Home | History | Annotate | Download | only in video
      1 /*	mmx.h
      2 
      3 	MultiMedia eXtensions GCC interface library for IA32.
      4 
      5 	To use this library, simply include this header file
      6 	and compile with GCC.  You MUST have inlining enabled
      7 	in order for mmx_ok() to work; this can be done by
      8 	simply using -O on the GCC command line.
      9 
     10 	Compiling with -DMMX_TRACE will cause detailed trace
     11 	output to be sent to stderr for each mmx operation.
     12 	This adds lots of code, and obviously slows execution to
     13 	a crawl, but can be very useful for debugging.
     14 
     15 	THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
     16 	EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
     17 	LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     18 	AND FITNESS FOR ANY PARTICULAR PURPOSE.
     19 
     20 	1997-99 by H. Dietz and R. Fisher
     21 
     22  Notes:
     23 	It appears that the latest gas has the pand problem fixed, therefore
     24 	  I'll undefine BROKEN_PAND by default.
     25 */
     26 
     27 #ifndef _MMX_H
     28 #define _MMX_H
     29 
     30 
     31 /*	Warning:  at this writing, the version of GAS packaged
     32 	with most Linux distributions does not handle the
     33 	parallel AND operation mnemonic correctly.  If the
     34 	symbol BROKEN_PAND is defined, a slower alternative
     35 	coding will be used.  If execution of mmxtest results
     36 	in an illegal instruction fault, define this symbol.
     37 */
     38 #undef	BROKEN_PAND
     39 
     40 
     41 /*	The type of an value that fits in an MMX register
     42 	(note that long long constant values MUST be suffixed
     43 	 by LL and unsigned long long values by ULL, lest
     44 	 they be truncated by the compiler)
     45 */
     46 typedef	union {
     47 	long long		q;	/* Quadword (64-bit) value */
     48 	unsigned long long	uq;	/* Unsigned Quadword */
     49 	int			d[2];	/* 2 Doubleword (32-bit) values */
     50 	unsigned int		ud[2];	/* 2 Unsigned Doubleword */
     51 	short			w[4];	/* 4 Word (16-bit) values */
     52 	unsigned short		uw[4];	/* 4 Unsigned Word */
     53 	char			b[8];	/* 8 Byte (8-bit) values */
     54 	unsigned char		ub[8];	/* 8 Unsigned Byte */
     55 	float			s[2];	/* Single-precision (32-bit) value */
     56 } __attribute__ ((aligned (8))) mmx_t;	/* On an 8-byte (64-bit) boundary */
     57 
     58 
     59 #if 0
     60 /*	Function to test if multimedia instructions are supported...
     61 */
     62 inline extern int
     63 mm_support(void)
     64 {
     65 	/* Returns 1 if MMX instructions are supported,
     66 	   3 if Cyrix MMX and Extended MMX instructions are supported
     67 	   5 if AMD MMX and 3DNow! instructions are supported
     68 	   0 if hardware does not support any of these
     69 	*/
     70 	register int rval = 0;
     71 
     72 	__asm__ __volatile__ (
     73 		/* See if CPUID instruction is supported ... */
     74 		/* ... Get copies of EFLAGS into eax and ecx */
     75 		"pushf\n\t"
     76 		"popl %%eax\n\t"
     77 		"movl %%eax, %%ecx\n\t"
     78 
     79 		/* ... Toggle the ID bit in one copy and store */
     80 		/*     to the EFLAGS reg */
     81 		"xorl $0x200000, %%eax\n\t"
     82 		"push %%eax\n\t"
     83 		"popf\n\t"
     84 
     85 		/* ... Get the (hopefully modified) EFLAGS */
     86 		"pushf\n\t"
     87 		"popl %%eax\n\t"
     88 
     89 		/* ... Compare and test result */
     90 		"xorl %%eax, %%ecx\n\t"
     91 		"testl $0x200000, %%ecx\n\t"
     92 		"jz NotSupported1\n\t"		/* CPUID not supported */
     93 
     94 
     95 		/* Get standard CPUID information, and
     96 		       go to a specific vendor section */
     97 		"movl $0, %%eax\n\t"
     98 		"cpuid\n\t"
     99 
    100 		/* Check for Intel */
    101 		"cmpl $0x756e6547, %%ebx\n\t"
    102 		"jne TryAMD\n\t"
    103 		"cmpl $0x49656e69, %%edx\n\t"
    104 		"jne TryAMD\n\t"
    105 		"cmpl $0x6c65746e, %%ecx\n"
    106 		"jne TryAMD\n\t"
    107 		"jmp Intel\n\t"
    108 
    109 		/* Check for AMD */
    110 		"\nTryAMD:\n\t"
    111 		"cmpl $0x68747541, %%ebx\n\t"
    112 		"jne TryCyrix\n\t"
    113 		"cmpl $0x69746e65, %%edx\n\t"
    114 		"jne TryCyrix\n\t"
    115 		"cmpl $0x444d4163, %%ecx\n"
    116 		"jne TryCyrix\n\t"
    117 		"jmp AMD\n\t"
    118 
    119 		/* Check for Cyrix */
    120 		"\nTryCyrix:\n\t"
    121 		"cmpl $0x69727943, %%ebx\n\t"
    122 		"jne NotSupported2\n\t"
    123 		"cmpl $0x736e4978, %%edx\n\t"
    124 		"jne NotSupported3\n\t"
    125 		"cmpl $0x64616574, %%ecx\n\t"
    126 		"jne NotSupported4\n\t"
    127 		/* Drop through to Cyrix... */
    128 
    129 
    130 		/* Cyrix Section */
    131 		/* See if extended CPUID level 80000001 is supported */
    132 		/* The value of CPUID/80000001 for the 6x86MX is undefined
    133 		   according to the Cyrix CPU Detection Guide (Preliminary
    134 		   Rev. 1.01 table 1), so we'll check the value of eax for
    135 		   CPUID/0 to see if standard CPUID level 2 is supported.
    136 		   According to the table, the only CPU which supports level
    137 		   2 is also the only one which supports extended CPUID levels.
    138 		*/
    139 		"cmpl $0x2, %%eax\n\t"
    140 		"jne MMXtest\n\t"	/* Use standard CPUID instead */
    141 
    142 		/* Extended CPUID supported (in theory), so get extended
    143 		   features */
    144 		"movl $0x80000001, %%eax\n\t"
    145 		"cpuid\n\t"
    146 		"testl $0x00800000, %%eax\n\t"	/* Test for MMX */
    147 		"jz NotSupported5\n\t"		/* MMX not supported */
    148 		"testl $0x01000000, %%eax\n\t"	/* Test for Ext'd MMX */
    149 		"jnz EMMXSupported\n\t"
    150 		"movl $1, %0:\n\n\t"		/* MMX Supported */
    151 		"jmp Return\n\n"
    152 		"EMMXSupported:\n\t"
    153 		"movl $3, %0:\n\n\t"		/* EMMX and MMX Supported */
    154 		"jmp Return\n\t"
    155 
    156 
    157 		/* AMD Section */
    158 		"AMD:\n\t"
    159 
    160 		/* See if extended CPUID is supported */
    161 		"movl $0x80000000, %%eax\n\t"
    162 		"cpuid\n\t"
    163 		"cmpl $0x80000000, %%eax\n\t"
    164 		"jl MMXtest\n\t"	/* Use standard CPUID instead */
    165 
    166 		/* Extended CPUID supported, so get extended features */
    167 		"movl $0x80000001, %%eax\n\t"
    168 		"cpuid\n\t"
    169 		"testl $0x00800000, %%edx\n\t"	/* Test for MMX */
    170 		"jz NotSupported6\n\t"		/* MMX not supported */
    171 		"testl $0x80000000, %%edx\n\t"	/* Test for 3DNow! */
    172 		"jnz ThreeDNowSupported\n\t"
    173 		"movl $1, %0:\n\n\t"		/* MMX Supported */
    174 		"jmp Return\n\n"
    175 		"ThreeDNowSupported:\n\t"
    176 		"movl $5, %0:\n\n\t"		/* 3DNow! and MMX Supported */
    177 		"jmp Return\n\t"
    178 
    179 
    180 		/* Intel Section */
    181 		"Intel:\n\t"
    182 
    183 		/* Check for MMX */
    184 		"MMXtest:\n\t"
    185 		"movl $1, %%eax\n\t"
    186 		"cpuid\n\t"
    187 		"testl $0x00800000, %%edx\n\t"	/* Test for MMX */
    188 		"jz NotSupported7\n\t"		/* MMX Not supported */
    189 		"movl $1, %0:\n\n\t"		/* MMX Supported */
    190 		"jmp Return\n\t"
    191 
    192 		/* Nothing supported */
    193 		"\nNotSupported1:\n\t"
    194 		"#movl $101, %0:\n\n\t"
    195 		"\nNotSupported2:\n\t"
    196 		"#movl $102, %0:\n\n\t"
    197 		"\nNotSupported3:\n\t"
    198 		"#movl $103, %0:\n\n\t"
    199 		"\nNotSupported4:\n\t"
    200 		"#movl $104, %0:\n\n\t"
    201 		"\nNotSupported5:\n\t"
    202 		"#movl $105, %0:\n\n\t"
    203 		"\nNotSupported6:\n\t"
    204 		"#movl $106, %0:\n\n\t"
    205 		"\nNotSupported7:\n\t"
    206 		"#movl $107, %0:\n\n\t"
    207 		"movl $0, %0:\n\n\t"
    208 
    209 		"Return:\n\t"
    210 		: "=a" (rval)
    211 		: /* no input */
    212 		: "eax", "ebx", "ecx", "edx"
    213 	);
    214 
    215 	/* Return */
    216 	return(rval);
    217 }
    218 
    219 /*	Function to test if mmx instructions are supported...
    220 */
    221 inline extern int
    222 mmx_ok(void)
    223 {
    224 	/* Returns 1 if MMX instructions are supported, 0 otherwise */
    225 	return ( mm_support() & 0x1 );
    226 }
    227 #endif
    228 
    229 /*	Helper functions for the instruction macros that follow...
    230 	(note that memory-to-register, m2r, instructions are nearly
    231 	 as efficient as register-to-register, r2r, instructions;
    232 	 however, memory-to-memory instructions are really simulated
    233 	 as a convenience, and are only 1/3 as efficient)
    234 */
    235 #ifdef	MMX_TRACE
    236 
    237 /*	Include the stuff for printing a trace to stderr...
    238 */
    239 
    240 #define	mmx_i2r(op, imm, reg) \
    241 	{ \
    242 		mmx_t mmx_trace; \
    243 		mmx_trace.uq = (imm); \
    244 		printf(#op "_i2r(" #imm "=0x%08x%08x, ", \
    245 			mmx_trace.d[1], mmx_trace.d[0]); \
    246 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
    247 				      : "=X" (mmx_trace) \
    248 				      : /* nothing */ ); \
    249 		printf(#reg "=0x%08x%08x) => ", \
    250 			mmx_trace.d[1], mmx_trace.d[0]); \
    251 		__asm__ __volatile__ (#op " %0, %%" #reg \
    252 				      : /* nothing */ \
    253 				      : "X" (imm)); \
    254 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
    255 				      : "=X" (mmx_trace) \
    256 				      : /* nothing */ ); \
    257 		printf(#reg "=0x%08x%08x\n", \
    258 			mmx_trace.d[1], mmx_trace.d[0]); \
    259 	}
    260 
    261 #define	mmx_m2r(op, mem, reg) \
    262 	{ \
    263 		mmx_t mmx_trace; \
    264 		mmx_trace = (mem); \
    265 		printf(#op "_m2r(" #mem "=0x%08x%08x, ", \
    266 			mmx_trace.d[1], mmx_trace.d[0]); \
    267 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
    268 				      : "=X" (mmx_trace) \
    269 				      : /* nothing */ ); \
    270 		printf(#reg "=0x%08x%08x) => ", \
    271 			mmx_trace.d[1], mmx_trace.d[0]); \
    272 		__asm__ __volatile__ (#op " %0, %%" #reg \
    273 				      : /* nothing */ \
    274 				      : "X" (mem)); \
    275 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
    276 				      : "=X" (mmx_trace) \
    277 				      : /* nothing */ ); \
    278 		printf(#reg "=0x%08x%08x\n", \
    279 			mmx_trace.d[1], mmx_trace.d[0]); \
    280 	}
    281 
    282 #define	mmx_r2m(op, reg, mem) \
    283 	{ \
    284 		mmx_t mmx_trace; \
    285 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
    286 				      : "=X" (mmx_trace) \
    287 				      : /* nothing */ ); \
    288 		printf(#op "_r2m(" #reg "=0x%08x%08x, ", \
    289 			mmx_trace.d[1], mmx_trace.d[0]); \
    290 		mmx_trace = (mem); \
    291 		printf(#mem "=0x%08x%08x) => ", \
    292 			mmx_trace.d[1], mmx_trace.d[0]); \
    293 		__asm__ __volatile__ (#op " %%" #reg ", %0" \
    294 				      : "=X" (mem) \
    295 				      : /* nothing */ ); \
    296 		mmx_trace = (mem); \
    297 		printf(#mem "=0x%08x%08x\n", \
    298 			mmx_trace.d[1], mmx_trace.d[0]); \
    299 	}
    300 
    301 #define	mmx_r2r(op, regs, regd) \
    302 	{ \
    303 		mmx_t mmx_trace; \
    304 		__asm__ __volatile__ ("movq %%" #regs ", %0" \
    305 				      : "=X" (mmx_trace) \
    306 				      : /* nothing */ ); \
    307 		printf(#op "_r2r(" #regs "=0x%08x%08x, ", \
    308 			mmx_trace.d[1], mmx_trace.d[0]); \
    309 		__asm__ __volatile__ ("movq %%" #regd ", %0" \
    310 				      : "=X" (mmx_trace) \
    311 				      : /* nothing */ ); \
    312 		printf(#regd "=0x%08x%08x) => ", \
    313 			mmx_trace.d[1], mmx_trace.d[0]); \
    314 		__asm__ __volatile__ (#op " %" #regs ", %" #regd); \
    315 		__asm__ __volatile__ ("movq %%" #regd ", %0" \
    316 				      : "=X" (mmx_trace) \
    317 				      : /* nothing */ ); \
    318 		printf(#regd "=0x%08x%08x\n", \
    319 			mmx_trace.d[1], mmx_trace.d[0]); \
    320 	}
    321 
    322 #define	mmx_m2m(op, mems, memd) \
    323 	{ \
    324 		mmx_t mmx_trace; \
    325 		mmx_trace = (mems); \
    326 		printf(#op "_m2m(" #mems "=0x%08x%08x, ", \
    327 			mmx_trace.d[1], mmx_trace.d[0]); \
    328 		mmx_trace = (memd); \
    329 		printf(#memd "=0x%08x%08x) => ", \
    330 			mmx_trace.d[1], mmx_trace.d[0]); \
    331 		__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
    332 				      #op " %1, %%mm0\n\t" \
    333 				      "movq %%mm0, %0" \
    334 				      : "=X" (memd) \
    335 				      : "X" (mems)); \
    336 		mmx_trace = (memd); \
    337 		printf(#memd "=0x%08x%08x\n", \
    338 			mmx_trace.d[1], mmx_trace.d[0]); \
    339 	}
    340 
    341 #else
    342 
    343 /*	These macros are a lot simpler without the tracing...
    344 */
    345 
    346 #define	mmx_i2r(op, imm, reg) \
    347 	__asm__ __volatile__ (#op " %0, %%" #reg \
    348 			      : /* nothing */ \
    349 			      : "X" (imm) )
    350 
    351 #define	mmx_m2r(op, mem, reg) \
    352 	__asm__ __volatile__ (#op " %0, %%" #reg \
    353 			      : /* nothing */ \
    354 			      : "m" (mem))
    355 
    356 #define	mmx_r2m(op, reg, mem) \
    357 	__asm__ __volatile__ (#op " %%" #reg ", %0" \
    358 			      : "=X" (mem) \
    359 			      : /* nothing */ )
    360 
    361 #define	mmx_r2r(op, regs, regd) \
    362 	__asm__ __volatile__ (#op " %" #regs ", %" #regd)
    363 
    364 #define	mmx_m2m(op, mems, memd) \
    365 	__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
    366 			      #op " %1, %%mm0\n\t" \
    367 			      "movq %%mm0, %0" \
    368 			      : "=X" (memd) \
    369 			      : "X" (mems))
    370 
    371 #endif
    372 
    373 
    374 /*	1x64 MOVe Quadword
    375 	(this is both a load and a store...
    376 	 in fact, it is the only way to store)
    377 */
    378 #define	movq_m2r(var, reg)	mmx_m2r(movq, var, reg)
    379 #define	movq_r2m(reg, var)	mmx_r2m(movq, reg, var)
    380 #define	movq_r2r(regs, regd)	mmx_r2r(movq, regs, regd)
    381 #define	movq(vars, vard) \
    382 	__asm__ __volatile__ ("movq %1, %%mm0\n\t" \
    383 			      "movq %%mm0, %0" \
    384 			      : "=X" (vard) \
    385 			      : "X" (vars))
    386 
    387 
    388 /*	1x32 MOVe Doubleword
    389 	(like movq, this is both load and store...
    390 	 but is most useful for moving things between
    391 	 mmx registers and ordinary registers)
    392 */
    393 #define	movd_m2r(var, reg)	mmx_m2r(movd, var, reg)
    394 #define	movd_r2m(reg, var)	mmx_r2m(movd, reg, var)
    395 #define	movd_r2r(regs, regd)	mmx_r2r(movd, regs, regd)
    396 #define	movd(vars, vard) \
    397 	__asm__ __volatile__ ("movd %1, %%mm0\n\t" \
    398 			      "movd %%mm0, %0" \
    399 			      : "=X" (vard) \
    400 			      : "X" (vars))
    401 
    402 
    403 /*	2x32, 4x16, and 8x8 Parallel ADDs
    404 */
    405 #define	paddd_m2r(var, reg)	mmx_m2r(paddd, var, reg)
    406 #define	paddd_r2r(regs, regd)	mmx_r2r(paddd, regs, regd)
    407 #define	paddd(vars, vard)	mmx_m2m(paddd, vars, vard)
    408 
    409 #define	paddw_m2r(var, reg)	mmx_m2r(paddw, var, reg)
    410 #define	paddw_r2r(regs, regd)	mmx_r2r(paddw, regs, regd)
    411 #define	paddw(vars, vard)	mmx_m2m(paddw, vars, vard)
    412 
    413 #define	paddb_m2r(var, reg)	mmx_m2r(paddb, var, reg)
    414 #define	paddb_r2r(regs, regd)	mmx_r2r(paddb, regs, regd)
    415 #define	paddb(vars, vard)	mmx_m2m(paddb, vars, vard)
    416 
    417 
    418 /*	4x16 and 8x8 Parallel ADDs using Saturation arithmetic
    419 */
    420 #define	paddsw_m2r(var, reg)	mmx_m2r(paddsw, var, reg)
    421 #define	paddsw_r2r(regs, regd)	mmx_r2r(paddsw, regs, regd)
    422 #define	paddsw(vars, vard)	mmx_m2m(paddsw, vars, vard)
    423 
    424 #define	paddsb_m2r(var, reg)	mmx_m2r(paddsb, var, reg)
    425 #define	paddsb_r2r(regs, regd)	mmx_r2r(paddsb, regs, regd)
    426 #define	paddsb(vars, vard)	mmx_m2m(paddsb, vars, vard)
    427 
    428 
    429 /*	4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic
    430 */
    431 #define	paddusw_m2r(var, reg)	mmx_m2r(paddusw, var, reg)
    432 #define	paddusw_r2r(regs, regd)	mmx_r2r(paddusw, regs, regd)
    433 #define	paddusw(vars, vard)	mmx_m2m(paddusw, vars, vard)
    434 
    435 #define	paddusb_m2r(var, reg)	mmx_m2r(paddusb, var, reg)
    436 #define	paddusb_r2r(regs, regd)	mmx_r2r(paddusb, regs, regd)
    437 #define	paddusb(vars, vard)	mmx_m2m(paddusb, vars, vard)
    438 
    439 
    440 /*	2x32, 4x16, and 8x8 Parallel SUBs
    441 */
    442 #define	psubd_m2r(var, reg)	mmx_m2r(psubd, var, reg)
    443 #define	psubd_r2r(regs, regd)	mmx_r2r(psubd, regs, regd)
    444 #define	psubd(vars, vard)	mmx_m2m(psubd, vars, vard)
    445 
    446 #define	psubw_m2r(var, reg)	mmx_m2r(psubw, var, reg)
    447 #define	psubw_r2r(regs, regd)	mmx_r2r(psubw, regs, regd)
    448 #define	psubw(vars, vard)	mmx_m2m(psubw, vars, vard)
    449 
    450 #define	psubb_m2r(var, reg)	mmx_m2r(psubb, var, reg)
    451 #define	psubb_r2r(regs, regd)	mmx_r2r(psubb, regs, regd)
    452 #define	psubb(vars, vard)	mmx_m2m(psubb, vars, vard)
    453 
    454 
    455 /*	4x16 and 8x8 Parallel SUBs using Saturation arithmetic
    456 */
    457 #define	psubsw_m2r(var, reg)	mmx_m2r(psubsw, var, reg)
    458 #define	psubsw_r2r(regs, regd)	mmx_r2r(psubsw, regs, regd)
    459 #define	psubsw(vars, vard)	mmx_m2m(psubsw, vars, vard)
    460 
    461 #define	psubsb_m2r(var, reg)	mmx_m2r(psubsb, var, reg)
    462 #define	psubsb_r2r(regs, regd)	mmx_r2r(psubsb, regs, regd)
    463 #define	psubsb(vars, vard)	mmx_m2m(psubsb, vars, vard)
    464 
    465 
    466 /*	4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic
    467 */
    468 #define	psubusw_m2r(var, reg)	mmx_m2r(psubusw, var, reg)
    469 #define	psubusw_r2r(regs, regd)	mmx_r2r(psubusw, regs, regd)
    470 #define	psubusw(vars, vard)	mmx_m2m(psubusw, vars, vard)
    471 
    472 #define	psubusb_m2r(var, reg)	mmx_m2r(psubusb, var, reg)
    473 #define	psubusb_r2r(regs, regd)	mmx_r2r(psubusb, regs, regd)
    474 #define	psubusb(vars, vard)	mmx_m2m(psubusb, vars, vard)
    475 
    476 
    477 /*	4x16 Parallel MULs giving Low 4x16 portions of results
    478 */
    479 #define	pmullw_m2r(var, reg)	mmx_m2r(pmullw, var, reg)
    480 #define	pmullw_r2r(regs, regd)	mmx_r2r(pmullw, regs, regd)
    481 #define	pmullw(vars, vard)	mmx_m2m(pmullw, vars, vard)
    482 
    483 
    484 /*	4x16 Parallel MULs giving High 4x16 portions of results
    485 */
    486 #define	pmulhw_m2r(var, reg)	mmx_m2r(pmulhw, var, reg)
    487 #define	pmulhw_r2r(regs, regd)	mmx_r2r(pmulhw, regs, regd)
    488 #define	pmulhw(vars, vard)	mmx_m2m(pmulhw, vars, vard)
    489 
    490 
    491 /*	4x16->2x32 Parallel Mul-ADD
    492 	(muls like pmullw, then adds adjacent 16-bit fields
    493 	 in the multiply result to make the final 2x32 result)
    494 */
    495 #define	pmaddwd_m2r(var, reg)	mmx_m2r(pmaddwd, var, reg)
    496 #define	pmaddwd_r2r(regs, regd)	mmx_r2r(pmaddwd, regs, regd)
    497 #define	pmaddwd(vars, vard)	mmx_m2m(pmaddwd, vars, vard)
    498 
    499 
    500 /*	1x64 bitwise AND
    501 */
    502 #ifdef	BROKEN_PAND
    503 #define	pand_m2r(var, reg) \
    504 	{ \
    505 		mmx_m2r(pandn, (mmx_t) -1LL, reg); \
    506 		mmx_m2r(pandn, var, reg); \
    507 	}
    508 #define	pand_r2r(regs, regd) \
    509 	{ \
    510 		mmx_m2r(pandn, (mmx_t) -1LL, regd); \
    511 		mmx_r2r(pandn, regs, regd) \
    512 	}
    513 #define	pand(vars, vard) \
    514 	{ \
    515 		movq_m2r(vard, mm0); \
    516 		mmx_m2r(pandn, (mmx_t) -1LL, mm0); \
    517 		mmx_m2r(pandn, vars, mm0); \
    518 		movq_r2m(mm0, vard); \
    519 	}
    520 #else
    521 #define	pand_m2r(var, reg)	mmx_m2r(pand, var, reg)
    522 #define	pand_r2r(regs, regd)	mmx_r2r(pand, regs, regd)
    523 #define	pand(vars, vard)	mmx_m2m(pand, vars, vard)
    524 #endif
    525 
    526 
    527 /*	1x64 bitwise AND with Not the destination
    528 */
    529 #define	pandn_m2r(var, reg)	mmx_m2r(pandn, var, reg)
    530 #define	pandn_r2r(regs, regd)	mmx_r2r(pandn, regs, regd)
    531 #define	pandn(vars, vard)	mmx_m2m(pandn, vars, vard)
    532 
    533 
    534 /*	1x64 bitwise OR
    535 */
    536 #define	por_m2r(var, reg)	mmx_m2r(por, var, reg)
    537 #define	por_r2r(regs, regd)	mmx_r2r(por, regs, regd)
    538 #define	por(vars, vard)	mmx_m2m(por, vars, vard)
    539 
    540 
    541 /*	1x64 bitwise eXclusive OR
    542 */
    543 #define	pxor_m2r(var, reg)	mmx_m2r(pxor, var, reg)
    544 #define	pxor_r2r(regs, regd)	mmx_r2r(pxor, regs, regd)
    545 #define	pxor(vars, vard)	mmx_m2m(pxor, vars, vard)
    546 
    547 
    548 /*	2x32, 4x16, and 8x8 Parallel CoMPare for EQuality
    549 	(resulting fields are either 0 or -1)
    550 */
    551 #define	pcmpeqd_m2r(var, reg)	mmx_m2r(pcmpeqd, var, reg)
    552 #define	pcmpeqd_r2r(regs, regd)	mmx_r2r(pcmpeqd, regs, regd)
    553 #define	pcmpeqd(vars, vard)	mmx_m2m(pcmpeqd, vars, vard)
    554 
    555 #define	pcmpeqw_m2r(var, reg)	mmx_m2r(pcmpeqw, var, reg)
    556 #define	pcmpeqw_r2r(regs, regd)	mmx_r2r(pcmpeqw, regs, regd)
    557 #define	pcmpeqw(vars, vard)	mmx_m2m(pcmpeqw, vars, vard)
    558 
    559 #define	pcmpeqb_m2r(var, reg)	mmx_m2r(pcmpeqb, var, reg)
    560 #define	pcmpeqb_r2r(regs, regd)	mmx_r2r(pcmpeqb, regs, regd)
    561 #define	pcmpeqb(vars, vard)	mmx_m2m(pcmpeqb, vars, vard)
    562 
    563 
    564 /*	2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than
    565 	(resulting fields are either 0 or -1)
    566 */
    567 #define	pcmpgtd_m2r(var, reg)	mmx_m2r(pcmpgtd, var, reg)
    568 #define	pcmpgtd_r2r(regs, regd)	mmx_r2r(pcmpgtd, regs, regd)
    569 #define	pcmpgtd(vars, vard)	mmx_m2m(pcmpgtd, vars, vard)
    570 
    571 #define	pcmpgtw_m2r(var, reg)	mmx_m2r(pcmpgtw, var, reg)
    572 #define	pcmpgtw_r2r(regs, regd)	mmx_r2r(pcmpgtw, regs, regd)
    573 #define	pcmpgtw(vars, vard)	mmx_m2m(pcmpgtw, vars, vard)
    574 
    575 #define	pcmpgtb_m2r(var, reg)	mmx_m2r(pcmpgtb, var, reg)
    576 #define	pcmpgtb_r2r(regs, regd)	mmx_r2r(pcmpgtb, regs, regd)
    577 #define	pcmpgtb(vars, vard)	mmx_m2m(pcmpgtb, vars, vard)
    578 
    579 
    580 /*	1x64, 2x32, and 4x16 Parallel Shift Left Logical
    581 */
    582 #define	psllq_i2r(imm, reg)	mmx_i2r(psllq, imm, reg)
    583 #define	psllq_m2r(var, reg)	mmx_m2r(psllq, var, reg)
    584 #define	psllq_r2r(regs, regd)	mmx_r2r(psllq, regs, regd)
    585 #define	psllq(vars, vard)	mmx_m2m(psllq, vars, vard)
    586 
    587 #define	pslld_i2r(imm, reg)	mmx_i2r(pslld, imm, reg)
    588 #define	pslld_m2r(var, reg)	mmx_m2r(pslld, var, reg)
    589 #define	pslld_r2r(regs, regd)	mmx_r2r(pslld, regs, regd)
    590 #define	pslld(vars, vard)	mmx_m2m(pslld, vars, vard)
    591 
    592 #define	psllw_i2r(imm, reg)	mmx_i2r(psllw, imm, reg)
    593 #define	psllw_m2r(var, reg)	mmx_m2r(psllw, var, reg)
    594 #define	psllw_r2r(regs, regd)	mmx_r2r(psllw, regs, regd)
    595 #define	psllw(vars, vard)	mmx_m2m(psllw, vars, vard)
    596 
    597 
    598 /*	1x64, 2x32, and 4x16 Parallel Shift Right Logical
    599 */
    600 #define	psrlq_i2r(imm, reg)	mmx_i2r(psrlq, imm, reg)
    601 #define	psrlq_m2r(var, reg)	mmx_m2r(psrlq, var, reg)
    602 #define	psrlq_r2r(regs, regd)	mmx_r2r(psrlq, regs, regd)
    603 #define	psrlq(vars, vard)	mmx_m2m(psrlq, vars, vard)
    604 
    605 #define	psrld_i2r(imm, reg)	mmx_i2r(psrld, imm, reg)
    606 #define	psrld_m2r(var, reg)	mmx_m2r(psrld, var, reg)
    607 #define	psrld_r2r(regs, regd)	mmx_r2r(psrld, regs, regd)
    608 #define	psrld(vars, vard)	mmx_m2m(psrld, vars, vard)
    609 
    610 #define	psrlw_i2r(imm, reg)	mmx_i2r(psrlw, imm, reg)
    611 #define	psrlw_m2r(var, reg)	mmx_m2r(psrlw, var, reg)
    612 #define	psrlw_r2r(regs, regd)	mmx_r2r(psrlw, regs, regd)
    613 #define	psrlw(vars, vard)	mmx_m2m(psrlw, vars, vard)
    614 
    615 
    616 /*	2x32 and 4x16 Parallel Shift Right Arithmetic
    617 */
    618 #define	psrad_i2r(imm, reg)	mmx_i2r(psrad, imm, reg)
    619 #define	psrad_m2r(var, reg)	mmx_m2r(psrad, var, reg)
    620 #define	psrad_r2r(regs, regd)	mmx_r2r(psrad, regs, regd)
    621 #define	psrad(vars, vard)	mmx_m2m(psrad, vars, vard)
    622 
    623 #define	psraw_i2r(imm, reg)	mmx_i2r(psraw, imm, reg)
    624 #define	psraw_m2r(var, reg)	mmx_m2r(psraw, var, reg)
    625 #define	psraw_r2r(regs, regd)	mmx_r2r(psraw, regs, regd)
    626 #define	psraw(vars, vard)	mmx_m2m(psraw, vars, vard)
    627 
    628 
    629 /*	2x32->4x16 and 4x16->8x8 PACK and Signed Saturate
    630 	(packs source and dest fields into dest in that order)
    631 */
    632 #define	packssdw_m2r(var, reg)	mmx_m2r(packssdw, var, reg)
    633 #define	packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd)
    634 #define	packssdw(vars, vard)	mmx_m2m(packssdw, vars, vard)
    635 
    636 #define	packsswb_m2r(var, reg)	mmx_m2r(packsswb, var, reg)
    637 #define	packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd)
    638 #define	packsswb(vars, vard)	mmx_m2m(packsswb, vars, vard)
    639 
    640 
    641 /*	4x16->8x8 PACK and Unsigned Saturate
    642 	(packs source and dest fields into dest in that order)
    643 */
    644 #define	packuswb_m2r(var, reg)	mmx_m2r(packuswb, var, reg)
    645 #define	packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd)
    646 #define	packuswb(vars, vard)	mmx_m2m(packuswb, vars, vard)
    647 
    648 
    649 /*	2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low
    650 	(interleaves low half of dest with low half of source
    651 	 as padding in each result field)
    652 */
    653 #define	punpckldq_m2r(var, reg)	mmx_m2r(punpckldq, var, reg)
    654 #define	punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd)
    655 #define	punpckldq(vars, vard)	mmx_m2m(punpckldq, vars, vard)
    656 
    657 #define	punpcklwd_m2r(var, reg)	mmx_m2r(punpcklwd, var, reg)
    658 #define	punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd)
    659 #define	punpcklwd(vars, vard)	mmx_m2m(punpcklwd, vars, vard)
    660 
    661 #define	punpcklbw_m2r(var, reg)	mmx_m2r(punpcklbw, var, reg)
    662 #define	punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd)
    663 #define	punpcklbw(vars, vard)	mmx_m2m(punpcklbw, vars, vard)
    664 
    665 
    666 /*	2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High
    667 	(interleaves high half of dest with high half of source
    668 	 as padding in each result field)
    669 */
    670 #define	punpckhdq_m2r(var, reg)	mmx_m2r(punpckhdq, var, reg)
    671 #define	punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd)
    672 #define	punpckhdq(vars, vard)	mmx_m2m(punpckhdq, vars, vard)
    673 
    674 #define	punpckhwd_m2r(var, reg)	mmx_m2r(punpckhwd, var, reg)
    675 #define	punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd)
    676 #define	punpckhwd(vars, vard)	mmx_m2m(punpckhwd, vars, vard)
    677 
    678 #define	punpckhbw_m2r(var, reg)	mmx_m2r(punpckhbw, var, reg)
    679 #define	punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd)
    680 #define	punpckhbw(vars, vard)	mmx_m2m(punpckhbw, vars, vard)
    681 
    682 
    683 /*	Empty MMx State
    684 	(used to clean-up when going from mmx to float use
    685 	 of the registers that are shared by both; note that
    686 	 there is no float-to-mmx operation needed, because
    687 	 only the float tag word info is corruptible)
    688 */
    689 #ifdef	MMX_TRACE
    690 
    691 #define	emms() \
    692 	{ \
    693 		printf("emms()\n"); \
    694 		__asm__ __volatile__ ("emms"); \
    695 	}
    696 
    697 #else
    698 
    699 #define	emms()			__asm__ __volatile__ ("emms")
    700 
    701 #endif
    702 
    703 #endif
    704 
    705