1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 // Limit the width of DAG chains. This is important in general to prevent 73 // prevent DAG-based analysis from blowing up. For example, alias analysis and 74 // load clustering may not complete in reasonable time. It is difficult to 75 // recognize and avoid this situation within each individual analysis, and 76 // future analyses are likely to have the same behavior. Limiting DAG width is 77 // the safe approach, and will be especially important with global DAGs. 78 // 79 // MaxParallelChains default is arbitrarily high to avoid affecting 80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 81 // sequence over this should have been converted to llvm.memcpy by the 82 // frontend. It easy to induce this behavior with .ll code such as: 83 // %buffer = alloca [4096 x i8] 84 // %data = load [4096 x i8]* %argPtr 85 // store [4096 x i8] %data, [4096 x i8]* %buffer 86 static const unsigned MaxParallelChains = 64; 87 88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 89 const SDValue *Parts, unsigned NumParts, 90 EVT PartVT, EVT ValueVT); 91 92 /// getCopyFromParts - Create a value that contains the specified legal parts 93 /// combined into the value they represent. If the parts combine to a type 94 /// larger then ValueVT then AssertOp can be used to specify whether the extra 95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 96 /// (ISD::AssertSext). 97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 98 const SDValue *Parts, 99 unsigned NumParts, EVT PartVT, EVT ValueVT, 100 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 101 if (ValueVT.isVector()) 102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 103 104 assert(NumParts > 0 && "No parts to assemble!"); 105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 106 SDValue Val = Parts[0]; 107 108 if (NumParts > 1) { 109 // Assemble the value from multiple parts. 110 if (ValueVT.isInteger()) { 111 unsigned PartBits = PartVT.getSizeInBits(); 112 unsigned ValueBits = ValueVT.getSizeInBits(); 113 114 // Assemble the power of 2 part. 115 unsigned RoundParts = NumParts & (NumParts - 1) ? 116 1 << Log2_32(NumParts) : NumParts; 117 unsigned RoundBits = PartBits * RoundParts; 118 EVT RoundVT = RoundBits == ValueBits ? 119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 120 SDValue Lo, Hi; 121 122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 123 124 if (RoundParts > 2) { 125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 126 PartVT, HalfVT); 127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 128 RoundParts / 2, PartVT, HalfVT); 129 } else { 130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 132 } 133 134 if (TLI.isBigEndian()) 135 std::swap(Lo, Hi); 136 137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 138 139 if (RoundParts < NumParts) { 140 // Assemble the trailing non-power-of-2 part. 141 unsigned OddParts = NumParts - RoundParts; 142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 143 Hi = getCopyFromParts(DAG, DL, 144 Parts + RoundParts, OddParts, PartVT, OddVT); 145 146 // Combine the round and odd parts. 147 Lo = Val; 148 if (TLI.isBigEndian()) 149 std::swap(Lo, Hi); 150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 153 DAG.getConstant(Lo.getValueType().getSizeInBits(), 154 TLI.getPointerTy())); 155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 157 } 158 } else if (PartVT.isFloatingPoint()) { 159 // FP split into multiple FP parts (for ppcf128) 160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 161 "Unexpected split"); 162 SDValue Lo, Hi; 163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 165 if (TLI.isBigEndian()) 166 std::swap(Lo, Hi); 167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 168 } else { 169 // FP split into integer parts (soft fp) 170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 171 !PartVT.isVector() && "Unexpected split"); 172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 174 } 175 } 176 177 // There is now one part, held in Val. Correct it to match ValueVT. 178 PartVT = Val.getValueType(); 179 180 if (PartVT == ValueVT) 181 return Val; 182 183 if (PartVT.isInteger() && ValueVT.isInteger()) { 184 if (ValueVT.bitsLT(PartVT)) { 185 // For a truncate, see if we have any information to 186 // indicate whether the truncated bits will always be 187 // zero or sign-extension. 188 if (AssertOp != ISD::DELETED_NODE) 189 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 190 DAG.getValueType(ValueVT)); 191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 192 } 193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 194 } 195 196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 197 // FP_ROUND's are always exact here. 198 if (ValueVT.bitsLT(Val.getValueType())) 199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 200 DAG.getIntPtrConstant(1)); 201 202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 203 } 204 205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 207 208 llvm_unreachable("Unknown mismatch!"); 209 return SDValue(); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert(PartVT.isInteger() && ValueVT.isInteger() && 357 "Unknown mismatch!"); 358 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 359 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 360 } 361 } else if (PartBits == ValueVT.getSizeInBits()) { 362 // Different types of the same size. 363 assert(NumParts == 1 && PartVT != ValueVT); 364 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 365 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 366 // If the parts cover less bits than value has, truncate the value. 367 assert(PartVT.isInteger() && ValueVT.isInteger() && 368 "Unknown mismatch!"); 369 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 370 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 371 } 372 373 // The value may have changed - recompute ValueVT. 374 ValueVT = Val.getValueType(); 375 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 376 "Failed to tile the value with PartVT!"); 377 378 if (NumParts == 1) { 379 assert(PartVT == ValueVT && "Type conversion failed!"); 380 Parts[0] = Val; 381 return; 382 } 383 384 // Expand the value into multiple parts. 385 if (NumParts & (NumParts - 1)) { 386 // The number of parts is not a power of 2. Split off and copy the tail. 387 assert(PartVT.isInteger() && ValueVT.isInteger() && 388 "Do not know what to expand to!"); 389 unsigned RoundParts = 1 << Log2_32(NumParts); 390 unsigned RoundBits = RoundParts * PartBits; 391 unsigned OddParts = NumParts - RoundParts; 392 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 393 DAG.getIntPtrConstant(RoundBits)); 394 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 395 396 if (TLI.isBigEndian()) 397 // The odd parts were reversed by getCopyToParts - unreverse them. 398 std::reverse(Parts + RoundParts, Parts + NumParts); 399 400 NumParts = RoundParts; 401 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 402 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 403 } 404 405 // The number of parts is a power of 2. Repeatedly bisect the value using 406 // EXTRACT_ELEMENT. 407 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 408 EVT::getIntegerVT(*DAG.getContext(), 409 ValueVT.getSizeInBits()), 410 Val); 411 412 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 413 for (unsigned i = 0; i < NumParts; i += StepSize) { 414 unsigned ThisBits = StepSize * PartBits / 2; 415 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 416 SDValue &Part0 = Parts[i]; 417 SDValue &Part1 = Parts[i+StepSize/2]; 418 419 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 420 ThisVT, Part0, DAG.getIntPtrConstant(1)); 421 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 422 ThisVT, Part0, DAG.getIntPtrConstant(0)); 423 424 if (ThisBits == PartBits && ThisVT != PartVT) { 425 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 426 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 427 } 428 } 429 } 430 431 if (TLI.isBigEndian()) 432 std::reverse(Parts, Parts + OrigNumParts); 433 } 434 435 436 /// getCopyToPartsVector - Create a series of nodes that contain the specified 437 /// value split into legal parts. 438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 439 SDValue Val, SDValue *Parts, unsigned NumParts, 440 EVT PartVT) { 441 EVT ValueVT = Val.getValueType(); 442 assert(ValueVT.isVector() && "Not a vector"); 443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 444 445 if (NumParts == 1) { 446 if (PartVT == ValueVT) { 447 // Nothing to do. 448 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 449 // Bitconvert vector->vector case. 450 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 451 } else if (PartVT.isVector() && 452 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 453 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 454 EVT ElementVT = PartVT.getVectorElementType(); 455 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 456 // undef elements. 457 SmallVector<SDValue, 16> Ops; 458 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 459 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 460 ElementVT, Val, DAG.getIntPtrConstant(i))); 461 462 for (unsigned i = ValueVT.getVectorNumElements(), 463 e = PartVT.getVectorNumElements(); i != e; ++i) 464 Ops.push_back(DAG.getUNDEF(ElementVT)); 465 466 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 467 468 // FIXME: Use CONCAT for 2x -> 4x. 469 470 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 471 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 472 } else if (PartVT.isVector() && 473 PartVT.getVectorElementType().bitsGE( 474 ValueVT.getVectorElementType()) && 475 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 476 477 // Promoted vector extract 478 bool Smaller = PartVT.bitsLE(ValueVT); 479 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 480 DL, PartVT, Val); 481 } else{ 482 // Vector -> scalar conversion. 483 assert(ValueVT.getVectorNumElements() == 1 && 484 "Only trivial vector-to-scalar conversions should get here!"); 485 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 486 PartVT, Val, DAG.getIntPtrConstant(0)); 487 488 bool Smaller = ValueVT.bitsLE(PartVT); 489 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 490 DL, PartVT, Val); 491 } 492 493 Parts[0] = Val; 494 return; 495 } 496 497 // Handle a multi-element vector. 498 EVT IntermediateVT, RegisterVT; 499 unsigned NumIntermediates; 500 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 501 IntermediateVT, 502 NumIntermediates, RegisterVT); 503 unsigned NumElements = ValueVT.getVectorNumElements(); 504 505 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 506 NumParts = NumRegs; // Silence a compiler warning. 507 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 508 509 // Split the vector into intermediate operands. 510 SmallVector<SDValue, 8> Ops(NumIntermediates); 511 for (unsigned i = 0; i != NumIntermediates; ++i) { 512 if (IntermediateVT.isVector()) 513 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 514 IntermediateVT, Val, 515 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 516 else 517 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 518 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 519 } 520 521 // Split the intermediate operands into legal parts. 522 if (NumParts == NumIntermediates) { 523 // If the register was not expanded, promote or copy the value, 524 // as appropriate. 525 for (unsigned i = 0; i != NumParts; ++i) 526 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 527 } else if (NumParts > 0) { 528 // If the intermediate type was expanded, split each the value into 529 // legal parts. 530 assert(NumParts % NumIntermediates == 0 && 531 "Must expand into a divisible number of parts!"); 532 unsigned Factor = NumParts / NumIntermediates; 533 for (unsigned i = 0; i != NumIntermediates; ++i) 534 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 535 } 536 } 537 538 539 540 541 namespace { 542 /// RegsForValue - This struct represents the registers (physical or virtual) 543 /// that a particular set of values is assigned, and the type information 544 /// about the value. The most common situation is to represent one value at a 545 /// time, but struct or array values are handled element-wise as multiple 546 /// values. The splitting of aggregates is performed recursively, so that we 547 /// never have aggregate-typed registers. The values at this point do not 548 /// necessarily have legal types, so each value may require one or more 549 /// registers of some legal type. 550 /// 551 struct RegsForValue { 552 /// ValueVTs - The value types of the values, which may not be legal, and 553 /// may need be promoted or synthesized from one or more registers. 554 /// 555 SmallVector<EVT, 4> ValueVTs; 556 557 /// RegVTs - The value types of the registers. This is the same size as 558 /// ValueVTs and it records, for each value, what the type of the assigned 559 /// register or registers are. (Individual values are never synthesized 560 /// from more than one type of register.) 561 /// 562 /// With virtual registers, the contents of RegVTs is redundant with TLI's 563 /// getRegisterType member function, however when with physical registers 564 /// it is necessary to have a separate record of the types. 565 /// 566 SmallVector<EVT, 4> RegVTs; 567 568 /// Regs - This list holds the registers assigned to the values. 569 /// Each legal or promoted value requires one register, and each 570 /// expanded value requires multiple registers. 571 /// 572 SmallVector<unsigned, 4> Regs; 573 574 RegsForValue() {} 575 576 RegsForValue(const SmallVector<unsigned, 4> ®s, 577 EVT regvt, EVT valuevt) 578 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 579 580 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 581 unsigned Reg, Type *Ty) { 582 ComputeValueVTs(tli, Ty, ValueVTs); 583 584 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 585 EVT ValueVT = ValueVTs[Value]; 586 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 587 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 588 for (unsigned i = 0; i != NumRegs; ++i) 589 Regs.push_back(Reg + i); 590 RegVTs.push_back(RegisterVT); 591 Reg += NumRegs; 592 } 593 } 594 595 /// areValueTypesLegal - Return true if types of all the values are legal. 596 bool areValueTypesLegal(const TargetLowering &TLI) { 597 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 598 EVT RegisterVT = RegVTs[Value]; 599 if (!TLI.isTypeLegal(RegisterVT)) 600 return false; 601 } 602 return true; 603 } 604 605 /// append - Add the specified values to this one. 606 void append(const RegsForValue &RHS) { 607 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 608 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 609 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 610 } 611 612 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 613 /// this value and returns the result as a ValueVTs value. This uses 614 /// Chain/Flag as the input and updates them for the output Chain/Flag. 615 /// If the Flag pointer is NULL, no flag is used. 616 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 617 DebugLoc dl, 618 SDValue &Chain, SDValue *Flag) const; 619 620 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 621 /// specified value into the registers specified by this object. This uses 622 /// Chain/Flag as the input and updates them for the output Chain/Flag. 623 /// If the Flag pointer is NULL, no flag is used. 624 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 625 SDValue &Chain, SDValue *Flag) const; 626 627 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 628 /// operand list. This adds the code marker, matching input operand index 629 /// (if applicable), and includes the number of values added into it. 630 void AddInlineAsmOperands(unsigned Kind, 631 bool HasMatching, unsigned MatchingIdx, 632 SelectionDAG &DAG, 633 std::vector<SDValue> &Ops) const; 634 }; 635 } 636 637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 638 /// this value and returns the result as a ValueVT value. This uses 639 /// Chain/Flag as the input and updates them for the output Chain/Flag. 640 /// If the Flag pointer is NULL, no flag is used. 641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 642 FunctionLoweringInfo &FuncInfo, 643 DebugLoc dl, 644 SDValue &Chain, SDValue *Flag) const { 645 // A Value with type {} or [0 x %t] needs no registers. 646 if (ValueVTs.empty()) 647 return SDValue(); 648 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 651 // Assemble the legal parts into the final values. 652 SmallVector<SDValue, 4> Values(ValueVTs.size()); 653 SmallVector<SDValue, 8> Parts; 654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 655 // Copy the legal parts from the registers. 656 EVT ValueVT = ValueVTs[Value]; 657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 658 EVT RegisterVT = RegVTs[Value]; 659 660 Parts.resize(NumRegs); 661 for (unsigned i = 0; i != NumRegs; ++i) { 662 SDValue P; 663 if (Flag == 0) { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 665 } else { 666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 667 *Flag = P.getValue(2); 668 } 669 670 Chain = P.getValue(1); 671 Parts[i] = P; 672 673 // If the source register was virtual and if we know something about it, 674 // add an assert node. 675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 676 !RegisterVT.isInteger() || RegisterVT.isVector()) 677 continue; 678 679 const FunctionLoweringInfo::LiveOutInfo *LOI = 680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 681 if (!LOI) 682 continue; 683 684 unsigned RegSize = RegisterVT.getSizeInBits(); 685 unsigned NumSignBits = LOI->NumSignBits; 686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 687 688 // FIXME: We capture more information than the dag can represent. For 689 // now, just use the tightest assertzext/assertsext possible. 690 bool isSExt = true; 691 EVT FromVT(MVT::Other); 692 if (NumSignBits == RegSize) 693 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 694 else if (NumZeroBits >= RegSize-1) 695 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 696 else if (NumSignBits > RegSize-8) 697 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 698 else if (NumZeroBits >= RegSize-8) 699 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 700 else if (NumSignBits > RegSize-16) 701 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 702 else if (NumZeroBits >= RegSize-16) 703 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 704 else if (NumSignBits > RegSize-32) 705 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 706 else if (NumZeroBits >= RegSize-32) 707 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 708 else 709 continue; 710 711 // Add an assertion node. 712 assert(FromVT != MVT::Other); 713 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 714 RegisterVT, P, DAG.getValueType(FromVT)); 715 } 716 717 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 718 NumRegs, RegisterVT, ValueVT); 719 Part += NumRegs; 720 Parts.clear(); 721 } 722 723 return DAG.getNode(ISD::MERGE_VALUES, dl, 724 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 725 &Values[0], ValueVTs.size()); 726 } 727 728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 729 /// specified value into the registers specified by this object. This uses 730 /// Chain/Flag as the input and updates them for the output Chain/Flag. 731 /// If the Flag pointer is NULL, no flag is used. 732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 733 SDValue &Chain, SDValue *Flag) const { 734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 735 736 // Get the list of the values's legal parts. 737 unsigned NumRegs = Regs.size(); 738 SmallVector<SDValue, 8> Parts(NumRegs); 739 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 740 EVT ValueVT = ValueVTs[Value]; 741 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 742 EVT RegisterVT = RegVTs[Value]; 743 744 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 745 &Parts[Part], NumParts, RegisterVT); 746 Part += NumParts; 747 } 748 749 // Copy the parts into the registers. 750 SmallVector<SDValue, 8> Chains(NumRegs); 751 for (unsigned i = 0; i != NumRegs; ++i) { 752 SDValue Part; 753 if (Flag == 0) { 754 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 755 } else { 756 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 757 *Flag = Part.getValue(1); 758 } 759 760 Chains[i] = Part.getValue(0); 761 } 762 763 if (NumRegs == 1 || Flag) 764 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 765 // flagged to it. That is the CopyToReg nodes and the user are considered 766 // a single scheduling unit. If we create a TokenFactor and return it as 767 // chain, then the TokenFactor is both a predecessor (operand) of the 768 // user as well as a successor (the TF operands are flagged to the user). 769 // c1, f1 = CopyToReg 770 // c2, f2 = CopyToReg 771 // c3 = TokenFactor c1, c2 772 // ... 773 // = op c3, ..., f2 774 Chain = Chains[NumRegs-1]; 775 else 776 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 777 } 778 779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 780 /// operand list. This adds the code marker and includes the number of 781 /// values added into it. 782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 783 unsigned MatchingIdx, 784 SelectionDAG &DAG, 785 std::vector<SDValue> &Ops) const { 786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 787 788 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 789 if (HasMatching) 790 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 791 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 792 Ops.push_back(Res); 793 794 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 795 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 796 EVT RegisterVT = RegVTs[Value]; 797 for (unsigned i = 0; i != NumRegs; ++i) { 798 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 799 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 800 } 801 } 802 } 803 804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 805 AA = &aa; 806 GFI = gfi; 807 TD = DAG.getTarget().getTargetData(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurDebugLoc = DebugLoc(); 822 HasTailCall = false; 823 } 824 825 /// clearDanglingDebugInfo - Clear the dangling debug information 826 /// map. This function is seperated from the clear so that debug 827 /// information that is dangling in a basic block can be properly 828 /// resolved in a different basic block. This allows the 829 /// SelectionDAG to resolve dangling debug information attached 830 /// to PHI nodes. 831 void SelectionDAGBuilder::clearDanglingDebugInfo() { 832 DanglingDebugInfoMap.clear(); 833 } 834 835 /// getRoot - Return the current virtual root of the Selection DAG, 836 /// flushing any PendingLoad items. This must be done before emitting 837 /// a store or any other node that may need to be ordered after any 838 /// prior load instructions. 839 /// 840 SDValue SelectionDAGBuilder::getRoot() { 841 if (PendingLoads.empty()) 842 return DAG.getRoot(); 843 844 if (PendingLoads.size() == 1) { 845 SDValue Root = PendingLoads[0]; 846 DAG.setRoot(Root); 847 PendingLoads.clear(); 848 return Root; 849 } 850 851 // Otherwise, we have to make a token factor node. 852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 853 &PendingLoads[0], PendingLoads.size()); 854 PendingLoads.clear(); 855 DAG.setRoot(Root); 856 return Root; 857 } 858 859 /// getControlRoot - Similar to getRoot, but instead of flushing all the 860 /// PendingLoad items, flush all the PendingExports items. It is necessary 861 /// to do this before emitting a terminator instruction. 862 /// 863 SDValue SelectionDAGBuilder::getControlRoot() { 864 SDValue Root = DAG.getRoot(); 865 866 if (PendingExports.empty()) 867 return Root; 868 869 // Turn all of the CopyToReg chains into one factored node. 870 if (Root.getOpcode() != ISD::EntryToken) { 871 unsigned i = 0, e = PendingExports.size(); 872 for (; i != e; ++i) { 873 assert(PendingExports[i].getNode()->getNumOperands() > 1); 874 if (PendingExports[i].getNode()->getOperand(0) == Root) 875 break; // Don't add the root if we already indirectly depend on it. 876 } 877 878 if (i == e) 879 PendingExports.push_back(Root); 880 } 881 882 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 883 &PendingExports[0], 884 PendingExports.size()); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 891 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 892 DAG.AssignOrdering(Node, SDNodeOrder); 893 894 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 895 AssignOrderingToNode(Node->getOperand(I).getNode()); 896 } 897 898 void SelectionDAGBuilder::visit(const Instruction &I) { 899 // Set up outgoing PHI node register values before emitting the terminator. 900 if (isa<TerminatorInst>(&I)) 901 HandlePHINodesInSuccessorBlocks(I.getParent()); 902 903 CurDebugLoc = I.getDebugLoc(); 904 905 visit(I.getOpcode(), I); 906 907 if (!isa<TerminatorInst>(&I) && !HasTailCall) 908 CopyToExportRegsIfNeeded(&I); 909 910 CurDebugLoc = DebugLoc(); 911 } 912 913 void SelectionDAGBuilder::visitPHI(const PHINode &) { 914 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 915 } 916 917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 918 // Note: this doesn't use InstVisitor, because it has to work with 919 // ConstantExpr's in addition to instructions. 920 switch (Opcode) { 921 default: llvm_unreachable("Unknown instruction type encountered!"); 922 // Build the switch statement using the Instruction.def file. 923 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 924 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 925 #include "llvm/Instruction.def" 926 } 927 928 // Assign the ordering to the freshly created DAG nodes. 929 if (NodeMap.count(&I)) { 930 ++SDNodeOrder; 931 AssignOrderingToNode(getValue(&I).getNode()); 932 } 933 } 934 935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 936 // generate the debug data structures now that we've seen its definition. 937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 938 SDValue Val) { 939 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 940 if (DDI.getDI()) { 941 const DbgValueInst *DI = DDI.getDI(); 942 DebugLoc dl = DDI.getdl(); 943 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 944 MDNode *Variable = DI->getVariable(); 945 uint64_t Offset = DI->getOffset(); 946 SDDbgValue *SDV; 947 if (Val.getNode()) { 948 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 949 SDV = DAG.getDbgValue(Variable, Val.getNode(), 950 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 951 DAG.AddDbgValue(SDV, Val.getNode(), false); 952 } 953 } else 954 DEBUG(dbgs() << "Dropping debug info for " << DI); 955 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 956 } 957 } 958 959 // getValue - Return an SDValue for the given Value. 960 SDValue SelectionDAGBuilder::getValue(const Value *V) { 961 // If we already have an SDValue for this value, use it. It's important 962 // to do this first, so that we don't create a CopyFromReg if we already 963 // have a regular SDValue. 964 SDValue &N = NodeMap[V]; 965 if (N.getNode()) return N; 966 967 // If there's a virtual register allocated and initialized for this 968 // value, use it. 969 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 970 if (It != FuncInfo.ValueMap.end()) { 971 unsigned InReg = It->second; 972 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 973 SDValue Chain = DAG.getEntryNode(); 974 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 975 resolveDanglingDebugInfo(V, N); 976 return N; 977 } 978 979 // Otherwise create a new SDValue and remember it. 980 SDValue Val = getValueImpl(V); 981 NodeMap[V] = Val; 982 resolveDanglingDebugInfo(V, Val); 983 return Val; 984 } 985 986 /// getNonRegisterValue - Return an SDValue for the given Value, but 987 /// don't look in FuncInfo.ValueMap for a virtual register. 988 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. 990 SDValue &N = NodeMap[V]; 991 if (N.getNode()) return N; 992 993 // Otherwise create a new SDValue and remember it. 994 SDValue Val = getValueImpl(V); 995 NodeMap[V] = Val; 996 resolveDanglingDebugInfo(V, Val); 997 return Val; 998 } 999 1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1001 /// Create an SDValue for the given value. 1002 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1003 if (const Constant *C = dyn_cast<Constant>(V)) { 1004 EVT VT = TLI.getValueType(V->getType(), true); 1005 1006 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1007 return DAG.getConstant(*CI, VT); 1008 1009 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1010 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1011 1012 if (isa<ConstantPointerNull>(C)) 1013 return DAG.getConstant(0, TLI.getPointerTy()); 1014 1015 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1016 return DAG.getConstantFP(*CFP, VT); 1017 1018 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1019 return DAG.getUNDEF(VT); 1020 1021 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1022 visit(CE->getOpcode(), *CE); 1023 SDValue N1 = NodeMap[V]; 1024 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1025 return N1; 1026 } 1027 1028 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1029 SmallVector<SDValue, 4> Constants; 1030 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1031 OI != OE; ++OI) { 1032 SDNode *Val = getValue(*OI).getNode(); 1033 // If the operand is an empty aggregate, there are no values. 1034 if (!Val) continue; 1035 // Add each leaf value from the operand to the Constants list 1036 // to form a flattened list of all the values. 1037 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1038 Constants.push_back(SDValue(Val, i)); 1039 } 1040 1041 return DAG.getMergeValues(&Constants[0], Constants.size(), 1042 getCurDebugLoc()); 1043 } 1044 1045 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1046 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1047 "Unknown struct or array constant!"); 1048 1049 SmallVector<EVT, 4> ValueVTs; 1050 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1051 unsigned NumElts = ValueVTs.size(); 1052 if (NumElts == 0) 1053 return SDValue(); // empty struct 1054 SmallVector<SDValue, 4> Constants(NumElts); 1055 for (unsigned i = 0; i != NumElts; ++i) { 1056 EVT EltVT = ValueVTs[i]; 1057 if (isa<UndefValue>(C)) 1058 Constants[i] = DAG.getUNDEF(EltVT); 1059 else if (EltVT.isFloatingPoint()) 1060 Constants[i] = DAG.getConstantFP(0, EltVT); 1061 else 1062 Constants[i] = DAG.getConstant(0, EltVT); 1063 } 1064 1065 return DAG.getMergeValues(&Constants[0], NumElts, 1066 getCurDebugLoc()); 1067 } 1068 1069 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1070 return DAG.getBlockAddress(BA, VT); 1071 1072 VectorType *VecTy = cast<VectorType>(V->getType()); 1073 unsigned NumElements = VecTy->getNumElements(); 1074 1075 // Now that we know the number and type of the elements, get that number of 1076 // elements into the Ops array based on what kind of constant it is. 1077 SmallVector<SDValue, 16> Ops; 1078 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1079 for (unsigned i = 0; i != NumElements; ++i) 1080 Ops.push_back(getValue(CP->getOperand(i))); 1081 } else { 1082 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1083 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1084 1085 SDValue Op; 1086 if (EltVT.isFloatingPoint()) 1087 Op = DAG.getConstantFP(0, EltVT); 1088 else 1089 Op = DAG.getConstant(0, EltVT); 1090 Ops.assign(NumElements, Op); 1091 } 1092 1093 // Create a BUILD_VECTOR node. 1094 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1095 VT, &Ops[0], Ops.size()); 1096 } 1097 1098 // If this is a static alloca, generate it as the frameindex instead of 1099 // computation. 1100 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1101 DenseMap<const AllocaInst*, int>::iterator SI = 1102 FuncInfo.StaticAllocaMap.find(AI); 1103 if (SI != FuncInfo.StaticAllocaMap.end()) 1104 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1105 } 1106 1107 // If this is an instruction which fast-isel has deferred, select it now. 1108 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1109 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1110 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1111 SDValue Chain = DAG.getEntryNode(); 1112 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1113 } 1114 1115 llvm_unreachable("Can't get register for value!"); 1116 return SDValue(); 1117 } 1118 1119 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1120 SDValue Chain = getControlRoot(); 1121 SmallVector<ISD::OutputArg, 8> Outs; 1122 SmallVector<SDValue, 8> OutVals; 1123 1124 if (!FuncInfo.CanLowerReturn) { 1125 unsigned DemoteReg = FuncInfo.DemoteRegister; 1126 const Function *F = I.getParent()->getParent(); 1127 1128 // Emit a store of the return value through the virtual register. 1129 // Leave Outs empty so that LowerReturn won't try to load return 1130 // registers the usual way. 1131 SmallVector<EVT, 1> PtrValueVTs; 1132 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1133 PtrValueVTs); 1134 1135 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1136 SDValue RetOp = getValue(I.getOperand(0)); 1137 1138 SmallVector<EVT, 4> ValueVTs; 1139 SmallVector<uint64_t, 4> Offsets; 1140 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1141 unsigned NumValues = ValueVTs.size(); 1142 1143 SmallVector<SDValue, 4> Chains(NumValues); 1144 for (unsigned i = 0; i != NumValues; ++i) { 1145 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1146 RetPtr.getValueType(), RetPtr, 1147 DAG.getIntPtrConstant(Offsets[i])); 1148 Chains[i] = 1149 DAG.getStore(Chain, getCurDebugLoc(), 1150 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1151 // FIXME: better loc info would be nice. 1152 Add, MachinePointerInfo(), false, false, 0); 1153 } 1154 1155 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1156 MVT::Other, &Chains[0], NumValues); 1157 } else if (I.getNumOperands() != 0) { 1158 SmallVector<EVT, 4> ValueVTs; 1159 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1160 unsigned NumValues = ValueVTs.size(); 1161 if (NumValues) { 1162 SDValue RetOp = getValue(I.getOperand(0)); 1163 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1164 EVT VT = ValueVTs[j]; 1165 1166 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1167 1168 const Function *F = I.getParent()->getParent(); 1169 if (F->paramHasAttr(0, Attribute::SExt)) 1170 ExtendKind = ISD::SIGN_EXTEND; 1171 else if (F->paramHasAttr(0, Attribute::ZExt)) 1172 ExtendKind = ISD::ZERO_EXTEND; 1173 1174 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1175 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1176 1177 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1178 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1179 SmallVector<SDValue, 4> Parts(NumParts); 1180 getCopyToParts(DAG, getCurDebugLoc(), 1181 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1182 &Parts[0], NumParts, PartVT, ExtendKind); 1183 1184 // 'inreg' on function refers to return value 1185 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1186 if (F->paramHasAttr(0, Attribute::InReg)) 1187 Flags.setInReg(); 1188 1189 // Propagate extension type if any 1190 if (ExtendKind == ISD::SIGN_EXTEND) 1191 Flags.setSExt(); 1192 else if (ExtendKind == ISD::ZERO_EXTEND) 1193 Flags.setZExt(); 1194 1195 for (unsigned i = 0; i < NumParts; ++i) { 1196 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1197 /*isfixed=*/true)); 1198 OutVals.push_back(Parts[i]); 1199 } 1200 } 1201 } 1202 } 1203 1204 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1205 CallingConv::ID CallConv = 1206 DAG.getMachineFunction().getFunction()->getCallingConv(); 1207 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1208 Outs, OutVals, getCurDebugLoc(), DAG); 1209 1210 // Verify that the target's LowerReturn behaved as expected. 1211 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1212 "LowerReturn didn't return a valid chain!"); 1213 1214 // Update the DAG with the new chain value resulting from return lowering. 1215 DAG.setRoot(Chain); 1216 } 1217 1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1219 /// created for it, emit nodes to copy the value into the virtual 1220 /// registers. 1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1222 // Skip empty types 1223 if (V->getType()->isEmptyTy()) 1224 return; 1225 1226 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1227 if (VMI != FuncInfo.ValueMap.end()) { 1228 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1229 CopyValueToVirtualRegister(V, VMI->second); 1230 } 1231 } 1232 1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1234 /// the current basic block, add it to ValueMap now so that we'll get a 1235 /// CopyTo/FromReg. 1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1237 // No need to export constants. 1238 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1239 1240 // Already exported? 1241 if (FuncInfo.isExportedInst(V)) return; 1242 1243 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1244 CopyValueToVirtualRegister(V, Reg); 1245 } 1246 1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1248 const BasicBlock *FromBB) { 1249 // The operands of the setcc have to be in this block. We don't know 1250 // how to export them from some other block. 1251 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1252 // Can export from current BB. 1253 if (VI->getParent() == FromBB) 1254 return true; 1255 1256 // Is already exported, noop. 1257 return FuncInfo.isExportedInst(V); 1258 } 1259 1260 // If this is an argument, we can export it if the BB is the entry block or 1261 // if it is already exported. 1262 if (isa<Argument>(V)) { 1263 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1264 return true; 1265 1266 // Otherwise, can only export this if it is already exported. 1267 return FuncInfo.isExportedInst(V); 1268 } 1269 1270 // Otherwise, constants can always be exported. 1271 return true; 1272 } 1273 1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src, 1276 MachineBasicBlock *Dst) { 1277 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1278 if (!BPI) 1279 return 0; 1280 BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock()); 1281 BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock()); 1282 return BPI->getEdgeWeight(SrcBB, DstBB); 1283 } 1284 1285 void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src, 1286 MachineBasicBlock *Dst) { 1287 uint32_t weight = getEdgeWeight(Src, Dst); 1288 Src->addSuccessor(Dst, weight); 1289 } 1290 1291 1292 static bool InBlock(const Value *V, const BasicBlock *BB) { 1293 if (const Instruction *I = dyn_cast<Instruction>(V)) 1294 return I->getParent() == BB; 1295 return true; 1296 } 1297 1298 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1299 /// This function emits a branch and is used at the leaves of an OR or an 1300 /// AND operator tree. 1301 /// 1302 void 1303 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1304 MachineBasicBlock *TBB, 1305 MachineBasicBlock *FBB, 1306 MachineBasicBlock *CurBB, 1307 MachineBasicBlock *SwitchBB) { 1308 const BasicBlock *BB = CurBB->getBasicBlock(); 1309 1310 // If the leaf of the tree is a comparison, merge the condition into 1311 // the caseblock. 1312 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1313 // The operands of the cmp have to be in this block. We don't know 1314 // how to export them from some other block. If this is the first block 1315 // of the sequence, no exporting is needed. 1316 if (CurBB == SwitchBB || 1317 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1318 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1319 ISD::CondCode Condition; 1320 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1321 Condition = getICmpCondCode(IC->getPredicate()); 1322 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1323 Condition = getFCmpCondCode(FC->getPredicate()); 1324 } else { 1325 Condition = ISD::SETEQ; // silence warning. 1326 llvm_unreachable("Unknown compare instruction"); 1327 } 1328 1329 CaseBlock CB(Condition, BOp->getOperand(0), 1330 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1331 SwitchCases.push_back(CB); 1332 return; 1333 } 1334 } 1335 1336 // Create a CaseBlock record representing this branch. 1337 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1338 NULL, TBB, FBB, CurBB); 1339 SwitchCases.push_back(CB); 1340 } 1341 1342 /// FindMergedConditions - If Cond is an expression like 1343 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1344 MachineBasicBlock *TBB, 1345 MachineBasicBlock *FBB, 1346 MachineBasicBlock *CurBB, 1347 MachineBasicBlock *SwitchBB, 1348 unsigned Opc) { 1349 // If this node is not part of the or/and tree, emit it as a branch. 1350 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1351 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1352 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1353 BOp->getParent() != CurBB->getBasicBlock() || 1354 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1355 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1356 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1357 return; 1358 } 1359 1360 // Create TmpBB after CurBB. 1361 MachineFunction::iterator BBI = CurBB; 1362 MachineFunction &MF = DAG.getMachineFunction(); 1363 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1364 CurBB->getParent()->insert(++BBI, TmpBB); 1365 1366 if (Opc == Instruction::Or) { 1367 // Codegen X | Y as: 1368 // jmp_if_X TBB 1369 // jmp TmpBB 1370 // TmpBB: 1371 // jmp_if_Y TBB 1372 // jmp FBB 1373 // 1374 1375 // Emit the LHS condition. 1376 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1377 1378 // Emit the RHS condition into TmpBB. 1379 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1380 } else { 1381 assert(Opc == Instruction::And && "Unknown merge op!"); 1382 // Codegen X & Y as: 1383 // jmp_if_X TmpBB 1384 // jmp FBB 1385 // TmpBB: 1386 // jmp_if_Y TBB 1387 // jmp FBB 1388 // 1389 // This requires creation of TmpBB after CurBB. 1390 1391 // Emit the LHS condition. 1392 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1393 1394 // Emit the RHS condition into TmpBB. 1395 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1396 } 1397 } 1398 1399 /// If the set of cases should be emitted as a series of branches, return true. 1400 /// If we should emit this as a bunch of and/or'd together conditions, return 1401 /// false. 1402 bool 1403 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1404 if (Cases.size() != 2) return true; 1405 1406 // If this is two comparisons of the same values or'd or and'd together, they 1407 // will get folded into a single comparison, so don't emit two blocks. 1408 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1409 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1410 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1411 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1412 return false; 1413 } 1414 1415 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1416 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1417 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1418 Cases[0].CC == Cases[1].CC && 1419 isa<Constant>(Cases[0].CmpRHS) && 1420 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1421 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1422 return false; 1423 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1424 return false; 1425 } 1426 1427 return true; 1428 } 1429 1430 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1431 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1432 1433 // Update machine-CFG edges. 1434 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1435 1436 // Figure out which block is immediately after the current one. 1437 MachineBasicBlock *NextBlock = 0; 1438 MachineFunction::iterator BBI = BrMBB; 1439 if (++BBI != FuncInfo.MF->end()) 1440 NextBlock = BBI; 1441 1442 if (I.isUnconditional()) { 1443 // Update machine-CFG edges. 1444 BrMBB->addSuccessor(Succ0MBB); 1445 1446 // If this is not a fall-through branch, emit the branch. 1447 if (Succ0MBB != NextBlock) 1448 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1449 MVT::Other, getControlRoot(), 1450 DAG.getBasicBlock(Succ0MBB))); 1451 1452 return; 1453 } 1454 1455 // If this condition is one of the special cases we handle, do special stuff 1456 // now. 1457 const Value *CondVal = I.getCondition(); 1458 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1459 1460 // If this is a series of conditions that are or'd or and'd together, emit 1461 // this as a sequence of branches instead of setcc's with and/or operations. 1462 // As long as jumps are not expensive, this should improve performance. 1463 // For example, instead of something like: 1464 // cmp A, B 1465 // C = seteq 1466 // cmp D, E 1467 // F = setle 1468 // or C, F 1469 // jnz foo 1470 // Emit: 1471 // cmp A, B 1472 // je foo 1473 // cmp D, E 1474 // jle foo 1475 // 1476 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1477 if (!TLI.isJumpExpensive() && 1478 BOp->hasOneUse() && 1479 (BOp->getOpcode() == Instruction::And || 1480 BOp->getOpcode() == Instruction::Or)) { 1481 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1482 BOp->getOpcode()); 1483 // If the compares in later blocks need to use values not currently 1484 // exported from this block, export them now. This block should always 1485 // be the first entry. 1486 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1487 1488 // Allow some cases to be rejected. 1489 if (ShouldEmitAsBranches(SwitchCases)) { 1490 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1491 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1492 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1493 } 1494 1495 // Emit the branch for this block. 1496 visitSwitchCase(SwitchCases[0], BrMBB); 1497 SwitchCases.erase(SwitchCases.begin()); 1498 return; 1499 } 1500 1501 // Okay, we decided not to do this, remove any inserted MBB's and clear 1502 // SwitchCases. 1503 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1504 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1505 1506 SwitchCases.clear(); 1507 } 1508 } 1509 1510 // Create a CaseBlock record representing this branch. 1511 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1512 NULL, Succ0MBB, Succ1MBB, BrMBB); 1513 1514 // Use visitSwitchCase to actually insert the fast branch sequence for this 1515 // cond branch. 1516 visitSwitchCase(CB, BrMBB); 1517 } 1518 1519 /// visitSwitchCase - Emits the necessary code to represent a single node in 1520 /// the binary search tree resulting from lowering a switch instruction. 1521 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1522 MachineBasicBlock *SwitchBB) { 1523 SDValue Cond; 1524 SDValue CondLHS = getValue(CB.CmpLHS); 1525 DebugLoc dl = getCurDebugLoc(); 1526 1527 // Build the setcc now. 1528 if (CB.CmpMHS == NULL) { 1529 // Fold "(X == true)" to X and "(X == false)" to !X to 1530 // handle common cases produced by branch lowering. 1531 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1532 CB.CC == ISD::SETEQ) 1533 Cond = CondLHS; 1534 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1535 CB.CC == ISD::SETEQ) { 1536 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1537 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1538 } else 1539 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1540 } else { 1541 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1542 1543 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1544 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1545 1546 SDValue CmpOp = getValue(CB.CmpMHS); 1547 EVT VT = CmpOp.getValueType(); 1548 1549 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1550 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1551 ISD::SETLE); 1552 } else { 1553 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1554 VT, CmpOp, DAG.getConstant(Low, VT)); 1555 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1556 DAG.getConstant(High-Low, VT), ISD::SETULE); 1557 } 1558 } 1559 1560 // Update successor info 1561 addSuccessorWithWeight(SwitchBB, CB.TrueBB); 1562 addSuccessorWithWeight(SwitchBB, CB.FalseBB); 1563 1564 // Set NextBlock to be the MBB immediately after the current one, if any. 1565 // This is used to avoid emitting unnecessary branches to the next block. 1566 MachineBasicBlock *NextBlock = 0; 1567 MachineFunction::iterator BBI = SwitchBB; 1568 if (++BBI != FuncInfo.MF->end()) 1569 NextBlock = BBI; 1570 1571 // If the lhs block is the next block, invert the condition so that we can 1572 // fall through to the lhs instead of the rhs block. 1573 if (CB.TrueBB == NextBlock) { 1574 std::swap(CB.TrueBB, CB.FalseBB); 1575 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1576 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1577 } 1578 1579 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1580 MVT::Other, getControlRoot(), Cond, 1581 DAG.getBasicBlock(CB.TrueBB)); 1582 1583 // Insert the false branch. Do this even if it's a fall through branch, 1584 // this makes it easier to do DAG optimizations which require inverting 1585 // the branch condition. 1586 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1587 DAG.getBasicBlock(CB.FalseBB)); 1588 1589 DAG.setRoot(BrCond); 1590 } 1591 1592 /// visitJumpTable - Emit JumpTable node in the current MBB 1593 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1594 // Emit the code for the jump table 1595 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1596 EVT PTy = TLI.getPointerTy(); 1597 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1598 JT.Reg, PTy); 1599 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1600 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1601 MVT::Other, Index.getValue(1), 1602 Table, Index); 1603 DAG.setRoot(BrJumpTable); 1604 } 1605 1606 /// visitJumpTableHeader - This function emits necessary code to produce index 1607 /// in the JumpTable from switch case. 1608 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1609 JumpTableHeader &JTH, 1610 MachineBasicBlock *SwitchBB) { 1611 // Subtract the lowest switch case value from the value being switched on and 1612 // conditional branch to default mbb if the result is greater than the 1613 // difference between smallest and largest cases. 1614 SDValue SwitchOp = getValue(JTH.SValue); 1615 EVT VT = SwitchOp.getValueType(); 1616 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1617 DAG.getConstant(JTH.First, VT)); 1618 1619 // The SDNode we just created, which holds the value being switched on minus 1620 // the smallest case value, needs to be copied to a virtual register so it 1621 // can be used as an index into the jump table in a subsequent basic block. 1622 // This value may be smaller or larger than the target's pointer type, and 1623 // therefore require extension or truncating. 1624 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1625 1626 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1627 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1628 JumpTableReg, SwitchOp); 1629 JT.Reg = JumpTableReg; 1630 1631 // Emit the range check for the jump table, and branch to the default block 1632 // for the switch statement if the value being switched on exceeds the largest 1633 // case in the switch. 1634 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1635 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1636 DAG.getConstant(JTH.Last-JTH.First,VT), 1637 ISD::SETUGT); 1638 1639 // Set NextBlock to be the MBB immediately after the current one, if any. 1640 // This is used to avoid emitting unnecessary branches to the next block. 1641 MachineBasicBlock *NextBlock = 0; 1642 MachineFunction::iterator BBI = SwitchBB; 1643 1644 if (++BBI != FuncInfo.MF->end()) 1645 NextBlock = BBI; 1646 1647 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1648 MVT::Other, CopyTo, CMP, 1649 DAG.getBasicBlock(JT.Default)); 1650 1651 if (JT.MBB != NextBlock) 1652 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1653 DAG.getBasicBlock(JT.MBB)); 1654 1655 DAG.setRoot(BrCond); 1656 } 1657 1658 /// visitBitTestHeader - This function emits necessary code to produce value 1659 /// suitable for "bit tests" 1660 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1661 MachineBasicBlock *SwitchBB) { 1662 // Subtract the minimum value 1663 SDValue SwitchOp = getValue(B.SValue); 1664 EVT VT = SwitchOp.getValueType(); 1665 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1666 DAG.getConstant(B.First, VT)); 1667 1668 // Check range 1669 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1670 TLI.getSetCCResultType(Sub.getValueType()), 1671 Sub, DAG.getConstant(B.Range, VT), 1672 ISD::SETUGT); 1673 1674 // Determine the type of the test operands. 1675 bool UsePtrType = false; 1676 if (!TLI.isTypeLegal(VT)) 1677 UsePtrType = true; 1678 else { 1679 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1680 if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) { 1681 // Switch table case range are encoded into series of masks. 1682 // Just use pointer type, it's guaranteed to fit. 1683 UsePtrType = true; 1684 break; 1685 } 1686 } 1687 if (UsePtrType) { 1688 VT = TLI.getPointerTy(); 1689 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1690 } 1691 1692 B.RegVT = VT; 1693 B.Reg = FuncInfo.CreateReg(VT); 1694 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1695 B.Reg, Sub); 1696 1697 // Set NextBlock to be the MBB immediately after the current one, if any. 1698 // This is used to avoid emitting unnecessary branches to the next block. 1699 MachineBasicBlock *NextBlock = 0; 1700 MachineFunction::iterator BBI = SwitchBB; 1701 if (++BBI != FuncInfo.MF->end()) 1702 NextBlock = BBI; 1703 1704 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1705 1706 addSuccessorWithWeight(SwitchBB, B.Default); 1707 addSuccessorWithWeight(SwitchBB, MBB); 1708 1709 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1710 MVT::Other, CopyTo, RangeCmp, 1711 DAG.getBasicBlock(B.Default)); 1712 1713 if (MBB != NextBlock) 1714 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1715 DAG.getBasicBlock(MBB)); 1716 1717 DAG.setRoot(BrRange); 1718 } 1719 1720 /// visitBitTestCase - this function produces one "bit test" 1721 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1722 MachineBasicBlock* NextMBB, 1723 unsigned Reg, 1724 BitTestCase &B, 1725 MachineBasicBlock *SwitchBB) { 1726 EVT VT = BB.RegVT; 1727 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1728 Reg, VT); 1729 SDValue Cmp; 1730 unsigned PopCount = CountPopulation_64(B.Mask); 1731 if (PopCount == 1) { 1732 // Testing for a single bit; just compare the shift count with what it 1733 // would need to be to shift a 1 bit in that position. 1734 Cmp = DAG.getSetCC(getCurDebugLoc(), 1735 TLI.getSetCCResultType(VT), 1736 ShiftOp, 1737 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1738 ISD::SETEQ); 1739 } else if (PopCount == BB.Range) { 1740 // There is only one zero bit in the range, test for it directly. 1741 Cmp = DAG.getSetCC(getCurDebugLoc(), 1742 TLI.getSetCCResultType(VT), 1743 ShiftOp, 1744 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1745 ISD::SETNE); 1746 } else { 1747 // Make desired shift 1748 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1749 DAG.getConstant(1, VT), ShiftOp); 1750 1751 // Emit bit tests and jumps 1752 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1753 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1754 Cmp = DAG.getSetCC(getCurDebugLoc(), 1755 TLI.getSetCCResultType(VT), 1756 AndOp, DAG.getConstant(0, VT), 1757 ISD::SETNE); 1758 } 1759 1760 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1761 addSuccessorWithWeight(SwitchBB, NextMBB); 1762 1763 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1764 MVT::Other, getControlRoot(), 1765 Cmp, DAG.getBasicBlock(B.TargetBB)); 1766 1767 // Set NextBlock to be the MBB immediately after the current one, if any. 1768 // This is used to avoid emitting unnecessary branches to the next block. 1769 MachineBasicBlock *NextBlock = 0; 1770 MachineFunction::iterator BBI = SwitchBB; 1771 if (++BBI != FuncInfo.MF->end()) 1772 NextBlock = BBI; 1773 1774 if (NextMBB != NextBlock) 1775 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1776 DAG.getBasicBlock(NextMBB)); 1777 1778 DAG.setRoot(BrAnd); 1779 } 1780 1781 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1782 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1783 1784 // Retrieve successors. 1785 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1786 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1787 1788 const Value *Callee(I.getCalledValue()); 1789 if (isa<InlineAsm>(Callee)) 1790 visitInlineAsm(&I); 1791 else 1792 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1793 1794 // If the value of the invoke is used outside of its defining block, make it 1795 // available as a virtual register. 1796 CopyToExportRegsIfNeeded(&I); 1797 1798 // Update successor info 1799 InvokeMBB->addSuccessor(Return); 1800 InvokeMBB->addSuccessor(LandingPad); 1801 1802 // Drop into normal successor. 1803 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1804 MVT::Other, getControlRoot(), 1805 DAG.getBasicBlock(Return))); 1806 } 1807 1808 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1809 } 1810 1811 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1812 /// small case ranges). 1813 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1814 CaseRecVector& WorkList, 1815 const Value* SV, 1816 MachineBasicBlock *Default, 1817 MachineBasicBlock *SwitchBB) { 1818 Case& BackCase = *(CR.Range.second-1); 1819 1820 // Size is the number of Cases represented by this range. 1821 size_t Size = CR.Range.second - CR.Range.first; 1822 if (Size > 3) 1823 return false; 1824 1825 // Get the MachineFunction which holds the current MBB. This is used when 1826 // inserting any additional MBBs necessary to represent the switch. 1827 MachineFunction *CurMF = FuncInfo.MF; 1828 1829 // Figure out which block is immediately after the current one. 1830 MachineBasicBlock *NextBlock = 0; 1831 MachineFunction::iterator BBI = CR.CaseBB; 1832 1833 if (++BBI != FuncInfo.MF->end()) 1834 NextBlock = BBI; 1835 1836 // If any two of the cases has the same destination, and if one value 1837 // is the same as the other, but has one bit unset that the other has set, 1838 // use bit manipulation to do two compares at once. For example: 1839 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1840 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1841 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1842 if (Size == 2 && CR.CaseBB == SwitchBB) { 1843 Case &Small = *CR.Range.first; 1844 Case &Big = *(CR.Range.second-1); 1845 1846 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1847 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1848 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1849 1850 // Check that there is only one bit different. 1851 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1852 (SmallValue | BigValue) == BigValue) { 1853 // Isolate the common bit. 1854 APInt CommonBit = BigValue & ~SmallValue; 1855 assert((SmallValue | CommonBit) == BigValue && 1856 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1857 1858 SDValue CondLHS = getValue(SV); 1859 EVT VT = CondLHS.getValueType(); 1860 DebugLoc DL = getCurDebugLoc(); 1861 1862 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1863 DAG.getConstant(CommonBit, VT)); 1864 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1865 Or, DAG.getConstant(BigValue, VT), 1866 ISD::SETEQ); 1867 1868 // Update successor info. 1869 SwitchBB->addSuccessor(Small.BB); 1870 SwitchBB->addSuccessor(Default); 1871 1872 // Insert the true branch. 1873 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1874 getControlRoot(), Cond, 1875 DAG.getBasicBlock(Small.BB)); 1876 1877 // Insert the false branch. 1878 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1879 DAG.getBasicBlock(Default)); 1880 1881 DAG.setRoot(BrCond); 1882 return true; 1883 } 1884 } 1885 } 1886 1887 // Rearrange the case blocks so that the last one falls through if possible. 1888 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1889 // The last case block won't fall through into 'NextBlock' if we emit the 1890 // branches in this order. See if rearranging a case value would help. 1891 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1892 if (I->BB == NextBlock) { 1893 std::swap(*I, BackCase); 1894 break; 1895 } 1896 } 1897 } 1898 1899 // Create a CaseBlock record representing a conditional branch to 1900 // the Case's target mbb if the value being switched on SV is equal 1901 // to C. 1902 MachineBasicBlock *CurBlock = CR.CaseBB; 1903 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1904 MachineBasicBlock *FallThrough; 1905 if (I != E-1) { 1906 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1907 CurMF->insert(BBI, FallThrough); 1908 1909 // Put SV in a virtual register to make it available from the new blocks. 1910 ExportFromCurrentBlock(SV); 1911 } else { 1912 // If the last case doesn't match, go to the default block. 1913 FallThrough = Default; 1914 } 1915 1916 const Value *RHS, *LHS, *MHS; 1917 ISD::CondCode CC; 1918 if (I->High == I->Low) { 1919 // This is just small small case range :) containing exactly 1 case 1920 CC = ISD::SETEQ; 1921 LHS = SV; RHS = I->High; MHS = NULL; 1922 } else { 1923 CC = ISD::SETLE; 1924 LHS = I->Low; MHS = SV; RHS = I->High; 1925 } 1926 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1927 1928 // If emitting the first comparison, just call visitSwitchCase to emit the 1929 // code into the current block. Otherwise, push the CaseBlock onto the 1930 // vector to be later processed by SDISel, and insert the node's MBB 1931 // before the next MBB. 1932 if (CurBlock == SwitchBB) 1933 visitSwitchCase(CB, SwitchBB); 1934 else 1935 SwitchCases.push_back(CB); 1936 1937 CurBlock = FallThrough; 1938 } 1939 1940 return true; 1941 } 1942 1943 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1944 return !DisableJumpTables && 1945 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1946 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1947 } 1948 1949 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1950 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1951 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 1952 return (LastExt - FirstExt + 1ULL); 1953 } 1954 1955 /// handleJTSwitchCase - Emit jumptable for current switch case range 1956 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1957 CaseRecVector& WorkList, 1958 const Value* SV, 1959 MachineBasicBlock* Default, 1960 MachineBasicBlock *SwitchBB) { 1961 Case& FrontCase = *CR.Range.first; 1962 Case& BackCase = *(CR.Range.second-1); 1963 1964 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1965 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1966 1967 APInt TSize(First.getBitWidth(), 0); 1968 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1969 I!=E; ++I) 1970 TSize += I->size(); 1971 1972 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1973 return false; 1974 1975 APInt Range = ComputeRange(First, Last); 1976 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1977 if (Density < 0.4) 1978 return false; 1979 1980 DEBUG(dbgs() << "Lowering jump table\n" 1981 << "First entry: " << First << ". Last entry: " << Last << '\n' 1982 << "Range: " << Range 1983 << ". Size: " << TSize << ". Density: " << Density << "\n\n"); 1984 1985 // Get the MachineFunction which holds the current MBB. This is used when 1986 // inserting any additional MBBs necessary to represent the switch. 1987 MachineFunction *CurMF = FuncInfo.MF; 1988 1989 // Figure out which block is immediately after the current one. 1990 MachineFunction::iterator BBI = CR.CaseBB; 1991 ++BBI; 1992 1993 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1994 1995 // Create a new basic block to hold the code for loading the address 1996 // of the jump table, and jumping to it. Update successor information; 1997 // we will either branch to the default case for the switch, or the jump 1998 // table. 1999 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2000 CurMF->insert(BBI, JumpTableBB); 2001 2002 addSuccessorWithWeight(CR.CaseBB, Default); 2003 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2004 2005 // Build a vector of destination BBs, corresponding to each target 2006 // of the jump table. If the value of the jump table slot corresponds to 2007 // a case statement, push the case's BB onto the vector, otherwise, push 2008 // the default BB. 2009 std::vector<MachineBasicBlock*> DestBBs; 2010 APInt TEI = First; 2011 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2012 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2013 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2014 2015 if (Low.sle(TEI) && TEI.sle(High)) { 2016 DestBBs.push_back(I->BB); 2017 if (TEI==High) 2018 ++I; 2019 } else { 2020 DestBBs.push_back(Default); 2021 } 2022 } 2023 2024 // Update successor info. Add one edge to each unique successor. 2025 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2026 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2027 E = DestBBs.end(); I != E; ++I) { 2028 if (!SuccsHandled[(*I)->getNumber()]) { 2029 SuccsHandled[(*I)->getNumber()] = true; 2030 addSuccessorWithWeight(JumpTableBB, *I); 2031 } 2032 } 2033 2034 // Create a jump table index for this jump table. 2035 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2036 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2037 ->createJumpTableIndex(DestBBs); 2038 2039 // Set the jump table information so that we can codegen it as a second 2040 // MachineBasicBlock 2041 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2042 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2043 if (CR.CaseBB == SwitchBB) 2044 visitJumpTableHeader(JT, JTH, SwitchBB); 2045 2046 JTCases.push_back(JumpTableBlock(JTH, JT)); 2047 2048 return true; 2049 } 2050 2051 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2052 /// 2 subtrees. 2053 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2054 CaseRecVector& WorkList, 2055 const Value* SV, 2056 MachineBasicBlock *Default, 2057 MachineBasicBlock *SwitchBB) { 2058 // Get the MachineFunction which holds the current MBB. This is used when 2059 // inserting any additional MBBs necessary to represent the switch. 2060 MachineFunction *CurMF = FuncInfo.MF; 2061 2062 // Figure out which block is immediately after the current one. 2063 MachineFunction::iterator BBI = CR.CaseBB; 2064 ++BBI; 2065 2066 Case& FrontCase = *CR.Range.first; 2067 Case& BackCase = *(CR.Range.second-1); 2068 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2069 2070 // Size is the number of Cases represented by this range. 2071 unsigned Size = CR.Range.second - CR.Range.first; 2072 2073 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2074 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2075 double FMetric = 0; 2076 CaseItr Pivot = CR.Range.first + Size/2; 2077 2078 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2079 // (heuristically) allow us to emit JumpTable's later. 2080 APInt TSize(First.getBitWidth(), 0); 2081 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2082 I!=E; ++I) 2083 TSize += I->size(); 2084 2085 APInt LSize = FrontCase.size(); 2086 APInt RSize = TSize-LSize; 2087 DEBUG(dbgs() << "Selecting best pivot: \n" 2088 << "First: " << First << ", Last: " << Last <<'\n' 2089 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2090 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2091 J!=E; ++I, ++J) { 2092 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2093 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2094 APInt Range = ComputeRange(LEnd, RBegin); 2095 assert((Range - 2ULL).isNonNegative() && 2096 "Invalid case distance"); 2097 // Use volatile double here to avoid excess precision issues on some hosts, 2098 // e.g. that use 80-bit X87 registers. 2099 volatile double LDensity = 2100 (double)LSize.roundToDouble() / 2101 (LEnd - First + 1ULL).roundToDouble(); 2102 volatile double RDensity = 2103 (double)RSize.roundToDouble() / 2104 (Last - RBegin + 1ULL).roundToDouble(); 2105 double Metric = Range.logBase2()*(LDensity+RDensity); 2106 // Should always split in some non-trivial place 2107 DEBUG(dbgs() <<"=>Step\n" 2108 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2109 << "LDensity: " << LDensity 2110 << ", RDensity: " << RDensity << '\n' 2111 << "Metric: " << Metric << '\n'); 2112 if (FMetric < Metric) { 2113 Pivot = J; 2114 FMetric = Metric; 2115 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2116 } 2117 2118 LSize += J->size(); 2119 RSize -= J->size(); 2120 } 2121 if (areJTsAllowed(TLI)) { 2122 // If our case is dense we *really* should handle it earlier! 2123 assert((FMetric > 0) && "Should handle dense range earlier!"); 2124 } else { 2125 Pivot = CR.Range.first + Size/2; 2126 } 2127 2128 CaseRange LHSR(CR.Range.first, Pivot); 2129 CaseRange RHSR(Pivot, CR.Range.second); 2130 Constant *C = Pivot->Low; 2131 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2132 2133 // We know that we branch to the LHS if the Value being switched on is 2134 // less than the Pivot value, C. We use this to optimize our binary 2135 // tree a bit, by recognizing that if SV is greater than or equal to the 2136 // LHS's Case Value, and that Case Value is exactly one less than the 2137 // Pivot's Value, then we can branch directly to the LHS's Target, 2138 // rather than creating a leaf node for it. 2139 if ((LHSR.second - LHSR.first) == 1 && 2140 LHSR.first->High == CR.GE && 2141 cast<ConstantInt>(C)->getValue() == 2142 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2143 TrueBB = LHSR.first->BB; 2144 } else { 2145 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2146 CurMF->insert(BBI, TrueBB); 2147 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2148 2149 // Put SV in a virtual register to make it available from the new blocks. 2150 ExportFromCurrentBlock(SV); 2151 } 2152 2153 // Similar to the optimization above, if the Value being switched on is 2154 // known to be less than the Constant CR.LT, and the current Case Value 2155 // is CR.LT - 1, then we can branch directly to the target block for 2156 // the current Case Value, rather than emitting a RHS leaf node for it. 2157 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2158 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2159 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2160 FalseBB = RHSR.first->BB; 2161 } else { 2162 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2163 CurMF->insert(BBI, FalseBB); 2164 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2165 2166 // Put SV in a virtual register to make it available from the new blocks. 2167 ExportFromCurrentBlock(SV); 2168 } 2169 2170 // Create a CaseBlock record representing a conditional branch to 2171 // the LHS node if the value being switched on SV is less than C. 2172 // Otherwise, branch to LHS. 2173 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2174 2175 if (CR.CaseBB == SwitchBB) 2176 visitSwitchCase(CB, SwitchBB); 2177 else 2178 SwitchCases.push_back(CB); 2179 2180 return true; 2181 } 2182 2183 /// handleBitTestsSwitchCase - if current case range has few destination and 2184 /// range span less, than machine word bitwidth, encode case range into series 2185 /// of masks and emit bit tests with these masks. 2186 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2187 CaseRecVector& WorkList, 2188 const Value* SV, 2189 MachineBasicBlock* Default, 2190 MachineBasicBlock *SwitchBB){ 2191 EVT PTy = TLI.getPointerTy(); 2192 unsigned IntPtrBits = PTy.getSizeInBits(); 2193 2194 Case& FrontCase = *CR.Range.first; 2195 Case& BackCase = *(CR.Range.second-1); 2196 2197 // Get the MachineFunction which holds the current MBB. This is used when 2198 // inserting any additional MBBs necessary to represent the switch. 2199 MachineFunction *CurMF = FuncInfo.MF; 2200 2201 // If target does not have legal shift left, do not emit bit tests at all. 2202 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2203 return false; 2204 2205 size_t numCmps = 0; 2206 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2207 I!=E; ++I) { 2208 // Single case counts one, case range - two. 2209 numCmps += (I->Low == I->High ? 1 : 2); 2210 } 2211 2212 // Count unique destinations 2213 SmallSet<MachineBasicBlock*, 4> Dests; 2214 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2215 Dests.insert(I->BB); 2216 if (Dests.size() > 3) 2217 // Don't bother the code below, if there are too much unique destinations 2218 return false; 2219 } 2220 DEBUG(dbgs() << "Total number of unique destinations: " 2221 << Dests.size() << '\n' 2222 << "Total number of comparisons: " << numCmps << '\n'); 2223 2224 // Compute span of values. 2225 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2226 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2227 APInt cmpRange = maxValue - minValue; 2228 2229 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2230 << "Low bound: " << minValue << '\n' 2231 << "High bound: " << maxValue << '\n'); 2232 2233 if (cmpRange.uge(IntPtrBits) || 2234 (!(Dests.size() == 1 && numCmps >= 3) && 2235 !(Dests.size() == 2 && numCmps >= 5) && 2236 !(Dests.size() >= 3 && numCmps >= 6))) 2237 return false; 2238 2239 DEBUG(dbgs() << "Emitting bit tests\n"); 2240 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2241 2242 // Optimize the case where all the case values fit in a 2243 // word without having to subtract minValue. In this case, 2244 // we can optimize away the subtraction. 2245 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2246 cmpRange = maxValue; 2247 } else { 2248 lowBound = minValue; 2249 } 2250 2251 CaseBitsVector CasesBits; 2252 unsigned i, count = 0; 2253 2254 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2255 MachineBasicBlock* Dest = I->BB; 2256 for (i = 0; i < count; ++i) 2257 if (Dest == CasesBits[i].BB) 2258 break; 2259 2260 if (i == count) { 2261 assert((count < 3) && "Too much destinations to test!"); 2262 CasesBits.push_back(CaseBits(0, Dest, 0)); 2263 count++; 2264 } 2265 2266 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2267 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2268 2269 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2270 uint64_t hi = (highValue - lowBound).getZExtValue(); 2271 2272 for (uint64_t j = lo; j <= hi; j++) { 2273 CasesBits[i].Mask |= 1ULL << j; 2274 CasesBits[i].Bits++; 2275 } 2276 2277 } 2278 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2279 2280 BitTestInfo BTC; 2281 2282 // Figure out which block is immediately after the current one. 2283 MachineFunction::iterator BBI = CR.CaseBB; 2284 ++BBI; 2285 2286 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2287 2288 DEBUG(dbgs() << "Cases:\n"); 2289 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2290 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2291 << ", Bits: " << CasesBits[i].Bits 2292 << ", BB: " << CasesBits[i].BB << '\n'); 2293 2294 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2295 CurMF->insert(BBI, CaseBB); 2296 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2297 CaseBB, 2298 CasesBits[i].BB)); 2299 2300 // Put SV in a virtual register to make it available from the new blocks. 2301 ExportFromCurrentBlock(SV); 2302 } 2303 2304 BitTestBlock BTB(lowBound, cmpRange, SV, 2305 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2306 CR.CaseBB, Default, BTC); 2307 2308 if (CR.CaseBB == SwitchBB) 2309 visitBitTestHeader(BTB, SwitchBB); 2310 2311 BitTestCases.push_back(BTB); 2312 2313 return true; 2314 } 2315 2316 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2317 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2318 const SwitchInst& SI) { 2319 size_t numCmps = 0; 2320 2321 // Start with "simple" cases 2322 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2323 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2324 Cases.push_back(Case(SI.getSuccessorValue(i), 2325 SI.getSuccessorValue(i), 2326 SMBB)); 2327 } 2328 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2329 2330 // Merge case into clusters 2331 if (Cases.size() >= 2) 2332 // Must recompute end() each iteration because it may be 2333 // invalidated by erase if we hold on to it 2334 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2335 J != Cases.end(); ) { 2336 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2337 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2338 MachineBasicBlock* nextBB = J->BB; 2339 MachineBasicBlock* currentBB = I->BB; 2340 2341 // If the two neighboring cases go to the same destination, merge them 2342 // into a single case. 2343 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2344 I->High = J->High; 2345 J = Cases.erase(J); 2346 } else { 2347 I = J++; 2348 } 2349 } 2350 2351 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2352 if (I->Low != I->High) 2353 // A range counts double, since it requires two compares. 2354 ++numCmps; 2355 } 2356 2357 return numCmps; 2358 } 2359 2360 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2361 MachineBasicBlock *Last) { 2362 // Update JTCases. 2363 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2364 if (JTCases[i].first.HeaderBB == First) 2365 JTCases[i].first.HeaderBB = Last; 2366 2367 // Update BitTestCases. 2368 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2369 if (BitTestCases[i].Parent == First) 2370 BitTestCases[i].Parent = Last; 2371 } 2372 2373 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2374 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2375 2376 // Figure out which block is immediately after the current one. 2377 MachineBasicBlock *NextBlock = 0; 2378 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2379 2380 // If there is only the default destination, branch to it if it is not the 2381 // next basic block. Otherwise, just fall through. 2382 if (SI.getNumOperands() == 2) { 2383 // Update machine-CFG edges. 2384 2385 // If this is not a fall-through branch, emit the branch. 2386 SwitchMBB->addSuccessor(Default); 2387 if (Default != NextBlock) 2388 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2389 MVT::Other, getControlRoot(), 2390 DAG.getBasicBlock(Default))); 2391 2392 return; 2393 } 2394 2395 // If there are any non-default case statements, create a vector of Cases 2396 // representing each one, and sort the vector so that we can efficiently 2397 // create a binary search tree from them. 2398 CaseVector Cases; 2399 size_t numCmps = Clusterify(Cases, SI); 2400 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2401 << ". Total compares: " << numCmps << '\n'); 2402 numCmps = 0; 2403 2404 // Get the Value to be switched on and default basic blocks, which will be 2405 // inserted into CaseBlock records, representing basic blocks in the binary 2406 // search tree. 2407 const Value *SV = SI.getOperand(0); 2408 2409 // Push the initial CaseRec onto the worklist 2410 CaseRecVector WorkList; 2411 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2412 CaseRange(Cases.begin(),Cases.end()))); 2413 2414 while (!WorkList.empty()) { 2415 // Grab a record representing a case range to process off the worklist 2416 CaseRec CR = WorkList.back(); 2417 WorkList.pop_back(); 2418 2419 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2420 continue; 2421 2422 // If the range has few cases (two or less) emit a series of specific 2423 // tests. 2424 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2425 continue; 2426 2427 // If the switch has more than 5 blocks, and at least 40% dense, and the 2428 // target supports indirect branches, then emit a jump table rather than 2429 // lowering the switch to a binary tree of conditional branches. 2430 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2431 continue; 2432 2433 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2434 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2435 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2436 } 2437 } 2438 2439 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2440 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2441 2442 // Update machine-CFG edges with unique successors. 2443 SmallVector<BasicBlock*, 32> succs; 2444 succs.reserve(I.getNumSuccessors()); 2445 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2446 succs.push_back(I.getSuccessor(i)); 2447 array_pod_sort(succs.begin(), succs.end()); 2448 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2449 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2450 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2451 addSuccessorWithWeight(IndirectBrMBB, Succ); 2452 } 2453 2454 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2455 MVT::Other, getControlRoot(), 2456 getValue(I.getAddress()))); 2457 } 2458 2459 void SelectionDAGBuilder::visitFSub(const User &I) { 2460 // -0.0 - X --> fneg 2461 Type *Ty = I.getType(); 2462 if (isa<Constant>(I.getOperand(0)) && 2463 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2464 SDValue Op2 = getValue(I.getOperand(1)); 2465 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2466 Op2.getValueType(), Op2)); 2467 return; 2468 } 2469 2470 visitBinary(I, ISD::FSUB); 2471 } 2472 2473 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2474 SDValue Op1 = getValue(I.getOperand(0)); 2475 SDValue Op2 = getValue(I.getOperand(1)); 2476 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2477 Op1.getValueType(), Op1, Op2)); 2478 } 2479 2480 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2481 SDValue Op1 = getValue(I.getOperand(0)); 2482 SDValue Op2 = getValue(I.getOperand(1)); 2483 2484 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2485 2486 // Coerce the shift amount to the right type if we can. 2487 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2488 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2489 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2490 DebugLoc DL = getCurDebugLoc(); 2491 2492 // If the operand is smaller than the shift count type, promote it. 2493 if (ShiftSize > Op2Size) 2494 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2495 2496 // If the operand is larger than the shift count type but the shift 2497 // count type has enough bits to represent any shift value, truncate 2498 // it now. This is a common case and it exposes the truncate to 2499 // optimization early. 2500 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2501 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2502 // Otherwise we'll need to temporarily settle for some other convenient 2503 // type. Type legalization will make adjustments once the shiftee is split. 2504 else 2505 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2506 } 2507 2508 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2509 Op1.getValueType(), Op1, Op2)); 2510 } 2511 2512 void SelectionDAGBuilder::visitSDiv(const User &I) { 2513 SDValue Op1 = getValue(I.getOperand(0)); 2514 SDValue Op2 = getValue(I.getOperand(1)); 2515 2516 // Turn exact SDivs into multiplications. 2517 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2518 // exact bit. 2519 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2520 !isa<ConstantSDNode>(Op1) && 2521 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2522 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2523 else 2524 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2525 Op1, Op2)); 2526 } 2527 2528 void SelectionDAGBuilder::visitICmp(const User &I) { 2529 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2530 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2531 predicate = IC->getPredicate(); 2532 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2533 predicate = ICmpInst::Predicate(IC->getPredicate()); 2534 SDValue Op1 = getValue(I.getOperand(0)); 2535 SDValue Op2 = getValue(I.getOperand(1)); 2536 ISD::CondCode Opcode = getICmpCondCode(predicate); 2537 2538 EVT DestVT = TLI.getValueType(I.getType()); 2539 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2540 } 2541 2542 void SelectionDAGBuilder::visitFCmp(const User &I) { 2543 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2544 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2545 predicate = FC->getPredicate(); 2546 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2547 predicate = FCmpInst::Predicate(FC->getPredicate()); 2548 SDValue Op1 = getValue(I.getOperand(0)); 2549 SDValue Op2 = getValue(I.getOperand(1)); 2550 ISD::CondCode Condition = getFCmpCondCode(predicate); 2551 EVT DestVT = TLI.getValueType(I.getType()); 2552 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2553 } 2554 2555 void SelectionDAGBuilder::visitSelect(const User &I) { 2556 SmallVector<EVT, 4> ValueVTs; 2557 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2558 unsigned NumValues = ValueVTs.size(); 2559 if (NumValues == 0) return; 2560 2561 SmallVector<SDValue, 4> Values(NumValues); 2562 SDValue Cond = getValue(I.getOperand(0)); 2563 SDValue TrueVal = getValue(I.getOperand(1)); 2564 SDValue FalseVal = getValue(I.getOperand(2)); 2565 2566 for (unsigned i = 0; i != NumValues; ++i) 2567 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2568 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2569 Cond, 2570 SDValue(TrueVal.getNode(), 2571 TrueVal.getResNo() + i), 2572 SDValue(FalseVal.getNode(), 2573 FalseVal.getResNo() + i)); 2574 2575 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2576 DAG.getVTList(&ValueVTs[0], NumValues), 2577 &Values[0], NumValues)); 2578 } 2579 2580 void SelectionDAGBuilder::visitTrunc(const User &I) { 2581 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2582 SDValue N = getValue(I.getOperand(0)); 2583 EVT DestVT = TLI.getValueType(I.getType()); 2584 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2585 } 2586 2587 void SelectionDAGBuilder::visitZExt(const User &I) { 2588 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2589 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2590 SDValue N = getValue(I.getOperand(0)); 2591 EVT DestVT = TLI.getValueType(I.getType()); 2592 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2593 } 2594 2595 void SelectionDAGBuilder::visitSExt(const User &I) { 2596 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2597 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2598 SDValue N = getValue(I.getOperand(0)); 2599 EVT DestVT = TLI.getValueType(I.getType()); 2600 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2601 } 2602 2603 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2604 // FPTrunc is never a no-op cast, no need to check 2605 SDValue N = getValue(I.getOperand(0)); 2606 EVT DestVT = TLI.getValueType(I.getType()); 2607 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2608 DestVT, N, DAG.getIntPtrConstant(0))); 2609 } 2610 2611 void SelectionDAGBuilder::visitFPExt(const User &I){ 2612 // FPTrunc is never a no-op cast, no need to check 2613 SDValue N = getValue(I.getOperand(0)); 2614 EVT DestVT = TLI.getValueType(I.getType()); 2615 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2616 } 2617 2618 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2619 // FPToUI is never a no-op cast, no need to check 2620 SDValue N = getValue(I.getOperand(0)); 2621 EVT DestVT = TLI.getValueType(I.getType()); 2622 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2623 } 2624 2625 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2626 // FPToSI is never a no-op cast, no need to check 2627 SDValue N = getValue(I.getOperand(0)); 2628 EVT DestVT = TLI.getValueType(I.getType()); 2629 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2630 } 2631 2632 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2633 // UIToFP is never a no-op cast, no need to check 2634 SDValue N = getValue(I.getOperand(0)); 2635 EVT DestVT = TLI.getValueType(I.getType()); 2636 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2637 } 2638 2639 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2640 // SIToFP is never a no-op cast, no need to check 2641 SDValue N = getValue(I.getOperand(0)); 2642 EVT DestVT = TLI.getValueType(I.getType()); 2643 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2644 } 2645 2646 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2647 // What to do depends on the size of the integer and the size of the pointer. 2648 // We can either truncate, zero extend, or no-op, accordingly. 2649 SDValue N = getValue(I.getOperand(0)); 2650 EVT DestVT = TLI.getValueType(I.getType()); 2651 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2652 } 2653 2654 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2655 // What to do depends on the size of the integer and the size of the pointer. 2656 // We can either truncate, zero extend, or no-op, accordingly. 2657 SDValue N = getValue(I.getOperand(0)); 2658 EVT DestVT = TLI.getValueType(I.getType()); 2659 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2660 } 2661 2662 void SelectionDAGBuilder::visitBitCast(const User &I) { 2663 SDValue N = getValue(I.getOperand(0)); 2664 EVT DestVT = TLI.getValueType(I.getType()); 2665 2666 // BitCast assures us that source and destination are the same size so this is 2667 // either a BITCAST or a no-op. 2668 if (DestVT != N.getValueType()) 2669 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2670 DestVT, N)); // convert types. 2671 else 2672 setValue(&I, N); // noop cast. 2673 } 2674 2675 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2676 SDValue InVec = getValue(I.getOperand(0)); 2677 SDValue InVal = getValue(I.getOperand(1)); 2678 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2679 TLI.getPointerTy(), 2680 getValue(I.getOperand(2))); 2681 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2682 TLI.getValueType(I.getType()), 2683 InVec, InVal, InIdx)); 2684 } 2685 2686 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2687 SDValue InVec = getValue(I.getOperand(0)); 2688 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2689 TLI.getPointerTy(), 2690 getValue(I.getOperand(1))); 2691 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2692 TLI.getValueType(I.getType()), InVec, InIdx)); 2693 } 2694 2695 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2696 // from SIndx and increasing to the element length (undefs are allowed). 2697 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2698 unsigned MaskNumElts = Mask.size(); 2699 for (unsigned i = 0; i != MaskNumElts; ++i) 2700 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2701 return false; 2702 return true; 2703 } 2704 2705 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2706 SmallVector<int, 8> Mask; 2707 SDValue Src1 = getValue(I.getOperand(0)); 2708 SDValue Src2 = getValue(I.getOperand(1)); 2709 2710 // Convert the ConstantVector mask operand into an array of ints, with -1 2711 // representing undef values. 2712 SmallVector<Constant*, 8> MaskElts; 2713 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2714 unsigned MaskNumElts = MaskElts.size(); 2715 for (unsigned i = 0; i != MaskNumElts; ++i) { 2716 if (isa<UndefValue>(MaskElts[i])) 2717 Mask.push_back(-1); 2718 else 2719 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2720 } 2721 2722 EVT VT = TLI.getValueType(I.getType()); 2723 EVT SrcVT = Src1.getValueType(); 2724 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2725 2726 if (SrcNumElts == MaskNumElts) { 2727 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2728 &Mask[0])); 2729 return; 2730 } 2731 2732 // Normalize the shuffle vector since mask and vector length don't match. 2733 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2734 // Mask is longer than the source vectors and is a multiple of the source 2735 // vectors. We can use concatenate vector to make the mask and vectors 2736 // lengths match. 2737 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2738 // The shuffle is concatenating two vectors together. 2739 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2740 VT, Src1, Src2)); 2741 return; 2742 } 2743 2744 // Pad both vectors with undefs to make them the same length as the mask. 2745 unsigned NumConcat = MaskNumElts / SrcNumElts; 2746 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2747 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2748 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2749 2750 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2751 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2752 MOps1[0] = Src1; 2753 MOps2[0] = Src2; 2754 2755 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2756 getCurDebugLoc(), VT, 2757 &MOps1[0], NumConcat); 2758 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2759 getCurDebugLoc(), VT, 2760 &MOps2[0], NumConcat); 2761 2762 // Readjust mask for new input vector length. 2763 SmallVector<int, 8> MappedOps; 2764 for (unsigned i = 0; i != MaskNumElts; ++i) { 2765 int Idx = Mask[i]; 2766 if (Idx < (int)SrcNumElts) 2767 MappedOps.push_back(Idx); 2768 else 2769 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2770 } 2771 2772 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2773 &MappedOps[0])); 2774 return; 2775 } 2776 2777 if (SrcNumElts > MaskNumElts) { 2778 // Analyze the access pattern of the vector to see if we can extract 2779 // two subvectors and do the shuffle. The analysis is done by calculating 2780 // the range of elements the mask access on both vectors. 2781 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2782 int MaxRange[2] = {-1, -1}; 2783 2784 for (unsigned i = 0; i != MaskNumElts; ++i) { 2785 int Idx = Mask[i]; 2786 int Input = 0; 2787 if (Idx < 0) 2788 continue; 2789 2790 if (Idx >= (int)SrcNumElts) { 2791 Input = 1; 2792 Idx -= SrcNumElts; 2793 } 2794 if (Idx > MaxRange[Input]) 2795 MaxRange[Input] = Idx; 2796 if (Idx < MinRange[Input]) 2797 MinRange[Input] = Idx; 2798 } 2799 2800 // Check if the access is smaller than the vector size and can we find 2801 // a reasonable extract index. 2802 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2803 // Extract. 2804 int StartIdx[2]; // StartIdx to extract from 2805 for (int Input=0; Input < 2; ++Input) { 2806 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2807 RangeUse[Input] = 0; // Unused 2808 StartIdx[Input] = 0; 2809 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2810 // Fits within range but we should see if we can find a good 2811 // start index that is a multiple of the mask length. 2812 if (MaxRange[Input] < (int)MaskNumElts) { 2813 RangeUse[Input] = 1; // Extract from beginning of the vector 2814 StartIdx[Input] = 0; 2815 } else { 2816 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2817 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2818 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2819 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2820 } 2821 } 2822 } 2823 2824 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2825 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2826 return; 2827 } 2828 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2829 // Extract appropriate subvector and generate a vector shuffle 2830 for (int Input=0; Input < 2; ++Input) { 2831 SDValue &Src = Input == 0 ? Src1 : Src2; 2832 if (RangeUse[Input] == 0) 2833 Src = DAG.getUNDEF(VT); 2834 else 2835 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2836 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2837 } 2838 2839 // Calculate new mask. 2840 SmallVector<int, 8> MappedOps; 2841 for (unsigned i = 0; i != MaskNumElts; ++i) { 2842 int Idx = Mask[i]; 2843 if (Idx < 0) 2844 MappedOps.push_back(Idx); 2845 else if (Idx < (int)SrcNumElts) 2846 MappedOps.push_back(Idx - StartIdx[0]); 2847 else 2848 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2849 } 2850 2851 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2852 &MappedOps[0])); 2853 return; 2854 } 2855 } 2856 2857 // We can't use either concat vectors or extract subvectors so fall back to 2858 // replacing the shuffle with extract and build vector. 2859 // to insert and build vector. 2860 EVT EltVT = VT.getVectorElementType(); 2861 EVT PtrVT = TLI.getPointerTy(); 2862 SmallVector<SDValue,8> Ops; 2863 for (unsigned i = 0; i != MaskNumElts; ++i) { 2864 if (Mask[i] < 0) { 2865 Ops.push_back(DAG.getUNDEF(EltVT)); 2866 } else { 2867 int Idx = Mask[i]; 2868 SDValue Res; 2869 2870 if (Idx < (int)SrcNumElts) 2871 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2872 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2873 else 2874 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2875 EltVT, Src2, 2876 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2877 2878 Ops.push_back(Res); 2879 } 2880 } 2881 2882 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2883 VT, &Ops[0], Ops.size())); 2884 } 2885 2886 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2887 const Value *Op0 = I.getOperand(0); 2888 const Value *Op1 = I.getOperand(1); 2889 Type *AggTy = I.getType(); 2890 Type *ValTy = Op1->getType(); 2891 bool IntoUndef = isa<UndefValue>(Op0); 2892 bool FromUndef = isa<UndefValue>(Op1); 2893 2894 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2895 2896 SmallVector<EVT, 4> AggValueVTs; 2897 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2898 SmallVector<EVT, 4> ValValueVTs; 2899 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2900 2901 unsigned NumAggValues = AggValueVTs.size(); 2902 unsigned NumValValues = ValValueVTs.size(); 2903 SmallVector<SDValue, 4> Values(NumAggValues); 2904 2905 SDValue Agg = getValue(Op0); 2906 unsigned i = 0; 2907 // Copy the beginning value(s) from the original aggregate. 2908 for (; i != LinearIndex; ++i) 2909 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2910 SDValue(Agg.getNode(), Agg.getResNo() + i); 2911 // Copy values from the inserted value(s). 2912 if (NumValValues) { 2913 SDValue Val = getValue(Op1); 2914 for (; i != LinearIndex + NumValValues; ++i) 2915 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2916 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2917 } 2918 // Copy remaining value(s) from the original aggregate. 2919 for (; i != NumAggValues; ++i) 2920 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2921 SDValue(Agg.getNode(), Agg.getResNo() + i); 2922 2923 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2924 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2925 &Values[0], NumAggValues)); 2926 } 2927 2928 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2929 const Value *Op0 = I.getOperand(0); 2930 Type *AggTy = Op0->getType(); 2931 Type *ValTy = I.getType(); 2932 bool OutOfUndef = isa<UndefValue>(Op0); 2933 2934 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2935 2936 SmallVector<EVT, 4> ValValueVTs; 2937 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2938 2939 unsigned NumValValues = ValValueVTs.size(); 2940 2941 // Ignore a extractvalue that produces an empty object 2942 if (!NumValValues) { 2943 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2944 return; 2945 } 2946 2947 SmallVector<SDValue, 4> Values(NumValValues); 2948 2949 SDValue Agg = getValue(Op0); 2950 // Copy out the selected value(s). 2951 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2952 Values[i - LinearIndex] = 2953 OutOfUndef ? 2954 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2955 SDValue(Agg.getNode(), Agg.getResNo() + i); 2956 2957 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2958 DAG.getVTList(&ValValueVTs[0], NumValValues), 2959 &Values[0], NumValValues)); 2960 } 2961 2962 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2963 SDValue N = getValue(I.getOperand(0)); 2964 Type *Ty = I.getOperand(0)->getType(); 2965 2966 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2967 OI != E; ++OI) { 2968 const Value *Idx = *OI; 2969 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2970 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2971 if (Field) { 2972 // N = N + Offset 2973 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2974 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2975 DAG.getIntPtrConstant(Offset)); 2976 } 2977 2978 Ty = StTy->getElementType(Field); 2979 } else { 2980 Ty = cast<SequentialType>(Ty)->getElementType(); 2981 2982 // If this is a constant subscript, handle it quickly. 2983 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2984 if (CI->isZero()) continue; 2985 uint64_t Offs = 2986 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2987 SDValue OffsVal; 2988 EVT PTy = TLI.getPointerTy(); 2989 unsigned PtrBits = PTy.getSizeInBits(); 2990 if (PtrBits < 64) 2991 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2992 TLI.getPointerTy(), 2993 DAG.getConstant(Offs, MVT::i64)); 2994 else 2995 OffsVal = DAG.getIntPtrConstant(Offs); 2996 2997 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2998 OffsVal); 2999 continue; 3000 } 3001 3002 // N = N + Idx * ElementSize; 3003 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3004 TD->getTypeAllocSize(Ty)); 3005 SDValue IdxN = getValue(Idx); 3006 3007 // If the index is smaller or larger than intptr_t, truncate or extend 3008 // it. 3009 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3010 3011 // If this is a multiply by a power of two, turn it into a shl 3012 // immediately. This is a very common case. 3013 if (ElementSize != 1) { 3014 if (ElementSize.isPowerOf2()) { 3015 unsigned Amt = ElementSize.logBase2(); 3016 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3017 N.getValueType(), IdxN, 3018 DAG.getConstant(Amt, TLI.getPointerTy())); 3019 } else { 3020 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3021 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3022 N.getValueType(), IdxN, Scale); 3023 } 3024 } 3025 3026 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3027 N.getValueType(), N, IdxN); 3028 } 3029 } 3030 3031 setValue(&I, N); 3032 } 3033 3034 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3035 // If this is a fixed sized alloca in the entry block of the function, 3036 // allocate it statically on the stack. 3037 if (FuncInfo.StaticAllocaMap.count(&I)) 3038 return; // getValue will auto-populate this. 3039 3040 Type *Ty = I.getAllocatedType(); 3041 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3042 unsigned Align = 3043 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3044 I.getAlignment()); 3045 3046 SDValue AllocSize = getValue(I.getArraySize()); 3047 3048 EVT IntPtr = TLI.getPointerTy(); 3049 if (AllocSize.getValueType() != IntPtr) 3050 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3051 3052 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3053 AllocSize, 3054 DAG.getConstant(TySize, IntPtr)); 3055 3056 // Handle alignment. If the requested alignment is less than or equal to 3057 // the stack alignment, ignore it. If the size is greater than or equal to 3058 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3059 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3060 if (Align <= StackAlign) 3061 Align = 0; 3062 3063 // Round the size of the allocation up to the stack alignment size 3064 // by add SA-1 to the size. 3065 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3066 AllocSize.getValueType(), AllocSize, 3067 DAG.getIntPtrConstant(StackAlign-1)); 3068 3069 // Mask out the low bits for alignment purposes. 3070 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3071 AllocSize.getValueType(), AllocSize, 3072 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3073 3074 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3075 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3076 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3077 VTs, Ops, 3); 3078 setValue(&I, DSA); 3079 DAG.setRoot(DSA.getValue(1)); 3080 3081 // Inform the Frame Information that we have just allocated a variable-sized 3082 // object. 3083 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3084 } 3085 3086 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3087 const Value *SV = I.getOperand(0); 3088 SDValue Ptr = getValue(SV); 3089 3090 Type *Ty = I.getType(); 3091 3092 bool isVolatile = I.isVolatile(); 3093 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3094 unsigned Alignment = I.getAlignment(); 3095 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3096 3097 SmallVector<EVT, 4> ValueVTs; 3098 SmallVector<uint64_t, 4> Offsets; 3099 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3100 unsigned NumValues = ValueVTs.size(); 3101 if (NumValues == 0) 3102 return; 3103 3104 SDValue Root; 3105 bool ConstantMemory = false; 3106 if (I.isVolatile() || NumValues > MaxParallelChains) 3107 // Serialize volatile loads with other side effects. 3108 Root = getRoot(); 3109 else if (AA->pointsToConstantMemory( 3110 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3111 // Do not serialize (non-volatile) loads of constant memory with anything. 3112 Root = DAG.getEntryNode(); 3113 ConstantMemory = true; 3114 } else { 3115 // Do not serialize non-volatile loads against each other. 3116 Root = DAG.getRoot(); 3117 } 3118 3119 SmallVector<SDValue, 4> Values(NumValues); 3120 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3121 NumValues)); 3122 EVT PtrVT = Ptr.getValueType(); 3123 unsigned ChainI = 0; 3124 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3125 // Serializing loads here may result in excessive register pressure, and 3126 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3127 // could recover a bit by hoisting nodes upward in the chain by recognizing 3128 // they are side-effect free or do not alias. The optimizer should really 3129 // avoid this case by converting large object/array copies to llvm.memcpy 3130 // (MaxParallelChains should always remain as failsafe). 3131 if (ChainI == MaxParallelChains) { 3132 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3133 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3134 MVT::Other, &Chains[0], ChainI); 3135 Root = Chain; 3136 ChainI = 0; 3137 } 3138 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3139 PtrVT, Ptr, 3140 DAG.getConstant(Offsets[i], PtrVT)); 3141 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3142 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3143 isNonTemporal, Alignment, TBAAInfo); 3144 3145 Values[i] = L; 3146 Chains[ChainI] = L.getValue(1); 3147 } 3148 3149 if (!ConstantMemory) { 3150 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3151 MVT::Other, &Chains[0], ChainI); 3152 if (isVolatile) 3153 DAG.setRoot(Chain); 3154 else 3155 PendingLoads.push_back(Chain); 3156 } 3157 3158 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3159 DAG.getVTList(&ValueVTs[0], NumValues), 3160 &Values[0], NumValues)); 3161 } 3162 3163 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3164 const Value *SrcV = I.getOperand(0); 3165 const Value *PtrV = I.getOperand(1); 3166 3167 SmallVector<EVT, 4> ValueVTs; 3168 SmallVector<uint64_t, 4> Offsets; 3169 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3170 unsigned NumValues = ValueVTs.size(); 3171 if (NumValues == 0) 3172 return; 3173 3174 // Get the lowered operands. Note that we do this after 3175 // checking if NumResults is zero, because with zero results 3176 // the operands won't have values in the map. 3177 SDValue Src = getValue(SrcV); 3178 SDValue Ptr = getValue(PtrV); 3179 3180 SDValue Root = getRoot(); 3181 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3182 NumValues)); 3183 EVT PtrVT = Ptr.getValueType(); 3184 bool isVolatile = I.isVolatile(); 3185 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3186 unsigned Alignment = I.getAlignment(); 3187 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3188 3189 unsigned ChainI = 0; 3190 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3191 // See visitLoad comments. 3192 if (ChainI == MaxParallelChains) { 3193 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3194 MVT::Other, &Chains[0], ChainI); 3195 Root = Chain; 3196 ChainI = 0; 3197 } 3198 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3199 DAG.getConstant(Offsets[i], PtrVT)); 3200 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3201 SDValue(Src.getNode(), Src.getResNo() + i), 3202 Add, MachinePointerInfo(PtrV, Offsets[i]), 3203 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3204 Chains[ChainI] = St; 3205 } 3206 3207 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3208 MVT::Other, &Chains[0], ChainI); 3209 ++SDNodeOrder; 3210 AssignOrderingToNode(StoreNode.getNode()); 3211 DAG.setRoot(StoreNode); 3212 } 3213 3214 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3215 /// node. 3216 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3217 unsigned Intrinsic) { 3218 bool HasChain = !I.doesNotAccessMemory(); 3219 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3220 3221 // Build the operand list. 3222 SmallVector<SDValue, 8> Ops; 3223 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3224 if (OnlyLoad) { 3225 // We don't need to serialize loads against other loads. 3226 Ops.push_back(DAG.getRoot()); 3227 } else { 3228 Ops.push_back(getRoot()); 3229 } 3230 } 3231 3232 // Info is set by getTgtMemInstrinsic 3233 TargetLowering::IntrinsicInfo Info; 3234 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3235 3236 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3237 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3238 Info.opc == ISD::INTRINSIC_W_CHAIN) 3239 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3240 3241 // Add all operands of the call to the operand list. 3242 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3243 SDValue Op = getValue(I.getArgOperand(i)); 3244 assert(TLI.isTypeLegal(Op.getValueType()) && 3245 "Intrinsic uses a non-legal type?"); 3246 Ops.push_back(Op); 3247 } 3248 3249 SmallVector<EVT, 4> ValueVTs; 3250 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3251 #ifndef NDEBUG 3252 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3253 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3254 "Intrinsic uses a non-legal type?"); 3255 } 3256 #endif // NDEBUG 3257 3258 if (HasChain) 3259 ValueVTs.push_back(MVT::Other); 3260 3261 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3262 3263 // Create the node. 3264 SDValue Result; 3265 if (IsTgtIntrinsic) { 3266 // This is target intrinsic that touches memory 3267 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3268 VTs, &Ops[0], Ops.size(), 3269 Info.memVT, 3270 MachinePointerInfo(Info.ptrVal, Info.offset), 3271 Info.align, Info.vol, 3272 Info.readMem, Info.writeMem); 3273 } else if (!HasChain) { 3274 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3275 VTs, &Ops[0], Ops.size()); 3276 } else if (!I.getType()->isVoidTy()) { 3277 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3278 VTs, &Ops[0], Ops.size()); 3279 } else { 3280 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3281 VTs, &Ops[0], Ops.size()); 3282 } 3283 3284 if (HasChain) { 3285 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3286 if (OnlyLoad) 3287 PendingLoads.push_back(Chain); 3288 else 3289 DAG.setRoot(Chain); 3290 } 3291 3292 if (!I.getType()->isVoidTy()) { 3293 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3294 EVT VT = TLI.getValueType(PTy); 3295 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3296 } 3297 3298 setValue(&I, Result); 3299 } 3300 } 3301 3302 /// GetSignificand - Get the significand and build it into a floating-point 3303 /// number with exponent of 1: 3304 /// 3305 /// Op = (Op & 0x007fffff) | 0x3f800000; 3306 /// 3307 /// where Op is the hexidecimal representation of floating point value. 3308 static SDValue 3309 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3310 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3311 DAG.getConstant(0x007fffff, MVT::i32)); 3312 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3313 DAG.getConstant(0x3f800000, MVT::i32)); 3314 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3315 } 3316 3317 /// GetExponent - Get the exponent: 3318 /// 3319 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3320 /// 3321 /// where Op is the hexidecimal representation of floating point value. 3322 static SDValue 3323 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3324 DebugLoc dl) { 3325 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3326 DAG.getConstant(0x7f800000, MVT::i32)); 3327 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3328 DAG.getConstant(23, TLI.getPointerTy())); 3329 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3330 DAG.getConstant(127, MVT::i32)); 3331 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3332 } 3333 3334 /// getF32Constant - Get 32-bit floating point constant. 3335 static SDValue 3336 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3337 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3338 } 3339 3340 /// Inlined utility function to implement binary input atomic intrinsics for 3341 /// visitIntrinsicCall: I is a call instruction 3342 /// Op is the associated NodeType for I 3343 const char * 3344 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3345 ISD::NodeType Op) { 3346 SDValue Root = getRoot(); 3347 SDValue L = 3348 DAG.getAtomic(Op, getCurDebugLoc(), 3349 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3350 Root, 3351 getValue(I.getArgOperand(0)), 3352 getValue(I.getArgOperand(1)), 3353 I.getArgOperand(0)); 3354 setValue(&I, L); 3355 DAG.setRoot(L.getValue(1)); 3356 return 0; 3357 } 3358 3359 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3360 const char * 3361 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3362 SDValue Op1 = getValue(I.getArgOperand(0)); 3363 SDValue Op2 = getValue(I.getArgOperand(1)); 3364 3365 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3366 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3367 return 0; 3368 } 3369 3370 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3371 /// limited-precision mode. 3372 void 3373 SelectionDAGBuilder::visitExp(const CallInst &I) { 3374 SDValue result; 3375 DebugLoc dl = getCurDebugLoc(); 3376 3377 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3378 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3379 SDValue Op = getValue(I.getArgOperand(0)); 3380 3381 // Put the exponent in the right bit position for later addition to the 3382 // final result: 3383 // 3384 // #define LOG2OFe 1.4426950f 3385 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3386 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3387 getF32Constant(DAG, 0x3fb8aa3b)); 3388 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3389 3390 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3391 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3392 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3393 3394 // IntegerPartOfX <<= 23; 3395 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3396 DAG.getConstant(23, TLI.getPointerTy())); 3397 3398 if (LimitFloatPrecision <= 6) { 3399 // For floating-point precision of 6: 3400 // 3401 // TwoToFractionalPartOfX = 3402 // 0.997535578f + 3403 // (0.735607626f + 0.252464424f * x) * x; 3404 // 3405 // error 0.0144103317, which is 6 bits 3406 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3407 getF32Constant(DAG, 0x3e814304)); 3408 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3409 getF32Constant(DAG, 0x3f3c50c8)); 3410 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3411 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3412 getF32Constant(DAG, 0x3f7f5e7e)); 3413 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3414 3415 // Add the exponent into the result in integer domain. 3416 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3417 TwoToFracPartOfX, IntegerPartOfX); 3418 3419 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3420 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3421 // For floating-point precision of 12: 3422 // 3423 // TwoToFractionalPartOfX = 3424 // 0.999892986f + 3425 // (0.696457318f + 3426 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3427 // 3428 // 0.000107046256 error, which is 13 to 14 bits 3429 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3430 getF32Constant(DAG, 0x3da235e3)); 3431 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3432 getF32Constant(DAG, 0x3e65b8f3)); 3433 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3434 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3435 getF32Constant(DAG, 0x3f324b07)); 3436 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3437 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3438 getF32Constant(DAG, 0x3f7ff8fd)); 3439 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3440 3441 // Add the exponent into the result in integer domain. 3442 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3443 TwoToFracPartOfX, IntegerPartOfX); 3444 3445 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3446 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3447 // For floating-point precision of 18: 3448 // 3449 // TwoToFractionalPartOfX = 3450 // 0.999999982f + 3451 // (0.693148872f + 3452 // (0.240227044f + 3453 // (0.554906021e-1f + 3454 // (0.961591928e-2f + 3455 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3456 // 3457 // error 2.47208000*10^(-7), which is better than 18 bits 3458 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3459 getF32Constant(DAG, 0x3924b03e)); 3460 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3461 getF32Constant(DAG, 0x3ab24b87)); 3462 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3463 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3464 getF32Constant(DAG, 0x3c1d8c17)); 3465 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3466 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3467 getF32Constant(DAG, 0x3d634a1d)); 3468 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3469 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3470 getF32Constant(DAG, 0x3e75fe14)); 3471 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3472 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3473 getF32Constant(DAG, 0x3f317234)); 3474 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3475 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3476 getF32Constant(DAG, 0x3f800000)); 3477 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3478 MVT::i32, t13); 3479 3480 // Add the exponent into the result in integer domain. 3481 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3482 TwoToFracPartOfX, IntegerPartOfX); 3483 3484 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3485 } 3486 } else { 3487 // No special expansion. 3488 result = DAG.getNode(ISD::FEXP, dl, 3489 getValue(I.getArgOperand(0)).getValueType(), 3490 getValue(I.getArgOperand(0))); 3491 } 3492 3493 setValue(&I, result); 3494 } 3495 3496 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3497 /// limited-precision mode. 3498 void 3499 SelectionDAGBuilder::visitLog(const CallInst &I) { 3500 SDValue result; 3501 DebugLoc dl = getCurDebugLoc(); 3502 3503 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3504 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3505 SDValue Op = getValue(I.getArgOperand(0)); 3506 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3507 3508 // Scale the exponent by log(2) [0.69314718f]. 3509 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3510 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3511 getF32Constant(DAG, 0x3f317218)); 3512 3513 // Get the significand and build it into a floating-point number with 3514 // exponent of 1. 3515 SDValue X = GetSignificand(DAG, Op1, dl); 3516 3517 if (LimitFloatPrecision <= 6) { 3518 // For floating-point precision of 6: 3519 // 3520 // LogofMantissa = 3521 // -1.1609546f + 3522 // (1.4034025f - 0.23903021f * x) * x; 3523 // 3524 // error 0.0034276066, which is better than 8 bits 3525 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3526 getF32Constant(DAG, 0xbe74c456)); 3527 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3528 getF32Constant(DAG, 0x3fb3a2b1)); 3529 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3530 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3531 getF32Constant(DAG, 0x3f949a29)); 3532 3533 result = DAG.getNode(ISD::FADD, dl, 3534 MVT::f32, LogOfExponent, LogOfMantissa); 3535 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3536 // For floating-point precision of 12: 3537 // 3538 // LogOfMantissa = 3539 // -1.7417939f + 3540 // (2.8212026f + 3541 // (-1.4699568f + 3542 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3543 // 3544 // error 0.000061011436, which is 14 bits 3545 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3546 getF32Constant(DAG, 0xbd67b6d6)); 3547 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3548 getF32Constant(DAG, 0x3ee4f4b8)); 3549 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3550 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3551 getF32Constant(DAG, 0x3fbc278b)); 3552 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3553 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3554 getF32Constant(DAG, 0x40348e95)); 3555 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3556 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3557 getF32Constant(DAG, 0x3fdef31a)); 3558 3559 result = DAG.getNode(ISD::FADD, dl, 3560 MVT::f32, LogOfExponent, LogOfMantissa); 3561 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3562 // For floating-point precision of 18: 3563 // 3564 // LogOfMantissa = 3565 // -2.1072184f + 3566 // (4.2372794f + 3567 // (-3.7029485f + 3568 // (2.2781945f + 3569 // (-0.87823314f + 3570 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3571 // 3572 // error 0.0000023660568, which is better than 18 bits 3573 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3574 getF32Constant(DAG, 0xbc91e5ac)); 3575 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3576 getF32Constant(DAG, 0x3e4350aa)); 3577 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3578 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3579 getF32Constant(DAG, 0x3f60d3e3)); 3580 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3581 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3582 getF32Constant(DAG, 0x4011cdf0)); 3583 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3584 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3585 getF32Constant(DAG, 0x406cfd1c)); 3586 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3587 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3588 getF32Constant(DAG, 0x408797cb)); 3589 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3590 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3591 getF32Constant(DAG, 0x4006dcab)); 3592 3593 result = DAG.getNode(ISD::FADD, dl, 3594 MVT::f32, LogOfExponent, LogOfMantissa); 3595 } 3596 } else { 3597 // No special expansion. 3598 result = DAG.getNode(ISD::FLOG, dl, 3599 getValue(I.getArgOperand(0)).getValueType(), 3600 getValue(I.getArgOperand(0))); 3601 } 3602 3603 setValue(&I, result); 3604 } 3605 3606 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3607 /// limited-precision mode. 3608 void 3609 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3610 SDValue result; 3611 DebugLoc dl = getCurDebugLoc(); 3612 3613 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3614 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3615 SDValue Op = getValue(I.getArgOperand(0)); 3616 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3617 3618 // Get the exponent. 3619 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3620 3621 // Get the significand and build it into a floating-point number with 3622 // exponent of 1. 3623 SDValue X = GetSignificand(DAG, Op1, dl); 3624 3625 // Different possible minimax approximations of significand in 3626 // floating-point for various degrees of accuracy over [1,2]. 3627 if (LimitFloatPrecision <= 6) { 3628 // For floating-point precision of 6: 3629 // 3630 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3631 // 3632 // error 0.0049451742, which is more than 7 bits 3633 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3634 getF32Constant(DAG, 0xbeb08fe0)); 3635 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3636 getF32Constant(DAG, 0x40019463)); 3637 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3638 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3639 getF32Constant(DAG, 0x3fd6633d)); 3640 3641 result = DAG.getNode(ISD::FADD, dl, 3642 MVT::f32, LogOfExponent, Log2ofMantissa); 3643 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3644 // For floating-point precision of 12: 3645 // 3646 // Log2ofMantissa = 3647 // -2.51285454f + 3648 // (4.07009056f + 3649 // (-2.12067489f + 3650 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3651 // 3652 // error 0.0000876136000, which is better than 13 bits 3653 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3654 getF32Constant(DAG, 0xbda7262e)); 3655 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3656 getF32Constant(DAG, 0x3f25280b)); 3657 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3658 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3659 getF32Constant(DAG, 0x4007b923)); 3660 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3661 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3662 getF32Constant(DAG, 0x40823e2f)); 3663 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3664 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3665 getF32Constant(DAG, 0x4020d29c)); 3666 3667 result = DAG.getNode(ISD::FADD, dl, 3668 MVT::f32, LogOfExponent, Log2ofMantissa); 3669 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3670 // For floating-point precision of 18: 3671 // 3672 // Log2ofMantissa = 3673 // -3.0400495f + 3674 // (6.1129976f + 3675 // (-5.3420409f + 3676 // (3.2865683f + 3677 // (-1.2669343f + 3678 // (0.27515199f - 3679 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3680 // 3681 // error 0.0000018516, which is better than 18 bits 3682 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3683 getF32Constant(DAG, 0xbcd2769e)); 3684 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3685 getF32Constant(DAG, 0x3e8ce0b9)); 3686 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3687 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3688 getF32Constant(DAG, 0x3fa22ae7)); 3689 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3690 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3691 getF32Constant(DAG, 0x40525723)); 3692 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3693 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3694 getF32Constant(DAG, 0x40aaf200)); 3695 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3696 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3697 getF32Constant(DAG, 0x40c39dad)); 3698 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3699 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3700 getF32Constant(DAG, 0x4042902c)); 3701 3702 result = DAG.getNode(ISD::FADD, dl, 3703 MVT::f32, LogOfExponent, Log2ofMantissa); 3704 } 3705 } else { 3706 // No special expansion. 3707 result = DAG.getNode(ISD::FLOG2, dl, 3708 getValue(I.getArgOperand(0)).getValueType(), 3709 getValue(I.getArgOperand(0))); 3710 } 3711 3712 setValue(&I, result); 3713 } 3714 3715 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3716 /// limited-precision mode. 3717 void 3718 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3719 SDValue result; 3720 DebugLoc dl = getCurDebugLoc(); 3721 3722 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3723 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3724 SDValue Op = getValue(I.getArgOperand(0)); 3725 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3726 3727 // Scale the exponent by log10(2) [0.30102999f]. 3728 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3729 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3730 getF32Constant(DAG, 0x3e9a209a)); 3731 3732 // Get the significand and build it into a floating-point number with 3733 // exponent of 1. 3734 SDValue X = GetSignificand(DAG, Op1, dl); 3735 3736 if (LimitFloatPrecision <= 6) { 3737 // For floating-point precision of 6: 3738 // 3739 // Log10ofMantissa = 3740 // -0.50419619f + 3741 // (0.60948995f - 0.10380950f * x) * x; 3742 // 3743 // error 0.0014886165, which is 6 bits 3744 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3745 getF32Constant(DAG, 0xbdd49a13)); 3746 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3747 getF32Constant(DAG, 0x3f1c0789)); 3748 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3749 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3750 getF32Constant(DAG, 0x3f011300)); 3751 3752 result = DAG.getNode(ISD::FADD, dl, 3753 MVT::f32, LogOfExponent, Log10ofMantissa); 3754 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3755 // For floating-point precision of 12: 3756 // 3757 // Log10ofMantissa = 3758 // -0.64831180f + 3759 // (0.91751397f + 3760 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3761 // 3762 // error 0.00019228036, which is better than 12 bits 3763 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3764 getF32Constant(DAG, 0x3d431f31)); 3765 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3766 getF32Constant(DAG, 0x3ea21fb2)); 3767 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3768 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3769 getF32Constant(DAG, 0x3f6ae232)); 3770 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3771 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3772 getF32Constant(DAG, 0x3f25f7c3)); 3773 3774 result = DAG.getNode(ISD::FADD, dl, 3775 MVT::f32, LogOfExponent, Log10ofMantissa); 3776 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3777 // For floating-point precision of 18: 3778 // 3779 // Log10ofMantissa = 3780 // -0.84299375f + 3781 // (1.5327582f + 3782 // (-1.0688956f + 3783 // (0.49102474f + 3784 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3785 // 3786 // error 0.0000037995730, which is better than 18 bits 3787 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3788 getF32Constant(DAG, 0x3c5d51ce)); 3789 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3790 getF32Constant(DAG, 0x3e00685a)); 3791 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3792 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3793 getF32Constant(DAG, 0x3efb6798)); 3794 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3795 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3796 getF32Constant(DAG, 0x3f88d192)); 3797 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3798 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3799 getF32Constant(DAG, 0x3fc4316c)); 3800 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3801 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3802 getF32Constant(DAG, 0x3f57ce70)); 3803 3804 result = DAG.getNode(ISD::FADD, dl, 3805 MVT::f32, LogOfExponent, Log10ofMantissa); 3806 } 3807 } else { 3808 // No special expansion. 3809 result = DAG.getNode(ISD::FLOG10, dl, 3810 getValue(I.getArgOperand(0)).getValueType(), 3811 getValue(I.getArgOperand(0))); 3812 } 3813 3814 setValue(&I, result); 3815 } 3816 3817 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3818 /// limited-precision mode. 3819 void 3820 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3821 SDValue result; 3822 DebugLoc dl = getCurDebugLoc(); 3823 3824 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3825 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3826 SDValue Op = getValue(I.getArgOperand(0)); 3827 3828 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3829 3830 // FractionalPartOfX = x - (float)IntegerPartOfX; 3831 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3832 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3833 3834 // IntegerPartOfX <<= 23; 3835 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3836 DAG.getConstant(23, TLI.getPointerTy())); 3837 3838 if (LimitFloatPrecision <= 6) { 3839 // For floating-point precision of 6: 3840 // 3841 // TwoToFractionalPartOfX = 3842 // 0.997535578f + 3843 // (0.735607626f + 0.252464424f * x) * x; 3844 // 3845 // error 0.0144103317, which is 6 bits 3846 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3847 getF32Constant(DAG, 0x3e814304)); 3848 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3849 getF32Constant(DAG, 0x3f3c50c8)); 3850 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3851 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3852 getF32Constant(DAG, 0x3f7f5e7e)); 3853 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3854 SDValue TwoToFractionalPartOfX = 3855 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3856 3857 result = DAG.getNode(ISD::BITCAST, dl, 3858 MVT::f32, TwoToFractionalPartOfX); 3859 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3860 // For floating-point precision of 12: 3861 // 3862 // TwoToFractionalPartOfX = 3863 // 0.999892986f + 3864 // (0.696457318f + 3865 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3866 // 3867 // error 0.000107046256, which is 13 to 14 bits 3868 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3869 getF32Constant(DAG, 0x3da235e3)); 3870 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3871 getF32Constant(DAG, 0x3e65b8f3)); 3872 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3873 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3874 getF32Constant(DAG, 0x3f324b07)); 3875 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3876 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3877 getF32Constant(DAG, 0x3f7ff8fd)); 3878 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3879 SDValue TwoToFractionalPartOfX = 3880 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3881 3882 result = DAG.getNode(ISD::BITCAST, dl, 3883 MVT::f32, TwoToFractionalPartOfX); 3884 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3885 // For floating-point precision of 18: 3886 // 3887 // TwoToFractionalPartOfX = 3888 // 0.999999982f + 3889 // (0.693148872f + 3890 // (0.240227044f + 3891 // (0.554906021e-1f + 3892 // (0.961591928e-2f + 3893 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3894 // error 2.47208000*10^(-7), which is better than 18 bits 3895 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3896 getF32Constant(DAG, 0x3924b03e)); 3897 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3898 getF32Constant(DAG, 0x3ab24b87)); 3899 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3900 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3901 getF32Constant(DAG, 0x3c1d8c17)); 3902 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3903 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3904 getF32Constant(DAG, 0x3d634a1d)); 3905 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3906 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3907 getF32Constant(DAG, 0x3e75fe14)); 3908 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3909 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3910 getF32Constant(DAG, 0x3f317234)); 3911 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3912 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3913 getF32Constant(DAG, 0x3f800000)); 3914 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 3915 SDValue TwoToFractionalPartOfX = 3916 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3917 3918 result = DAG.getNode(ISD::BITCAST, dl, 3919 MVT::f32, TwoToFractionalPartOfX); 3920 } 3921 } else { 3922 // No special expansion. 3923 result = DAG.getNode(ISD::FEXP2, dl, 3924 getValue(I.getArgOperand(0)).getValueType(), 3925 getValue(I.getArgOperand(0))); 3926 } 3927 3928 setValue(&I, result); 3929 } 3930 3931 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3932 /// limited-precision mode with x == 10.0f. 3933 void 3934 SelectionDAGBuilder::visitPow(const CallInst &I) { 3935 SDValue result; 3936 const Value *Val = I.getArgOperand(0); 3937 DebugLoc dl = getCurDebugLoc(); 3938 bool IsExp10 = false; 3939 3940 if (getValue(Val).getValueType() == MVT::f32 && 3941 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3942 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3943 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3944 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3945 APFloat Ten(10.0f); 3946 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3947 } 3948 } 3949 } 3950 3951 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3952 SDValue Op = getValue(I.getArgOperand(1)); 3953 3954 // Put the exponent in the right bit position for later addition to the 3955 // final result: 3956 // 3957 // #define LOG2OF10 3.3219281f 3958 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3959 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3960 getF32Constant(DAG, 0x40549a78)); 3961 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3962 3963 // FractionalPartOfX = x - (float)IntegerPartOfX; 3964 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3965 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3966 3967 // IntegerPartOfX <<= 23; 3968 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3969 DAG.getConstant(23, TLI.getPointerTy())); 3970 3971 if (LimitFloatPrecision <= 6) { 3972 // For floating-point precision of 6: 3973 // 3974 // twoToFractionalPartOfX = 3975 // 0.997535578f + 3976 // (0.735607626f + 0.252464424f * x) * x; 3977 // 3978 // error 0.0144103317, which is 6 bits 3979 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3980 getF32Constant(DAG, 0x3e814304)); 3981 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3982 getF32Constant(DAG, 0x3f3c50c8)); 3983 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3984 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3985 getF32Constant(DAG, 0x3f7f5e7e)); 3986 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3987 SDValue TwoToFractionalPartOfX = 3988 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3989 3990 result = DAG.getNode(ISD::BITCAST, dl, 3991 MVT::f32, TwoToFractionalPartOfX); 3992 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3993 // For floating-point precision of 12: 3994 // 3995 // TwoToFractionalPartOfX = 3996 // 0.999892986f + 3997 // (0.696457318f + 3998 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3999 // 4000 // error 0.000107046256, which is 13 to 14 bits 4001 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4002 getF32Constant(DAG, 0x3da235e3)); 4003 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4004 getF32Constant(DAG, 0x3e65b8f3)); 4005 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4006 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4007 getF32Constant(DAG, 0x3f324b07)); 4008 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4009 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4010 getF32Constant(DAG, 0x3f7ff8fd)); 4011 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4012 SDValue TwoToFractionalPartOfX = 4013 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4014 4015 result = DAG.getNode(ISD::BITCAST, dl, 4016 MVT::f32, TwoToFractionalPartOfX); 4017 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4018 // For floating-point precision of 18: 4019 // 4020 // TwoToFractionalPartOfX = 4021 // 0.999999982f + 4022 // (0.693148872f + 4023 // (0.240227044f + 4024 // (0.554906021e-1f + 4025 // (0.961591928e-2f + 4026 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4027 // error 2.47208000*10^(-7), which is better than 18 bits 4028 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4029 getF32Constant(DAG, 0x3924b03e)); 4030 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4031 getF32Constant(DAG, 0x3ab24b87)); 4032 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4033 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4034 getF32Constant(DAG, 0x3c1d8c17)); 4035 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4036 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4037 getF32Constant(DAG, 0x3d634a1d)); 4038 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4039 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4040 getF32Constant(DAG, 0x3e75fe14)); 4041 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4042 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4043 getF32Constant(DAG, 0x3f317234)); 4044 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4045 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4046 getF32Constant(DAG, 0x3f800000)); 4047 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4048 SDValue TwoToFractionalPartOfX = 4049 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4050 4051 result = DAG.getNode(ISD::BITCAST, dl, 4052 MVT::f32, TwoToFractionalPartOfX); 4053 } 4054 } else { 4055 // No special expansion. 4056 result = DAG.getNode(ISD::FPOW, dl, 4057 getValue(I.getArgOperand(0)).getValueType(), 4058 getValue(I.getArgOperand(0)), 4059 getValue(I.getArgOperand(1))); 4060 } 4061 4062 setValue(&I, result); 4063 } 4064 4065 4066 /// ExpandPowI - Expand a llvm.powi intrinsic. 4067 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4068 SelectionDAG &DAG) { 4069 // If RHS is a constant, we can expand this out to a multiplication tree, 4070 // otherwise we end up lowering to a call to __powidf2 (for example). When 4071 // optimizing for size, we only want to do this if the expansion would produce 4072 // a small number of multiplies, otherwise we do the full expansion. 4073 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4074 // Get the exponent as a positive value. 4075 unsigned Val = RHSC->getSExtValue(); 4076 if ((int)Val < 0) Val = -Val; 4077 4078 // powi(x, 0) -> 1.0 4079 if (Val == 0) 4080 return DAG.getConstantFP(1.0, LHS.getValueType()); 4081 4082 const Function *F = DAG.getMachineFunction().getFunction(); 4083 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4084 // If optimizing for size, don't insert too many multiplies. This 4085 // inserts up to 5 multiplies. 4086 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4087 // We use the simple binary decomposition method to generate the multiply 4088 // sequence. There are more optimal ways to do this (for example, 4089 // powi(x,15) generates one more multiply than it should), but this has 4090 // the benefit of being both really simple and much better than a libcall. 4091 SDValue Res; // Logically starts equal to 1.0 4092 SDValue CurSquare = LHS; 4093 while (Val) { 4094 if (Val & 1) { 4095 if (Res.getNode()) 4096 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4097 else 4098 Res = CurSquare; // 1.0*CurSquare. 4099 } 4100 4101 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4102 CurSquare, CurSquare); 4103 Val >>= 1; 4104 } 4105 4106 // If the original was negative, invert the result, producing 1/(x*x*x). 4107 if (RHSC->getSExtValue() < 0) 4108 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4109 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4110 return Res; 4111 } 4112 } 4113 4114 // Otherwise, expand to a libcall. 4115 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4116 } 4117 4118 // getTruncatedArgReg - Find underlying register used for an truncated 4119 // argument. 4120 static unsigned getTruncatedArgReg(const SDValue &N) { 4121 if (N.getOpcode() != ISD::TRUNCATE) 4122 return 0; 4123 4124 const SDValue &Ext = N.getOperand(0); 4125 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4126 const SDValue &CFR = Ext.getOperand(0); 4127 if (CFR.getOpcode() == ISD::CopyFromReg) 4128 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4129 else 4130 if (CFR.getOpcode() == ISD::TRUNCATE) 4131 return getTruncatedArgReg(CFR); 4132 } 4133 return 0; 4134 } 4135 4136 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4137 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4138 /// At the end of instruction selection, they will be inserted to the entry BB. 4139 bool 4140 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4141 int64_t Offset, 4142 const SDValue &N) { 4143 const Argument *Arg = dyn_cast<Argument>(V); 4144 if (!Arg) 4145 return false; 4146 4147 MachineFunction &MF = DAG.getMachineFunction(); 4148 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4149 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4150 4151 // Ignore inlined function arguments here. 4152 DIVariable DV(Variable); 4153 if (DV.isInlinedFnArgument(MF.getFunction())) 4154 return false; 4155 4156 unsigned Reg = 0; 4157 if (Arg->hasByValAttr()) { 4158 // Byval arguments' frame index is recorded during argument lowering. 4159 // Use this info directly. 4160 Reg = TRI->getFrameRegister(MF); 4161 Offset = FuncInfo.getByValArgumentFrameIndex(Arg); 4162 // If byval argument ofset is not recorded then ignore this. 4163 if (!Offset) 4164 Reg = 0; 4165 } 4166 4167 if (N.getNode()) { 4168 if (N.getOpcode() == ISD::CopyFromReg) 4169 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4170 else 4171 Reg = getTruncatedArgReg(N); 4172 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4173 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4174 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4175 if (PR) 4176 Reg = PR; 4177 } 4178 } 4179 4180 if (!Reg) { 4181 // Check if ValueMap has reg number. 4182 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4183 if (VMI != FuncInfo.ValueMap.end()) 4184 Reg = VMI->second; 4185 } 4186 4187 if (!Reg && N.getNode()) { 4188 // Check if frame index is available. 4189 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4190 if (FrameIndexSDNode *FINode = 4191 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4192 Reg = TRI->getFrameRegister(MF); 4193 Offset = FINode->getIndex(); 4194 } 4195 } 4196 4197 if (!Reg) 4198 return false; 4199 4200 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4201 TII->get(TargetOpcode::DBG_VALUE)) 4202 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4203 FuncInfo.ArgDbgValues.push_back(&*MIB); 4204 return true; 4205 } 4206 4207 // VisualStudio defines setjmp as _setjmp 4208 #if defined(_MSC_VER) && defined(setjmp) && \ 4209 !defined(setjmp_undefined_for_msvc) 4210 # pragma push_macro("setjmp") 4211 # undef setjmp 4212 # define setjmp_undefined_for_msvc 4213 #endif 4214 4215 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4216 /// we want to emit this as a call to a named external function, return the name 4217 /// otherwise lower it and return null. 4218 const char * 4219 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4220 DebugLoc dl = getCurDebugLoc(); 4221 SDValue Res; 4222 4223 switch (Intrinsic) { 4224 default: 4225 // By default, turn this into a target intrinsic node. 4226 visitTargetIntrinsic(I, Intrinsic); 4227 return 0; 4228 case Intrinsic::vastart: visitVAStart(I); return 0; 4229 case Intrinsic::vaend: visitVAEnd(I); return 0; 4230 case Intrinsic::vacopy: visitVACopy(I); return 0; 4231 case Intrinsic::returnaddress: 4232 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4233 getValue(I.getArgOperand(0)))); 4234 return 0; 4235 case Intrinsic::frameaddress: 4236 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4237 getValue(I.getArgOperand(0)))); 4238 return 0; 4239 case Intrinsic::setjmp: 4240 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4241 case Intrinsic::longjmp: 4242 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4243 case Intrinsic::memcpy: { 4244 // Assert for address < 256 since we support only user defined address 4245 // spaces. 4246 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4247 < 256 && 4248 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4249 < 256 && 4250 "Unknown address space"); 4251 SDValue Op1 = getValue(I.getArgOperand(0)); 4252 SDValue Op2 = getValue(I.getArgOperand(1)); 4253 SDValue Op3 = getValue(I.getArgOperand(2)); 4254 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4255 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4256 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4257 MachinePointerInfo(I.getArgOperand(0)), 4258 MachinePointerInfo(I.getArgOperand(1)))); 4259 return 0; 4260 } 4261 case Intrinsic::memset: { 4262 // Assert for address < 256 since we support only user defined address 4263 // spaces. 4264 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4265 < 256 && 4266 "Unknown address space"); 4267 SDValue Op1 = getValue(I.getArgOperand(0)); 4268 SDValue Op2 = getValue(I.getArgOperand(1)); 4269 SDValue Op3 = getValue(I.getArgOperand(2)); 4270 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4271 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4272 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4273 MachinePointerInfo(I.getArgOperand(0)))); 4274 return 0; 4275 } 4276 case Intrinsic::memmove: { 4277 // Assert for address < 256 since we support only user defined address 4278 // spaces. 4279 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4280 < 256 && 4281 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4282 < 256 && 4283 "Unknown address space"); 4284 SDValue Op1 = getValue(I.getArgOperand(0)); 4285 SDValue Op2 = getValue(I.getArgOperand(1)); 4286 SDValue Op3 = getValue(I.getArgOperand(2)); 4287 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4288 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4289 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4290 MachinePointerInfo(I.getArgOperand(0)), 4291 MachinePointerInfo(I.getArgOperand(1)))); 4292 return 0; 4293 } 4294 case Intrinsic::dbg_declare: { 4295 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4296 MDNode *Variable = DI.getVariable(); 4297 const Value *Address = DI.getAddress(); 4298 if (!Address || !DIVariable(DI.getVariable()).Verify()) 4299 return 0; 4300 4301 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4302 // but do not always have a corresponding SDNode built. The SDNodeOrder 4303 // absolute, but not relative, values are different depending on whether 4304 // debug info exists. 4305 ++SDNodeOrder; 4306 4307 // Check if address has undef value. 4308 if (isa<UndefValue>(Address) || 4309 (Address->use_empty() && !isa<Argument>(Address))) { 4310 DEBUG(dbgs() << "Dropping debug info for " << DI); 4311 return 0; 4312 } 4313 4314 SDValue &N = NodeMap[Address]; 4315 if (!N.getNode() && isa<Argument>(Address)) 4316 // Check unused arguments map. 4317 N = UnusedArgNodeMap[Address]; 4318 SDDbgValue *SDV; 4319 if (N.getNode()) { 4320 // Parameters are handled specially. 4321 bool isParameter = 4322 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4323 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4324 Address = BCI->getOperand(0); 4325 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4326 4327 if (isParameter && !AI) { 4328 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4329 if (FINode) 4330 // Byval parameter. We have a frame index at this point. 4331 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4332 0, dl, SDNodeOrder); 4333 else { 4334 // Address is an argument, so try to emit its dbg value using 4335 // virtual register info from the FuncInfo.ValueMap. 4336 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4337 return 0; 4338 } 4339 } else if (AI) 4340 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4341 0, dl, SDNodeOrder); 4342 else { 4343 // Can't do anything with other non-AI cases yet. 4344 DEBUG(dbgs() << "Dropping debug info for " << DI); 4345 return 0; 4346 } 4347 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4348 } else { 4349 // If Address is an argument then try to emit its dbg value using 4350 // virtual register info from the FuncInfo.ValueMap. 4351 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4352 // If variable is pinned by a alloca in dominating bb then 4353 // use StaticAllocaMap. 4354 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4355 if (AI->getParent() != DI.getParent()) { 4356 DenseMap<const AllocaInst*, int>::iterator SI = 4357 FuncInfo.StaticAllocaMap.find(AI); 4358 if (SI != FuncInfo.StaticAllocaMap.end()) { 4359 SDV = DAG.getDbgValue(Variable, SI->second, 4360 0, dl, SDNodeOrder); 4361 DAG.AddDbgValue(SDV, 0, false); 4362 return 0; 4363 } 4364 } 4365 } 4366 DEBUG(dbgs() << "Dropping debug info for " << DI); 4367 } 4368 } 4369 return 0; 4370 } 4371 case Intrinsic::dbg_value: { 4372 const DbgValueInst &DI = cast<DbgValueInst>(I); 4373 if (!DIVariable(DI.getVariable()).Verify()) 4374 return 0; 4375 4376 MDNode *Variable = DI.getVariable(); 4377 uint64_t Offset = DI.getOffset(); 4378 const Value *V = DI.getValue(); 4379 if (!V) 4380 return 0; 4381 4382 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4383 // but do not always have a corresponding SDNode built. The SDNodeOrder 4384 // absolute, but not relative, values are different depending on whether 4385 // debug info exists. 4386 ++SDNodeOrder; 4387 SDDbgValue *SDV; 4388 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4389 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4390 DAG.AddDbgValue(SDV, 0, false); 4391 } else { 4392 // Do not use getValue() in here; we don't want to generate code at 4393 // this point if it hasn't been done yet. 4394 SDValue N = NodeMap[V]; 4395 if (!N.getNode() && isa<Argument>(V)) 4396 // Check unused arguments map. 4397 N = UnusedArgNodeMap[V]; 4398 if (N.getNode()) { 4399 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4400 SDV = DAG.getDbgValue(Variable, N.getNode(), 4401 N.getResNo(), Offset, dl, SDNodeOrder); 4402 DAG.AddDbgValue(SDV, N.getNode(), false); 4403 } 4404 } else if (!V->use_empty() ) { 4405 // Do not call getValue(V) yet, as we don't want to generate code. 4406 // Remember it for later. 4407 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4408 DanglingDebugInfoMap[V] = DDI; 4409 } else { 4410 // We may expand this to cover more cases. One case where we have no 4411 // data available is an unreferenced parameter. 4412 DEBUG(dbgs() << "Dropping debug info for " << DI); 4413 } 4414 } 4415 4416 // Build a debug info table entry. 4417 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4418 V = BCI->getOperand(0); 4419 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4420 // Don't handle byval struct arguments or VLAs, for example. 4421 if (!AI) 4422 return 0; 4423 DenseMap<const AllocaInst*, int>::iterator SI = 4424 FuncInfo.StaticAllocaMap.find(AI); 4425 if (SI == FuncInfo.StaticAllocaMap.end()) 4426 return 0; // VLAs. 4427 int FI = SI->second; 4428 4429 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4430 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4431 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4432 return 0; 4433 } 4434 case Intrinsic::eh_exception: { 4435 // Insert the EXCEPTIONADDR instruction. 4436 assert(FuncInfo.MBB->isLandingPad() && 4437 "Call to eh.exception not in landing pad!"); 4438 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4439 SDValue Ops[1]; 4440 Ops[0] = DAG.getRoot(); 4441 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4442 setValue(&I, Op); 4443 DAG.setRoot(Op.getValue(1)); 4444 return 0; 4445 } 4446 4447 case Intrinsic::eh_selector: { 4448 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4449 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4450 if (CallMBB->isLandingPad()) 4451 AddCatchInfo(I, &MMI, CallMBB); 4452 else { 4453 #ifndef NDEBUG 4454 FuncInfo.CatchInfoLost.insert(&I); 4455 #endif 4456 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4457 unsigned Reg = TLI.getExceptionSelectorRegister(); 4458 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4459 } 4460 4461 // Insert the EHSELECTION instruction. 4462 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4463 SDValue Ops[2]; 4464 Ops[0] = getValue(I.getArgOperand(0)); 4465 Ops[1] = getRoot(); 4466 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4467 DAG.setRoot(Op.getValue(1)); 4468 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4469 return 0; 4470 } 4471 4472 case Intrinsic::eh_typeid_for: { 4473 // Find the type id for the given typeinfo. 4474 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4475 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4476 Res = DAG.getConstant(TypeID, MVT::i32); 4477 setValue(&I, Res); 4478 return 0; 4479 } 4480 4481 case Intrinsic::eh_return_i32: 4482 case Intrinsic::eh_return_i64: 4483 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4484 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4485 MVT::Other, 4486 getControlRoot(), 4487 getValue(I.getArgOperand(0)), 4488 getValue(I.getArgOperand(1)))); 4489 return 0; 4490 case Intrinsic::eh_unwind_init: 4491 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4492 return 0; 4493 case Intrinsic::eh_dwarf_cfa: { 4494 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4495 TLI.getPointerTy()); 4496 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4497 TLI.getPointerTy(), 4498 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4499 TLI.getPointerTy()), 4500 CfaArg); 4501 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4502 TLI.getPointerTy(), 4503 DAG.getConstant(0, TLI.getPointerTy())); 4504 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4505 FA, Offset)); 4506 return 0; 4507 } 4508 case Intrinsic::eh_sjlj_callsite: { 4509 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4510 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4511 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4512 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4513 4514 MMI.setCurrentCallSite(CI->getZExtValue()); 4515 return 0; 4516 } 4517 case Intrinsic::eh_sjlj_setjmp: { 4518 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4519 getValue(I.getArgOperand(0)))); 4520 return 0; 4521 } 4522 case Intrinsic::eh_sjlj_longjmp: { 4523 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4524 getRoot(), getValue(I.getArgOperand(0)))); 4525 return 0; 4526 } 4527 case Intrinsic::eh_sjlj_dispatch_setup: { 4528 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4529 getRoot(), getValue(I.getArgOperand(0)))); 4530 return 0; 4531 } 4532 4533 case Intrinsic::x86_mmx_pslli_w: 4534 case Intrinsic::x86_mmx_pslli_d: 4535 case Intrinsic::x86_mmx_pslli_q: 4536 case Intrinsic::x86_mmx_psrli_w: 4537 case Intrinsic::x86_mmx_psrli_d: 4538 case Intrinsic::x86_mmx_psrli_q: 4539 case Intrinsic::x86_mmx_psrai_w: 4540 case Intrinsic::x86_mmx_psrai_d: { 4541 SDValue ShAmt = getValue(I.getArgOperand(1)); 4542 if (isa<ConstantSDNode>(ShAmt)) { 4543 visitTargetIntrinsic(I, Intrinsic); 4544 return 0; 4545 } 4546 unsigned NewIntrinsic = 0; 4547 EVT ShAmtVT = MVT::v2i32; 4548 switch (Intrinsic) { 4549 case Intrinsic::x86_mmx_pslli_w: 4550 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4551 break; 4552 case Intrinsic::x86_mmx_pslli_d: 4553 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4554 break; 4555 case Intrinsic::x86_mmx_pslli_q: 4556 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4557 break; 4558 case Intrinsic::x86_mmx_psrli_w: 4559 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4560 break; 4561 case Intrinsic::x86_mmx_psrli_d: 4562 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4563 break; 4564 case Intrinsic::x86_mmx_psrli_q: 4565 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4566 break; 4567 case Intrinsic::x86_mmx_psrai_w: 4568 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4569 break; 4570 case Intrinsic::x86_mmx_psrai_d: 4571 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4572 break; 4573 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4574 } 4575 4576 // The vector shift intrinsics with scalars uses 32b shift amounts but 4577 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4578 // to be zero. 4579 // We must do this early because v2i32 is not a legal type. 4580 DebugLoc dl = getCurDebugLoc(); 4581 SDValue ShOps[2]; 4582 ShOps[0] = ShAmt; 4583 ShOps[1] = DAG.getConstant(0, MVT::i32); 4584 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4585 EVT DestVT = TLI.getValueType(I.getType()); 4586 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4587 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4588 DAG.getConstant(NewIntrinsic, MVT::i32), 4589 getValue(I.getArgOperand(0)), ShAmt); 4590 setValue(&I, Res); 4591 return 0; 4592 } 4593 case Intrinsic::convertff: 4594 case Intrinsic::convertfsi: 4595 case Intrinsic::convertfui: 4596 case Intrinsic::convertsif: 4597 case Intrinsic::convertuif: 4598 case Intrinsic::convertss: 4599 case Intrinsic::convertsu: 4600 case Intrinsic::convertus: 4601 case Intrinsic::convertuu: { 4602 ISD::CvtCode Code = ISD::CVT_INVALID; 4603 switch (Intrinsic) { 4604 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4605 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4606 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4607 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4608 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4609 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4610 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4611 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4612 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4613 } 4614 EVT DestVT = TLI.getValueType(I.getType()); 4615 const Value *Op1 = I.getArgOperand(0); 4616 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4617 DAG.getValueType(DestVT), 4618 DAG.getValueType(getValue(Op1).getValueType()), 4619 getValue(I.getArgOperand(1)), 4620 getValue(I.getArgOperand(2)), 4621 Code); 4622 setValue(&I, Res); 4623 return 0; 4624 } 4625 case Intrinsic::sqrt: 4626 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4627 getValue(I.getArgOperand(0)).getValueType(), 4628 getValue(I.getArgOperand(0)))); 4629 return 0; 4630 case Intrinsic::powi: 4631 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4632 getValue(I.getArgOperand(1)), DAG)); 4633 return 0; 4634 case Intrinsic::sin: 4635 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4636 getValue(I.getArgOperand(0)).getValueType(), 4637 getValue(I.getArgOperand(0)))); 4638 return 0; 4639 case Intrinsic::cos: 4640 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4641 getValue(I.getArgOperand(0)).getValueType(), 4642 getValue(I.getArgOperand(0)))); 4643 return 0; 4644 case Intrinsic::log: 4645 visitLog(I); 4646 return 0; 4647 case Intrinsic::log2: 4648 visitLog2(I); 4649 return 0; 4650 case Intrinsic::log10: 4651 visitLog10(I); 4652 return 0; 4653 case Intrinsic::exp: 4654 visitExp(I); 4655 return 0; 4656 case Intrinsic::exp2: 4657 visitExp2(I); 4658 return 0; 4659 case Intrinsic::pow: 4660 visitPow(I); 4661 return 0; 4662 case Intrinsic::fma: 4663 setValue(&I, DAG.getNode(ISD::FMA, dl, 4664 getValue(I.getArgOperand(0)).getValueType(), 4665 getValue(I.getArgOperand(0)), 4666 getValue(I.getArgOperand(1)), 4667 getValue(I.getArgOperand(2)))); 4668 return 0; 4669 case Intrinsic::convert_to_fp16: 4670 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4671 MVT::i16, getValue(I.getArgOperand(0)))); 4672 return 0; 4673 case Intrinsic::convert_from_fp16: 4674 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4675 MVT::f32, getValue(I.getArgOperand(0)))); 4676 return 0; 4677 case Intrinsic::pcmarker: { 4678 SDValue Tmp = getValue(I.getArgOperand(0)); 4679 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4680 return 0; 4681 } 4682 case Intrinsic::readcyclecounter: { 4683 SDValue Op = getRoot(); 4684 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4685 DAG.getVTList(MVT::i64, MVT::Other), 4686 &Op, 1); 4687 setValue(&I, Res); 4688 DAG.setRoot(Res.getValue(1)); 4689 return 0; 4690 } 4691 case Intrinsic::bswap: 4692 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4693 getValue(I.getArgOperand(0)).getValueType(), 4694 getValue(I.getArgOperand(0)))); 4695 return 0; 4696 case Intrinsic::cttz: { 4697 SDValue Arg = getValue(I.getArgOperand(0)); 4698 EVT Ty = Arg.getValueType(); 4699 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4700 return 0; 4701 } 4702 case Intrinsic::ctlz: { 4703 SDValue Arg = getValue(I.getArgOperand(0)); 4704 EVT Ty = Arg.getValueType(); 4705 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4706 return 0; 4707 } 4708 case Intrinsic::ctpop: { 4709 SDValue Arg = getValue(I.getArgOperand(0)); 4710 EVT Ty = Arg.getValueType(); 4711 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4712 return 0; 4713 } 4714 case Intrinsic::stacksave: { 4715 SDValue Op = getRoot(); 4716 Res = DAG.getNode(ISD::STACKSAVE, dl, 4717 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4718 setValue(&I, Res); 4719 DAG.setRoot(Res.getValue(1)); 4720 return 0; 4721 } 4722 case Intrinsic::stackrestore: { 4723 Res = getValue(I.getArgOperand(0)); 4724 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4725 return 0; 4726 } 4727 case Intrinsic::stackprotector: { 4728 // Emit code into the DAG to store the stack guard onto the stack. 4729 MachineFunction &MF = DAG.getMachineFunction(); 4730 MachineFrameInfo *MFI = MF.getFrameInfo(); 4731 EVT PtrTy = TLI.getPointerTy(); 4732 4733 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4734 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4735 4736 int FI = FuncInfo.StaticAllocaMap[Slot]; 4737 MFI->setStackProtectorIndex(FI); 4738 4739 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4740 4741 // Store the stack protector onto the stack. 4742 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4743 MachinePointerInfo::getFixedStack(FI), 4744 true, false, 0); 4745 setValue(&I, Res); 4746 DAG.setRoot(Res); 4747 return 0; 4748 } 4749 case Intrinsic::objectsize: { 4750 // If we don't know by now, we're never going to know. 4751 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4752 4753 assert(CI && "Non-constant type in __builtin_object_size?"); 4754 4755 SDValue Arg = getValue(I.getCalledValue()); 4756 EVT Ty = Arg.getValueType(); 4757 4758 if (CI->isZero()) 4759 Res = DAG.getConstant(-1ULL, Ty); 4760 else 4761 Res = DAG.getConstant(0, Ty); 4762 4763 setValue(&I, Res); 4764 return 0; 4765 } 4766 case Intrinsic::var_annotation: 4767 // Discard annotate attributes 4768 return 0; 4769 4770 case Intrinsic::init_trampoline: { 4771 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4772 4773 SDValue Ops[6]; 4774 Ops[0] = getRoot(); 4775 Ops[1] = getValue(I.getArgOperand(0)); 4776 Ops[2] = getValue(I.getArgOperand(1)); 4777 Ops[3] = getValue(I.getArgOperand(2)); 4778 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4779 Ops[5] = DAG.getSrcValue(F); 4780 4781 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4782 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4783 Ops, 6); 4784 4785 setValue(&I, Res); 4786 DAG.setRoot(Res.getValue(1)); 4787 return 0; 4788 } 4789 case Intrinsic::gcroot: 4790 if (GFI) { 4791 const Value *Alloca = I.getArgOperand(0); 4792 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4793 4794 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4795 GFI->addStackRoot(FI->getIndex(), TypeMap); 4796 } 4797 return 0; 4798 case Intrinsic::gcread: 4799 case Intrinsic::gcwrite: 4800 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4801 return 0; 4802 case Intrinsic::flt_rounds: 4803 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4804 return 0; 4805 4806 case Intrinsic::expect: { 4807 // Just replace __builtin_expect(exp, c) with EXP. 4808 setValue(&I, getValue(I.getArgOperand(0))); 4809 return 0; 4810 } 4811 4812 case Intrinsic::trap: { 4813 StringRef TrapFuncName = getTrapFunctionName(); 4814 if (TrapFuncName.empty()) { 4815 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4816 return 0; 4817 } 4818 TargetLowering::ArgListTy Args; 4819 std::pair<SDValue, SDValue> Result = 4820 TLI.LowerCallTo(getRoot(), I.getType(), 4821 false, false, false, false, 0, CallingConv::C, 4822 /*isTailCall=*/false, /*isReturnValueUsed=*/true, 4823 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4824 Args, DAG, getCurDebugLoc()); 4825 DAG.setRoot(Result.second); 4826 return 0; 4827 } 4828 case Intrinsic::uadd_with_overflow: 4829 return implVisitAluOverflow(I, ISD::UADDO); 4830 case Intrinsic::sadd_with_overflow: 4831 return implVisitAluOverflow(I, ISD::SADDO); 4832 case Intrinsic::usub_with_overflow: 4833 return implVisitAluOverflow(I, ISD::USUBO); 4834 case Intrinsic::ssub_with_overflow: 4835 return implVisitAluOverflow(I, ISD::SSUBO); 4836 case Intrinsic::umul_with_overflow: 4837 return implVisitAluOverflow(I, ISD::UMULO); 4838 case Intrinsic::smul_with_overflow: 4839 return implVisitAluOverflow(I, ISD::SMULO); 4840 4841 case Intrinsic::prefetch: { 4842 SDValue Ops[5]; 4843 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4844 Ops[0] = getRoot(); 4845 Ops[1] = getValue(I.getArgOperand(0)); 4846 Ops[2] = getValue(I.getArgOperand(1)); 4847 Ops[3] = getValue(I.getArgOperand(2)); 4848 Ops[4] = getValue(I.getArgOperand(3)); 4849 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 4850 DAG.getVTList(MVT::Other), 4851 &Ops[0], 5, 4852 EVT::getIntegerVT(*Context, 8), 4853 MachinePointerInfo(I.getArgOperand(0)), 4854 0, /* align */ 4855 false, /* volatile */ 4856 rw==0, /* read */ 4857 rw==1)); /* write */ 4858 return 0; 4859 } 4860 case Intrinsic::memory_barrier: { 4861 SDValue Ops[6]; 4862 Ops[0] = getRoot(); 4863 for (int x = 1; x < 6; ++x) 4864 Ops[x] = getValue(I.getArgOperand(x - 1)); 4865 4866 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4867 return 0; 4868 } 4869 case Intrinsic::atomic_cmp_swap: { 4870 SDValue Root = getRoot(); 4871 SDValue L = 4872 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4873 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4874 Root, 4875 getValue(I.getArgOperand(0)), 4876 getValue(I.getArgOperand(1)), 4877 getValue(I.getArgOperand(2)), 4878 MachinePointerInfo(I.getArgOperand(0))); 4879 setValue(&I, L); 4880 DAG.setRoot(L.getValue(1)); 4881 return 0; 4882 } 4883 case Intrinsic::atomic_load_add: 4884 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4885 case Intrinsic::atomic_load_sub: 4886 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4887 case Intrinsic::atomic_load_or: 4888 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4889 case Intrinsic::atomic_load_xor: 4890 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4891 case Intrinsic::atomic_load_and: 4892 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4893 case Intrinsic::atomic_load_nand: 4894 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4895 case Intrinsic::atomic_load_max: 4896 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4897 case Intrinsic::atomic_load_min: 4898 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4899 case Intrinsic::atomic_load_umin: 4900 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4901 case Intrinsic::atomic_load_umax: 4902 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4903 case Intrinsic::atomic_swap: 4904 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4905 4906 case Intrinsic::invariant_start: 4907 case Intrinsic::lifetime_start: 4908 // Discard region information. 4909 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4910 return 0; 4911 case Intrinsic::invariant_end: 4912 case Intrinsic::lifetime_end: 4913 // Discard region information. 4914 return 0; 4915 } 4916 } 4917 4918 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4919 bool isTailCall, 4920 MachineBasicBlock *LandingPad) { 4921 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4922 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4923 Type *RetTy = FTy->getReturnType(); 4924 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4925 MCSymbol *BeginLabel = 0; 4926 4927 TargetLowering::ArgListTy Args; 4928 TargetLowering::ArgListEntry Entry; 4929 Args.reserve(CS.arg_size()); 4930 4931 // Check whether the function can return without sret-demotion. 4932 SmallVector<ISD::OutputArg, 4> Outs; 4933 SmallVector<uint64_t, 4> Offsets; 4934 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4935 Outs, TLI, &Offsets); 4936 4937 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4938 DAG.getMachineFunction(), 4939 FTy->isVarArg(), Outs, 4940 FTy->getContext()); 4941 4942 SDValue DemoteStackSlot; 4943 int DemoteStackIdx = -100; 4944 4945 if (!CanLowerReturn) { 4946 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4947 FTy->getReturnType()); 4948 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4949 FTy->getReturnType()); 4950 MachineFunction &MF = DAG.getMachineFunction(); 4951 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4952 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4953 4954 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 4955 Entry.Node = DemoteStackSlot; 4956 Entry.Ty = StackSlotPtrType; 4957 Entry.isSExt = false; 4958 Entry.isZExt = false; 4959 Entry.isInReg = false; 4960 Entry.isSRet = true; 4961 Entry.isNest = false; 4962 Entry.isByVal = false; 4963 Entry.Alignment = Align; 4964 Args.push_back(Entry); 4965 RetTy = Type::getVoidTy(FTy->getContext()); 4966 } 4967 4968 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4969 i != e; ++i) { 4970 const Value *V = *i; 4971 4972 // Skip empty types 4973 if (V->getType()->isEmptyTy()) 4974 continue; 4975 4976 SDValue ArgNode = getValue(V); 4977 Entry.Node = ArgNode; Entry.Ty = V->getType(); 4978 4979 unsigned attrInd = i - CS.arg_begin() + 1; 4980 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4981 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4982 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4983 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4984 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4985 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4986 Entry.Alignment = CS.getParamAlignment(attrInd); 4987 Args.push_back(Entry); 4988 } 4989 4990 if (LandingPad) { 4991 // Insert a label before the invoke call to mark the try range. This can be 4992 // used to detect deletion of the invoke via the MachineModuleInfo. 4993 BeginLabel = MMI.getContext().CreateTempSymbol(); 4994 4995 // For SjLj, keep track of which landing pads go with which invokes 4996 // so as to maintain the ordering of pads in the LSDA. 4997 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4998 if (CallSiteIndex) { 4999 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5000 // Now that the call site is handled, stop tracking it. 5001 MMI.setCurrentCallSite(0); 5002 } 5003 5004 // Both PendingLoads and PendingExports must be flushed here; 5005 // this call might not return. 5006 (void)getRoot(); 5007 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5008 } 5009 5010 // Check if target-independent constraints permit a tail call here. 5011 // Target-dependent constraints are checked within TLI.LowerCallTo. 5012 if (isTailCall && 5013 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5014 isTailCall = false; 5015 5016 // If there's a possibility that fast-isel has already selected some amount 5017 // of the current basic block, don't emit a tail call. 5018 if (isTailCall && EnableFastISel) 5019 isTailCall = false; 5020 5021 std::pair<SDValue,SDValue> Result = 5022 TLI.LowerCallTo(getRoot(), RetTy, 5023 CS.paramHasAttr(0, Attribute::SExt), 5024 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 5025 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 5026 CS.getCallingConv(), 5027 isTailCall, 5028 !CS.getInstruction()->use_empty(), 5029 Callee, Args, DAG, getCurDebugLoc()); 5030 assert((isTailCall || Result.second.getNode()) && 5031 "Non-null chain expected with non-tail call!"); 5032 assert((Result.second.getNode() || !Result.first.getNode()) && 5033 "Null value expected with tail call!"); 5034 if (Result.first.getNode()) { 5035 setValue(CS.getInstruction(), Result.first); 5036 } else if (!CanLowerReturn && Result.second.getNode()) { 5037 // The instruction result is the result of loading from the 5038 // hidden sret parameter. 5039 SmallVector<EVT, 1> PVTs; 5040 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5041 5042 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5043 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5044 EVT PtrVT = PVTs[0]; 5045 unsigned NumValues = Outs.size(); 5046 SmallVector<SDValue, 4> Values(NumValues); 5047 SmallVector<SDValue, 4> Chains(NumValues); 5048 5049 for (unsigned i = 0; i < NumValues; ++i) { 5050 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5051 DemoteStackSlot, 5052 DAG.getConstant(Offsets[i], PtrVT)); 5053 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 5054 Add, 5055 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5056 false, false, 1); 5057 Values[i] = L; 5058 Chains[i] = L.getValue(1); 5059 } 5060 5061 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5062 MVT::Other, &Chains[0], NumValues); 5063 PendingLoads.push_back(Chain); 5064 5065 // Collect the legal value parts into potentially illegal values 5066 // that correspond to the original function's return values. 5067 SmallVector<EVT, 4> RetTys; 5068 RetTy = FTy->getReturnType(); 5069 ComputeValueVTs(TLI, RetTy, RetTys); 5070 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5071 SmallVector<SDValue, 4> ReturnValues; 5072 unsigned CurReg = 0; 5073 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5074 EVT VT = RetTys[I]; 5075 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 5076 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 5077 5078 SDValue ReturnValue = 5079 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 5080 RegisterVT, VT, AssertOp); 5081 ReturnValues.push_back(ReturnValue); 5082 CurReg += NumRegs; 5083 } 5084 5085 setValue(CS.getInstruction(), 5086 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5087 DAG.getVTList(&RetTys[0], RetTys.size()), 5088 &ReturnValues[0], ReturnValues.size())); 5089 } 5090 5091 // Assign order to nodes here. If the call does not produce a result, it won't 5092 // be mapped to a SDNode and visit() will not assign it an order number. 5093 if (!Result.second.getNode()) { 5094 // As a special case, a null chain means that a tail call has been emitted and 5095 // the DAG root is already updated. 5096 HasTailCall = true; 5097 ++SDNodeOrder; 5098 AssignOrderingToNode(DAG.getRoot().getNode()); 5099 } else { 5100 DAG.setRoot(Result.second); 5101 ++SDNodeOrder; 5102 AssignOrderingToNode(Result.second.getNode()); 5103 } 5104 5105 if (LandingPad) { 5106 // Insert a label at the end of the invoke call to mark the try range. This 5107 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5108 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5109 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5110 5111 // Inform MachineModuleInfo of range. 5112 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5113 } 5114 } 5115 5116 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5117 /// value is equal or not-equal to zero. 5118 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5119 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5120 UI != E; ++UI) { 5121 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5122 if (IC->isEquality()) 5123 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5124 if (C->isNullValue()) 5125 continue; 5126 // Unknown instruction. 5127 return false; 5128 } 5129 return true; 5130 } 5131 5132 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5133 Type *LoadTy, 5134 SelectionDAGBuilder &Builder) { 5135 5136 // Check to see if this load can be trivially constant folded, e.g. if the 5137 // input is from a string literal. 5138 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5139 // Cast pointer to the type we really want to load. 5140 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5141 PointerType::getUnqual(LoadTy)); 5142 5143 if (const Constant *LoadCst = 5144 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5145 Builder.TD)) 5146 return Builder.getValue(LoadCst); 5147 } 5148 5149 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5150 // still constant memory, the input chain can be the entry node. 5151 SDValue Root; 5152 bool ConstantMemory = false; 5153 5154 // Do not serialize (non-volatile) loads of constant memory with anything. 5155 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5156 Root = Builder.DAG.getEntryNode(); 5157 ConstantMemory = true; 5158 } else { 5159 // Do not serialize non-volatile loads against each other. 5160 Root = Builder.DAG.getRoot(); 5161 } 5162 5163 SDValue Ptr = Builder.getValue(PtrVal); 5164 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5165 Ptr, MachinePointerInfo(PtrVal), 5166 false /*volatile*/, 5167 false /*nontemporal*/, 1 /* align=1 */); 5168 5169 if (!ConstantMemory) 5170 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5171 return LoadVal; 5172 } 5173 5174 5175 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5176 /// If so, return true and lower it, otherwise return false and it will be 5177 /// lowered like a normal call. 5178 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5179 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5180 if (I.getNumArgOperands() != 3) 5181 return false; 5182 5183 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5184 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5185 !I.getArgOperand(2)->getType()->isIntegerTy() || 5186 !I.getType()->isIntegerTy()) 5187 return false; 5188 5189 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5190 5191 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5192 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5193 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5194 bool ActuallyDoIt = true; 5195 MVT LoadVT; 5196 Type *LoadTy; 5197 switch (Size->getZExtValue()) { 5198 default: 5199 LoadVT = MVT::Other; 5200 LoadTy = 0; 5201 ActuallyDoIt = false; 5202 break; 5203 case 2: 5204 LoadVT = MVT::i16; 5205 LoadTy = Type::getInt16Ty(Size->getContext()); 5206 break; 5207 case 4: 5208 LoadVT = MVT::i32; 5209 LoadTy = Type::getInt32Ty(Size->getContext()); 5210 break; 5211 case 8: 5212 LoadVT = MVT::i64; 5213 LoadTy = Type::getInt64Ty(Size->getContext()); 5214 break; 5215 /* 5216 case 16: 5217 LoadVT = MVT::v4i32; 5218 LoadTy = Type::getInt32Ty(Size->getContext()); 5219 LoadTy = VectorType::get(LoadTy, 4); 5220 break; 5221 */ 5222 } 5223 5224 // This turns into unaligned loads. We only do this if the target natively 5225 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5226 // we'll only produce a small number of byte loads. 5227 5228 // Require that we can find a legal MVT, and only do this if the target 5229 // supports unaligned loads of that type. Expanding into byte loads would 5230 // bloat the code. 5231 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5232 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5233 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5234 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5235 ActuallyDoIt = false; 5236 } 5237 5238 if (ActuallyDoIt) { 5239 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5240 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5241 5242 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5243 ISD::SETNE); 5244 EVT CallVT = TLI.getValueType(I.getType(), true); 5245 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5246 return true; 5247 } 5248 } 5249 5250 5251 return false; 5252 } 5253 5254 5255 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5256 // Handle inline assembly differently. 5257 if (isa<InlineAsm>(I.getCalledValue())) { 5258 visitInlineAsm(&I); 5259 return; 5260 } 5261 5262 // See if any floating point values are being passed to this function. This is 5263 // used to emit an undefined reference to fltused on Windows. 5264 FunctionType *FT = 5265 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5266 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5267 if (FT->isVarArg() && 5268 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5269 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5270 Type* T = I.getArgOperand(i)->getType(); 5271 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 5272 i != e; ++i) { 5273 if (!i->isFloatingPointTy()) continue; 5274 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5275 break; 5276 } 5277 } 5278 } 5279 5280 const char *RenameFn = 0; 5281 if (Function *F = I.getCalledFunction()) { 5282 if (F->isDeclaration()) { 5283 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5284 if (unsigned IID = II->getIntrinsicID(F)) { 5285 RenameFn = visitIntrinsicCall(I, IID); 5286 if (!RenameFn) 5287 return; 5288 } 5289 } 5290 if (unsigned IID = F->getIntrinsicID()) { 5291 RenameFn = visitIntrinsicCall(I, IID); 5292 if (!RenameFn) 5293 return; 5294 } 5295 } 5296 5297 // Check for well-known libc/libm calls. If the function is internal, it 5298 // can't be a library call. 5299 if (!F->hasLocalLinkage() && F->hasName()) { 5300 StringRef Name = F->getName(); 5301 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5302 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5303 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5304 I.getType() == I.getArgOperand(0)->getType() && 5305 I.getType() == I.getArgOperand(1)->getType()) { 5306 SDValue LHS = getValue(I.getArgOperand(0)); 5307 SDValue RHS = getValue(I.getArgOperand(1)); 5308 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5309 LHS.getValueType(), LHS, RHS)); 5310 return; 5311 } 5312 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5313 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5314 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5315 I.getType() == I.getArgOperand(0)->getType()) { 5316 SDValue Tmp = getValue(I.getArgOperand(0)); 5317 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5318 Tmp.getValueType(), Tmp)); 5319 return; 5320 } 5321 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5322 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5323 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5324 I.getType() == I.getArgOperand(0)->getType() && 5325 I.onlyReadsMemory()) { 5326 SDValue Tmp = getValue(I.getArgOperand(0)); 5327 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5328 Tmp.getValueType(), Tmp)); 5329 return; 5330 } 5331 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5332 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5333 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5334 I.getType() == I.getArgOperand(0)->getType() && 5335 I.onlyReadsMemory()) { 5336 SDValue Tmp = getValue(I.getArgOperand(0)); 5337 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5338 Tmp.getValueType(), Tmp)); 5339 return; 5340 } 5341 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5342 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5343 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5344 I.getType() == I.getArgOperand(0)->getType() && 5345 I.onlyReadsMemory()) { 5346 SDValue Tmp = getValue(I.getArgOperand(0)); 5347 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5348 Tmp.getValueType(), Tmp)); 5349 return; 5350 } 5351 } else if (Name == "memcmp") { 5352 if (visitMemCmpCall(I)) 5353 return; 5354 } 5355 } 5356 } 5357 5358 SDValue Callee; 5359 if (!RenameFn) 5360 Callee = getValue(I.getCalledValue()); 5361 else 5362 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5363 5364 // Check if we can potentially perform a tail call. More detailed checking is 5365 // be done within LowerCallTo, after more information about the call is known. 5366 LowerCallTo(&I, Callee, I.isTailCall()); 5367 } 5368 5369 namespace { 5370 5371 /// AsmOperandInfo - This contains information for each constraint that we are 5372 /// lowering. 5373 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5374 public: 5375 /// CallOperand - If this is the result output operand or a clobber 5376 /// this is null, otherwise it is the incoming operand to the CallInst. 5377 /// This gets modified as the asm is processed. 5378 SDValue CallOperand; 5379 5380 /// AssignedRegs - If this is a register or register class operand, this 5381 /// contains the set of register corresponding to the operand. 5382 RegsForValue AssignedRegs; 5383 5384 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5385 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5386 } 5387 5388 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5389 /// busy in OutputRegs/InputRegs. 5390 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5391 std::set<unsigned> &OutputRegs, 5392 std::set<unsigned> &InputRegs, 5393 const TargetRegisterInfo &TRI) const { 5394 if (isOutReg) { 5395 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5396 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5397 } 5398 if (isInReg) { 5399 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5400 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5401 } 5402 } 5403 5404 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5405 /// corresponds to. If there is no Value* for this operand, it returns 5406 /// MVT::Other. 5407 EVT getCallOperandValEVT(LLVMContext &Context, 5408 const TargetLowering &TLI, 5409 const TargetData *TD) const { 5410 if (CallOperandVal == 0) return MVT::Other; 5411 5412 if (isa<BasicBlock>(CallOperandVal)) 5413 return TLI.getPointerTy(); 5414 5415 llvm::Type *OpTy = CallOperandVal->getType(); 5416 5417 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5418 // If this is an indirect operand, the operand is a pointer to the 5419 // accessed type. 5420 if (isIndirect) { 5421 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5422 if (!PtrTy) 5423 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5424 OpTy = PtrTy->getElementType(); 5425 } 5426 5427 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5428 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5429 if (STy->getNumElements() == 1) 5430 OpTy = STy->getElementType(0); 5431 5432 // If OpTy is not a single value, it may be a struct/union that we 5433 // can tile with integers. 5434 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5435 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5436 switch (BitSize) { 5437 default: break; 5438 case 1: 5439 case 8: 5440 case 16: 5441 case 32: 5442 case 64: 5443 case 128: 5444 OpTy = IntegerType::get(Context, BitSize); 5445 break; 5446 } 5447 } 5448 5449 return TLI.getValueType(OpTy, true); 5450 } 5451 5452 private: 5453 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5454 /// specified set. 5455 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5456 const TargetRegisterInfo &TRI) { 5457 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5458 Regs.insert(Reg); 5459 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5460 for (; *Aliases; ++Aliases) 5461 Regs.insert(*Aliases); 5462 } 5463 }; 5464 5465 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5466 5467 } // end anonymous namespace 5468 5469 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5470 /// specified operand. We prefer to assign virtual registers, to allow the 5471 /// register allocator to handle the assignment process. However, if the asm 5472 /// uses features that we can't model on machineinstrs, we have SDISel do the 5473 /// allocation. This produces generally horrible, but correct, code. 5474 /// 5475 /// OpInfo describes the operand. 5476 /// Input and OutputRegs are the set of already allocated physical registers. 5477 /// 5478 static void GetRegistersForValue(SelectionDAG &DAG, 5479 const TargetLowering &TLI, 5480 DebugLoc DL, 5481 SDISelAsmOperandInfo &OpInfo, 5482 std::set<unsigned> &OutputRegs, 5483 std::set<unsigned> &InputRegs) { 5484 LLVMContext &Context = *DAG.getContext(); 5485 5486 // Compute whether this value requires an input register, an output register, 5487 // or both. 5488 bool isOutReg = false; 5489 bool isInReg = false; 5490 switch (OpInfo.Type) { 5491 case InlineAsm::isOutput: 5492 isOutReg = true; 5493 5494 // If there is an input constraint that matches this, we need to reserve 5495 // the input register so no other inputs allocate to it. 5496 isInReg = OpInfo.hasMatchingInput(); 5497 break; 5498 case InlineAsm::isInput: 5499 isInReg = true; 5500 isOutReg = false; 5501 break; 5502 case InlineAsm::isClobber: 5503 isOutReg = true; 5504 isInReg = true; 5505 break; 5506 } 5507 5508 5509 MachineFunction &MF = DAG.getMachineFunction(); 5510 SmallVector<unsigned, 4> Regs; 5511 5512 // If this is a constraint for a single physreg, or a constraint for a 5513 // register class, find it. 5514 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5515 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5516 OpInfo.ConstraintVT); 5517 5518 unsigned NumRegs = 1; 5519 if (OpInfo.ConstraintVT != MVT::Other) { 5520 // If this is a FP input in an integer register (or visa versa) insert a bit 5521 // cast of the input value. More generally, handle any case where the input 5522 // value disagrees with the register class we plan to stick this in. 5523 if (OpInfo.Type == InlineAsm::isInput && 5524 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5525 // Try to convert to the first EVT that the reg class contains. If the 5526 // types are identical size, use a bitcast to convert (e.g. two differing 5527 // vector types). 5528 EVT RegVT = *PhysReg.second->vt_begin(); 5529 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5530 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5531 RegVT, OpInfo.CallOperand); 5532 OpInfo.ConstraintVT = RegVT; 5533 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5534 // If the input is a FP value and we want it in FP registers, do a 5535 // bitcast to the corresponding integer type. This turns an f64 value 5536 // into i64, which can be passed with two i32 values on a 32-bit 5537 // machine. 5538 RegVT = EVT::getIntegerVT(Context, 5539 OpInfo.ConstraintVT.getSizeInBits()); 5540 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5541 RegVT, OpInfo.CallOperand); 5542 OpInfo.ConstraintVT = RegVT; 5543 } 5544 } 5545 5546 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5547 } 5548 5549 EVT RegVT; 5550 EVT ValueVT = OpInfo.ConstraintVT; 5551 5552 // If this is a constraint for a specific physical register, like {r17}, 5553 // assign it now. 5554 if (unsigned AssignedReg = PhysReg.first) { 5555 const TargetRegisterClass *RC = PhysReg.second; 5556 if (OpInfo.ConstraintVT == MVT::Other) 5557 ValueVT = *RC->vt_begin(); 5558 5559 // Get the actual register value type. This is important, because the user 5560 // may have asked for (e.g.) the AX register in i32 type. We need to 5561 // remember that AX is actually i16 to get the right extension. 5562 RegVT = *RC->vt_begin(); 5563 5564 // This is a explicit reference to a physical register. 5565 Regs.push_back(AssignedReg); 5566 5567 // If this is an expanded reference, add the rest of the regs to Regs. 5568 if (NumRegs != 1) { 5569 TargetRegisterClass::iterator I = RC->begin(); 5570 for (; *I != AssignedReg; ++I) 5571 assert(I != RC->end() && "Didn't find reg!"); 5572 5573 // Already added the first reg. 5574 --NumRegs; ++I; 5575 for (; NumRegs; --NumRegs, ++I) { 5576 assert(I != RC->end() && "Ran out of registers to allocate!"); 5577 Regs.push_back(*I); 5578 } 5579 } 5580 5581 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5582 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5583 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5584 return; 5585 } 5586 5587 // Otherwise, if this was a reference to an LLVM register class, create vregs 5588 // for this reference. 5589 if (const TargetRegisterClass *RC = PhysReg.second) { 5590 RegVT = *RC->vt_begin(); 5591 if (OpInfo.ConstraintVT == MVT::Other) 5592 ValueVT = RegVT; 5593 5594 // Create the appropriate number of virtual registers. 5595 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5596 for (; NumRegs; --NumRegs) 5597 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5598 5599 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5600 return; 5601 } 5602 5603 // Otherwise, we couldn't allocate enough registers for this. 5604 } 5605 5606 /// visitInlineAsm - Handle a call to an InlineAsm object. 5607 /// 5608 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5609 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5610 5611 /// ConstraintOperands - Information about all of the constraints. 5612 SDISelAsmOperandInfoVector ConstraintOperands; 5613 5614 std::set<unsigned> OutputRegs, InputRegs; 5615 5616 TargetLowering::AsmOperandInfoVector 5617 TargetConstraints = TLI.ParseConstraints(CS); 5618 5619 bool hasMemory = false; 5620 5621 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5622 unsigned ResNo = 0; // ResNo - The result number of the next output. 5623 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5624 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5625 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5626 5627 EVT OpVT = MVT::Other; 5628 5629 // Compute the value type for each operand. 5630 switch (OpInfo.Type) { 5631 case InlineAsm::isOutput: 5632 // Indirect outputs just consume an argument. 5633 if (OpInfo.isIndirect) { 5634 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5635 break; 5636 } 5637 5638 // The return value of the call is this value. As such, there is no 5639 // corresponding argument. 5640 assert(!CS.getType()->isVoidTy() && 5641 "Bad inline asm!"); 5642 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5643 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5644 } else { 5645 assert(ResNo == 0 && "Asm only has one result!"); 5646 OpVT = TLI.getValueType(CS.getType()); 5647 } 5648 ++ResNo; 5649 break; 5650 case InlineAsm::isInput: 5651 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5652 break; 5653 case InlineAsm::isClobber: 5654 // Nothing to do. 5655 break; 5656 } 5657 5658 // If this is an input or an indirect output, process the call argument. 5659 // BasicBlocks are labels, currently appearing only in asm's. 5660 if (OpInfo.CallOperandVal) { 5661 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5662 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5663 } else { 5664 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5665 } 5666 5667 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5668 } 5669 5670 OpInfo.ConstraintVT = OpVT; 5671 5672 // Indirect operand accesses access memory. 5673 if (OpInfo.isIndirect) 5674 hasMemory = true; 5675 else { 5676 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5677 TargetLowering::ConstraintType 5678 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5679 if (CType == TargetLowering::C_Memory) { 5680 hasMemory = true; 5681 break; 5682 } 5683 } 5684 } 5685 } 5686 5687 SDValue Chain, Flag; 5688 5689 // We won't need to flush pending loads if this asm doesn't touch 5690 // memory and is nonvolatile. 5691 if (hasMemory || IA->hasSideEffects()) 5692 Chain = getRoot(); 5693 else 5694 Chain = DAG.getRoot(); 5695 5696 // Second pass over the constraints: compute which constraint option to use 5697 // and assign registers to constraints that want a specific physreg. 5698 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5699 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5700 5701 // If this is an output operand with a matching input operand, look up the 5702 // matching input. If their types mismatch, e.g. one is an integer, the 5703 // other is floating point, or their sizes are different, flag it as an 5704 // error. 5705 if (OpInfo.hasMatchingInput()) { 5706 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5707 5708 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5709 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5710 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT); 5711 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5712 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT); 5713 if ((OpInfo.ConstraintVT.isInteger() != 5714 Input.ConstraintVT.isInteger()) || 5715 (MatchRC.second != InputRC.second)) { 5716 report_fatal_error("Unsupported asm: input constraint" 5717 " with a matching output constraint of" 5718 " incompatible type!"); 5719 } 5720 Input.ConstraintVT = OpInfo.ConstraintVT; 5721 } 5722 } 5723 5724 // Compute the constraint code and ConstraintType to use. 5725 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5726 5727 // If this is a memory input, and if the operand is not indirect, do what we 5728 // need to to provide an address for the memory input. 5729 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5730 !OpInfo.isIndirect) { 5731 assert((OpInfo.isMultipleAlternative || 5732 (OpInfo.Type == InlineAsm::isInput)) && 5733 "Can only indirectify direct input operands!"); 5734 5735 // Memory operands really want the address of the value. If we don't have 5736 // an indirect input, put it in the constpool if we can, otherwise spill 5737 // it to a stack slot. 5738 // TODO: This isn't quite right. We need to handle these according to 5739 // the addressing mode that the constraint wants. Also, this may take 5740 // an additional register for the computation and we don't want that 5741 // either. 5742 5743 // If the operand is a float, integer, or vector constant, spill to a 5744 // constant pool entry to get its address. 5745 const Value *OpVal = OpInfo.CallOperandVal; 5746 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5747 isa<ConstantVector>(OpVal)) { 5748 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5749 TLI.getPointerTy()); 5750 } else { 5751 // Otherwise, create a stack slot and emit a store to it before the 5752 // asm. 5753 Type *Ty = OpVal->getType(); 5754 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5755 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5756 MachineFunction &MF = DAG.getMachineFunction(); 5757 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5758 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5759 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5760 OpInfo.CallOperand, StackSlot, 5761 MachinePointerInfo::getFixedStack(SSFI), 5762 false, false, 0); 5763 OpInfo.CallOperand = StackSlot; 5764 } 5765 5766 // There is no longer a Value* corresponding to this operand. 5767 OpInfo.CallOperandVal = 0; 5768 5769 // It is now an indirect operand. 5770 OpInfo.isIndirect = true; 5771 } 5772 5773 // If this constraint is for a specific register, allocate it before 5774 // anything else. 5775 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5776 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5777 InputRegs); 5778 } 5779 5780 // Second pass - Loop over all of the operands, assigning virtual or physregs 5781 // to register class operands. 5782 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5783 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5784 5785 // C_Register operands have already been allocated, Other/Memory don't need 5786 // to be. 5787 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5788 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5789 InputRegs); 5790 } 5791 5792 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5793 std::vector<SDValue> AsmNodeOperands; 5794 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5795 AsmNodeOperands.push_back( 5796 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5797 TLI.getPointerTy())); 5798 5799 // If we have a !srcloc metadata node associated with it, we want to attach 5800 // this to the ultimately generated inline asm machineinstr. To do this, we 5801 // pass in the third operand as this (potentially null) inline asm MDNode. 5802 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5803 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5804 5805 // Remember the HasSideEffect and AlignStack bits as operand 3. 5806 unsigned ExtraInfo = 0; 5807 if (IA->hasSideEffects()) 5808 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 5809 if (IA->isAlignStack()) 5810 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 5811 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 5812 TLI.getPointerTy())); 5813 5814 // Loop over all of the inputs, copying the operand values into the 5815 // appropriate registers and processing the output regs. 5816 RegsForValue RetValRegs; 5817 5818 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5819 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5820 5821 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5822 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5823 5824 switch (OpInfo.Type) { 5825 case InlineAsm::isOutput: { 5826 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5827 OpInfo.ConstraintType != TargetLowering::C_Register) { 5828 // Memory output, or 'other' output (e.g. 'X' constraint). 5829 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5830 5831 // Add information to the INLINEASM node to know about this output. 5832 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5833 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5834 TLI.getPointerTy())); 5835 AsmNodeOperands.push_back(OpInfo.CallOperand); 5836 break; 5837 } 5838 5839 // Otherwise, this is a register or register class output. 5840 5841 // Copy the output from the appropriate register. Find a register that 5842 // we can use. 5843 if (OpInfo.AssignedRegs.Regs.empty()) 5844 report_fatal_error("Couldn't allocate output reg for constraint '" + 5845 Twine(OpInfo.ConstraintCode) + "'!"); 5846 5847 // If this is an indirect operand, store through the pointer after the 5848 // asm. 5849 if (OpInfo.isIndirect) { 5850 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5851 OpInfo.CallOperandVal)); 5852 } else { 5853 // This is the result value of the call. 5854 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5855 // Concatenate this output onto the outputs list. 5856 RetValRegs.append(OpInfo.AssignedRegs); 5857 } 5858 5859 // Add information to the INLINEASM node to know that this register is 5860 // set. 5861 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5862 InlineAsm::Kind_RegDefEarlyClobber : 5863 InlineAsm::Kind_RegDef, 5864 false, 5865 0, 5866 DAG, 5867 AsmNodeOperands); 5868 break; 5869 } 5870 case InlineAsm::isInput: { 5871 SDValue InOperandVal = OpInfo.CallOperand; 5872 5873 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5874 // If this is required to match an output register we have already set, 5875 // just use its register. 5876 unsigned OperandNo = OpInfo.getMatchedOperand(); 5877 5878 // Scan until we find the definition we already emitted of this operand. 5879 // When we find it, create a RegsForValue operand. 5880 unsigned CurOp = InlineAsm::Op_FirstOperand; 5881 for (; OperandNo; --OperandNo) { 5882 // Advance to the next operand. 5883 unsigned OpFlag = 5884 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5885 assert((InlineAsm::isRegDefKind(OpFlag) || 5886 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5887 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5888 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5889 } 5890 5891 unsigned OpFlag = 5892 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5893 if (InlineAsm::isRegDefKind(OpFlag) || 5894 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5895 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5896 if (OpInfo.isIndirect) { 5897 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5898 LLVMContext &Ctx = *DAG.getContext(); 5899 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5900 " don't know how to handle tied " 5901 "indirect register inputs"); 5902 } 5903 5904 RegsForValue MatchedRegs; 5905 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5906 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5907 MatchedRegs.RegVTs.push_back(RegVT); 5908 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5909 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5910 i != e; ++i) 5911 MatchedRegs.Regs.push_back 5912 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5913 5914 // Use the produced MatchedRegs object to 5915 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5916 Chain, &Flag); 5917 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5918 true, OpInfo.getMatchedOperand(), 5919 DAG, AsmNodeOperands); 5920 break; 5921 } 5922 5923 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5924 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5925 "Unexpected number of operands"); 5926 // Add information to the INLINEASM node to know about this input. 5927 // See InlineAsm.h isUseOperandTiedToDef. 5928 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5929 OpInfo.getMatchedOperand()); 5930 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5931 TLI.getPointerTy())); 5932 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5933 break; 5934 } 5935 5936 // Treat indirect 'X' constraint as memory. 5937 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5938 OpInfo.isIndirect) 5939 OpInfo.ConstraintType = TargetLowering::C_Memory; 5940 5941 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5942 std::vector<SDValue> Ops; 5943 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 5944 Ops, DAG); 5945 if (Ops.empty()) 5946 report_fatal_error("Invalid operand for inline asm constraint '" + 5947 Twine(OpInfo.ConstraintCode) + "'!"); 5948 5949 // Add information to the INLINEASM node to know about this input. 5950 unsigned ResOpType = 5951 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5952 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5953 TLI.getPointerTy())); 5954 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5955 break; 5956 } 5957 5958 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5959 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5960 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5961 "Memory operands expect pointer values"); 5962 5963 // Add information to the INLINEASM node to know about this input. 5964 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5965 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5966 TLI.getPointerTy())); 5967 AsmNodeOperands.push_back(InOperandVal); 5968 break; 5969 } 5970 5971 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5972 OpInfo.ConstraintType == TargetLowering::C_Register) && 5973 "Unknown constraint type!"); 5974 assert(!OpInfo.isIndirect && 5975 "Don't know how to handle indirect register inputs yet!"); 5976 5977 // Copy the input into the appropriate registers. 5978 if (OpInfo.AssignedRegs.Regs.empty()) 5979 report_fatal_error("Couldn't allocate input reg for constraint '" + 5980 Twine(OpInfo.ConstraintCode) + "'!"); 5981 5982 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5983 Chain, &Flag); 5984 5985 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5986 DAG, AsmNodeOperands); 5987 break; 5988 } 5989 case InlineAsm::isClobber: { 5990 // Add the clobbered value to the operand list, so that the register 5991 // allocator is aware that the physreg got clobbered. 5992 if (!OpInfo.AssignedRegs.Regs.empty()) 5993 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 5994 false, 0, DAG, 5995 AsmNodeOperands); 5996 break; 5997 } 5998 } 5999 } 6000 6001 // Finish up input operands. Set the input chain and add the flag last. 6002 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6003 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6004 6005 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6006 DAG.getVTList(MVT::Other, MVT::Glue), 6007 &AsmNodeOperands[0], AsmNodeOperands.size()); 6008 Flag = Chain.getValue(1); 6009 6010 // If this asm returns a register value, copy the result from that register 6011 // and set it as the value of the call. 6012 if (!RetValRegs.Regs.empty()) { 6013 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6014 Chain, &Flag); 6015 6016 // FIXME: Why don't we do this for inline asms with MRVs? 6017 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6018 EVT ResultType = TLI.getValueType(CS.getType()); 6019 6020 // If any of the results of the inline asm is a vector, it may have the 6021 // wrong width/num elts. This can happen for register classes that can 6022 // contain multiple different value types. The preg or vreg allocated may 6023 // not have the same VT as was expected. Convert it to the right type 6024 // with bit_convert. 6025 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6026 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6027 ResultType, Val); 6028 6029 } else if (ResultType != Val.getValueType() && 6030 ResultType.isInteger() && Val.getValueType().isInteger()) { 6031 // If a result value was tied to an input value, the computed result may 6032 // have a wider width than the expected result. Extract the relevant 6033 // portion. 6034 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6035 } 6036 6037 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6038 } 6039 6040 setValue(CS.getInstruction(), Val); 6041 // Don't need to use this as a chain in this case. 6042 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6043 return; 6044 } 6045 6046 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6047 6048 // Process indirect outputs, first output all of the flagged copies out of 6049 // physregs. 6050 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6051 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6052 const Value *Ptr = IndirectStoresToEmit[i].second; 6053 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6054 Chain, &Flag); 6055 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6056 } 6057 6058 // Emit the non-flagged stores from the physregs. 6059 SmallVector<SDValue, 8> OutChains; 6060 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6061 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6062 StoresToEmit[i].first, 6063 getValue(StoresToEmit[i].second), 6064 MachinePointerInfo(StoresToEmit[i].second), 6065 false, false, 0); 6066 OutChains.push_back(Val); 6067 } 6068 6069 if (!OutChains.empty()) 6070 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6071 &OutChains[0], OutChains.size()); 6072 6073 DAG.setRoot(Chain); 6074 } 6075 6076 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6077 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6078 MVT::Other, getRoot(), 6079 getValue(I.getArgOperand(0)), 6080 DAG.getSrcValue(I.getArgOperand(0)))); 6081 } 6082 6083 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6084 const TargetData &TD = *TLI.getTargetData(); 6085 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6086 getRoot(), getValue(I.getOperand(0)), 6087 DAG.getSrcValue(I.getOperand(0)), 6088 TD.getABITypeAlignment(I.getType())); 6089 setValue(&I, V); 6090 DAG.setRoot(V.getValue(1)); 6091 } 6092 6093 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6094 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6095 MVT::Other, getRoot(), 6096 getValue(I.getArgOperand(0)), 6097 DAG.getSrcValue(I.getArgOperand(0)))); 6098 } 6099 6100 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6101 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6102 MVT::Other, getRoot(), 6103 getValue(I.getArgOperand(0)), 6104 getValue(I.getArgOperand(1)), 6105 DAG.getSrcValue(I.getArgOperand(0)), 6106 DAG.getSrcValue(I.getArgOperand(1)))); 6107 } 6108 6109 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6110 /// implementation, which just calls LowerCall. 6111 /// FIXME: When all targets are 6112 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6113 std::pair<SDValue, SDValue> 6114 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy, 6115 bool RetSExt, bool RetZExt, bool isVarArg, 6116 bool isInreg, unsigned NumFixedArgs, 6117 CallingConv::ID CallConv, bool isTailCall, 6118 bool isReturnValueUsed, 6119 SDValue Callee, 6120 ArgListTy &Args, SelectionDAG &DAG, 6121 DebugLoc dl) const { 6122 // Handle all of the outgoing arguments. 6123 SmallVector<ISD::OutputArg, 32> Outs; 6124 SmallVector<SDValue, 32> OutVals; 6125 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6126 SmallVector<EVT, 4> ValueVTs; 6127 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6128 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6129 Value != NumValues; ++Value) { 6130 EVT VT = ValueVTs[Value]; 6131 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6132 SDValue Op = SDValue(Args[i].Node.getNode(), 6133 Args[i].Node.getResNo() + Value); 6134 ISD::ArgFlagsTy Flags; 6135 unsigned OriginalAlignment = 6136 getTargetData()->getABITypeAlignment(ArgTy); 6137 6138 if (Args[i].isZExt) 6139 Flags.setZExt(); 6140 if (Args[i].isSExt) 6141 Flags.setSExt(); 6142 if (Args[i].isInReg) 6143 Flags.setInReg(); 6144 if (Args[i].isSRet) 6145 Flags.setSRet(); 6146 if (Args[i].isByVal) { 6147 Flags.setByVal(); 6148 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6149 Type *ElementTy = Ty->getElementType(); 6150 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6151 // For ByVal, alignment should come from FE. BE will guess if this 6152 // info is not there but there are cases it cannot get right. 6153 unsigned FrameAlign; 6154 if (Args[i].Alignment) 6155 FrameAlign = Args[i].Alignment; 6156 else 6157 FrameAlign = getByValTypeAlignment(ElementTy); 6158 Flags.setByValAlign(FrameAlign); 6159 } 6160 if (Args[i].isNest) 6161 Flags.setNest(); 6162 Flags.setOrigAlign(OriginalAlignment); 6163 6164 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6165 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6166 SmallVector<SDValue, 4> Parts(NumParts); 6167 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6168 6169 if (Args[i].isSExt) 6170 ExtendKind = ISD::SIGN_EXTEND; 6171 else if (Args[i].isZExt) 6172 ExtendKind = ISD::ZERO_EXTEND; 6173 6174 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6175 PartVT, ExtendKind); 6176 6177 for (unsigned j = 0; j != NumParts; ++j) { 6178 // if it isn't first piece, alignment must be 1 6179 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6180 i < NumFixedArgs); 6181 if (NumParts > 1 && j == 0) 6182 MyFlags.Flags.setSplit(); 6183 else if (j != 0) 6184 MyFlags.Flags.setOrigAlign(1); 6185 6186 Outs.push_back(MyFlags); 6187 OutVals.push_back(Parts[j]); 6188 } 6189 } 6190 } 6191 6192 // Handle the incoming return values from the call. 6193 SmallVector<ISD::InputArg, 32> Ins; 6194 SmallVector<EVT, 4> RetTys; 6195 ComputeValueVTs(*this, RetTy, RetTys); 6196 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6197 EVT VT = RetTys[I]; 6198 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6199 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6200 for (unsigned i = 0; i != NumRegs; ++i) { 6201 ISD::InputArg MyFlags; 6202 MyFlags.VT = RegisterVT.getSimpleVT(); 6203 MyFlags.Used = isReturnValueUsed; 6204 if (RetSExt) 6205 MyFlags.Flags.setSExt(); 6206 if (RetZExt) 6207 MyFlags.Flags.setZExt(); 6208 if (isInreg) 6209 MyFlags.Flags.setInReg(); 6210 Ins.push_back(MyFlags); 6211 } 6212 } 6213 6214 SmallVector<SDValue, 4> InVals; 6215 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6216 Outs, OutVals, Ins, dl, DAG, InVals); 6217 6218 // Verify that the target's LowerCall behaved as expected. 6219 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6220 "LowerCall didn't return a valid chain!"); 6221 assert((!isTailCall || InVals.empty()) && 6222 "LowerCall emitted a return value for a tail call!"); 6223 assert((isTailCall || InVals.size() == Ins.size()) && 6224 "LowerCall didn't emit the correct number of values!"); 6225 6226 // For a tail call, the return value is merely live-out and there aren't 6227 // any nodes in the DAG representing it. Return a special value to 6228 // indicate that a tail call has been emitted and no more Instructions 6229 // should be processed in the current block. 6230 if (isTailCall) { 6231 DAG.setRoot(Chain); 6232 return std::make_pair(SDValue(), SDValue()); 6233 } 6234 6235 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6236 assert(InVals[i].getNode() && 6237 "LowerCall emitted a null value!"); 6238 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6239 "LowerCall emitted a value with the wrong type!"); 6240 }); 6241 6242 // Collect the legal value parts into potentially illegal values 6243 // that correspond to the original function's return values. 6244 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6245 if (RetSExt) 6246 AssertOp = ISD::AssertSext; 6247 else if (RetZExt) 6248 AssertOp = ISD::AssertZext; 6249 SmallVector<SDValue, 4> ReturnValues; 6250 unsigned CurReg = 0; 6251 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6252 EVT VT = RetTys[I]; 6253 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6254 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6255 6256 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6257 NumRegs, RegisterVT, VT, 6258 AssertOp)); 6259 CurReg += NumRegs; 6260 } 6261 6262 // For a function returning void, there is no return value. We can't create 6263 // such a node, so we just return a null return value in that case. In 6264 // that case, nothing will actually look at the value. 6265 if (ReturnValues.empty()) 6266 return std::make_pair(SDValue(), Chain); 6267 6268 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6269 DAG.getVTList(&RetTys[0], RetTys.size()), 6270 &ReturnValues[0], ReturnValues.size()); 6271 return std::make_pair(Res, Chain); 6272 } 6273 6274 void TargetLowering::LowerOperationWrapper(SDNode *N, 6275 SmallVectorImpl<SDValue> &Results, 6276 SelectionDAG &DAG) const { 6277 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6278 if (Res.getNode()) 6279 Results.push_back(Res); 6280 } 6281 6282 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6283 llvm_unreachable("LowerOperation not implemented for this target!"); 6284 return SDValue(); 6285 } 6286 6287 void 6288 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6289 SDValue Op = getNonRegisterValue(V); 6290 assert((Op.getOpcode() != ISD::CopyFromReg || 6291 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6292 "Copy from a reg to the same reg!"); 6293 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6294 6295 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6296 SDValue Chain = DAG.getEntryNode(); 6297 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6298 PendingExports.push_back(Chain); 6299 } 6300 6301 #include "llvm/CodeGen/SelectionDAGISel.h" 6302 6303 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6304 /// entry block, return true. This includes arguments used by switches, since 6305 /// the switch may expand into multiple basic blocks. 6306 static bool isOnlyUsedInEntryBlock(const Argument *A) { 6307 // With FastISel active, we may be splitting blocks, so force creation 6308 // of virtual registers for all non-dead arguments. 6309 if (EnableFastISel) 6310 return A->use_empty(); 6311 6312 const BasicBlock *Entry = A->getParent()->begin(); 6313 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6314 UI != E; ++UI) { 6315 const User *U = *UI; 6316 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6317 return false; // Use not in entry block. 6318 } 6319 return true; 6320 } 6321 6322 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6323 // If this is the entry block, emit arguments. 6324 const Function &F = *LLVMBB->getParent(); 6325 SelectionDAG &DAG = SDB->DAG; 6326 DebugLoc dl = SDB->getCurDebugLoc(); 6327 const TargetData *TD = TLI.getTargetData(); 6328 SmallVector<ISD::InputArg, 16> Ins; 6329 6330 // Check whether the function can return without sret-demotion. 6331 SmallVector<ISD::OutputArg, 4> Outs; 6332 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6333 Outs, TLI); 6334 6335 if (!FuncInfo->CanLowerReturn) { 6336 // Put in an sret pointer parameter before all the other parameters. 6337 SmallVector<EVT, 1> ValueVTs; 6338 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6339 6340 // NOTE: Assuming that a pointer will never break down to more than one VT 6341 // or one register. 6342 ISD::ArgFlagsTy Flags; 6343 Flags.setSRet(); 6344 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6345 ISD::InputArg RetArg(Flags, RegisterVT, true); 6346 Ins.push_back(RetArg); 6347 } 6348 6349 // Set up the incoming argument description vector. 6350 unsigned Idx = 1; 6351 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6352 I != E; ++I, ++Idx) { 6353 SmallVector<EVT, 4> ValueVTs; 6354 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6355 bool isArgValueUsed = !I->use_empty(); 6356 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6357 Value != NumValues; ++Value) { 6358 EVT VT = ValueVTs[Value]; 6359 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6360 ISD::ArgFlagsTy Flags; 6361 unsigned OriginalAlignment = 6362 TD->getABITypeAlignment(ArgTy); 6363 6364 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6365 Flags.setZExt(); 6366 if (F.paramHasAttr(Idx, Attribute::SExt)) 6367 Flags.setSExt(); 6368 if (F.paramHasAttr(Idx, Attribute::InReg)) 6369 Flags.setInReg(); 6370 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6371 Flags.setSRet(); 6372 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6373 Flags.setByVal(); 6374 PointerType *Ty = cast<PointerType>(I->getType()); 6375 Type *ElementTy = Ty->getElementType(); 6376 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6377 // For ByVal, alignment should be passed from FE. BE will guess if 6378 // this info is not there but there are cases it cannot get right. 6379 unsigned FrameAlign; 6380 if (F.getParamAlignment(Idx)) 6381 FrameAlign = F.getParamAlignment(Idx); 6382 else 6383 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6384 Flags.setByValAlign(FrameAlign); 6385 } 6386 if (F.paramHasAttr(Idx, Attribute::Nest)) 6387 Flags.setNest(); 6388 Flags.setOrigAlign(OriginalAlignment); 6389 6390 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6391 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6392 for (unsigned i = 0; i != NumRegs; ++i) { 6393 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6394 if (NumRegs > 1 && i == 0) 6395 MyFlags.Flags.setSplit(); 6396 // if it isn't first piece, alignment must be 1 6397 else if (i > 0) 6398 MyFlags.Flags.setOrigAlign(1); 6399 Ins.push_back(MyFlags); 6400 } 6401 } 6402 } 6403 6404 // Call the target to set up the argument values. 6405 SmallVector<SDValue, 8> InVals; 6406 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6407 F.isVarArg(), Ins, 6408 dl, DAG, InVals); 6409 6410 // Verify that the target's LowerFormalArguments behaved as expected. 6411 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6412 "LowerFormalArguments didn't return a valid chain!"); 6413 assert(InVals.size() == Ins.size() && 6414 "LowerFormalArguments didn't emit the correct number of values!"); 6415 DEBUG({ 6416 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6417 assert(InVals[i].getNode() && 6418 "LowerFormalArguments emitted a null value!"); 6419 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6420 "LowerFormalArguments emitted a value with the wrong type!"); 6421 } 6422 }); 6423 6424 // Update the DAG with the new chain value resulting from argument lowering. 6425 DAG.setRoot(NewRoot); 6426 6427 // Set up the argument values. 6428 unsigned i = 0; 6429 Idx = 1; 6430 if (!FuncInfo->CanLowerReturn) { 6431 // Create a virtual register for the sret pointer, and put in a copy 6432 // from the sret argument into it. 6433 SmallVector<EVT, 1> ValueVTs; 6434 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6435 EVT VT = ValueVTs[0]; 6436 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6437 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6438 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6439 RegVT, VT, AssertOp); 6440 6441 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6442 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6443 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6444 FuncInfo->DemoteRegister = SRetReg; 6445 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6446 SRetReg, ArgValue); 6447 DAG.setRoot(NewRoot); 6448 6449 // i indexes lowered arguments. Bump it past the hidden sret argument. 6450 // Idx indexes LLVM arguments. Don't touch it. 6451 ++i; 6452 } 6453 6454 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6455 ++I, ++Idx) { 6456 SmallVector<SDValue, 4> ArgValues; 6457 SmallVector<EVT, 4> ValueVTs; 6458 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6459 unsigned NumValues = ValueVTs.size(); 6460 6461 // If this argument is unused then remember its value. It is used to generate 6462 // debugging information. 6463 if (I->use_empty() && NumValues) 6464 SDB->setUnusedArgValue(I, InVals[i]); 6465 6466 for (unsigned Val = 0; Val != NumValues; ++Val) { 6467 EVT VT = ValueVTs[Val]; 6468 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6469 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6470 6471 if (!I->use_empty()) { 6472 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6473 if (F.paramHasAttr(Idx, Attribute::SExt)) 6474 AssertOp = ISD::AssertSext; 6475 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6476 AssertOp = ISD::AssertZext; 6477 6478 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6479 NumParts, PartVT, VT, 6480 AssertOp)); 6481 } 6482 6483 i += NumParts; 6484 } 6485 6486 // We don't need to do anything else for unused arguments. 6487 if (ArgValues.empty()) 6488 continue; 6489 6490 // Note down frame index for byval arguments. 6491 if (I->hasByValAttr()) 6492 if (FrameIndexSDNode *FI = 6493 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6494 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex()); 6495 6496 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6497 SDB->getCurDebugLoc()); 6498 SDB->setValue(I, Res); 6499 6500 // If this argument is live outside of the entry block, insert a copy from 6501 // wherever we got it to the vreg that other BB's will reference it as. 6502 if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6503 // If we can, though, try to skip creating an unnecessary vreg. 6504 // FIXME: This isn't very clean... it would be nice to make this more 6505 // general. It's also subtly incompatible with the hacks FastISel 6506 // uses with vregs. 6507 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6508 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6509 FuncInfo->ValueMap[I] = Reg; 6510 continue; 6511 } 6512 } 6513 if (!isOnlyUsedInEntryBlock(I)) { 6514 FuncInfo->InitializeRegForValue(I); 6515 SDB->CopyToExportRegsIfNeeded(I); 6516 } 6517 } 6518 6519 assert(i == InVals.size() && "Argument register count mismatch!"); 6520 6521 // Finally, if the target has anything special to do, allow it to do so. 6522 // FIXME: this should insert code into the DAG! 6523 EmitFunctionEntryCode(); 6524 } 6525 6526 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6527 /// ensure constants are generated when needed. Remember the virtual registers 6528 /// that need to be added to the Machine PHI nodes as input. We cannot just 6529 /// directly add them, because expansion might result in multiple MBB's for one 6530 /// BB. As such, the start of the BB might correspond to a different MBB than 6531 /// the end. 6532 /// 6533 void 6534 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6535 const TerminatorInst *TI = LLVMBB->getTerminator(); 6536 6537 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6538 6539 // Check successor nodes' PHI nodes that expect a constant to be available 6540 // from this block. 6541 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6542 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6543 if (!isa<PHINode>(SuccBB->begin())) continue; 6544 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6545 6546 // If this terminator has multiple identical successors (common for 6547 // switches), only handle each succ once. 6548 if (!SuccsHandled.insert(SuccMBB)) continue; 6549 6550 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6551 6552 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6553 // nodes and Machine PHI nodes, but the incoming operands have not been 6554 // emitted yet. 6555 for (BasicBlock::const_iterator I = SuccBB->begin(); 6556 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6557 // Ignore dead phi's. 6558 if (PN->use_empty()) continue; 6559 6560 // Skip empty types 6561 if (PN->getType()->isEmptyTy()) 6562 continue; 6563 6564 unsigned Reg; 6565 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6566 6567 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6568 unsigned &RegOut = ConstantsOut[C]; 6569 if (RegOut == 0) { 6570 RegOut = FuncInfo.CreateRegs(C->getType()); 6571 CopyValueToVirtualRegister(C, RegOut); 6572 } 6573 Reg = RegOut; 6574 } else { 6575 DenseMap<const Value *, unsigned>::iterator I = 6576 FuncInfo.ValueMap.find(PHIOp); 6577 if (I != FuncInfo.ValueMap.end()) 6578 Reg = I->second; 6579 else { 6580 assert(isa<AllocaInst>(PHIOp) && 6581 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6582 "Didn't codegen value into a register!??"); 6583 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6584 CopyValueToVirtualRegister(PHIOp, Reg); 6585 } 6586 } 6587 6588 // Remember that this register needs to added to the machine PHI node as 6589 // the input for this MBB. 6590 SmallVector<EVT, 4> ValueVTs; 6591 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6592 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6593 EVT VT = ValueVTs[vti]; 6594 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6595 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6596 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6597 Reg += NumRegisters; 6598 } 6599 } 6600 } 6601 ConstantsOut.clear(); 6602 } 6603