // ---------- Execution 1048 switch (op) { 1049 case COP1: 1050 switch (instr->RsFieldRaw()) { 1051 case BC1: // branch on coprocessor condition 1052 UNREACHABLE(); 1053 break; 1054 case MFC1: 1055 case MFHC1: 1056 set_register(rt_reg, alu_out); 1057 break; 1058 case MTC1: 1059 // We don't need to set the higher bits to 0, because MIPS ISA says 1060 // they are in an unpredictable state after executing MTC1. 1061 FPUregisters_[fs_reg] = registers_[rt_reg]; 1062 FPUregisters_[fs_reg+1] = Unpredictable; 1063 break; 1064 case MTHC1: 1065 // Here we need to keep the lower bits unchanged. 1066 FPUregisters_[fs_reg+1] = registers_[rt_reg]; 1067 break; 1068 case S: 1069 switch (instr->FunctionFieldRaw()) { 1070 case CVT_D_S: 1071 case CVT_W_S: 1072 case CVT_L_S: 1073 case CVT_PS_S: 1074 UNIMPLEMENTED_MIPS(); 1075 break; 1076 default: 1077 UNREACHABLE(); 1078 } 1079 break; 1080 case D: 1081 switch (instr->FunctionFieldRaw()) { 1082 case CVT_S_D: 1083 case CVT_W_D: 1084 case CVT_L_D: 1085 UNIMPLEMENTED_MIPS(); 1086 break; 1087 default: 1088 UNREACHABLE(); 1089 } 1090 break; 1091 case W: 1092 switch (instr->FunctionFieldRaw()) { 1093 case CVT_S_W: 1094 UNIMPLEMENTED_MIPS(); 1095 break; 1096 case CVT_D_W: // Convert word to double. 1097 set_fpu_register(rd_reg, static_cast<double>(rs)); 1098 break; 1099 default: 1100 UNREACHABLE(); 1101 }; 1102 break; 1103 case L: 1104 switch (instr->FunctionFieldRaw()) { 1105 case CVT_S_L: 1106 case CVT_D_L: 1107 UNIMPLEMENTED_MIPS(); 1108 break; 1109 default: 1110 UNREACHABLE(); 1111 } 1112 break; 1113 case PS: 1114 break; 1115 default: 1116 UNREACHABLE(); 1117 }; 1118 break; 1119 case SPECIAL: 1120 switch (instr->FunctionFieldRaw()) { 1121 case JR: { 1122 Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( 1123 current_pc+Instruction::kInstructionSize); 1124 BranchDelayInstructionDecode(branch_delay_instr); 1125 set_pc(next_pc); 1126 pc_modified_ = true; 1127 break; 1128 } 1129 case JALR: { 1130 Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( 1131 current_pc+Instruction::kInstructionSize); 1132 BranchDelayInstructionDecode(branch_delay_instr); 1133 set_register(31, current_pc + 2* Instruction::kInstructionSize); 1134 set_pc(next_pc); 1135 pc_modified_ = true; 1136 break; 1137 } 1138 // Instructions using HI and LO registers. 1139 case MULT: 1140 case MULTU: 1141 break; 1142 case DIV: 1143 // Divide by zero was checked in the configuration step. 1144 set_register(LO, rs / rt); 1145 set_register(HI, rs % rt); 1146 break; 1147 case DIVU: 1148 set_register(LO, rs_u / rt_u); 1149 set_register(HI, rs_u % rt_u); 1150 break; 1151 // Break and trap instructions 1152 case BREAK: 1153 case TGE: 1154 case TGEU: 1155 case TLT: 1156 case TLTU: 1157 case TEQ: 1158 case TNE: 1159 if (do_interrupt) { 1160 SoftwareInterrupt(instr); 1161 } 1162 break; 1163 default: // For other special opcodes we do the default operation. 1164 set_register(rd_reg, alu_out); 1165 }; 1166 break; 1167 case SPECIAL2: 1168 switch (instr->FunctionFieldRaw()) { 1169 case MUL: 1170 set_register(rd_reg, alu_out); 1171 // HI and LO are UNPREDICTABLE after the operation. 1172 set_register(LO, Unpredictable); 1173 set_register(HI, Unpredictable); 1174 break; 1175 default: 1176 UNREACHABLE(); 1177 } 1178 break; 1179 // Unimplemented opcodes raised an error in the configuration step before, 1180 // so we can use the default here to set the destination register in common 1181 // cases. 1182 default: 1183 set_register(rd_reg, alu_out); 1184 }; 1185 } 1186 1187 // Type 2: instructions using a 16 bytes immediate. (eg: addi, beq) 1188 void Simulator::DecodeTypeImmediate(Instruction* instr) { 1189 // Instruction fields 1190 Opcode op = instr->OpcodeFieldRaw(); 1191 int32_t rs = get_register(instr->RsField()); 1192 uint32_t rs_u = static_cast<uint32_t>(rs); 1193 int32_t rt_reg = instr->RtField(); // destination register 1194 int32_t rt = get_register(rt_reg); 1195 int16_t imm16 = instr->Imm16Field(); 1196 1197 int32_t ft_reg = instr->FtField(); // destination register 1198 int32_t ft = get_register(ft_reg); 1199 1200 // zero extended immediate 1201 uint32_t oe_imm16 = 0xffff & imm16; 1202 // sign extended immediate 1203 int32_t se_imm16 = imm16; 1204 1205 // Get current pc. 1206 int32_t current_pc = get_pc(); 1207 // Next pc. 1208 int32_t next_pc = bad_ra; 1209 1210 // Used for conditional branch instructions 1211 bool do_branch = false; 1212 bool execute_branch_delay_instruction = false; 1213 1214 // Used for arithmetic instructions 1215 int32_t alu_out = 0; 1216 // Floating point 1217 double fp_out = 0.0; 1218 1219 // Used for memory instructions 1220 int32_t addr = 0x0; 1221 1222 // ---------- Configuration (and execution for REGIMM) 1223 switch (op) { 1224 // ------------- COP1. Coprocessor instructions 1225 case COP1: 1226 switch (instr->RsFieldRaw()) { 1227 case BC1: // branch on coprocessor condition 1228 UNIMPLEMENTED_MIPS(); 1229 break; 1230 default: 1231 UNREACHABLE(); 1232 }; 1233 break; 1234 // ------------- REGIMM class 1235 case REGIMM: 1236 switch (instr->RtFieldRaw()) { 1237 case BLTZ: 1238 do_branch = (rs < 0); 1239 break; 1240 case BLTZAL: 1241 do_branch = rs < 0; 1242 break; 1243 case BGEZ: 1244 do_branch = rs >= 0; 1245 break; 1246 case BGEZAL: 1247 do_branch = rs >= 0; 1248 break; 1249 default: 1250 UNREACHABLE(); 1251 }; 1252 switch (instr->RtFieldRaw()) { 1253 case BLTZ: 1254 case BLTZAL: 1255 case BGEZ: 1256 case BGEZAL: 1257 // Branch instructions common part. 1258 execute_branch_delay_instruction = true; 1259 // Set next_pc 1260 if (do_branch) { 1261 next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize; 1262 if (instr->IsLinkingInstruction()) { 1263 set_register(31, current_pc + kBranchReturnOffset); 1264 } 1265 } else { 1266 next_pc = current_pc + kBranchReturnOffset; 1267 } 1268 default: 1269 break; 1270 }; 1271 break; // case REGIMM 1272 // ------------- Branch instructions 1273 // When comparing to zero, the encoding of rt field is always 0, so we don't 1274 // need to replace rt with zero. 1275 case BEQ: 1276 do_branch = (rs == rt); 1277 break; 1278 case BNE: 1279 do_branch = rs != rt; 1280 break; 1281 case BLEZ: 1282 do_branch = rs <= 0; 1283 break; 1284 case BGTZ: 1285 do_branch = rs > 0; 1286 break; 1287 // ------------- Arithmetic instructions 1288 case ADDI: 1289 if (HaveSameSign(rs, se_imm16)) { 1290 if (rs > 0) { 1291 exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - se_imm16); 1292 } else if (rs < 0) { 1293 exceptions[kIntegerUnderflow] = 1294 rs < (Registers::kMinValue - se_imm16); 1295 } 1296 } 1297 alu_out = rs + se_imm16; 1298 break; 1299 case ADDIU: 1300 alu_out = rs + se_imm16; 1301 break; 1302 case SLTI: 1303 alu_out = (rs < se_imm16) ? 1 : 0; 1304 break; 1305 case SLTIU: 1306 alu_out = (rs_u < static_cast<uint32_t>(se_imm16)) ? 1 : 0; 1307 break; 1308 case ANDI: 1309 alu_out = rs & oe_imm16; 1310 break; 1311 case ORI: 1312 alu_out = rs | oe_imm16; 1313 break; 1314 case XORI: 1315 alu_out = rs ^ oe_imm16; 1316 break; 1317 case LUI: 1318 alu_out = (oe_imm16 << 16); 1319 break; 1320 // ------------- Memory instructions 1321 case LB: 1322 addr = rs + se_imm16; 1323 alu_out = ReadB(addr); 1324 break; 1325 case LW: 1326 addr = rs + se_imm16; 1327 alu_out = ReadW(addr, instr); 1328 break; 1329 case LBU: 1330 addr = rs + se_imm16; 1331 alu_out = ReadBU(addr); 1332 break; 1333 case SB: 1334 addr = rs + se_imm16; 1335 break; 1336 case SW: 1337 addr = rs + se_imm16; 1338 break; 1339 case LWC1: 1340 addr = rs + se_imm16; 1341 alu_out = ReadW(addr, instr); 1342 break; 1343 case LDC1: 1344 addr = rs + se_imm16; 1345 fp_out = ReadD(addr, instr); 1346 break; 1347 case SWC1: 1348 case SDC1: 1349 addr = rs + se_imm16; 1350 break; 1351 default: 1352 UNREACHABLE(); 1353 }; 1354 1355 // ---------- Raise exceptions triggered. 1356 SignalExceptions(); 1357 1358 // ---------- Execution 1359 switch (op) { 1360 // ------------- Branch instructions 1361 case BEQ: 1362 case BNE: 1363 case BLEZ: 1364 case BGTZ: 1365 // Branch instructions common part. 1366 execute_branch_delay_instruction = true; 1367 // Set next_pc 1368 if (do_branch) { 1369 next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize; 1370 if (instr->IsLinkingInstruction()) { 1371 set_register(31, current_pc + 2* Instruction::kInstructionSize); 1372 } 1373 } else { 1374 next_pc = current_pc + 2 * Instruction::kInstructionSize; 1375 } 1376 break; 1377 // ------------- Arithmetic instructions 1378 case ADDI: 1379 case ADDIU: 1380 case SLTI: 1381 case SLTIU: 1382 case ANDI: 1383 case ORI: 1384 case XORI: 1385 case LUI: 1386 set_register(rt_reg, alu_out); 1387 break; 1388 // ------------- Memory instructions 1389 case LB: 1390 case LW: 1391 case LBU: 1392 set_register(rt_reg, alu_out); 1393 break; 1394 case SB: 1395 WriteB(addr, static_cast<int8_t>(rt)); 1396 break; 1397 case SW: 1398 WriteW(addr, rt, instr); 1399 break; 1400 case LWC1: 1401 set_fpu_register(ft_reg, alu_out); 1402 break; 1403 case LDC1: 1404 set_fpu_register_double(ft_reg, fp_out); 1405 break; 1406 case SWC1: 1407 addr = rs + se_imm16; 1408 WriteW(addr, get_fpu_register(ft_reg), instr); 1409 break; 1410 case SDC1: 1411 addr = rs + se_imm16; 1412 WriteD(addr, ft, instr); 1413 break; 1414 default: 1415 break; 1416 }; 1417 1418 1419 if (execute_branch_delay_instruction) { 1420 // Execute branch delay slot 1421 // We don't check for end_sim_pc. First it should not be met as the current 1422 // pc is valid. Secondly a jump should always execute its branch delay slot. 1423 Instruction* branch_delay_instr = 1424 reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize); 1425 BranchDelayInstructionDecode(branch_delay_instr); 1426 } 1427 1428 // If needed update pc after the branch delay execution. 1429 if (next_pc != bad_ra) { 1430 set_pc(next_pc); 1431 } 1432 } 1433 1434 // Type 3: instructions using a 26 bytes immediate. (eg: j, jal) 1435 void Simulator::DecodeTypeJump(Instruction* instr) { 1436 // Get current pc. 1437 int32_t current_pc = get_pc(); 1438 // Get unchanged bits of pc. 1439 int32_t pc_high_bits = current_pc & 0xf0000000; 1440 // Next pc 1441 int32_t next_pc = pc_high_bits | (instr->Imm26Field() << 2); 1442 1443 // Execute branch delay slot 1444 // We don't check for end_sim_pc. First it should not be met as the current pc 1445 // is valid. Secondly a jump should always execute its branch delay slot. 1446 Instruction* branch_delay_instr = 1447 reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize); 1448 BranchDelayInstructionDecode(branch_delay_instr); 1449 1450 // Update pc and ra if necessary. 1451 // Do this after the branch delay execution. 1452 if (instr->IsLinkingInstruction()) { 1453 set_register(31, current_pc + 2* Instruction::kInstructionSize); 1454 } 1455 set_pc(next_pc); 1456 pc_modified_ = true; 1457 } 1458 1459 // Executes the current instruction. 1460 void Simulator::InstructionDecode(Instruction* instr) { 1461 pc_modified_ = false; 1462 if (::v8::internal::FLAG_trace_sim) { 1463 disasm::NameConverter converter; 1464 disasm::Disassembler dasm(converter); 1465 // use a reasonably large buffer 1466 v8::internal::EmbeddedVector<char, 256> buffer; 1467 dasm.InstructionDecode(buffer, 1468 reinterpret_cast<byte_*>(instr)); 1469 PrintF(" 0x%08x %s\n", instr, buffer.start()); 1470 } 1471 1472 switch (instr->InstructionType()) { 1473 case Instruction::kRegisterType: 1474 DecodeTypeRegister(instr); 1475 break; 1476 case Instruction::kImmediateType: 1477 DecodeTypeImmediate(instr); 1478 break; 1479 case Instruction::kJumpType: 1480 DecodeTypeJump(instr); 1481 break; 1482 default: 1483 UNSUPPORTED(); 1484 } 1485 if (!pc_modified_) { 1486 set_register(pc, reinterpret_cast<int32_t>(instr) + 1487 Instruction::kInstructionSize); 1488 } 1489 } 1490 1491 1492 1493 void Simulator::Execute() { 1494 // Get the PC to simulate. Cannot use the accessor here as we need the 1495 // raw PC value and not the one used as input to arithmetic instructions. 1496 int program_counter = get_pc(); 1497 if (::v8::internal::FLAG_stop_sim_at == 0) { 1498 // Fast version of the dispatch loop without checking whether the simulator 1499 // should be stopping at a particular executed instruction. 1500 while (program_counter != end_sim_pc) { 1501 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 1502 icount_++; 1503 InstructionDecode(instr); 1504 program_counter = get_pc(); 1505 } 1506 } else { 1507 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when 1508 // we reach the particular instuction count. 1509 while (program_counter != end_sim_pc) { 1510 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 1511 icount_++; 1512 if (icount_ == ::v8::internal::FLAG_stop_sim_at) { 1513 Debugger dbg(this); 1514 dbg.Debug(); 1515 } else { 1516 InstructionDecode(instr); 1517 } 1518 program_counter = get_pc(); 1519 } 1520 } 1521 } 1522 1523 1524 int32_t Simulator::Call(byte_* entry, int argument_count, ...) { 1525 va_list parameters; 1526 va_start(parameters, argument_count); 1527 // Setup arguments 1528 1529 // First four arguments passed in registers. 1530 ASSERT(argument_count >= 4); 1531 set_register(a0, va_arg(parameters, int32_t)); 1532 set_register(a1, va_arg(parameters, int32_t)); 1533 set_register(a2, va_arg(parameters, int32_t)); 1534 set_register(a3, va_arg(parameters, int32_t)); 1535 1536 // Remaining arguments passed on stack. 1537 int original_stack = get_register(sp); 1538 // Compute position of stack on entry to generated code. 1539 int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t) 1540 - kArgsSlotsSize); 1541 if (OS::ActivationFrameAlignment() != 0) { 1542 entry_stack &= -OS::ActivationFrameAlignment(); 1543 } 1544 // Store remaining arguments on stack, from low to high memory. 1545 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); 1546 for (int i = 4; i < argument_count; i++) { 1547 stack_argument[i - 4 + kArgsSlotsNum] = va_arg(parameters, int32_t); 1548 } 1549 va_end(parameters); 1550 set_register(sp, entry_stack); 1551 1552 // Prepare to execute the code at entry 1553 set_register(pc, reinterpret_cast<int32_t>(entry)); 1554 // Put down marker for end of simulation. The simulator will stop simulation 1555 // when the PC reaches this value. By saving the "end simulation" value into 1556 // the LR the simulation stops when returning to this call point. 1557 set_register(ra, end_sim_pc); 1558 1559 // Remember the values of callee-saved registers. 1560 // The code below assumes that r9 is not used as sb (static base) in 1561 // simulator code and therefore is regarded as a callee-saved register. 1562 int32_t s0_val = get_register(s0); 1563 int32_t s1_val = get_register(s1); 1564 int32_t s2_val = get_register(s2); 1565 int32_t s3_val = get_register(s3); 1566 int32_t s4_val = get_register(s4); 1567 int32_t s5_val = get_register(s5); 1568 int32_t s6_val = get_register(s6); 1569 int32_t s7_val = get_register(s7); 1570 int32_t gp_val = get_register(gp); 1571 int32_t sp_val = get_register(sp); 1572 int32_t fp_val = get_register(fp); 1573 1574 // Setup the callee-saved registers with a known value. To be able to check 1575 // that they are preserved properly across JS execution. 1576 int32_t callee_saved_value = icount_; 1577 set_register(s0, callee_saved_value); 1578 set_register(s1, callee_saved_value); 1579 set_register(s2, callee_saved_value); 1580 set_register(s3, callee_saved_value); 1581 set_register(s4, callee_saved_value); 1582 set_register(s5, callee_saved_value); 1583 set_register(s6, callee_saved_value); 1584 set_register(s7, callee_saved_value); 1585 set_register(gp, callee_saved_value); 1586 set_register(fp, callee_saved_value); 1587 1588 // Start the simulation 1589 Execute(); 1590 1591 // Check that the callee-saved registers have been preserved. 1592 CHECK_EQ(callee_saved_value, get_register(s0)); 1593 CHECK_EQ(callee_saved_value, get_register(s1)); 1594 CHECK_EQ(callee_saved_value, get_register(s2)); 1595 CHECK_EQ(callee_saved_value, get_register(s3)); 1596 CHECK_EQ(callee_saved_value, get_register(s4)); 1597 CHECK_EQ(callee_saved_value, get_register(s5)); 1598 CHECK_EQ(callee_saved_value, get_register(s6)); 1599 CHECK_EQ(callee_saved_value, get_register(s7)); 1600 CHECK_EQ(callee_saved_value, get_register(gp)); 1601 CHECK_EQ(callee_saved_value, get_register(fp)); 1602 1603 // Restore callee-saved registers with the original value. 1604 set_register(s0, s0_val); 1605 set_register(s1, s1_val); 1606 set_register(s2, s2_val); 1607 set_register(s3, s3_val); 1608 set_register(s4, s4_val); 1609 set_register(s5, s5_val); 1610 set_register(s6, s6_val); 1611 set_register(s7, s7_val); 1612 set_register(gp, gp_val); 1613 set_register(sp, sp_val); 1614 set_register(fp, fp_val); 1615 1616 // Pop stack passed arguments. 1617 CHECK_EQ(entry_stack, get_register(sp)); 1618 set_register(sp, original_stack); 1619 1620 int32_t result = get_register(v0); 1621 return result; 1622 } 1623 1624 1625 uintptr_t Simulator::PushAddress(uintptr_t address) { 1626 int new_sp = get_register(sp) - sizeof(uintptr_t); 1627 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); 1628 *stack_slot = address; 1629 set_register(sp, new_sp); 1630 return new_sp; 1631 } 1632 1633 1634 uintptr_t Simulator::PopAddress() { 1635 int current_sp = get_register(sp); 1636 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); 1637 uintptr_t address = *stack_slot; 1638 set_register(sp, current_sp + sizeof(uintptr_t)); 1639 return address; 1640 } 1641 1642 1643 #undef UNSUPPORTED 1644 1645 } } // namespace assembler::mips 1646 1647 #endif // !defined(__mips) 1648 1649