Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef SELECTIONDAGBUILDER_H
     15 #define SELECTIONDAGBUILDER_H
     16 
     17 #include "llvm/Constants.h"
     18 #include "llvm/CodeGen/SelectionDAG.h"
     19 #include "llvm/ADT/APInt.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/CodeGen/SelectionDAGNodes.h"
     22 #include "llvm/CodeGen/ValueTypes.h"
     23 #include "llvm/Support/CallSite.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include <vector>
     26 
     27 namespace llvm {
     28 
     29 class AliasAnalysis;
     30 class AllocaInst;
     31 class BasicBlock;
     32 class BitCastInst;
     33 class BranchInst;
     34 class CallInst;
     35 class DbgValueInst;
     36 class ExtractElementInst;
     37 class ExtractValueInst;
     38 class FCmpInst;
     39 class FPExtInst;
     40 class FPToSIInst;
     41 class FPToUIInst;
     42 class FPTruncInst;
     43 class Function;
     44 class FunctionLoweringInfo;
     45 class GetElementPtrInst;
     46 class GCFunctionInfo;
     47 class ICmpInst;
     48 class IntToPtrInst;
     49 class IndirectBrInst;
     50 class InvokeInst;
     51 class InsertElementInst;
     52 class InsertValueInst;
     53 class Instruction;
     54 class LoadInst;
     55 class MachineBasicBlock;
     56 class MachineInstr;
     57 class MachineRegisterInfo;
     58 class MDNode;
     59 class PHINode;
     60 class PtrToIntInst;
     61 class ReturnInst;
     62 class SDDbgValue;
     63 class SExtInst;
     64 class SelectInst;
     65 class ShuffleVectorInst;
     66 class SIToFPInst;
     67 class StoreInst;
     68 class SwitchInst;
     69 class TargetData;
     70 class TargetLowering;
     71 class TruncInst;
     72 class UIToFPInst;
     73 class UnreachableInst;
     74 class UnwindInst;
     75 class VAArgInst;
     76 class ZExtInst;
     77 
     78 //===----------------------------------------------------------------------===//
     79 /// SelectionDAGBuilder - This is the common target-independent lowering
     80 /// implementation that is parameterized by a TargetLowering object.
     81 ///
     82 class SelectionDAGBuilder {
     83   /// CurDebugLoc - current file + line number.  Changes as we build the DAG.
     84   DebugLoc CurDebugLoc;
     85 
     86   DenseMap<const Value*, SDValue> NodeMap;
     87 
     88   /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
     89   /// to preserve debug information for incoming arguments.
     90   DenseMap<const Value*, SDValue> UnusedArgNodeMap;
     91 
     92   /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
     93   class DanglingDebugInfo {
     94     const DbgValueInst* DI;
     95     DebugLoc dl;
     96     unsigned SDNodeOrder;
     97   public:
     98     DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { }
     99     DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
    100       DI(di), dl(DL), SDNodeOrder(SDNO) { }
    101     const DbgValueInst* getDI() { return DI; }
    102     DebugLoc getdl() { return dl; }
    103     unsigned getSDNodeOrder() { return SDNodeOrder; }
    104   };
    105 
    106   /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
    107   /// yet seen the referent.  We defer handling these until we do see it.
    108   DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
    109 
    110 public:
    111   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
    112   /// them up and then emit token factor nodes when possible.  This allows us to
    113   /// get simple disambiguation between loads without worrying about alias
    114   /// analysis.
    115   SmallVector<SDValue, 8> PendingLoads;
    116 private:
    117 
    118   /// PendingExports - CopyToReg nodes that copy values to virtual registers
    119   /// for export to other blocks need to be emitted before any terminator
    120   /// instruction, but they have no other ordering requirements. We bunch them
    121   /// up and the emit a single tokenfactor for them just before terminator
    122   /// instructions.
    123   SmallVector<SDValue, 8> PendingExports;
    124 
    125   /// SDNodeOrder - A unique monotonically increasing number used to order the
    126   /// SDNodes we create.
    127   unsigned SDNodeOrder;
    128 
    129   /// Case - A struct to record the Value for a switch case, and the
    130   /// case's target basic block.
    131   struct Case {
    132     Constant* Low;
    133     Constant* High;
    134     MachineBasicBlock* BB;
    135 
    136     Case() : Low(0), High(0), BB(0) { }
    137     Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
    138       Low(low), High(high), BB(bb) { }
    139     APInt size() const {
    140       const APInt &rHigh = cast<ConstantInt>(High)->getValue();
    141       const APInt &rLow  = cast<ConstantInt>(Low)->getValue();
    142       return (rHigh - rLow + 1ULL);
    143     }
    144   };
    145 
    146   struct CaseBits {
    147     uint64_t Mask;
    148     MachineBasicBlock* BB;
    149     unsigned Bits;
    150 
    151     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
    152       Mask(mask), BB(bb), Bits(bits) { }
    153   };
    154 
    155   typedef std::vector<Case>           CaseVector;
    156   typedef std::vector<CaseBits>       CaseBitsVector;
    157   typedef CaseVector::iterator        CaseItr;
    158   typedef std::pair<CaseItr, CaseItr> CaseRange;
    159 
    160   /// CaseRec - A struct with ctor used in lowering switches to a binary tree
    161   /// of conditional branches.
    162   struct CaseRec {
    163     CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
    164             CaseRange r) :
    165     CaseBB(bb), LT(lt), GE(ge), Range(r) {}
    166 
    167     /// CaseBB - The MBB in which to emit the compare and branch
    168     MachineBasicBlock *CaseBB;
    169     /// LT, GE - If nonzero, we know the current case value must be less-than or
    170     /// greater-than-or-equal-to these Constants.
    171     const Constant *LT;
    172     const Constant *GE;
    173     /// Range - A pair of iterators representing the range of case values to be
    174     /// processed at this point in the binary search tree.
    175     CaseRange Range;
    176   };
    177 
    178   typedef std::vector<CaseRec> CaseRecVector;
    179 
    180   /// The comparison function for sorting the switch case values in the vector.
    181   /// WARNING: Case ranges should be disjoint!
    182   struct CaseCmp {
    183     bool operator()(const Case &C1, const Case &C2) {
    184       assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
    185       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
    186       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
    187       return CI1->getValue().slt(CI2->getValue());
    188     }
    189   };
    190 
    191   struct CaseBitsCmp {
    192     bool operator()(const CaseBits &C1, const CaseBits &C2) {
    193       return C1.Bits > C2.Bits;
    194     }
    195   };
    196 
    197   size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
    198 
    199   /// CaseBlock - This structure is used to communicate between
    200   /// SelectionDAGBuilder and SDISel for the code generation of additional basic
    201   /// blocks needed by multi-case switch statements.
    202   struct CaseBlock {
    203     CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
    204               const Value *cmpmiddle,
    205               MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
    206               MachineBasicBlock *me)
    207       : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
    208         TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
    209     // CC - the condition code to use for the case block's setcc node
    210     ISD::CondCode CC;
    211     // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
    212     // Emit by default LHS op RHS. MHS is used for range comparisons:
    213     // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
    214     const Value *CmpLHS, *CmpMHS, *CmpRHS;
    215     // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
    216     MachineBasicBlock *TrueBB, *FalseBB;
    217     // ThisBB - the block into which to emit the code for the setcc and branches
    218     MachineBasicBlock *ThisBB;
    219   };
    220   struct JumpTable {
    221     JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
    222               MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
    223 
    224     /// Reg - the virtual register containing the index of the jump table entry
    225     //. to jump to.
    226     unsigned Reg;
    227     /// JTI - the JumpTableIndex for this jump table in the function.
    228     unsigned JTI;
    229     /// MBB - the MBB into which to emit the code for the indirect jump.
    230     MachineBasicBlock *MBB;
    231     /// Default - the MBB of the default bb, which is a successor of the range
    232     /// check MBB.  This is when updating PHI nodes in successors.
    233     MachineBasicBlock *Default;
    234   };
    235   struct JumpTableHeader {
    236     JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
    237                     bool E = false):
    238       First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
    239     APInt First;
    240     APInt Last;
    241     const Value *SValue;
    242     MachineBasicBlock *HeaderBB;
    243     bool Emitted;
    244   };
    245   typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
    246 
    247   struct BitTestCase {
    248     BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
    249       Mask(M), ThisBB(T), TargetBB(Tr) { }
    250     uint64_t Mask;
    251     MachineBasicBlock *ThisBB;
    252     MachineBasicBlock *TargetBB;
    253   };
    254 
    255   typedef SmallVector<BitTestCase, 3> BitTestInfo;
    256 
    257   struct BitTestBlock {
    258     BitTestBlock(APInt F, APInt R, const Value* SV,
    259                  unsigned Rg, EVT RgVT, bool E,
    260                  MachineBasicBlock* P, MachineBasicBlock* D,
    261                  const BitTestInfo& C):
    262       First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
    263       Parent(P), Default(D), Cases(C) { }
    264     APInt First;
    265     APInt Range;
    266     const Value *SValue;
    267     unsigned Reg;
    268     EVT RegVT;
    269     bool Emitted;
    270     MachineBasicBlock *Parent;
    271     MachineBasicBlock *Default;
    272     BitTestInfo Cases;
    273   };
    274 
    275 public:
    276   // TLI - This is information that describes the available target features we
    277   // need for lowering.  This indicates when operations are unavailable,
    278   // implemented with a libcall, etc.
    279   const TargetMachine &TM;
    280   const TargetLowering &TLI;
    281   SelectionDAG &DAG;
    282   const TargetData *TD;
    283   AliasAnalysis *AA;
    284 
    285   /// SwitchCases - Vector of CaseBlock structures used to communicate
    286   /// SwitchInst code generation information.
    287   std::vector<CaseBlock> SwitchCases;
    288   /// JTCases - Vector of JumpTable structures used to communicate
    289   /// SwitchInst code generation information.
    290   std::vector<JumpTableBlock> JTCases;
    291   /// BitTestCases - Vector of BitTestBlock structures used to communicate
    292   /// SwitchInst code generation information.
    293   std::vector<BitTestBlock> BitTestCases;
    294 
    295   // Emit PHI-node-operand constants only once even if used by multiple
    296   // PHI nodes.
    297   DenseMap<const Constant *, unsigned> ConstantsOut;
    298 
    299   /// FuncInfo - Information about the function as a whole.
    300   ///
    301   FunctionLoweringInfo &FuncInfo;
    302 
    303   /// OptLevel - What optimization level we're generating code for.
    304   ///
    305   CodeGenOpt::Level OptLevel;
    306 
    307   /// GFI - Garbage collection metadata for the function.
    308   GCFunctionInfo *GFI;
    309 
    310   /// HasTailCall - This is set to true if a call in the current
    311   /// block has been translated as a tail call. In this case,
    312   /// no subsequent DAG nodes should be created.
    313   ///
    314   bool HasTailCall;
    315 
    316   LLVMContext *Context;
    317 
    318   SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
    319                       CodeGenOpt::Level ol)
    320     : SDNodeOrder(0), TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
    321       DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
    322       HasTailCall(false), Context(dag.getContext()) {
    323   }
    324 
    325   void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
    326 
    327   /// clear - Clear out the current SelectionDAG and the associated
    328   /// state and prepare this SelectionDAGBuilder object to be used
    329   /// for a new block. This doesn't clear out information about
    330   /// additional blocks that are needed to complete switch lowering
    331   /// or PHI node updating; that information is cleared out as it is
    332   /// consumed.
    333   void clear();
    334 
    335   /// clearDanglingDebugInfo - Clear the dangling debug information
    336   /// map. This function is seperated from the clear so that debug
    337   /// information that is dangling in a basic block can be properly
    338   /// resolved in a different basic block. This allows the
    339   /// SelectionDAG to resolve dangling debug information attached
    340   /// to PHI nodes.
    341   void clearDanglingDebugInfo();
    342 
    343   /// getRoot - Return the current virtual root of the Selection DAG,
    344   /// flushing any PendingLoad items. This must be done before emitting
    345   /// a store or any other node that may need to be ordered after any
    346   /// prior load instructions.
    347   ///
    348   SDValue getRoot();
    349 
    350   /// getControlRoot - Similar to getRoot, but instead of flushing all the
    351   /// PendingLoad items, flush all the PendingExports items. It is necessary
    352   /// to do this before emitting a terminator instruction.
    353   ///
    354   SDValue getControlRoot();
    355 
    356   DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
    357 
    358   unsigned getSDNodeOrder() const { return SDNodeOrder; }
    359 
    360   void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
    361 
    362   /// AssignOrderingToNode - Assign an ordering to the node. The order is gotten
    363   /// from how the code appeared in the source. The ordering is used by the
    364   /// scheduler to effectively turn off scheduling.
    365   void AssignOrderingToNode(const SDNode *Node);
    366 
    367   void visit(const Instruction &I);
    368 
    369   void visit(unsigned Opcode, const User &I);
    370 
    371   // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
    372   // generate the debug data structures now that we've seen its definition.
    373   void resolveDanglingDebugInfo(const Value *V, SDValue Val);
    374   SDValue getValue(const Value *V);
    375   SDValue getNonRegisterValue(const Value *V);
    376   SDValue getValueImpl(const Value *V);
    377 
    378   void setValue(const Value *V, SDValue NewN) {
    379     SDValue &N = NodeMap[V];
    380     assert(N.getNode() == 0 && "Already set a value for this node!");
    381     N = NewN;
    382   }
    383 
    384   void setUnusedArgValue(const Value *V, SDValue NewN) {
    385     SDValue &N = UnusedArgNodeMap[V];
    386     assert(N.getNode() == 0 && "Already set a value for this node!");
    387     N = NewN;
    388   }
    389 
    390   void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
    391                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
    392                             MachineBasicBlock *SwitchBB, unsigned Opc);
    393   void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
    394                                     MachineBasicBlock *FBB,
    395                                     MachineBasicBlock *CurBB,
    396                                     MachineBasicBlock *SwitchBB);
    397   bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
    398   bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
    399   void CopyToExportRegsIfNeeded(const Value *V);
    400   void ExportFromCurrentBlock(const Value *V);
    401   void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
    402                    MachineBasicBlock *LandingPad = NULL);
    403 
    404   /// UpdateSplitBlock - When an MBB was split during scheduling, update the
    405   /// references that ned to refer to the last resulting block.
    406   void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
    407 
    408 private:
    409   // Terminator instructions.
    410   void visitRet(const ReturnInst &I);
    411   void visitBr(const BranchInst &I);
    412   void visitSwitch(const SwitchInst &I);
    413   void visitIndirectBr(const IndirectBrInst &I);
    414   void visitUnreachable(const UnreachableInst &I) { /* noop */ }
    415 
    416   // Helpers for visitSwitch
    417   bool handleSmallSwitchRange(CaseRec& CR,
    418                               CaseRecVector& WorkList,
    419                               const Value* SV,
    420                               MachineBasicBlock* Default,
    421                               MachineBasicBlock *SwitchBB);
    422   bool handleJTSwitchCase(CaseRec& CR,
    423                           CaseRecVector& WorkList,
    424                           const Value* SV,
    425                           MachineBasicBlock* Default,
    426                           MachineBasicBlock *SwitchBB);
    427   bool handleBTSplitSwitchCase(CaseRec& CR,
    428                                CaseRecVector& WorkList,
    429                                const Value* SV,
    430                                MachineBasicBlock* Default,
    431                                MachineBasicBlock *SwitchBB);
    432   bool handleBitTestsSwitchCase(CaseRec& CR,
    433                                 CaseRecVector& WorkList,
    434                                 const Value* SV,
    435                                 MachineBasicBlock* Default,
    436                                 MachineBasicBlock *SwitchBB);
    437 
    438   uint32_t getEdgeWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst);
    439   void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst);
    440 public:
    441   void visitSwitchCase(CaseBlock &CB,
    442                        MachineBasicBlock *SwitchBB);
    443   void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
    444   void visitBitTestCase(BitTestBlock &BB,
    445                         MachineBasicBlock* NextMBB,
    446                         unsigned Reg,
    447                         BitTestCase &B,
    448                         MachineBasicBlock *SwitchBB);
    449   void visitJumpTable(JumpTable &JT);
    450   void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
    451                             MachineBasicBlock *SwitchBB);
    452 
    453 private:
    454   // These all get lowered before this pass.
    455   void visitInvoke(const InvokeInst &I);
    456   void visitUnwind(const UnwindInst &I);
    457 
    458   void visitBinary(const User &I, unsigned OpCode);
    459   void visitShift(const User &I, unsigned Opcode);
    460   void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
    461   void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
    462   void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
    463   void visitFSub(const User &I);
    464   void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
    465   void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
    466   void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
    467   void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
    468   void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
    469   void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
    470   void visitSDiv(const User &I);
    471   void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
    472   void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
    473   void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
    474   void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
    475   void visitShl (const User &I) { visitShift(I, ISD::SHL); }
    476   void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
    477   void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
    478   void visitICmp(const User &I);
    479   void visitFCmp(const User &I);
    480   // Visit the conversion instructions
    481   void visitTrunc(const User &I);
    482   void visitZExt(const User &I);
    483   void visitSExt(const User &I);
    484   void visitFPTrunc(const User &I);
    485   void visitFPExt(const User &I);
    486   void visitFPToUI(const User &I);
    487   void visitFPToSI(const User &I);
    488   void visitUIToFP(const User &I);
    489   void visitSIToFP(const User &I);
    490   void visitPtrToInt(const User &I);
    491   void visitIntToPtr(const User &I);
    492   void visitBitCast(const User &I);
    493 
    494   void visitExtractElement(const User &I);
    495   void visitInsertElement(const User &I);
    496   void visitShuffleVector(const User &I);
    497 
    498   void visitExtractValue(const ExtractValueInst &I);
    499   void visitInsertValue(const InsertValueInst &I);
    500 
    501   void visitGetElementPtr(const User &I);
    502   void visitSelect(const User &I);
    503 
    504   void visitAlloca(const AllocaInst &I);
    505   void visitLoad(const LoadInst &I);
    506   void visitStore(const StoreInst &I);
    507   void visitPHI(const PHINode &I);
    508   void visitCall(const CallInst &I);
    509   bool visitMemCmpCall(const CallInst &I);
    510 
    511   void visitInlineAsm(ImmutableCallSite CS);
    512   const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
    513   void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
    514 
    515   void visitPow(const CallInst &I);
    516   void visitExp2(const CallInst &I);
    517   void visitExp(const CallInst &I);
    518   void visitLog(const CallInst &I);
    519   void visitLog2(const CallInst &I);
    520   void visitLog10(const CallInst &I);
    521 
    522   void visitVAStart(const CallInst &I);
    523   void visitVAArg(const VAArgInst &I);
    524   void visitVAEnd(const CallInst &I);
    525   void visitVACopy(const CallInst &I);
    526 
    527   void visitUserOp1(const Instruction &I) {
    528     llvm_unreachable("UserOp1 should not exist at instruction selection time!");
    529   }
    530   void visitUserOp2(const Instruction &I) {
    531     llvm_unreachable("UserOp2 should not exist at instruction selection time!");
    532   }
    533 
    534   const char *implVisitBinaryAtomic(const CallInst& I, ISD::NodeType Op);
    535   const char *implVisitAluOverflow(const CallInst &I, ISD::NodeType Op);
    536 
    537   void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
    538 
    539   /// EmitFuncArgumentDbgValue - If V is an function argument then create
    540   /// corresponding DBG_VALUE machine instruction for it now. At the end of
    541   /// instruction selection, they will be inserted to the entry BB.
    542   bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
    543                                 int64_t Offset, const SDValue &N);
    544 };
    545 
    546 } // end namespace llvm
    547 
    548 #endif
    549