1 /* mmx.h 2 3 MultiMedia eXtensions GCC interface library for IA32. 4 5 To use this library, simply include this header file 6 and compile with GCC. You MUST have inlining enabled 7 in order for mmx_ok() to work; this can be done by 8 simply using -O on the GCC command line. 9 10 Compiling with -DMMX_TRACE will cause detailed trace 11 output to be sent to stderr for each mmx operation. 12 This adds lots of code, and obviously slows execution to 13 a crawl, but can be very useful for debugging. 14 15 THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY 16 EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT 17 LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY 18 AND FITNESS FOR ANY PARTICULAR PURPOSE. 19 20 1997-99 by H. Dietz and R. Fisher 21 22 Notes: 23 It appears that the latest gas has the pand problem fixed, therefore 24 I'll undefine BROKEN_PAND by default. 25 */ 26 27 #ifndef _MMX_H 28 #define _MMX_H 29 30 31 /* Warning: at this writing, the version of GAS packaged 32 with most Linux distributions does not handle the 33 parallel AND operation mnemonic correctly. If the 34 symbol BROKEN_PAND is defined, a slower alternative 35 coding will be used. If execution of mmxtest results 36 in an illegal instruction fault, define this symbol. 37 */ 38 #undef BROKEN_PAND 39 40 41 /* The type of an value that fits in an MMX register 42 (note that long long constant values MUST be suffixed 43 by LL and unsigned long long values by ULL, lest 44 they be truncated by the compiler) 45 */ 46 typedef union { 47 long long q; /* Quadword (64-bit) value */ 48 unsigned long long uq; /* Unsigned Quadword */ 49 int d[2]; /* 2 Doubleword (32-bit) values */ 50 unsigned int ud[2]; /* 2 Unsigned Doubleword */ 51 short w[4]; /* 4 Word (16-bit) values */ 52 unsigned short uw[4]; /* 4 Unsigned Word */ 53 char b[8]; /* 8 Byte (8-bit) values */ 54 unsigned char ub[8]; /* 8 Unsigned Byte */ 55 float s[2]; /* Single-precision (32-bit) value */ 56 } __attribute__ ((aligned (8))) mmx_t; /* On an 8-byte (64-bit) boundary */ 57 58 59 #if 0 60 /* Function to test if multimedia instructions are supported... 61 */ 62 inline extern int 63 mm_support(void) 64 { 65 /* Returns 1 if MMX instructions are supported, 66 3 if Cyrix MMX and Extended MMX instructions are supported 67 5 if AMD MMX and 3DNow! instructions are supported 68 0 if hardware does not support any of these 69 */ 70 register int rval = 0; 71 72 __asm__ __volatile__ ( 73 /* See if CPUID instruction is supported ... */ 74 /* ... Get copies of EFLAGS into eax and ecx */ 75 "pushf\n\t" 76 "popl %%eax\n\t" 77 "movl %%eax, %%ecx\n\t" 78 79 /* ... Toggle the ID bit in one copy and store */ 80 /* to the EFLAGS reg */ 81 "xorl $0x200000, %%eax\n\t" 82 "push %%eax\n\t" 83 "popf\n\t" 84 85 /* ... Get the (hopefully modified) EFLAGS */ 86 "pushf\n\t" 87 "popl %%eax\n\t" 88 89 /* ... Compare and test result */ 90 "xorl %%eax, %%ecx\n\t" 91 "testl $0x200000, %%ecx\n\t" 92 "jz NotSupported1\n\t" /* CPUID not supported */ 93 94 95 /* Get standard CPUID information, and 96 go to a specific vendor section */ 97 "movl $0, %%eax\n\t" 98 "cpuid\n\t" 99 100 /* Check for Intel */ 101 "cmpl $0x756e6547, %%ebx\n\t" 102 "jne TryAMD\n\t" 103 "cmpl $0x49656e69, %%edx\n\t" 104 "jne TryAMD\n\t" 105 "cmpl $0x6c65746e, %%ecx\n" 106 "jne TryAMD\n\t" 107 "jmp Intel\n\t" 108 109 /* Check for AMD */ 110 "\nTryAMD:\n\t" 111 "cmpl $0x68747541, %%ebx\n\t" 112 "jne TryCyrix\n\t" 113 "cmpl $0x69746e65, %%edx\n\t" 114 "jne TryCyrix\n\t" 115 "cmpl $0x444d4163, %%ecx\n" 116 "jne TryCyrix\n\t" 117 "jmp AMD\n\t" 118 119 /* Check for Cyrix */ 120 "\nTryCyrix:\n\t" 121 "cmpl $0x69727943, %%ebx\n\t" 122 "jne NotSupported2\n\t" 123 "cmpl $0x736e4978, %%edx\n\t" 124 "jne NotSupported3\n\t" 125 "cmpl $0x64616574, %%ecx\n\t" 126 "jne NotSupported4\n\t" 127 /* Drop through to Cyrix... */ 128 129 130 /* Cyrix Section */ 131 /* See if extended CPUID level 80000001 is supported */ 132 /* The value of CPUID/80000001 for the 6x86MX is undefined 133 according to the Cyrix CPU Detection Guide (Preliminary 134 Rev. 1.01 table 1), so we'll check the value of eax for 135 CPUID/0 to see if standard CPUID level 2 is supported. 136 According to the table, the only CPU which supports level 137 2 is also the only one which supports extended CPUID levels. 138 */ 139 "cmpl $0x2, %%eax\n\t" 140 "jne MMXtest\n\t" /* Use standard CPUID instead */ 141 142 /* Extended CPUID supported (in theory), so get extended 143 features */ 144 "movl $0x80000001, %%eax\n\t" 145 "cpuid\n\t" 146 "testl $0x00800000, %%eax\n\t" /* Test for MMX */ 147 "jz NotSupported5\n\t" /* MMX not supported */ 148 "testl $0x01000000, %%eax\n\t" /* Test for Ext'd MMX */ 149 "jnz EMMXSupported\n\t" 150 "movl $1, %0:\n\n\t" /* MMX Supported */ 151 "jmp Return\n\n" 152 "EMMXSupported:\n\t" 153 "movl $3, %0:\n\n\t" /* EMMX and MMX Supported */ 154 "jmp Return\n\t" 155 156 157 /* AMD Section */ 158 "AMD:\n\t" 159 160 /* See if extended CPUID is supported */ 161 "movl $0x80000000, %%eax\n\t" 162 "cpuid\n\t" 163 "cmpl $0x80000000, %%eax\n\t" 164 "jl MMXtest\n\t" /* Use standard CPUID instead */ 165 166 /* Extended CPUID supported, so get extended features */ 167 "movl $0x80000001, %%eax\n\t" 168 "cpuid\n\t" 169 "testl $0x00800000, %%edx\n\t" /* Test for MMX */ 170 "jz NotSupported6\n\t" /* MMX not supported */ 171 "testl $0x80000000, %%edx\n\t" /* Test for 3DNow! */ 172 "jnz ThreeDNowSupported\n\t" 173 "movl $1, %0:\n\n\t" /* MMX Supported */ 174 "jmp Return\n\n" 175 "ThreeDNowSupported:\n\t" 176 "movl $5, %0:\n\n\t" /* 3DNow! and MMX Supported */ 177 "jmp Return\n\t" 178 179 180 /* Intel Section */ 181 "Intel:\n\t" 182 183 /* Check for MMX */ 184 "MMXtest:\n\t" 185 "movl $1, %%eax\n\t" 186 "cpuid\n\t" 187 "testl $0x00800000, %%edx\n\t" /* Test for MMX */ 188 "jz NotSupported7\n\t" /* MMX Not supported */ 189 "movl $1, %0:\n\n\t" /* MMX Supported */ 190 "jmp Return\n\t" 191 192 /* Nothing supported */ 193 "\nNotSupported1:\n\t" 194 "#movl $101, %0:\n\n\t" 195 "\nNotSupported2:\n\t" 196 "#movl $102, %0:\n\n\t" 197 "\nNotSupported3:\n\t" 198 "#movl $103, %0:\n\n\t" 199 "\nNotSupported4:\n\t" 200 "#movl $104, %0:\n\n\t" 201 "\nNotSupported5:\n\t" 202 "#movl $105, %0:\n\n\t" 203 "\nNotSupported6:\n\t" 204 "#movl $106, %0:\n\n\t" 205 "\nNotSupported7:\n\t" 206 "#movl $107, %0:\n\n\t" 207 "movl $0, %0:\n\n\t" 208 209 "Return:\n\t" 210 : "=a" (rval) 211 : /* no input */ 212 : "eax", "ebx", "ecx", "edx" 213 ); 214 215 /* Return */ 216 return(rval); 217 } 218 219 /* Function to test if mmx instructions are supported... 220 */ 221 inline extern int 222 mmx_ok(void) 223 { 224 /* Returns 1 if MMX instructions are supported, 0 otherwise */ 225 return ( mm_support() & 0x1 ); 226 } 227 #endif 228 229 /* Helper functions for the instruction macros that follow... 230 (note that memory-to-register, m2r, instructions are nearly 231 as efficient as register-to-register, r2r, instructions; 232 however, memory-to-memory instructions are really simulated 233 as a convenience, and are only 1/3 as efficient) 234 */ 235 #ifdef MMX_TRACE 236 237 /* Include the stuff for printing a trace to stderr... 238 */ 239 240 #define mmx_i2r(op, imm, reg) \ 241 { \ 242 mmx_t mmx_trace; \ 243 mmx_trace.uq = (imm); \ 244 printf(#op "_i2r(" #imm "=0x%08x%08x, ", \ 245 mmx_trace.d[1], mmx_trace.d[0]); \ 246 __asm__ __volatile__ ("movq %%" #reg ", %0" \ 247 : "=X" (mmx_trace) \ 248 : /* nothing */ ); \ 249 printf(#reg "=0x%08x%08x) => ", \ 250 mmx_trace.d[1], mmx_trace.d[0]); \ 251 __asm__ __volatile__ (#op " %0, %%" #reg \ 252 : /* nothing */ \ 253 : "X" (imm)); \ 254 __asm__ __volatile__ ("movq %%" #reg ", %0" \ 255 : "=X" (mmx_trace) \ 256 : /* nothing */ ); \ 257 printf(#reg "=0x%08x%08x\n", \ 258 mmx_trace.d[1], mmx_trace.d[0]); \ 259 } 260 261 #define mmx_m2r(op, mem, reg) \ 262 { \ 263 mmx_t mmx_trace; \ 264 mmx_trace = (mem); \ 265 printf(#op "_m2r(" #mem "=0x%08x%08x, ", \ 266 mmx_trace.d[1], mmx_trace.d[0]); \ 267 __asm__ __volatile__ ("movq %%" #reg ", %0" \ 268 : "=X" (mmx_trace) \ 269 : /* nothing */ ); \ 270 printf(#reg "=0x%08x%08x) => ", \ 271 mmx_trace.d[1], mmx_trace.d[0]); \ 272 __asm__ __volatile__ (#op " %0, %%" #reg \ 273 : /* nothing */ \ 274 : "X" (mem)); \ 275 __asm__ __volatile__ ("movq %%" #reg ", %0" \ 276 : "=X" (mmx_trace) \ 277 : /* nothing */ ); \ 278 printf(#reg "=0x%08x%08x\n", \ 279 mmx_trace.d[1], mmx_trace.d[0]); \ 280 } 281 282 #define mmx_r2m(op, reg, mem) \ 283 { \ 284 mmx_t mmx_trace; \ 285 __asm__ __volatile__ ("movq %%" #reg ", %0" \ 286 : "=X" (mmx_trace) \ 287 : /* nothing */ ); \ 288 printf(#op "_r2m(" #reg "=0x%08x%08x, ", \ 289 mmx_trace.d[1], mmx_trace.d[0]); \ 290 mmx_trace = (mem); \ 291 printf(#mem "=0x%08x%08x) => ", \ 292 mmx_trace.d[1], mmx_trace.d[0]); \ 293 __asm__ __volatile__ (#op " %%" #reg ", %0" \ 294 : "=X" (mem) \ 295 : /* nothing */ ); \ 296 mmx_trace = (mem); \ 297 printf(#mem "=0x%08x%08x\n", \ 298 mmx_trace.d[1], mmx_trace.d[0]); \ 299 } 300 301 #define mmx_r2r(op, regs, regd) \ 302 { \ 303 mmx_t mmx_trace; \ 304 __asm__ __volatile__ ("movq %%" #regs ", %0" \ 305 : "=X" (mmx_trace) \ 306 : /* nothing */ ); \ 307 printf(#op "_r2r(" #regs "=0x%08x%08x, ", \ 308 mmx_trace.d[1], mmx_trace.d[0]); \ 309 __asm__ __volatile__ ("movq %%" #regd ", %0" \ 310 : "=X" (mmx_trace) \ 311 : /* nothing */ ); \ 312 printf(#regd "=0x%08x%08x) => ", \ 313 mmx_trace.d[1], mmx_trace.d[0]); \ 314 __asm__ __volatile__ (#op " %" #regs ", %" #regd); \ 315 __asm__ __volatile__ ("movq %%" #regd ", %0" \ 316 : "=X" (mmx_trace) \ 317 : /* nothing */ ); \ 318 printf(#regd "=0x%08x%08x\n", \ 319 mmx_trace.d[1], mmx_trace.d[0]); \ 320 } 321 322 #define mmx_m2m(op, mems, memd) \ 323 { \ 324 mmx_t mmx_trace; \ 325 mmx_trace = (mems); \ 326 printf(#op "_m2m(" #mems "=0x%08x%08x, ", \ 327 mmx_trace.d[1], mmx_trace.d[0]); \ 328 mmx_trace = (memd); \ 329 printf(#memd "=0x%08x%08x) => ", \ 330 mmx_trace.d[1], mmx_trace.d[0]); \ 331 __asm__ __volatile__ ("movq %0, %%mm0\n\t" \ 332 #op " %1, %%mm0\n\t" \ 333 "movq %%mm0, %0" \ 334 : "=X" (memd) \ 335 : "X" (mems)); \ 336 mmx_trace = (memd); \ 337 printf(#memd "=0x%08x%08x\n", \ 338 mmx_trace.d[1], mmx_trace.d[0]); \ 339 } 340 341 #else 342 343 /* These macros are a lot simpler without the tracing... 344 */ 345 346 #define mmx_i2r(op, imm, reg) \ 347 __asm__ __volatile__ (#op " %0, %%" #reg \ 348 : /* nothing */ \ 349 : "X" (imm) ) 350 351 #define mmx_m2r(op, mem, reg) \ 352 __asm__ __volatile__ (#op " %0, %%" #reg \ 353 : /* nothing */ \ 354 : "m" (mem)) 355 356 #define mmx_r2m(op, reg, mem) \ 357 __asm__ __volatile__ (#op " %%" #reg ", %0" \ 358 : "=X" (mem) \ 359 : /* nothing */ ) 360 361 #define mmx_r2r(op, regs, regd) \ 362 __asm__ __volatile__ (#op " %" #regs ", %" #regd) 363 364 #define mmx_m2m(op, mems, memd) \ 365 __asm__ __volatile__ ("movq %0, %%mm0\n\t" \ 366 #op " %1, %%mm0\n\t" \ 367 "movq %%mm0, %0" \ 368 : "=X" (memd) \ 369 : "X" (mems)) 370 371 #endif 372 373 374 /* 1x64 MOVe Quadword 375 (this is both a load and a store... 376 in fact, it is the only way to store) 377 */ 378 #define movq_m2r(var, reg) mmx_m2r(movq, var, reg) 379 #define movq_r2m(reg, var) mmx_r2m(movq, reg, var) 380 #define movq_r2r(regs, regd) mmx_r2r(movq, regs, regd) 381 #define movq(vars, vard) \ 382 __asm__ __volatile__ ("movq %1, %%mm0\n\t" \ 383 "movq %%mm0, %0" \ 384 : "=X" (vard) \ 385 : "X" (vars)) 386 387 388 /* 1x32 MOVe Doubleword 389 (like movq, this is both load and store... 390 but is most useful for moving things between 391 mmx registers and ordinary registers) 392 */ 393 #define movd_m2r(var, reg) mmx_m2r(movd, var, reg) 394 #define movd_r2m(reg, var) mmx_r2m(movd, reg, var) 395 #define movd_r2r(regs, regd) mmx_r2r(movd, regs, regd) 396 #define movd(vars, vard) \ 397 __asm__ __volatile__ ("movd %1, %%mm0\n\t" \ 398 "movd %%mm0, %0" \ 399 : "=X" (vard) \ 400 : "X" (vars)) 401 402 403 /* 2x32, 4x16, and 8x8 Parallel ADDs 404 */ 405 #define paddd_m2r(var, reg) mmx_m2r(paddd, var, reg) 406 #define paddd_r2r(regs, regd) mmx_r2r(paddd, regs, regd) 407 #define paddd(vars, vard) mmx_m2m(paddd, vars, vard) 408 409 #define paddw_m2r(var, reg) mmx_m2r(paddw, var, reg) 410 #define paddw_r2r(regs, regd) mmx_r2r(paddw, regs, regd) 411 #define paddw(vars, vard) mmx_m2m(paddw, vars, vard) 412 413 #define paddb_m2r(var, reg) mmx_m2r(paddb, var, reg) 414 #define paddb_r2r(regs, regd) mmx_r2r(paddb, regs, regd) 415 #define paddb(vars, vard) mmx_m2m(paddb, vars, vard) 416 417 418 /* 4x16 and 8x8 Parallel ADDs using Saturation arithmetic 419 */ 420 #define paddsw_m2r(var, reg) mmx_m2r(paddsw, var, reg) 421 #define paddsw_r2r(regs, regd) mmx_r2r(paddsw, regs, regd) 422 #define paddsw(vars, vard) mmx_m2m(paddsw, vars, vard) 423 424 #define paddsb_m2r(var, reg) mmx_m2r(paddsb, var, reg) 425 #define paddsb_r2r(regs, regd) mmx_r2r(paddsb, regs, regd) 426 #define paddsb(vars, vard) mmx_m2m(paddsb, vars, vard) 427 428 429 /* 4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic 430 */ 431 #define paddusw_m2r(var, reg) mmx_m2r(paddusw, var, reg) 432 #define paddusw_r2r(regs, regd) mmx_r2r(paddusw, regs, regd) 433 #define paddusw(vars, vard) mmx_m2m(paddusw, vars, vard) 434 435 #define paddusb_m2r(var, reg) mmx_m2r(paddusb, var, reg) 436 #define paddusb_r2r(regs, regd) mmx_r2r(paddusb, regs, regd) 437 #define paddusb(vars, vard) mmx_m2m(paddusb, vars, vard) 438 439 440 /* 2x32, 4x16, and 8x8 Parallel SUBs 441 */ 442 #define psubd_m2r(var, reg) mmx_m2r(psubd, var, reg) 443 #define psubd_r2r(regs, regd) mmx_r2r(psubd, regs, regd) 444 #define psubd(vars, vard) mmx_m2m(psubd, vars, vard) 445 446 #define psubw_m2r(var, reg) mmx_m2r(psubw, var, reg) 447 #define psubw_r2r(regs, regd) mmx_r2r(psubw, regs, regd) 448 #define psubw(vars, vard) mmx_m2m(psubw, vars, vard) 449 450 #define psubb_m2r(var, reg) mmx_m2r(psubb, var, reg) 451 #define psubb_r2r(regs, regd) mmx_r2r(psubb, regs, regd) 452 #define psubb(vars, vard) mmx_m2m(psubb, vars, vard) 453 454 455 /* 4x16 and 8x8 Parallel SUBs using Saturation arithmetic 456 */ 457 #define psubsw_m2r(var, reg) mmx_m2r(psubsw, var, reg) 458 #define psubsw_r2r(regs, regd) mmx_r2r(psubsw, regs, regd) 459 #define psubsw(vars, vard) mmx_m2m(psubsw, vars, vard) 460 461 #define psubsb_m2r(var, reg) mmx_m2r(psubsb, var, reg) 462 #define psubsb_r2r(regs, regd) mmx_r2r(psubsb, regs, regd) 463 #define psubsb(vars, vard) mmx_m2m(psubsb, vars, vard) 464 465 466 /* 4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic 467 */ 468 #define psubusw_m2r(var, reg) mmx_m2r(psubusw, var, reg) 469 #define psubusw_r2r(regs, regd) mmx_r2r(psubusw, regs, regd) 470 #define psubusw(vars, vard) mmx_m2m(psubusw, vars, vard) 471 472 #define psubusb_m2r(var, reg) mmx_m2r(psubusb, var, reg) 473 #define psubusb_r2r(regs, regd) mmx_r2r(psubusb, regs, regd) 474 #define psubusb(vars, vard) mmx_m2m(psubusb, vars, vard) 475 476 477 /* 4x16 Parallel MULs giving Low 4x16 portions of results 478 */ 479 #define pmullw_m2r(var, reg) mmx_m2r(pmullw, var, reg) 480 #define pmullw_r2r(regs, regd) mmx_r2r(pmullw, regs, regd) 481 #define pmullw(vars, vard) mmx_m2m(pmullw, vars, vard) 482 483 484 /* 4x16 Parallel MULs giving High 4x16 portions of results 485 */ 486 #define pmulhw_m2r(var, reg) mmx_m2r(pmulhw, var, reg) 487 #define pmulhw_r2r(regs, regd) mmx_r2r(pmulhw, regs, regd) 488 #define pmulhw(vars, vard) mmx_m2m(pmulhw, vars, vard) 489 490 491 /* 4x16->2x32 Parallel Mul-ADD 492 (muls like pmullw, then adds adjacent 16-bit fields 493 in the multiply result to make the final 2x32 result) 494 */ 495 #define pmaddwd_m2r(var, reg) mmx_m2r(pmaddwd, var, reg) 496 #define pmaddwd_r2r(regs, regd) mmx_r2r(pmaddwd, regs, regd) 497 #define pmaddwd(vars, vard) mmx_m2m(pmaddwd, vars, vard) 498 499 500 /* 1x64 bitwise AND 501 */ 502 #ifdef BROKEN_PAND 503 #define pand_m2r(var, reg) \ 504 { \ 505 mmx_m2r(pandn, (mmx_t) -1LL, reg); \ 506 mmx_m2r(pandn, var, reg); \ 507 } 508 #define pand_r2r(regs, regd) \ 509 { \ 510 mmx_m2r(pandn, (mmx_t) -1LL, regd); \ 511 mmx_r2r(pandn, regs, regd) \ 512 } 513 #define pand(vars, vard) \ 514 { \ 515 movq_m2r(vard, mm0); \ 516 mmx_m2r(pandn, (mmx_t) -1LL, mm0); \ 517 mmx_m2r(pandn, vars, mm0); \ 518 movq_r2m(mm0, vard); \ 519 } 520 #else 521 #define pand_m2r(var, reg) mmx_m2r(pand, var, reg) 522 #define pand_r2r(regs, regd) mmx_r2r(pand, regs, regd) 523 #define pand(vars, vard) mmx_m2m(pand, vars, vard) 524 #endif 525 526 527 /* 1x64 bitwise AND with Not the destination 528 */ 529 #define pandn_m2r(var, reg) mmx_m2r(pandn, var, reg) 530 #define pandn_r2r(regs, regd) mmx_r2r(pandn, regs, regd) 531 #define pandn(vars, vard) mmx_m2m(pandn, vars, vard) 532 533 534 /* 1x64 bitwise OR 535 */ 536 #define por_m2r(var, reg) mmx_m2r(por, var, reg) 537 #define por_r2r(regs, regd) mmx_r2r(por, regs, regd) 538 #define por(vars, vard) mmx_m2m(por, vars, vard) 539 540 541 /* 1x64 bitwise eXclusive OR 542 */ 543 #define pxor_m2r(var, reg) mmx_m2r(pxor, var, reg) 544 #define pxor_r2r(regs, regd) mmx_r2r(pxor, regs, regd) 545 #define pxor(vars, vard) mmx_m2m(pxor, vars, vard) 546 547 548 /* 2x32, 4x16, and 8x8 Parallel CoMPare for EQuality 549 (resulting fields are either 0 or -1) 550 */ 551 #define pcmpeqd_m2r(var, reg) mmx_m2r(pcmpeqd, var, reg) 552 #define pcmpeqd_r2r(regs, regd) mmx_r2r(pcmpeqd, regs, regd) 553 #define pcmpeqd(vars, vard) mmx_m2m(pcmpeqd, vars, vard) 554 555 #define pcmpeqw_m2r(var, reg) mmx_m2r(pcmpeqw, var, reg) 556 #define pcmpeqw_r2r(regs, regd) mmx_r2r(pcmpeqw, regs, regd) 557 #define pcmpeqw(vars, vard) mmx_m2m(pcmpeqw, vars, vard) 558 559 #define pcmpeqb_m2r(var, reg) mmx_m2r(pcmpeqb, var, reg) 560 #define pcmpeqb_r2r(regs, regd) mmx_r2r(pcmpeqb, regs, regd) 561 #define pcmpeqb(vars, vard) mmx_m2m(pcmpeqb, vars, vard) 562 563 564 /* 2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than 565 (resulting fields are either 0 or -1) 566 */ 567 #define pcmpgtd_m2r(var, reg) mmx_m2r(pcmpgtd, var, reg) 568 #define pcmpgtd_r2r(regs, regd) mmx_r2r(pcmpgtd, regs, regd) 569 #define pcmpgtd(vars, vard) mmx_m2m(pcmpgtd, vars, vard) 570 571 #define pcmpgtw_m2r(var, reg) mmx_m2r(pcmpgtw, var, reg) 572 #define pcmpgtw_r2r(regs, regd) mmx_r2r(pcmpgtw, regs, regd) 573 #define pcmpgtw(vars, vard) mmx_m2m(pcmpgtw, vars, vard) 574 575 #define pcmpgtb_m2r(var, reg) mmx_m2r(pcmpgtb, var, reg) 576 #define pcmpgtb_r2r(regs, regd) mmx_r2r(pcmpgtb, regs, regd) 577 #define pcmpgtb(vars, vard) mmx_m2m(pcmpgtb, vars, vard) 578 579 580 /* 1x64, 2x32, and 4x16 Parallel Shift Left Logical 581 */ 582 #define psllq_i2r(imm, reg) mmx_i2r(psllq, imm, reg) 583 #define psllq_m2r(var, reg) mmx_m2r(psllq, var, reg) 584 #define psllq_r2r(regs, regd) mmx_r2r(psllq, regs, regd) 585 #define psllq(vars, vard) mmx_m2m(psllq, vars, vard) 586 587 #define pslld_i2r(imm, reg) mmx_i2r(pslld, imm, reg) 588 #define pslld_m2r(var, reg) mmx_m2r(pslld, var, reg) 589 #define pslld_r2r(regs, regd) mmx_r2r(pslld, regs, regd) 590 #define pslld(vars, vard) mmx_m2m(pslld, vars, vard) 591 592 #define psllw_i2r(imm, reg) mmx_i2r(psllw, imm, reg) 593 #define psllw_m2r(var, reg) mmx_m2r(psllw, var, reg) 594 #define psllw_r2r(regs, regd) mmx_r2r(psllw, regs, regd) 595 #define psllw(vars, vard) mmx_m2m(psllw, vars, vard) 596 597 598 /* 1x64, 2x32, and 4x16 Parallel Shift Right Logical 599 */ 600 #define psrlq_i2r(imm, reg) mmx_i2r(psrlq, imm, reg) 601 #define psrlq_m2r(var, reg) mmx_m2r(psrlq, var, reg) 602 #define psrlq_r2r(regs, regd) mmx_r2r(psrlq, regs, regd) 603 #define psrlq(vars, vard) mmx_m2m(psrlq, vars, vard) 604 605 #define psrld_i2r(imm, reg) mmx_i2r(psrld, imm, reg) 606 #define psrld_m2r(var, reg) mmx_m2r(psrld, var, reg) 607 #define psrld_r2r(regs, regd) mmx_r2r(psrld, regs, regd) 608 #define psrld(vars, vard) mmx_m2m(psrld, vars, vard) 609 610 #define psrlw_i2r(imm, reg) mmx_i2r(psrlw, imm, reg) 611 #define psrlw_m2r(var, reg) mmx_m2r(psrlw, var, reg) 612 #define psrlw_r2r(regs, regd) mmx_r2r(psrlw, regs, regd) 613 #define psrlw(vars, vard) mmx_m2m(psrlw, vars, vard) 614 615 616 /* 2x32 and 4x16 Parallel Shift Right Arithmetic 617 */ 618 #define psrad_i2r(imm, reg) mmx_i2r(psrad, imm, reg) 619 #define psrad_m2r(var, reg) mmx_m2r(psrad, var, reg) 620 #define psrad_r2r(regs, regd) mmx_r2r(psrad, regs, regd) 621 #define psrad(vars, vard) mmx_m2m(psrad, vars, vard) 622 623 #define psraw_i2r(imm, reg) mmx_i2r(psraw, imm, reg) 624 #define psraw_m2r(var, reg) mmx_m2r(psraw, var, reg) 625 #define psraw_r2r(regs, regd) mmx_r2r(psraw, regs, regd) 626 #define psraw(vars, vard) mmx_m2m(psraw, vars, vard) 627 628 629 /* 2x32->4x16 and 4x16->8x8 PACK and Signed Saturate 630 (packs source and dest fields into dest in that order) 631 */ 632 #define packssdw_m2r(var, reg) mmx_m2r(packssdw, var, reg) 633 #define packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd) 634 #define packssdw(vars, vard) mmx_m2m(packssdw, vars, vard) 635 636 #define packsswb_m2r(var, reg) mmx_m2r(packsswb, var, reg) 637 #define packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd) 638 #define packsswb(vars, vard) mmx_m2m(packsswb, vars, vard) 639 640 641 /* 4x16->8x8 PACK and Unsigned Saturate 642 (packs source and dest fields into dest in that order) 643 */ 644 #define packuswb_m2r(var, reg) mmx_m2r(packuswb, var, reg) 645 #define packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd) 646 #define packuswb(vars, vard) mmx_m2m(packuswb, vars, vard) 647 648 649 /* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low 650 (interleaves low half of dest with low half of source 651 as padding in each result field) 652 */ 653 #define punpckldq_m2r(var, reg) mmx_m2r(punpckldq, var, reg) 654 #define punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd) 655 #define punpckldq(vars, vard) mmx_m2m(punpckldq, vars, vard) 656 657 #define punpcklwd_m2r(var, reg) mmx_m2r(punpcklwd, var, reg) 658 #define punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd) 659 #define punpcklwd(vars, vard) mmx_m2m(punpcklwd, vars, vard) 660 661 #define punpcklbw_m2r(var, reg) mmx_m2r(punpcklbw, var, reg) 662 #define punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd) 663 #define punpcklbw(vars, vard) mmx_m2m(punpcklbw, vars, vard) 664 665 666 /* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High 667 (interleaves high half of dest with high half of source 668 as padding in each result field) 669 */ 670 #define punpckhdq_m2r(var, reg) mmx_m2r(punpckhdq, var, reg) 671 #define punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd) 672 #define punpckhdq(vars, vard) mmx_m2m(punpckhdq, vars, vard) 673 674 #define punpckhwd_m2r(var, reg) mmx_m2r(punpckhwd, var, reg) 675 #define punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd) 676 #define punpckhwd(vars, vard) mmx_m2m(punpckhwd, vars, vard) 677 678 #define punpckhbw_m2r(var, reg) mmx_m2r(punpckhbw, var, reg) 679 #define punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd) 680 #define punpckhbw(vars, vard) mmx_m2m(punpckhbw, vars, vard) 681 682 683 /* Empty MMx State 684 (used to clean-up when going from mmx to float use 685 of the registers that are shared by both; note that 686 there is no float-to-mmx operation needed, because 687 only the float tag word info is corruptible) 688 */ 689 #ifdef MMX_TRACE 690 691 #define emms() \ 692 { \ 693 printf("emms()\n"); \ 694 __asm__ __volatile__ ("emms"); \ 695 } 696 697 #else 698 699 #define emms() __asm__ __volatile__ ("emms") 700 701 #endif 702 703 #endif 704 705