Home | History | Annotate | Download | only in block
      1 /*
      2  * Block driver for the QCOW format
      3  *
      4  * Copyright (c) 2004-2006 Fabrice Bellard
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to deal
      8  * in the Software without restriction, including without limitation the rights
      9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10  * copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22  * THE SOFTWARE.
     23  */
     24 #include "qemu-common.h"
     25 #include "block_int.h"
     26 #include "module.h"
     27 #include <zlib.h>
     28 #include "aes.h"
     29 
     30 /**************************************************************/
     31 /* QEMU COW block driver with compression and encryption support */
     32 
     33 #define QCOW_MAGIC (('Q' << 24) | ('F' << 16) | ('I' << 8) | 0xfb)
     34 #define QCOW_VERSION 1
     35 
     36 #define QCOW_CRYPT_NONE 0
     37 #define QCOW_CRYPT_AES  1
     38 
     39 #define QCOW_OFLAG_COMPRESSED (1LL << 63)
     40 
     41 typedef struct QCowHeader {
     42     uint32_t magic;
     43     uint32_t version;
     44     uint64_t backing_file_offset;
     45     uint32_t backing_file_size;
     46     uint32_t mtime;
     47     uint64_t size; /* in bytes */
     48     uint8_t cluster_bits;
     49     uint8_t l2_bits;
     50     uint32_t crypt_method;
     51     uint64_t l1_table_offset;
     52 } QCowHeader;
     53 
     54 #define L2_CACHE_SIZE 16
     55 
     56 typedef struct BDRVQcowState {
     57     BlockDriverState *hd;
     58     int cluster_bits;
     59     int cluster_size;
     60     int cluster_sectors;
     61     int l2_bits;
     62     int l2_size;
     63     int l1_size;
     64     uint64_t cluster_offset_mask;
     65     uint64_t l1_table_offset;
     66     uint64_t *l1_table;
     67     uint64_t *l2_cache;
     68     uint64_t l2_cache_offsets[L2_CACHE_SIZE];
     69     uint32_t l2_cache_counts[L2_CACHE_SIZE];
     70     uint8_t *cluster_cache;
     71     uint8_t *cluster_data;
     72     uint64_t cluster_cache_offset;
     73     uint32_t crypt_method; /* current crypt method, 0 if no key yet */
     74     uint32_t crypt_method_header;
     75     AES_KEY aes_encrypt_key;
     76     AES_KEY aes_decrypt_key;
     77 } BDRVQcowState;
     78 
     79 static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset);
     80 
     81 static int qcow_probe(const uint8_t *buf, int buf_size, const char *filename)
     82 {
     83     const QCowHeader *cow_header = (const void *)buf;
     84 
     85     if (buf_size >= sizeof(QCowHeader) &&
     86         be32_to_cpu(cow_header->magic) == QCOW_MAGIC &&
     87         be32_to_cpu(cow_header->version) == QCOW_VERSION)
     88         return 100;
     89     else
     90         return 0;
     91 }
     92 
     93 static int qcow_open(BlockDriverState *bs, const char *filename, int flags)
     94 {
     95     BDRVQcowState *s = bs->opaque;
     96     int len, i, shift, ret;
     97     QCowHeader header;
     98 
     99     ret = bdrv_file_open(&s->hd, filename, flags);
    100     if (ret < 0)
    101         return ret;
    102     if (bdrv_pread(s->hd, 0, &header, sizeof(header)) != sizeof(header))
    103         goto fail;
    104     be32_to_cpus(&header.magic);
    105     be32_to_cpus(&header.version);
    106     be64_to_cpus(&header.backing_file_offset);
    107     be32_to_cpus(&header.backing_file_size);
    108     be32_to_cpus(&header.mtime);
    109     be64_to_cpus(&header.size);
    110     be32_to_cpus(&header.crypt_method);
    111     be64_to_cpus(&header.l1_table_offset);
    112 
    113     if (header.magic != QCOW_MAGIC || header.version != QCOW_VERSION)
    114         goto fail;
    115     if (header.size <= 1 || header.cluster_bits < 9)
    116         goto fail;
    117     if (header.crypt_method > QCOW_CRYPT_AES)
    118         goto fail;
    119     s->crypt_method_header = header.crypt_method;
    120     if (s->crypt_method_header)
    121         bs->encrypted = 1;
    122     s->cluster_bits = header.cluster_bits;
    123     s->cluster_size = 1 << s->cluster_bits;
    124     s->cluster_sectors = 1 << (s->cluster_bits - 9);
    125     s->l2_bits = header.l2_bits;
    126     s->l2_size = 1 << s->l2_bits;
    127     bs->total_sectors = header.size / 512;
    128     s->cluster_offset_mask = (1LL << (63 - s->cluster_bits)) - 1;
    129 
    130     /* read the level 1 table */
    131     shift = s->cluster_bits + s->l2_bits;
    132     s->l1_size = (header.size + (1LL << shift) - 1) >> shift;
    133 
    134     s->l1_table_offset = header.l1_table_offset;
    135     s->l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t));
    136     if (!s->l1_table)
    137         goto fail;
    138     if (bdrv_pread(s->hd, s->l1_table_offset, s->l1_table, s->l1_size * sizeof(uint64_t)) !=
    139         s->l1_size * sizeof(uint64_t))
    140         goto fail;
    141     for(i = 0;i < s->l1_size; i++) {
    142         be64_to_cpus(&s->l1_table[i]);
    143     }
    144     /* alloc L2 cache */
    145     s->l2_cache = qemu_malloc(s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
    146     if (!s->l2_cache)
    147         goto fail;
    148     s->cluster_cache = qemu_malloc(s->cluster_size);
    149     if (!s->cluster_cache)
    150         goto fail;
    151     s->cluster_data = qemu_malloc(s->cluster_size);
    152     if (!s->cluster_data)
    153         goto fail;
    154     s->cluster_cache_offset = -1;
    155 
    156     /* read the backing file name */
    157     if (header.backing_file_offset != 0) {
    158         len = header.backing_file_size;
    159         if (len > 1023)
    160             len = 1023;
    161         if (bdrv_pread(s->hd, header.backing_file_offset, bs->backing_file, len) != len)
    162             goto fail;
    163         bs->backing_file[len] = '\0';
    164     }
    165     return 0;
    166 
    167  fail:
    168     qemu_free(s->l1_table);
    169     qemu_free(s->l2_cache);
    170     qemu_free(s->cluster_cache);
    171     qemu_free(s->cluster_data);
    172     bdrv_delete(s->hd);
    173     return -1;
    174 }
    175 
    176 static int qcow_set_key(BlockDriverState *bs, const char *key)
    177 {
    178     BDRVQcowState *s = bs->opaque;
    179     uint8_t keybuf[16];
    180     int len, i;
    181 
    182     memset(keybuf, 0, 16);
    183     len = strlen(key);
    184     if (len > 16)
    185         len = 16;
    186     /* XXX: we could compress the chars to 7 bits to increase
    187        entropy */
    188     for(i = 0;i < len;i++) {
    189         keybuf[i] = key[i];
    190     }
    191     s->crypt_method = s->crypt_method_header;
    192 
    193     if (AES_set_encrypt_key(keybuf, 128, &s->aes_encrypt_key) != 0)
    194         return -1;
    195     if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0)
    196         return -1;
    197 #if 0
    198     /* test */
    199     {
    200         uint8_t in[16];
    201         uint8_t out[16];
    202         uint8_t tmp[16];
    203         for(i=0;i<16;i++)
    204             in[i] = i;
    205         AES_encrypt(in, tmp, &s->aes_encrypt_key);
    206         AES_decrypt(tmp, out, &s->aes_decrypt_key);
    207         for(i = 0; i < 16; i++)
    208             printf(" %02x", tmp[i]);
    209         printf("\n");
    210         for(i = 0; i < 16; i++)
    211             printf(" %02x", out[i]);
    212         printf("\n");
    213     }
    214 #endif
    215     return 0;
    216 }
    217 
    218 /* The crypt function is compatible with the linux cryptoloop
    219    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
    220    supported */
    221 static void encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
    222                             uint8_t *out_buf, const uint8_t *in_buf,
    223                             int nb_sectors, int enc,
    224                             const AES_KEY *key)
    225 {
    226     union {
    227         uint64_t ll[2];
    228         uint8_t b[16];
    229     } ivec;
    230     int i;
    231 
    232     for(i = 0; i < nb_sectors; i++) {
    233         ivec.ll[0] = cpu_to_le64(sector_num);
    234         ivec.ll[1] = 0;
    235         AES_cbc_encrypt(in_buf, out_buf, 512, key,
    236                         ivec.b, enc);
    237         sector_num++;
    238         in_buf += 512;
    239         out_buf += 512;
    240     }
    241 }
    242 
    243 /* 'allocate' is:
    244  *
    245  * 0 to not allocate.
    246  *
    247  * 1 to allocate a normal cluster (for sector indexes 'n_start' to
    248  * 'n_end')
    249  *
    250  * 2 to allocate a compressed cluster of size
    251  * 'compressed_size'. 'compressed_size' must be > 0 and <
    252  * cluster_size
    253  *
    254  * return 0 if not allocated.
    255  */
    256 static uint64_t get_cluster_offset(BlockDriverState *bs,
    257                                    uint64_t offset, int allocate,
    258                                    int compressed_size,
    259                                    int n_start, int n_end)
    260 {
    261     BDRVQcowState *s = bs->opaque;
    262     int min_index, i, j, l1_index, l2_index;
    263     uint64_t l2_offset, *l2_table, cluster_offset, tmp;
    264     uint32_t min_count;
    265     int new_l2_table;
    266 
    267     l1_index = offset >> (s->l2_bits + s->cluster_bits);
    268     l2_offset = s->l1_table[l1_index];
    269     new_l2_table = 0;
    270     if (!l2_offset) {
    271         if (!allocate)
    272             return 0;
    273         /* allocate a new l2 entry */
    274         l2_offset = bdrv_getlength(s->hd);
    275         /* round to cluster size */
    276         l2_offset = (l2_offset + s->cluster_size - 1) & ~(s->cluster_size - 1);
    277         /* update the L1 entry */
    278         s->l1_table[l1_index] = l2_offset;
    279         tmp = cpu_to_be64(l2_offset);
    280         if (bdrv_pwrite(s->hd, s->l1_table_offset + l1_index * sizeof(tmp),
    281                         &tmp, sizeof(tmp)) != sizeof(tmp))
    282             return 0;
    283         new_l2_table = 1;
    284     }
    285     for(i = 0; i < L2_CACHE_SIZE; i++) {
    286         if (l2_offset == s->l2_cache_offsets[i]) {
    287             /* increment the hit count */
    288             if (++s->l2_cache_counts[i] == 0xffffffff) {
    289                 for(j = 0; j < L2_CACHE_SIZE; j++) {
    290                     s->l2_cache_counts[j] >>= 1;
    291                 }
    292             }
    293             l2_table = s->l2_cache + (i << s->l2_bits);
    294             goto found;
    295         }
    296     }
    297     /* not found: load a new entry in the least used one */
    298     min_index = 0;
    299     min_count = 0xffffffff;
    300     for(i = 0; i < L2_CACHE_SIZE; i++) {
    301         if (s->l2_cache_counts[i] < min_count) {
    302             min_count = s->l2_cache_counts[i];
    303             min_index = i;
    304         }
    305     }
    306     l2_table = s->l2_cache + (min_index << s->l2_bits);
    307     if (new_l2_table) {
    308         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
    309         if (bdrv_pwrite(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
    310             s->l2_size * sizeof(uint64_t))
    311             return 0;
    312     } else {
    313         if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
    314             s->l2_size * sizeof(uint64_t))
    315             return 0;
    316     }
    317     s->l2_cache_offsets[min_index] = l2_offset;
    318     s->l2_cache_counts[min_index] = 1;
    319  found:
    320     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
    321     cluster_offset = be64_to_cpu(l2_table[l2_index]);
    322     if (!cluster_offset ||
    323         ((cluster_offset & QCOW_OFLAG_COMPRESSED) && allocate == 1)) {
    324         if (!allocate)
    325             return 0;
    326         /* allocate a new cluster */
    327         if ((cluster_offset & QCOW_OFLAG_COMPRESSED) &&
    328             (n_end - n_start) < s->cluster_sectors) {
    329             /* if the cluster is already compressed, we must
    330                decompress it in the case it is not completely
    331                overwritten */
    332             if (decompress_cluster(s, cluster_offset) < 0)
    333                 return 0;
    334             cluster_offset = bdrv_getlength(s->hd);
    335             cluster_offset = (cluster_offset + s->cluster_size - 1) &
    336                 ~(s->cluster_size - 1);
    337             /* write the cluster content */
    338             if (bdrv_pwrite(s->hd, cluster_offset, s->cluster_cache, s->cluster_size) !=
    339                 s->cluster_size)
    340                 return -1;
    341         } else {
    342             cluster_offset = bdrv_getlength(s->hd);
    343             if (allocate == 1) {
    344                 /* round to cluster size */
    345                 cluster_offset = (cluster_offset + s->cluster_size - 1) &
    346                     ~(s->cluster_size - 1);
    347                 bdrv_truncate(s->hd, cluster_offset + s->cluster_size);
    348                 /* if encrypted, we must initialize the cluster
    349                    content which won't be written */
    350                 if (s->crypt_method &&
    351                     (n_end - n_start) < s->cluster_sectors) {
    352                     uint64_t start_sect;
    353                     start_sect = (offset & ~(s->cluster_size - 1)) >> 9;
    354                     memset(s->cluster_data + 512, 0x00, 512);
    355                     for(i = 0; i < s->cluster_sectors; i++) {
    356                         if (i < n_start || i >= n_end) {
    357                             encrypt_sectors(s, start_sect + i,
    358                                             s->cluster_data,
    359                                             s->cluster_data + 512, 1, 1,
    360                                             &s->aes_encrypt_key);
    361                             if (bdrv_pwrite(s->hd, cluster_offset + i * 512,
    362                                             s->cluster_data, 512) != 512)
    363                                 return -1;
    364                         }
    365                     }
    366                 }
    367             } else if (allocate == 2) {
    368                 cluster_offset |= QCOW_OFLAG_COMPRESSED |
    369                     (uint64_t)compressed_size << (63 - s->cluster_bits);
    370             }
    371         }
    372         /* update L2 table */
    373         tmp = cpu_to_be64(cluster_offset);
    374         l2_table[l2_index] = tmp;
    375         if (bdrv_pwrite(s->hd,
    376                         l2_offset + l2_index * sizeof(tmp), &tmp, sizeof(tmp)) != sizeof(tmp))
    377             return 0;
    378     }
    379     return cluster_offset;
    380 }
    381 
    382 static int qcow_is_allocated(BlockDriverState *bs, int64_t sector_num,
    383                              int nb_sectors, int *pnum)
    384 {
    385     BDRVQcowState *s = bs->opaque;
    386     int index_in_cluster, n;
    387     uint64_t cluster_offset;
    388 
    389     cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0);
    390     index_in_cluster = sector_num & (s->cluster_sectors - 1);
    391     n = s->cluster_sectors - index_in_cluster;
    392     if (n > nb_sectors)
    393         n = nb_sectors;
    394     *pnum = n;
    395     return (cluster_offset != 0);
    396 }
    397 
    398 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
    399                              const uint8_t *buf, int buf_size)
    400 {
    401     z_stream strm1, *strm = &strm1;
    402     int ret, out_len;
    403 
    404     memset(strm, 0, sizeof(*strm));
    405 
    406     strm->next_in = (uint8_t *)buf;
    407     strm->avail_in = buf_size;
    408     strm->next_out = out_buf;
    409     strm->avail_out = out_buf_size;
    410 
    411     ret = inflateInit2(strm, -12);
    412     if (ret != Z_OK)
    413         return -1;
    414     ret = inflate(strm, Z_FINISH);
    415     out_len = strm->next_out - out_buf;
    416     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
    417         out_len != out_buf_size) {
    418         inflateEnd(strm);
    419         return -1;
    420     }
    421     inflateEnd(strm);
    422     return 0;
    423 }
    424 
    425 static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
    426 {
    427     int ret, csize;
    428     uint64_t coffset;
    429 
    430     coffset = cluster_offset & s->cluster_offset_mask;
    431     if (s->cluster_cache_offset != coffset) {
    432         csize = cluster_offset >> (63 - s->cluster_bits);
    433         csize &= (s->cluster_size - 1);
    434         ret = bdrv_pread(s->hd, coffset, s->cluster_data, csize);
    435         if (ret != csize)
    436             return -1;
    437         if (decompress_buffer(s->cluster_cache, s->cluster_size,
    438                               s->cluster_data, csize) < 0) {
    439             return -1;
    440         }
    441         s->cluster_cache_offset = coffset;
    442     }
    443     return 0;
    444 }
    445 
    446 #if 0
    447 
    448 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
    449                      uint8_t *buf, int nb_sectors)
    450 {
    451     BDRVQcowState *s = bs->opaque;
    452     int ret, index_in_cluster, n;
    453     uint64_t cluster_offset;
    454 
    455     while (nb_sectors > 0) {
    456         cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0);
    457         index_in_cluster = sector_num & (s->cluster_sectors - 1);
    458         n = s->cluster_sectors - index_in_cluster;
    459         if (n > nb_sectors)
    460             n = nb_sectors;
    461         if (!cluster_offset) {
    462             if (bs->backing_hd) {
    463                 /* read from the base image */
    464                 ret = bdrv_read(bs->backing_hd, sector_num, buf, n);
    465                 if (ret < 0)
    466                     return -1;
    467             } else {
    468                 memset(buf, 0, 512 * n);
    469             }
    470         } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
    471             if (decompress_cluster(s, cluster_offset) < 0)
    472                 return -1;
    473             memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
    474         } else {
    475             ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
    476             if (ret != n * 512)
    477                 return -1;
    478             if (s->crypt_method) {
    479                 encrypt_sectors(s, sector_num, buf, buf, n, 0,
    480                                 &s->aes_decrypt_key);
    481             }
    482         }
    483         nb_sectors -= n;
    484         sector_num += n;
    485         buf += n * 512;
    486     }
    487     return 0;
    488 }
    489 #endif
    490 
    491 typedef struct QCowAIOCB {
    492     BlockDriverAIOCB common;
    493     int64_t sector_num;
    494     QEMUIOVector *qiov;
    495     uint8_t *buf;
    496     void *orig_buf;
    497     int nb_sectors;
    498     int n;
    499     uint64_t cluster_offset;
    500     uint8_t *cluster_data;
    501     struct iovec hd_iov;
    502     QEMUIOVector hd_qiov;
    503     BlockDriverAIOCB *hd_aiocb;
    504 } QCowAIOCB;
    505 
    506 static void qcow_aio_cancel(BlockDriverAIOCB *blockacb)
    507 {
    508     QCowAIOCB *acb = (QCowAIOCB *)blockacb;
    509     if (acb->hd_aiocb)
    510         bdrv_aio_cancel(acb->hd_aiocb);
    511     qemu_aio_release(acb);
    512 }
    513 
    514 static AIOPool qcow_aio_pool = {
    515     .aiocb_size         = sizeof(QCowAIOCB),
    516     .cancel             = qcow_aio_cancel,
    517 };
    518 
    519 static QCowAIOCB *qcow_aio_setup(BlockDriverState *bs,
    520         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
    521         BlockDriverCompletionFunc *cb, void *opaque, int is_write)
    522 {
    523     QCowAIOCB *acb;
    524 
    525     acb = qemu_aio_get(&qcow_aio_pool, bs, cb, opaque);
    526     if (!acb)
    527         return NULL;
    528     acb->hd_aiocb = NULL;
    529     acb->sector_num = sector_num;
    530     acb->qiov = qiov;
    531     if (qiov->niov > 1) {
    532         acb->buf = acb->orig_buf = qemu_blockalign(bs, qiov->size);
    533         if (is_write)
    534             qemu_iovec_to_buffer(qiov, acb->buf);
    535     } else {
    536         acb->buf = (uint8_t *)qiov->iov->iov_base;
    537     }
    538     acb->nb_sectors = nb_sectors;
    539     acb->n = 0;
    540     acb->cluster_offset = 0;
    541     return acb;
    542 }
    543 
    544 static void qcow_aio_read_cb(void *opaque, int ret)
    545 {
    546     QCowAIOCB *acb = opaque;
    547     BlockDriverState *bs = acb->common.bs;
    548     BDRVQcowState *s = bs->opaque;
    549     int index_in_cluster;
    550 
    551     acb->hd_aiocb = NULL;
    552     if (ret < 0)
    553         goto done;
    554 
    555  redo:
    556     /* post process the read buffer */
    557     if (!acb->cluster_offset) {
    558         /* nothing to do */
    559     } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
    560         /* nothing to do */
    561     } else {
    562         if (s->crypt_method) {
    563             encrypt_sectors(s, acb->sector_num, acb->buf, acb->buf,
    564                             acb->n, 0,
    565                             &s->aes_decrypt_key);
    566         }
    567     }
    568 
    569     acb->nb_sectors -= acb->n;
    570     acb->sector_num += acb->n;
    571     acb->buf += acb->n * 512;
    572 
    573     if (acb->nb_sectors == 0) {
    574         /* request completed */
    575         ret = 0;
    576         goto done;
    577     }
    578 
    579     /* prepare next AIO request */
    580     acb->cluster_offset = get_cluster_offset(bs, acb->sector_num << 9,
    581                                              0, 0, 0, 0);
    582     index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
    583     acb->n = s->cluster_sectors - index_in_cluster;
    584     if (acb->n > acb->nb_sectors)
    585         acb->n = acb->nb_sectors;
    586 
    587     if (!acb->cluster_offset) {
    588         if (bs->backing_hd) {
    589             /* read from the base image */
    590             acb->hd_iov.iov_base = (void *)acb->buf;
    591             acb->hd_iov.iov_len = acb->n * 512;
    592             qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
    593             acb->hd_aiocb = bdrv_aio_readv(bs->backing_hd, acb->sector_num,
    594                 &acb->hd_qiov, acb->n, qcow_aio_read_cb, acb);
    595             if (acb->hd_aiocb == NULL)
    596                 goto done;
    597         } else {
    598             /* Note: in this case, no need to wait */
    599             memset(acb->buf, 0, 512 * acb->n);
    600             goto redo;
    601         }
    602     } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
    603         /* add AIO support for compressed blocks ? */
    604         if (decompress_cluster(s, acb->cluster_offset) < 0)
    605             goto done;
    606         memcpy(acb->buf,
    607                s->cluster_cache + index_in_cluster * 512, 512 * acb->n);
    608         goto redo;
    609     } else {
    610         if ((acb->cluster_offset & 511) != 0) {
    611             ret = -EIO;
    612             goto done;
    613         }
    614         acb->hd_iov.iov_base = (void *)acb->buf;
    615         acb->hd_iov.iov_len = acb->n * 512;
    616         qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
    617         acb->hd_aiocb = bdrv_aio_readv(s->hd,
    618                             (acb->cluster_offset >> 9) + index_in_cluster,
    619                             &acb->hd_qiov, acb->n, qcow_aio_read_cb, acb);
    620         if (acb->hd_aiocb == NULL)
    621             goto done;
    622     }
    623 
    624     return;
    625 
    626 done:
    627     if (acb->qiov->niov > 1) {
    628         qemu_iovec_from_buffer(acb->qiov, acb->orig_buf, acb->qiov->size);
    629         qemu_vfree(acb->orig_buf);
    630     }
    631     acb->common.cb(acb->common.opaque, ret);
    632     qemu_aio_release(acb);
    633 }
    634 
    635 static BlockDriverAIOCB *qcow_aio_readv(BlockDriverState *bs,
    636         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
    637         BlockDriverCompletionFunc *cb, void *opaque)
    638 {
    639     QCowAIOCB *acb;
    640 
    641     acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
    642     if (!acb)
    643         return NULL;
    644 
    645     qcow_aio_read_cb(acb, 0);
    646     return &acb->common;
    647 }
    648 
    649 static void qcow_aio_write_cb(void *opaque, int ret)
    650 {
    651     QCowAIOCB *acb = opaque;
    652     BlockDriverState *bs = acb->common.bs;
    653     BDRVQcowState *s = bs->opaque;
    654     int index_in_cluster;
    655     uint64_t cluster_offset;
    656     const uint8_t *src_buf;
    657 
    658     acb->hd_aiocb = NULL;
    659 
    660     if (ret < 0)
    661         goto done;
    662 
    663     acb->nb_sectors -= acb->n;
    664     acb->sector_num += acb->n;
    665     acb->buf += acb->n * 512;
    666 
    667     if (acb->nb_sectors == 0) {
    668         /* request completed */
    669         ret = 0;
    670         goto done;
    671     }
    672 
    673     index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
    674     acb->n = s->cluster_sectors - index_in_cluster;
    675     if (acb->n > acb->nb_sectors)
    676         acb->n = acb->nb_sectors;
    677     cluster_offset = get_cluster_offset(bs, acb->sector_num << 9, 1, 0,
    678                                         index_in_cluster,
    679                                         index_in_cluster + acb->n);
    680     if (!cluster_offset || (cluster_offset & 511) != 0) {
    681         ret = -EIO;
    682         goto done;
    683     }
    684     if (s->crypt_method) {
    685         if (!acb->cluster_data) {
    686             acb->cluster_data = qemu_mallocz(s->cluster_size);
    687             if (!acb->cluster_data) {
    688                 ret = -ENOMEM;
    689                 goto done;
    690             }
    691         }
    692         encrypt_sectors(s, acb->sector_num, acb->cluster_data, acb->buf,
    693                         acb->n, 1, &s->aes_encrypt_key);
    694         src_buf = acb->cluster_data;
    695     } else {
    696         src_buf = acb->buf;
    697     }
    698 
    699     acb->hd_iov.iov_base = (void *)src_buf;
    700     acb->hd_iov.iov_len = acb->n * 512;
    701     qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
    702     acb->hd_aiocb = bdrv_aio_writev(s->hd,
    703                                     (cluster_offset >> 9) + index_in_cluster,
    704                                     &acb->hd_qiov, acb->n,
    705                                     qcow_aio_write_cb, acb);
    706     if (acb->hd_aiocb == NULL)
    707         goto done;
    708     return;
    709 
    710 done:
    711     if (acb->qiov->niov > 1)
    712         qemu_vfree(acb->orig_buf);
    713     acb->common.cb(acb->common.opaque, ret);
    714     qemu_aio_release(acb);
    715 }
    716 
    717 static BlockDriverAIOCB *qcow_aio_writev(BlockDriverState *bs,
    718         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
    719         BlockDriverCompletionFunc *cb, void *opaque)
    720 {
    721     BDRVQcowState *s = bs->opaque;
    722     QCowAIOCB *acb;
    723 
    724     s->cluster_cache_offset = -1; /* disable compressed cache */
    725 
    726     acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
    727     if (!acb)
    728         return NULL;
    729 
    730 
    731     qcow_aio_write_cb(acb, 0);
    732     return &acb->common;
    733 }
    734 
    735 static void qcow_close(BlockDriverState *bs)
    736 {
    737     BDRVQcowState *s = bs->opaque;
    738     qemu_free(s->l1_table);
    739     qemu_free(s->l2_cache);
    740     qemu_free(s->cluster_cache);
    741     qemu_free(s->cluster_data);
    742     bdrv_delete(s->hd);
    743 }
    744 
    745 static int qcow_create(const char *filename, QEMUOptionParameter *options)
    746 {
    747     int fd, header_size, backing_filename_len, l1_size, i, shift;
    748     QCowHeader header;
    749     uint64_t tmp;
    750     int64_t total_size = 0;
    751     const char *backing_file = NULL;
    752     int flags = 0;
    753 
    754     /* Read out options */
    755     while (options && options->name) {
    756         if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
    757             total_size = options->value.n / 512;
    758         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
    759             backing_file = options->value.s;
    760         } else if (!strcmp(options->name, BLOCK_OPT_ENCRYPT)) {
    761             flags |= options->value.n ? BLOCK_FLAG_ENCRYPT : 0;
    762         }
    763         options++;
    764     }
    765 
    766     fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, 0644);
    767     if (fd < 0)
    768         return -1;
    769     memset(&header, 0, sizeof(header));
    770     header.magic = cpu_to_be32(QCOW_MAGIC);
    771     header.version = cpu_to_be32(QCOW_VERSION);
    772     header.size = cpu_to_be64(total_size * 512);
    773     header_size = sizeof(header);
    774     backing_filename_len = 0;
    775     if (backing_file) {
    776         if (strcmp(backing_file, "fat:")) {
    777             header.backing_file_offset = cpu_to_be64(header_size);
    778             backing_filename_len = strlen(backing_file);
    779             header.backing_file_size = cpu_to_be32(backing_filename_len);
    780             header_size += backing_filename_len;
    781         } else {
    782             /* special backing file for vvfat */
    783             backing_file = NULL;
    784         }
    785         header.cluster_bits = 9; /* 512 byte cluster to avoid copying
    786                                     unmodifyed sectors */
    787         header.l2_bits = 12; /* 32 KB L2 tables */
    788     } else {
    789         header.cluster_bits = 12; /* 4 KB clusters */
    790         header.l2_bits = 9; /* 4 KB L2 tables */
    791     }
    792     header_size = (header_size + 7) & ~7;
    793     shift = header.cluster_bits + header.l2_bits;
    794     l1_size = ((total_size * 512) + (1LL << shift) - 1) >> shift;
    795 
    796     header.l1_table_offset = cpu_to_be64(header_size);
    797     if (flags & BLOCK_FLAG_ENCRYPT) {
    798         header.crypt_method = cpu_to_be32(QCOW_CRYPT_AES);
    799     } else {
    800         header.crypt_method = cpu_to_be32(QCOW_CRYPT_NONE);
    801     }
    802 
    803     /* write all the data */
    804     write(fd, &header, sizeof(header));
    805     if (backing_file) {
    806         write(fd, backing_file, backing_filename_len);
    807     }
    808     lseek(fd, header_size, SEEK_SET);
    809     tmp = 0;
    810     for(i = 0;i < l1_size; i++) {
    811         write(fd, &tmp, sizeof(tmp));
    812     }
    813     close(fd);
    814     return 0;
    815 }
    816 
    817 static int qcow_make_empty(BlockDriverState *bs)
    818 {
    819     BDRVQcowState *s = bs->opaque;
    820     uint32_t l1_length = s->l1_size * sizeof(uint64_t);
    821     int ret;
    822 
    823     memset(s->l1_table, 0, l1_length);
    824     if (bdrv_pwrite(s->hd, s->l1_table_offset, s->l1_table, l1_length) < 0)
    825 	return -1;
    826     ret = bdrv_truncate(s->hd, s->l1_table_offset + l1_length);
    827     if (ret < 0)
    828         return ret;
    829 
    830     memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
    831     memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
    832     memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
    833 
    834     return 0;
    835 }
    836 
    837 /* XXX: put compressed sectors first, then all the cluster aligned
    838    tables to avoid losing bytes in alignment */
    839 static int qcow_write_compressed(BlockDriverState *bs, int64_t sector_num,
    840                                  const uint8_t *buf, int nb_sectors)
    841 {
    842     BDRVQcowState *s = bs->opaque;
    843     z_stream strm;
    844     int ret, out_len;
    845     uint8_t *out_buf;
    846     uint64_t cluster_offset;
    847 
    848     if (nb_sectors != s->cluster_sectors)
    849         return -EINVAL;
    850 
    851     out_buf = qemu_malloc(s->cluster_size + (s->cluster_size / 1000) + 128);
    852     if (!out_buf)
    853         return -1;
    854 
    855     /* best compression, small window, no zlib header */
    856     memset(&strm, 0, sizeof(strm));
    857     ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION,
    858                        Z_DEFLATED, -12,
    859                        9, Z_DEFAULT_STRATEGY);
    860     if (ret != 0) {
    861         qemu_free(out_buf);
    862         return -1;
    863     }
    864 
    865     strm.avail_in = s->cluster_size;
    866     strm.next_in = (uint8_t *)buf;
    867     strm.avail_out = s->cluster_size;
    868     strm.next_out = out_buf;
    869 
    870     ret = deflate(&strm, Z_FINISH);
    871     if (ret != Z_STREAM_END && ret != Z_OK) {
    872         qemu_free(out_buf);
    873         deflateEnd(&strm);
    874         return -1;
    875     }
    876     out_len = strm.next_out - out_buf;
    877 
    878     deflateEnd(&strm);
    879 
    880     if (ret != Z_STREAM_END || out_len >= s->cluster_size) {
    881         /* could not compress: write normal cluster */
    882         bdrv_write(bs, sector_num, buf, s->cluster_sectors);
    883     } else {
    884         cluster_offset = get_cluster_offset(bs, sector_num << 9, 2,
    885                                             out_len, 0, 0);
    886         cluster_offset &= s->cluster_offset_mask;
    887         if (bdrv_pwrite(s->hd, cluster_offset, out_buf, out_len) != out_len) {
    888             qemu_free(out_buf);
    889             return -1;
    890         }
    891     }
    892 
    893     qemu_free(out_buf);
    894     return 0;
    895 }
    896 
    897 static void qcow_flush(BlockDriverState *bs)
    898 {
    899     BDRVQcowState *s = bs->opaque;
    900     bdrv_flush(s->hd);
    901 }
    902 
    903 static int qcow_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
    904 {
    905     BDRVQcowState *s = bs->opaque;
    906     bdi->cluster_size = s->cluster_size;
    907     return 0;
    908 }
    909 
    910 
    911 static QEMUOptionParameter qcow_create_options[] = {
    912     {
    913         .name = BLOCK_OPT_SIZE,
    914         .type = OPT_SIZE,
    915         .help = "Virtual disk size"
    916     },
    917     {
    918         .name = BLOCK_OPT_BACKING_FILE,
    919         .type = OPT_STRING,
    920         .help = "File name of a base image"
    921     },
    922     {
    923         .name = BLOCK_OPT_ENCRYPT,
    924         .type = OPT_FLAG,
    925         .help = "Encrypt the image"
    926     },
    927     { NULL }
    928 };
    929 
    930 static BlockDriver bdrv_qcow = {
    931     .format_name	= "qcow",
    932     .instance_size	= sizeof(BDRVQcowState),
    933     .bdrv_probe		= qcow_probe,
    934     .bdrv_open		= qcow_open,
    935     .bdrv_close		= qcow_close,
    936     .bdrv_create	= qcow_create,
    937     .bdrv_flush		= qcow_flush,
    938     .bdrv_is_allocated	= qcow_is_allocated,
    939     .bdrv_set_key	= qcow_set_key,
    940     .bdrv_make_empty	= qcow_make_empty,
    941     .bdrv_aio_readv	= qcow_aio_readv,
    942     .bdrv_aio_writev	= qcow_aio_writev,
    943     .bdrv_write_compressed = qcow_write_compressed,
    944     .bdrv_get_info	= qcow_get_info,
    945 
    946     .create_options = qcow_create_options,
    947 };
    948 
    949 static void bdrv_qcow_init(void)
    950 {
    951     bdrv_register(&bdrv_qcow);
    952 }
    953 
    954 block_init(bdrv_qcow_init);
    955